JP2007129079A - Magnetic particulate, its manufacturing method, magnet using them, and its manufacturing method - Google Patents

Magnetic particulate, its manufacturing method, magnet using them, and its manufacturing method Download PDF

Info

Publication number
JP2007129079A
JP2007129079A JP2005320707A JP2005320707A JP2007129079A JP 2007129079 A JP2007129079 A JP 2007129079A JP 2005320707 A JP2005320707 A JP 2005320707A JP 2005320707 A JP2005320707 A JP 2005320707A JP 2007129079 A JP2007129079 A JP 2007129079A
Authority
JP
Japan
Prior art keywords
fine particles
magnetic fine
compound
group
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005320707A
Other languages
Japanese (ja)
Other versions
JP4820988B2 (en
Inventor
Kazufumi Ogawa
小川  一文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kagawa University NUC
Original Assignee
Kagawa University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagawa University NUC filed Critical Kagawa University NUC
Priority to JP2005320707A priority Critical patent/JP4820988B2/en
Publication of JP2007129079A publication Critical patent/JP2007129079A/en
Application granted granted Critical
Publication of JP4820988B2 publication Critical patent/JP4820988B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that, in conventional magnets obtained by sintering magnetic particulates, the sintering is made at high temperature to deteriorate the magnetic characteristics of the magnetic particulates hindering the yielding of high performance magnets; and that, in plastic magnets where magnetic particulates are dispersed and solidified in a resin, the resin serves as a binder and, therefore, makes it impossible to ensure magnets that are excellent in magnetization strength although they have elasticity. <P>SOLUTION: The magnet is constituted in a way that the magnetic particulates with first reactivity and magnetic particulates with second reactivity are mixed and put in a mold for pressurization and heating reaction thereof. Consequently, the magnetic particulates covered with a first organic thin film, and the magnetic particulates covered with a second organic thin film, are mixed and covalently bonded to each other via the organic thin films and are further solidified and molded. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、磁性微粒子とその製造方法およびそれらを用いた磁石とその製造方法に関するものである。さらに詳しくは、表面を安定化させるか、表面に熱反応性または光反応性、あるいはラジカル反応性またはイオン反応性を付与した磁性微粒子とその製造方法およびそれらを用いて作製した磁石とその製造方法に関するものである。 The present invention relates to magnetic fine particles, a method for producing the same, a magnet using them, and a method for producing the same. More specifically, magnetic fine particles having a surface stabilized or thermally or photoreactive, or radical or ion reactive on the surface, a method for producing the same, a magnet produced using them, and a method for producing the same It is about.

本発明において、「磁性微粒子」には、磁性金属微粒子や磁性金属酸化物微粒子が含まれる。   In the present invention, “magnetic fine particles” include magnetic metal fine particles and magnetic metal oxide fine particles.

従来から、磁性微粒子を焼結した磁石や、樹脂中に磁性微粒子分散固化したプラスチック磁石が数多く知られている。   Conventionally, many magnets obtained by sintering magnetic fine particles and plastic magnets obtained by dispersing and solidifying magnetic fine particles in a resin are known.

しかしながら、磁性微粒子を焼結した磁石では、高温で焼結するため磁性粒子の磁気特性が劣化して高性能な磁石は得られなかった。また、樹脂中に磁性微粒子分散固化したプラスチック磁石では、樹脂をバインダーにしているため弾力性は持っているが、磁化強度に優れた磁石は得られなかった。   However, a magnet obtained by sintering magnetic fine particles is sintered at a high temperature, so that the magnetic properties of the magnetic particles deteriorate and a high-performance magnet cannot be obtained. Further, a plastic magnet in which magnetic fine particles are dispersed and solidified in a resin has elasticity because it uses a resin as a binder, but a magnet having excellent magnetization strength cannot be obtained.

本発明は、磁性微粒子を固化した磁石でありながら、従来の焼結磁石に比べて、磁性微粒子の焼結温度を低くすると共にバインダーを用いないで固化することにより、より高性能な磁気特性を有する磁性微粒子固化磁石を提供することを目的とする。   Although the present invention is a magnet in which magnetic fine particles are solidified, it lowers the sintering temperature of the magnetic fine particles and solidifies without using a binder as compared with conventional sintered magnets, thereby providing higher performance magnetic properties. An object of the present invention is to provide a magnetic fine particle solidified magnet.

前記課題を解決するための手段として提供される第一の発明は、表面に共有結合した有機薄膜で覆われていることを特徴とする磁性微粒子である。 A first invention provided as means for solving the above-mentioned problems is a magnetic fine particle characterized by being covered with an organic thin film covalently bonded to the surface.

第二の発明は、第一の発明において、表面に共有結合した有機薄膜が一端に機能性官能基を含み他端でSiを介して粒子表面に共有結合する分子で構成されていることを特徴とする磁性微粒子である。 A second invention is characterized in that, in the first invention, the organic thin film covalently bonded to the surface is composed of molecules having a functional functional group at one end and covalently bonding to the particle surface via Si at the other end. Magnetic fine particles.

第三の発明は、第二の発明において、機能性官能基が反応性の官能基であることを特徴とする磁性微粒子である。 A third invention is the magnetic fine particle according to the second invention, wherein the functional functional group is a reactive functional group.

第四の発明は、反応性の官能基が熱反応性、または、光反応性、あるいはラジカル反応性またはイオン反応性の官能基であることを特徴とする磁性微粒子である。 A fourth invention is a magnetic fine particle characterized in that the reactive functional group is a thermally reactive, photoreactive, radical reactive or ion reactive functional group.

第五の発明は、第三の発明において、反応性の官能基がエポキシ基やイミノ基、あるいはカルコン基であることを特徴とする磁性微粒子である。 A fifth invention is the magnetic fine particle according to the third invention, wherein the reactive functional group is an epoxy group, an imino group, or a chalcone group.

第六の発明は、第二の発明において、表面に共有結合した有機薄膜が単分子膜で構成されていることを特徴とする磁性微粒子である。 A sixth invention is the magnetic fine particle according to the second invention, wherein the organic thin film covalently bonded to the surface is composed of a monomolecular film.

第七の発明は、磁性微粒子を少なくともアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に分散させてアルコキシシラン化合物と磁性微粒子表面を反応させる工程を含むことを特徴とする磁性微粒子の製造方法である。 The seventh invention includes a step of reacting the alkoxysilane compound and the surface of the magnetic fine particles by dispersing the magnetic fine particles in a chemical adsorption solution prepared by mixing at least an alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent. This is a method for producing magnetic fine particles.

第八の発明は、第七の発明において、磁性微粒子を化学吸着液に分散させてアルコキシシラン化合物と磁性微粒子表面を反応させる工程の後、磁性微粒子表面を有機溶剤で洗浄して磁性微粒子表面に共有結合した単分子膜を形成することを特徴とする磁性微粒子の製造方法である。 According to an eighth invention, in the seventh invention, after the step of dispersing the magnetic fine particles in the chemical adsorption liquid and reacting the alkoxysilane compound and the surface of the magnetic fine particles, the surface of the magnetic fine particles is washed with an organic solvent to the surface of the magnetic fine particles. A method for producing magnetic fine particles, wherein a covalently bonded monomolecular film is formed.

第九の発明は、第七の発明において、シラノール縮合触媒の代わりに、ケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を用いることを特徴とする磁性微粒子の製造方法である。 According to a ninth invention, in the seventh invention, a magnetic fine particle characterized in that a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, or an aminoalkylalkoxysilane compound is used instead of a silanol condensation catalyst. It is a manufacturing method.

第十の発明は、第七の発明において、シラノール縮合触媒に助触媒としてケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物から選ばれる少なくとも1つを混合して用いることを特徴とする磁性微粒子の製造方法である。 According to a tenth aspect, in the seventh aspect, the silanol condensation catalyst is mixed with at least one selected from a ketimine compound or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, and an aminoalkylalkoxysilane compound as a cocatalyst. It is a manufacturing method of the magnetic fine particle characterized by using.

第十一の発明は、第1の有機薄膜で被われた磁性微粒子と第2の有機薄膜で被われた磁性微粒子が混合されて互いに前記有機薄膜を介して共有結合して成形されていることを特徴とする磁石。 In the eleventh aspect of the invention, the magnetic fine particles covered with the first organic thin film and the magnetic fine particles covered with the second organic thin film are mixed and formed into a covalent bond with each other via the organic thin film. A magnet characterized by.

第十二の発明は第十一の発明において、表面に共有結合した有機薄膜が一端に反応性の官能基を含み他端でSiを介して粒子表面に共有結合する分子で構成されていることを特徴とする磁石である。 The twelfth invention is the eleventh invention, wherein the organic thin film covalently bonded to the surface is composed of molecules having a reactive functional group at one end and covalently bonding to the particle surface via Si at the other end. It is a magnet characterized by.

第十三の発明は、第十二の発明において、反応性の官能基が熱反応性または光反応性、あるいはラジカル反応性またはイオン反応性の官能基であることを特徴とする磁石である。 A thirteenth invention is the magnet according to the twelfth invention, wherein the reactive functional group is a thermally reactive or photoreactive, radical reactive or ion reactive functional group.

第十四の発明は、第十二の発明において、反応性の官能基がエポキシ基やイミノ基、あるいはカルコン基であることを特徴とする磁石である。 A fourteenth invention is the magnet according to the twelfth invention, wherein the reactive functional group is an epoxy group, an imino group, or a chalcone group.

第十五の発明は、第十一の発明及び第十二の発明において、表面に共有結合した有機薄膜が単分子膜で構成されていることを特徴とする磁石である。 A fifteenth invention is the magnet according to the eleventh invention and the twelfth invention, wherein the organic thin film covalently bonded to the surface is formed of a monomolecular film.

第十六の発明は、第1の反応性を備えた磁性微粒子と第2の反応性を備えた磁性微粒子を混合し鋳型に入れて加圧加温反応させる工程を含むことを特徴とする磁石の製造方法である。 A sixteenth invention includes a step of mixing magnetic fine particles having the first reactivity and magnetic fine particles having the second reactivity, placing them in a mold, and subjecting them to pressurization and heating reaction. It is a manufacturing method.

第十七の発明は、第十六の発明において、鋳型に入れて加圧加温反応させる工程を磁場中で行うことを特徴とする磁石の製造方法である。 A seventeenth aspect of the invention is a method for producing a magnet according to the sixteenth aspect of the invention, wherein the step of applying pressure and heating in a mold is performed in a magnetic field.

第十八の発明は、第十六または第十七の発明において、鋳型に入れる際、磁場中で超音波を印加しながら行うことを特徴とする磁石の製造方法である。
以下これらの発明についての要旨を説明する。
An eighteenth aspect of the invention is a magnet manufacturing method according to the sixteenth or seventeenth aspect of the invention, wherein an ultrasonic wave is applied in a magnetic field when placing in a mold.
The gist of these inventions will be described below.

本発明は、磁性微粒子を少なくともアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に分散させてアルコキシシラン化合物と磁性微粒子表面を反応させることにより、磁性微粒子表面に共有結合した分子で構成する有機薄膜を形成し、磁性微粒子本来の機能をほぼ保ったままで、表面に反応機能を付与した磁性微粒子を提供することを要旨とする。 According to the present invention, magnetic fine particles are dispersed in a chemical adsorption solution prepared by mixing at least an alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent, and the alkoxysilane compound and the surface of the magnetic fine particles are allowed to react with each other. The gist is to provide an organic thin film composed of molecules covalently bonded to the surface, and to provide a magnetic fine particle having a reaction function on the surface while substantially maintaining the original function of the magnetic fine particle.

また、磁性微粒子を化学吸着液に分散させてアルコキシシラン化合物と磁性微粒子表面を反応させる工程の後、磁性微粒子表面を有機溶剤で洗浄して磁性微粒子表面に共有結合した単分子膜で被うことにより、磁性微粒子本来の形状と機能をほぼ完全に保ったままで反応機能を付与した磁性微粒子を提供することを要旨とする。 Also, after the step of dispersing the magnetic fine particles in the chemical adsorption liquid and reacting the alkoxysilane compound with the surface of the magnetic fine particles, the surface of the magnetic fine particles is washed with an organic solvent and covered with a monomolecular film covalently bonded to the surface of the magnetic fine particles. Thus, the gist of the invention is to provide magnetic fine particles having a reaction function while maintaining the original shape and function of the magnetic fine particles almost completely.

このとき、シラノール縮合触媒の代わりに、ケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を用いることも可能である。一方、シラノール縮合触媒に助触媒としてケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物から選ばれる少なくとも1つを混合して用いること反応時間を短縮できて都合がよい。 At this time, it is also possible to use a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, or an aminoalkylalkoxysilane compound instead of the silanol condensation catalyst. On the other hand, it is convenient to use a mixture of at least one selected from a ketimine compound or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, and an aminoalkylalkoxysilane compound as a co-catalyst for the silanol condensation catalyst. Good.

また、表面に共有結合した有機薄膜が一端にエポキシ基やイミノ基、あるいはカルコン基等の熱反応性または光反応性、あるいは、ラジカル反応性、または、イオン反応性の官能基を含み他端でSiを介して粒子表面に共有結合する分子で構成されていると磁性微粒子の固化を速やかにできて都合がよい。 In addition, the organic thin film covalently bonded to the surface contains a thermal or photoreactive or radical reactive or ion reactive functional group such as an epoxy group, imino group or chalcone group at one end. Consisting of molecules that are covalently bonded to the particle surface via Si is advantageous in that the magnetic fine particles can be quickly solidified.

また、表面に共有結合した有機薄膜を単分子膜で構成しておくと、固化の際、磁性微粒子密度を高くする上で都合がよい。 Further, if the organic thin film covalently bonded to the surface is composed of a monomolecular film, it is convenient to increase the magnetic fine particle density during solidification.

さらにまた、本発明は、第1の反応性を備えた磁性微粒子と第2の反応性を備えた磁性微粒子を混合し鋳型に入れて加圧加温反応させることにより、第1の有機薄膜で被われた磁性微粒子と第2の有機薄膜で被われた磁性微粒子が混合されて互いに前記有機薄膜を介して共有結合して固化成形されている磁石を提供することを要旨とする。   Furthermore, in the present invention, the first organic thin film is obtained by mixing the magnetic fine particles having the first reactivity and the magnetic fine particles having the second reactivity, placing them in a mold, and performing a pressure-warming reaction. The gist is to provide a magnet in which magnetic fine particles covered with a magnetic fine particle covered with a second organic thin film are mixed and covalently bonded to each other through the organic thin film and solidified.

このとき、第1の反応性を備えた磁性微粒子と第2の反応性を備えた磁性微粒子を混合し鋳型に入れて加圧加温反応させると成形が容易である。また、鋳型に入れて加圧加温反応させる際、磁場中で超音波を印加しながら行うと、磁石内での磁性微粒子の結晶方向を揃える上で都合がよい。   At this time, molding can be facilitated by mixing magnetic fine particles having the first reactivity and magnetic fine particles having the second reactivity, placing them in a mold, and causing a pressure and heating reaction. In addition, when the pressure-warming reaction is performed in a mold, it is convenient to align the crystal directions of the magnetic fine particles in the magnet if an ultrasonic wave is applied in a magnetic field.

一方、表面に共有結合した有機薄膜が一端に反応性の官能基を含み他端でSiを介して粒子表面に共有結合する分子で構成しておくと、固化温度を低くできて都合がよい。 On the other hand, when the organic thin film covalently bonded to the surface is composed of molecules having a reactive functional group at one end and covalently bonded to the particle surface via Si at the other end, the solidification temperature can be advantageously lowered.

また、反応性の官能基がエポキシ基やイミノ基、あるいは、カルコン基等の熱反応性または光反応性、あるいは、ラジカル反応性、または、イオン反応性の官能基であると固化の際収縮が少なくて都合がよい。
さらに、表面に共有結合した有機薄膜を単分子膜で構成しておくと、磁性微粒子密度を高くする上で都合がよい。
In addition, if the reactive functional group is a thermal reactive or photoreactive functional group such as an epoxy group, an imino group, or a chalcone group, or a radical reactive functional group or an ionic reactive functional group, shrinkage occurs during solidification. Small and convenient.
Further, if the organic thin film covalently bonded to the surface is formed of a monomolecular film, it is convenient for increasing the magnetic fine particle density.

本発明によれば、磁性微粒子を固化した磁石でありながら、従来の焼結磁石に比べてより高性能な磁気特性を有する磁性微粒子固化磁石を提供できる格別な効果がある。 ADVANTAGE OF THE INVENTION According to this invention, although it is a magnet which solidified magnetic fine particles, there exists a special effect which can provide the magnetic fine particle solidified magnet which has a higher performance magnetic characteristic compared with the conventional sintered magnet.

本発明は、少なくともアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液に磁性微粒子を分散させてアルコキシシラン化合物と磁性微粒子表面を反応させる工程の後、有機溶剤で洗浄する方法により、表面に共有結合した分子が、反応性の官能基、例えば熱反応性または光反応性、あるいは、ラジカル反応性、または、イオン反応性の官能基を有し、且つ単分子膜を構成している磁性微粒子、及び、それを用いて成形した磁石を提供するものである。 The present invention includes an organic solvent after a step of dispersing magnetic fine particles in a chemical adsorption solution prepared by mixing at least an alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent and reacting the alkoxysilane compound with the surface of the magnetic fine particles. The molecule covalently bonded to the surface has a reactive functional group, for example, a thermal reactive or photoreactive, radical reactive, or ionic reactive functional group, and a single molecule. The present invention provides magnetic fine particles constituting a film, and a magnet formed using the same.

したがって、本発明には、磁性微粒子本来の形状と機能をほぼ完全に保ったままで粒子そのものの表面に反応性を付与した磁性微粒子、さらに、その機能を用いて磁性微粒子を成形固化した高性能磁石を提供できる。   Therefore, in the present invention, the magnetic fine particles in which the original shape and function of the magnetic fine particles are maintained almost completely and the surface of the particles themselves are given reactivity, and the high-performance magnet in which the magnetic fine particles are molded and solidified by using the function. Can provide.

以下、本願発明の詳細を実施例を用いて説明するが、本願発明は、これら実施例によって何ら限定されるものではない。   Hereinafter, although the detail of this invention is demonstrated using an Example, this invention is not limited at all by these Examples.

なお、本発明に関する磁性微粒子には、鉄、クロム、ニッケルやそれらの合金等よりなる磁性金属微粒子やフェライトやマグネタイト、酸化クロム等よりなる磁性金属酸化物微粒子があるが、まず、代表例としてマグネタイト微粒子を取り上げて説明する。   The magnetic fine particles according to the present invention include magnetic metal fine particles made of iron, chromium, nickel and alloys thereof, and magnetic metal oxide fine particles made of ferrite, magnetite, chromium oxide, etc. First, as a representative example, magnetite Take the fine particles for explanation.

まず、無水のマグネタイト1を用意し、よく乾燥した。次に、化学吸着剤として機能部位に反応性の官能基、例えば、エポキシ基あるいはイミノ基と他端にアルコキシシリル基を含む薬剤、例えば、下記式(化1)あるいは(化2)に示す薬剤を99重量%、シラノール縮合触媒として、例えば、ジブチル錫ジアセチルアセトナート、あるいは有機酸である酢酸を1重量%となるようそれぞれ秤量し、シリコーン溶媒、例えば、ヘキサメチルジシロキサンとジメチルホルムアミド(50:50)混合溶媒に1重量%程度の濃度(好ましくい化学吸着剤の濃度は、0.5〜3%程度)になるように溶かして化学吸着液を調製した。 First, anhydrous magnetite 1 was prepared and dried well. Next, as a chemical adsorbent, a functional group having a reactive functional group such as an epoxy group or imino group and an alkoxysilyl group at the other end, such as a chemical represented by the following formula (Chemical Formula 1) or (Chemical Formula 2) As a silanol condensation catalyst, for example, dibutyltin diacetylacetonate or acetic acid as an organic acid is weighed to 1% by weight, respectively, and a silicone solvent such as hexamethyldisiloxane and dimethylformamide (50: 50) A chemisorbed solution was prepared by dissolving in a mixed solvent to a concentration of about 1% by weight (preferably the concentration of the chemical adsorbent is about 0.5 to 3%).

Figure 2007129079
Figure 2007129079

Figure 2007129079
Figure 2007129079

この吸着液に無水のマグネタイト微粒子を混入撹拌して普通の空気中で(相対湿度45%)で2時間程度反応させた。このとき、無水のマグネタイト微粒子表面には水酸基2が多数含まれているの(図1a)で、前記化学吸着剤の−Si(OCH)基と前記水酸基がシラノール縮合触媒あるいは酢酸等の有機酸の存在下で脱アルコール(この場合は、脱CHOH)反応し、下記式(化3)あるいは(化4)に、示したような結合を形成し、磁性微粒子表面全面に亘り表面と化学結合したエポキシ基を含む化学吸着単分子膜3あるいはアミノ基を含む化学吸着膜4が約1ナノメートル程度の膜厚で形成された(図1b、1c)。なお、ここで、アミノ基を含む吸着剤を使用する場合には、スズ系の触媒では沈殿が生成するので、酢酸等の有機酸を用いた方がよかった。また、アミノ基はイミノ基を含んでいるが、アミノ基以外にイミノ基を含む物質には、ピロール誘導体や、イミダゾール誘導体等がある。さらに、ケチミン誘導体を用いれば、被膜形成後、加水分解により容易にアミノ基を導入できた。 Anhydrous magnetite fine particles were mixed in the adsorbed liquid and stirred, and reacted in ordinary air (relative humidity 45%) for about 2 hours. At this time, since there are many hydroxyl groups 2 on the surface of the anhydrous magnetite fine particles (FIG. 1a), the -Si (OCH 3 ) group of the chemical adsorbent and the hydroxyl group are organic acids such as a silanol condensation catalyst or acetic acid. Reaction in the presence of (in this case, de-CH 3 OH) to form bonds as shown in the following formula (Chemical Formula 3) or (Chemical Formula 4). A chemisorption monomolecular film 3 containing bonded epoxy groups or a chemisorption film 4 containing amino groups was formed with a thickness of about 1 nanometer (FIGS. 1b and 1c). Here, when an adsorbent containing an amino group is used, since a precipitate is generated with a tin-based catalyst, it is better to use an organic acid such as acetic acid. The amino group contains an imino group, but substances containing an imino group in addition to the amino group include pyrrole derivatives and imidazole derivatives. Furthermore, when a ketimine derivative was used, an amino group could be easily introduced by hydrolysis after film formation.

その後、トリクレン等の塩素系溶媒を添加して撹拌洗浄すると、表面に反応性の官能基、例えばエポキシ基、あるいは、アミノ基を有する化学吸着単分子膜で被われたマグネタイト微粒子をそれぞれ作製できた。 After that, when a chlorine-based solvent such as trichlene was added and washed with stirring, magnetite fine particles covered with a chemisorption monomolecular film having a reactive functional group such as an epoxy group or an amino group on the surface could be produced. .

Figure 2007129079
Figure 2007129079

Figure 2007129079
Figure 2007129079

この処理部は、被膜がナノメートルレベルの膜厚で極めて薄いため、粒子形状を損なうことはなかった。
なお、洗浄せずに空気中に取り出すと、反応性はほぼ変わらないが、溶媒が蒸発し粒子表面に残った化学吸着剤が粒子表面で空気中の水分と反応して、粒子表面に前記化学吸着剤よりなる極薄のポリマー膜が形成されたマグネタイト微粒子が得られた。
Since the coating film was extremely thin with a film thickness on the nanometer level, the particle shape was not impaired.
Note that the reactivity does not substantially change when it is taken out into the air without washing, but the chemical adsorbent remaining on the particle surface reacts with the moisture in the air on the particle surface, and the chemical is adsorbed on the particle surface. Magnetite fine particles on which an ultrathin polymer film made of an adsorbent was formed were obtained.

この方法の特徴は脱アルコール反応であるため、マグネタイト微粒子のような酸で破壊されるような物でも使用可能である。   Since this method is characterized by a dealcoholization reaction, it is possible to use a material that is broken by an acid such as magnetite fine particles.

次に、前記エポキシ基、あるいは、アミノ基を有する化学吸着単分子膜で被われたマグネタイト微粒子をそれぞれ同量採取り十分混合し、金型中に入れて加圧し、さらに50〜100℃程度に加熱すると、下記式(化6)に示したような反応でエポキシ基とアミノ基が付加して磁性微粒子は結合固化し、さらに着磁させると、バインダーを含まない磁石を製造できた。 Next, the same amount of the magnetite fine particles 5 and 6 covered with the chemisorption monomolecular film having the epoxy group or amino group are collected and mixed together, put into a mold and pressurized, and further 50-100 When heated to about 0 ° C., an epoxy group and an amino group were added by the reaction shown in the following formula (Chemical Formula 6), the magnetic fine particles were bonded and solidified, and when magnetized, a magnet containing no binder could be produced. .

Figure 2007129079
Figure 2007129079

なお、金型中に入れる際、磁場中で超音波を当てながら充填すると、微粒子の配向が揃い磁気特性の優れたマグネタイト磁石が得られることが確認できた。(図2) In addition, when putting in a metal mold | die, it has confirmed that the magnetite magnet 7 with which the orientation of microparticles | fine-particles was uniform and excellent in the magnetic characteristic was obtained by applying ultrasonic waves in a magnetic field. (Figure 2)

なお、上記実施例では、反応性基を含む化学吸着剤として式(化1)あるいは(化2)に示した物質を用いたが、上記のもの以外にも、下記(1)〜(16)に示した物質が利用できた。
(1) (CHOCH)CH2O(CH2)Si(OCH)3
(2) (CHOCH)CH2O(CH2)11Si(OCH)3
(3) (CHCHOCH(CH)CH(CH2)Si(OCH)3
(4) (CHCHOCH(CH)CH(CH2)Si(OCH)3
(5) (CHCHOCH(CH)CH(CH2)Si(OCH)3
(6) (CH2OCH)CH2O(CH2)Si(OC)3
(7) (CHOCH)CH2O(CH2)11Si(OC)3
(8) (CHCHOCH(CH)CH(CH2)Si(OC)3
(9) (CHCHOCH(CH)CH (CH2)Si(OC)3
(10) (CHCHOCH(CH)CH(CH2)Si(OC)3
(11) H2N (CH2)Si(OCH)3
(12) H2N (CH2)Si(OCH)3
(13) H2N (CH2)Si(OCH)3
(14) H2N (CH2)Si(OC)3
(15) H2N (CH2)Si(OC)3
(16) H2N (CH2)Si(OC)3
ここで、(CHOCH)−基は、下記式(化6)で表される官能基を表し、(CHCHOCH(CH)CH−基は、下記式(化7)で表される官能基を表す。
In addition, in the said Example, although the substance shown in Formula (Formula 1) or (Formula 2) was used as a chemical adsorbent containing a reactive group, in addition to the above, the following (1) to (16) The substances shown in the above were available.
(1) (CH 2 OCH) CH 2 O (CH 2 ) 7 Si (OCH 3 ) 3
(2) (CH 2 OCH) CH 2 O (CH 2 ) 11 Si (OCH 3 ) 3
(3) (CH 2 CHOCH (CH 2 ) 2 ) CH (CH 2 ) 2 Si (OCH 3 ) 3
(4) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 4 Si (OCH 3) 3
(5) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 6 Si (OCH 3) 3
(6) (CH2OCH) CH 2 O (CH 2) 7 Si (OC 2 H 5) 3
(7) (CH 2 OCH) CH 2 O (CH 2 ) 11 Si (OC 2 H 5 ) 3
(8) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 2 Si (OC 2 H 5) 3
(9) (CH 2 CHOCH (CH 2 ) 2 ) CH (CH 2 ) 4 Si (OC 2 H 5 ) 3
(10) (CH 2 CHOCH (CH 2 ) 2 ) CH (CH 2 ) 6 Si (OC 2 H 5 ) 3
(11) H 2 N (CH 2 ) 5 Si (OCH 3 ) 3
(12) H 2 N (CH 2 ) 7 Si (OCH 3 ) 3
(13) H 2 N (CH 2 ) 9 Si (OCH 3 ) 3
(14) H 2 N (CH 2 ) 5 Si (OC 2 H 5 ) 3
(15) H 2 N (CH 2 ) 7 Si (OC 2 H 5 ) 3
(16) H 2 N (CH 2 ) 9 Si (OC 2 H 5 ) 3
Here, the (CH 2 OCH) — group represents a functional group represented by the following formula (Formula 6), and the (CH 2 CHOCH (CH 2 ) 2 ) CH— group is represented by the following formula (Formula 7). Represents a functional group.

Figure 2007129079
Figure 2007129079

Figure 2007129079
Figure 2007129079

なお、実施例1に置いて、シラノール縮合触媒には、カルボン酸金属塩、カルボン酸エステル金属塩、カルボン酸金属塩ポリマー、カルボン酸金属塩キレート、チタン酸エステル及びチタン酸エステルキレート類が利用可能である。さらに具体的には、酢酸第1錫、ジブチル錫ジラウレート、ジブチル錫ジオクテート、ジブチル錫ジアセテート、ジオクチル錫ジラウレート、ジオクチル錫ジオクテート、ジオクチル錫ジアセテート、ジオクタン酸第1錫、ナフテン酸鉛、ナフテン酸コバルト、2−エチルヘキセン酸鉄、ジオクチル錫ビスオクチリチオグリコール酸エステル塩、ジオクチル錫マレイン酸エステル塩、ジブチル錫マレイン酸塩ポリマー、ジメチル錫メルカプトプロピオン酸塩ポリマー、ジブチル錫ビスアセチルアセテート、ジオクチル錫ビスアセチルラウレート、テトラブチルチタネート、テトラノニルチタネート及びビス(アセチルアセトニル)ジープロピルチタネートを用いることが可能であった。 In Example 1, as the silanol condensation catalyst, carboxylic acid metal salt, carboxylic acid ester metal salt, carboxylic acid metal salt polymer, carboxylic acid metal salt chelate, titanate ester and titanate ester chelate can be used. It is. More specifically, stannous acetate, dibutyltin dilaurate, dibutyltin dioctate, dibutyltin diacetate, dioctyltin dilaurate, dioctyltin dioctate, dioctyltin diacetate, stannous dioctanoate, lead naphthenate, cobalt naphthenate , Iron 2-ethylhexenoate, dioctyltin bisoctylthioglycolate, dioctyltin maleate, dibutyltin maleate polymer, dimethyltin mercaptopropionate polymer, dibutyltin bisacetylacetate, dioctyltin bisacetyl Laurate, tetrabutyl titanate, tetranonyl titanate and bis (acetylacetonyl) dipropyl titanate could be used.

また、膜形成溶液の溶媒として、水を含まない有機塩素系溶媒、炭化水素系溶媒、あるいはフッ化炭素系溶媒やシリコーン系溶媒、あるいはそれら混合物を用いることが可能であった。なお、洗浄を行わず、溶媒を蒸発させて粒子濃度を上げようとする場合には、溶媒の沸点は50〜250℃程度がよい。
さらに、吸着剤がアルコキシシラン系の場合で且つ溶媒を蒸発させて有機被膜を形成する場合には、前記溶媒に加え、メタノール、エタノール、プロパノール等のアルコール系溶媒、あるいはそれら混合物が使用できた。
Further, it was possible to use an organic chlorine-based solvent, a hydrocarbon-based solvent, a fluorocarbon-based solvent, a silicone-based solvent, or a mixture thereof that does not contain water as a solvent for the film-forming solution. In addition, when it is going to raise particle concentration by evaporating a solvent, without wash | cleaning, the boiling point of a solvent is good at about 50-250 degreeC.
Further, when the adsorbent is an alkoxysilane type and the organic film is formed by evaporating the solvent, an alcohol type solvent such as methanol, ethanol, propanol, or a mixture thereof can be used in addition to the solvent.

具体的に使用可能なものは、有機塩素系溶媒、非水系の石油ナフサ、ソルベントナフサ、石油エーテル、石油ベンジン、イソパラフィン、ノルマルパラフィン、デカリン、工業ガソリン、ノナン、デカン、灯油、ジメチルシリコーン、フェニルシリコーン、アルキル変性シリコーン、ポリエーテルシリコーン、ジメチルホルムアミド、あるいはそれら混合物等を挙げることができる。 Specifically usable are organic chlorinated solvents, non-aqueous petroleum naphtha, solvent naphtha, petroleum ether, petroleum benzine, isoparaffin, normal paraffin, decalin, industrial gasoline, nonane, decane, kerosene, dimethyl silicone, phenyl silicone , Alkyl-modified silicone, polyether silicone, dimethylformamide, or a mixture thereof.

また、フッ化炭素系溶媒には、フロン系溶媒や、フロリナート(3M社製品)、アフルード(旭ガラス社製品)等がある。なお、これらは1種単独で用いても良いし、良く混ざるものなら2種以上を組み合わせてもよい。さらに、クロロホルム等有機塩素系の溶媒を添加しても良い。 Fluorocarbon solvents include fluorocarbon solvents, Fluorinert (product of 3M), Afludo (product of Asahi Glass). In addition, these may be used individually by 1 type and may mix 2 or more types as long as it mixes well. Further, an organic chlorine solvent such as chloroform may be added.

一方、上述のシラノール縮合触媒の代わりに、ケチミン化合物又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を用いた場合、同じ濃度でも処理時間を半分〜2/3程度まで短縮できた。 On the other hand, when a ketimine compound or organic acid, aldimine compound, enamine compound, oxazolidine compound, aminoalkylalkoxysilane compound is used instead of the above-mentioned silanol condensation catalyst, the treatment time is reduced to about half to 2/3 even at the same concentration. did it.

さらに、シラノール縮合触媒とケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を混合(1:9〜9:1範囲で使用可能だが、通常1:1前後が好ましい。)して用いると、処理時間をさらに数倍早く(30分程度まで)でき、製膜時間を数分の一まで短縮できる。 Furthermore, a silanol condensation catalyst and a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, and an aminoalkylalkoxysilane compound can be used in a range of 1: 9 to 9: 1. )), The processing time can be increased several times faster (up to about 30 minutes), and the film forming time can be reduced to a fraction of a minute.

例えば、シラノール触媒であるジブチル錫オキサイドをケチミン化合物であるジャパンエポキシレジン社のH3に置き換え、その他の条件は同一にしてみたが、反応時間を1時間程度にまで短縮できた他は、ほぼ同様の結果が得られた。 For example, dibutyltin oxide, which is a silanol catalyst, was replaced with H3 from Japan Epoxy Resin, which is a ketimine compound, and the other conditions were the same, but the reaction time was reduced to about 1 hour. Results were obtained.

さらに、シラノール触媒を、ケチミン化合物であるジャパンエポキシレジン社のH3と、シラノール触媒であるジブチル錫ビスアセチルアセトネートの混合物(混合比は1:1)に置き換え、その他の条件は同一にしてみたが、反応時間を30分程度に短縮できた他は、ほぼ同様の結果が得られた。 Furthermore, the silanol catalyst was replaced with a mixture of ketimine compound Japan Epoxy Resin H3 and silanol catalyst dibutyltin bisacetylacetonate (mixing ratio is 1: 1), and other conditions were the same. The same results were obtained except that the reaction time could be shortened to about 30 minutes.

したがって、以上の結果から、ケチミン化合物や有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物がシラノール縮合触媒より活性が高いことが明らかとなった。 Therefore, the above results revealed that ketimine compounds, organic acids, aldimine compounds, enamine compounds, oxazolidine compounds, and aminoalkylalkoxysilane compounds are more active than silanol condensation catalysts.

さらにまた、ケチミン化合物や有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物の内の1つとシラノール縮合触媒を混合して用いると、さらに活性が高くなることが確認された。 Furthermore, it was confirmed that the activity is further increased when one of a ketimine compound, an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, and an aminoalkylalkoxysilane compound is mixed with a silanol condensation catalyst.

なお、ここで、利用できるケチミン化合物は特に限定されるものではないが、例えば、2,5,8−トリアザ−1,8−ノナジエン、3,11−ジメチル−4,7,10−トリアザ−3,10−トリデカジエン、2,10−ジメチル−3,6,9−トリアザ−2,9−ウンデカジエン、2,4,12,14−テトラメチル−5,8,11−トリアザ−4,11−ペンタデカジエン、2,4,15,17−テトラメチル−5,8,11,14−テトラアザ−4,14−オクタデカジエン、2,4,20,22−テトラメチル−5,12,19−トリアザ−4,19−トリエイコサジエン等がある。 Here, the ketimine compound that can be used is not particularly limited. For example, 2,5,8-triaza-1,8-nonadiene, 3,11-dimethyl-4,7,10-triaza-3 , 10-tridecadiene, 2,10-dimethyl-3,6,9-triaza-2,9-undecadiene, 2,4,12,14-tetramethyl-5,8,11-triaza-4,11-pentadeca Diene, 2,4,15,17-tetramethyl-5,8,11,14-tetraaza-4,14-octadecadiene, 2,4,20,22-tetramethyl-5,12,19-triaza- 4,19-trieicosadiene and the like.

また、利用できる有機酸としても特に限定されるものではないが、例えば、ギ酸、あるいは酢酸、プロピオン酸、ラク酸、マロン酸等があり、ほぼ同様の効果があった。 Further, the organic acid that can be used is not particularly limited, but there are, for example, formic acid, acetic acid, propionic acid, lactic acid, malonic acid, and the like, which have almost the same effects.

さらにまた、本発明で得られる磁石では、バインダーを含まないので、金属磁石並みの高性能な磁気特性を有する磁石を、比較定低温で金型に入れてプレスするだけで大量生産できる作用がある。 Furthermore, since the magnet obtained in the present invention does not contain a binder, it has the effect of mass-producing a magnet having high-performance magnetic properties similar to that of a metal magnet by simply placing it in a mold at a relatively constant low temperature and pressing it. .

また、上記実施例では、マグネタイト微粒子を例として説明したが、本発明は、表面に活性水素、すなわち水酸基の水素やアミノ基あるいはイミノ基の水素などを含んだ磁性微粒子で有れば、どのような磁性微粒子にでも適用可能である。 In the above-described embodiments, magnetite fine particles have been described as an example. However, the present invention is not limited as long as the surface is a magnetic fine particle containing active hydrogen, that is, hydrogen of a hydroxyl group, hydrogen of an amino group, or hydrogen of an imino group. It can be applied to various magnetic fine particles.

具体的には、鉄、クロム、ニッケルやそれらの合金等よりなる磁性金属微粒子やフェライトやマグネタイト、酸化クロム等よりなる磁性金属酸化物微粒子等に適用可能である。 Specifically, the present invention can be applied to magnetic metal fine particles made of iron, chromium, nickel, and alloys thereof, magnetic metal oxide fine particles made of ferrite, magnetite, chromium oxide, and the like.

本発明の実施例1における磁性微粒子の反応を分子レベルまで拡大した概念図であり、(a)は反応前の磁性微粒子表面の図、(b)は、エポキシ基を含む単分子膜が形成された後の図、(c)は、アミノ基を含む単分子膜が形成された後の図を示す。BRIEF DESCRIPTION OF THE DRAWINGS It is the conceptual diagram which expanded the reaction of the magnetic fine particle in Example 1 of this invention to the molecular level, (a) is a figure of the magnetic fine particle surface before reaction, (b) is the monomolecular film containing an epoxy group formed. (C) shows a view after a monomolecular film containing an amino group is formed. 本発明の実施例1における磁石を微粒子レベルまで拡大した概念図であり、エポキシ基を含む単分子膜が形成された磁性微粒子Aとアミノ基を含む単分子膜が形成された磁性微粒子Bを等量混合し、鋳型に入れて加熱反応させ固化後、着磁させた後の図を示す。FIG. 2 is a conceptual diagram in which the magnet in Example 1 of the present invention is enlarged to a fine particle level, including magnetic fine particles A on which a monomolecular film containing an epoxy group is formed and magnetic fine particles B on which a monomolecular film containing an amino group is formed. The figure after quantity mixing, putting in a mold, heating and reacting, solidifying, and magnetizing is shown.

符号の説明Explanation of symbols

1 マグネタイト微粒子
2 水酸基
3 エポキシ基を含む単分子膜
4 アミノ基を含む単分子膜
エポキシ基を含む単分子膜で被覆されたマグネタイト微粒子
アミノ基を含む単分子膜で被覆されたマグネタイト微粒子
マグネタイト磁石
DESCRIPTION OF SYMBOLS 1 Magnetite fine particle 2 Hydroxyl group 3 Monomolecular film containing an epoxy group 4 Monomolecular film containing an amino group
Magnetite fine particles coated with monomolecular film containing 5 epoxy groups
Magnetite fine particles coated with monomolecular film containing 6 amino groups
7 magnetite magnet

Claims (18)

表面に共有結合した有機薄膜で覆われていることを特徴とする磁性微粒子。 Magnetic fine particles characterized by being covered with an organic thin film covalently bonded to the surface. 表面に共有結合した有機薄膜が一端に機能性官能基を含み他端でSiを介して粒子表面に共有結合する分子で構成されていることを特徴とする請求項1記載の磁性微粒子。 2. The magnetic fine particle according to claim 1, wherein the organic thin film covalently bonded to the surface is composed of molecules having a functional functional group at one end and covalently bonding to the particle surface via Si at the other end. 機能性官能基が反応性の官能基であることを特徴とする請求項2記載の磁性微粒子。 The magnetic fine particle according to claim 2, wherein the functional functional group is a reactive functional group. 反応性の官能基が熱反応性、または光反応性、あるいはラジカル反応性、またはイオン反応性の官能基であることを特徴とする請求項3記載の磁性微粒子。 4. The magnetic fine particle according to claim 3, wherein the reactive functional group is a thermal reactive, photoreactive, radical reactive, or ion reactive functional group. 反応性の官能基がエポキシ基やイミノ基、あるいはカルコン基であることを特徴とする請求項3記載の磁性微粒子。 4. The magnetic fine particle according to claim 3, wherein the reactive functional group is an epoxy group, an imino group, or a chalcone group. 表面に共有結合した有機薄膜が単分子膜で構成されていることを特徴とする請求項1および2記載の磁性微粒子。 3. The magnetic fine particles according to claim 1, wherein the organic thin film covalently bonded to the surface is composed of a monomolecular film. 磁性微粒子を少なくともアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に分散させてアルコキシシラン化合物と磁性微粒子表面を反応させる工程を含むことを特徴とする磁性微粒子の製造方法。 The method includes a step of dispersing magnetic fine particles in a chemical adsorption solution prepared by mixing at least an alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent, and reacting the alkoxysilane compound with the surface of the magnetic fine particles. A method for producing fine particles. 磁性微粒子を化学吸着液に分散させてアルコキシシラン化合物と磁性微粒子表面を反応させる工程の後、磁性微粒子表面を有機溶剤で洗浄して磁性微粒子表面に共有結合した単分子膜を形成することを特徴とする請求項7記載の磁性微粒子の製造方法。 After the step of dispersing the magnetic fine particles in the chemical adsorption liquid and reacting the alkoxysilane compound and the surface of the magnetic fine particles, the surface of the magnetic fine particles is washed with an organic solvent to form a monomolecular film covalently bonded to the surface of the magnetic fine particles. The method for producing magnetic fine particles according to claim 7. シラノール縮合触媒の代わりに、ケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を用いることを特徴とする請求項7に記載の磁性微粒子の製造方法。 The method for producing magnetic fine particles according to claim 7, wherein a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, or an aminoalkylalkoxysilane compound is used instead of the silanol condensation catalyst. シラノール縮合触媒に助触媒としてケチミン化合物、または、有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物から選ばれる少なくとも1つを混合して用いることを特徴とする請求項7に記載の磁性微粒子の製造方法。 8. The silanol condensation catalyst as a co-catalyst comprising at least one selected from a ketimine compound or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, and an aminoalkylalkoxysilane compound. A method for producing magnetic fine particles. 第1の有機薄膜で被われた磁性微粒子と第2の有機薄膜で被われた磁性微粒子が混合されて互いに前記有機薄膜を介して共有結合して成形されていることを特徴とする磁石。 A magnet, wherein magnetic fine particles covered with a first organic thin film and magnetic fine particles covered with a second organic thin film are mixed and covalently bonded to each other through the organic thin film. 表面に共有結合した有機薄膜が一端に反応性の官能基を含み他端でSiを介して粒子表面に共有結合する分子で構成されていることを特徴とする請求項11記載の磁石。 12. The magnet according to claim 11, wherein the organic thin film covalently bonded to the surface comprises a molecule having a reactive functional group at one end and covalently bonding to the particle surface via Si at the other end. 反応性の官能基が熱反応性、または、光反応性、あるいはラジカル反応性またはイオン反応性の官能基であることを特徴とする請求項12記載の磁石。 13. The magnet according to claim 12, wherein the reactive functional group is a thermal reactive group, a photo reactive group, a radical reactive group or an ion reactive group. 反応性の官能基がエポキシ基やイミノ基、あるいは、カルコン基であることを特徴とする請求項12記載の磁石。 The magnet according to claim 12, wherein the reactive functional group is an epoxy group, an imino group, or a chalcone group. 表面に共有結合した有機薄膜が単分子膜で構成されていることを特徴とする請求項11および12記載の磁石。 13. The magnet according to claim 11 or 12, wherein the organic thin film covalently bonded to the surface is composed of a monomolecular film. 第1の反応性を備えた磁性微粒子と第2の反応性を備えた磁性微粒子を混合し鋳型に入れて加圧加温反応させる工程を含むことを特徴とする磁石の製造方法。 A method for producing a magnet comprising a step of mixing magnetic fine particles having a first reactivity and magnetic fine particles having a second reactivity, placing them in a mold, and subjecting them to a pressure and heating reaction. 鋳型に入れて加圧加温反応させる工程を磁場中で行うことを特徴とする請求項16に記載の磁石の製造方法。 The method for producing a magnet according to claim 16, wherein the step of applying pressure and heating in a mold is performed in a magnetic field. 鋳型に入れる際、磁場中で超音波を印加しながら行うことを特徴とする請求項16及び17に記載の磁石の製造方法。
18. The method for producing a magnet according to claim 16 or 17, wherein the magnet is placed in a mold while applying an ultrasonic wave in a magnetic field.
JP2005320707A 2005-11-04 2005-11-04 Magnetic fine particles, method for producing the same, magnet using the same, and method for producing the same Active JP4820988B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005320707A JP4820988B2 (en) 2005-11-04 2005-11-04 Magnetic fine particles, method for producing the same, magnet using the same, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005320707A JP4820988B2 (en) 2005-11-04 2005-11-04 Magnetic fine particles, method for producing the same, magnet using the same, and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007129079A true JP2007129079A (en) 2007-05-24
JP4820988B2 JP4820988B2 (en) 2011-11-24

Family

ID=38151470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005320707A Active JP4820988B2 (en) 2005-11-04 2005-11-04 Magnetic fine particles, method for producing the same, magnet using the same, and method for producing the same

Country Status (1)

Country Link
JP (1) JP4820988B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008136132A1 (en) * 2007-05-01 2008-11-13 Kazufumi Ogawa Magnetic fine particles and production method therefor, and magnet using the same and production method therefore
JP2009054958A (en) * 2007-08-29 2009-03-12 Kagawa Univ Magnetic fluid, its manufacturing method, magnetic fluid bearing device using the magnetic fluid, and magnetic seal device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02197102A (en) * 1989-01-26 1990-08-03 Mitsubishi Heavy Ind Ltd Surface modification method for magnetic material
JPH0737716A (en) * 1993-07-21 1995-02-07 Hitachi Metals Ltd Rare earth permanent magnet and its manufacture
JPH08337654A (en) * 1995-06-14 1996-12-24 Matsushita Electric Ind Co Ltd Production of chemisorption film, and chemisorption fluid used therefor
JPH10502494A (en) * 1994-07-07 1998-03-03 チロン ダイアグノスティクス コーポレーション Highly dispersible magnetic metal oxides, their production and use
JP2003168606A (en) * 2001-01-24 2003-06-13 Matsushita Electric Ind Co Ltd Fine particle array, its manufacturing method and device using the method
JP2004337742A (en) * 2003-05-15 2004-12-02 Tdk Corp Crushing system, method for manufacturing r-t-b type permanent magnet and r-t-b type permanent magnet
JP2005280020A (en) * 2004-03-29 2005-10-13 Kazufumi Ogawa Mold, its production method, and molding produced by using it
JP2005290582A (en) * 2004-03-31 2005-10-20 Kazufumi Ogawa Water-repelling, oil-repelling and anti-staining apparel product and method for producing the same
JP2007117828A (en) * 2005-10-26 2007-05-17 Kagawa Univ Fine particle and its manufacturing method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02197102A (en) * 1989-01-26 1990-08-03 Mitsubishi Heavy Ind Ltd Surface modification method for magnetic material
JPH0737716A (en) * 1993-07-21 1995-02-07 Hitachi Metals Ltd Rare earth permanent magnet and its manufacture
JPH10502494A (en) * 1994-07-07 1998-03-03 チロン ダイアグノスティクス コーポレーション Highly dispersible magnetic metal oxides, their production and use
JPH08337654A (en) * 1995-06-14 1996-12-24 Matsushita Electric Ind Co Ltd Production of chemisorption film, and chemisorption fluid used therefor
JP2003168606A (en) * 2001-01-24 2003-06-13 Matsushita Electric Ind Co Ltd Fine particle array, its manufacturing method and device using the method
JP2004337742A (en) * 2003-05-15 2004-12-02 Tdk Corp Crushing system, method for manufacturing r-t-b type permanent magnet and r-t-b type permanent magnet
JP2005280020A (en) * 2004-03-29 2005-10-13 Kazufumi Ogawa Mold, its production method, and molding produced by using it
JP2005290582A (en) * 2004-03-31 2005-10-20 Kazufumi Ogawa Water-repelling, oil-repelling and anti-staining apparel product and method for producing the same
JP2007117828A (en) * 2005-10-26 2007-05-17 Kagawa Univ Fine particle and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008136132A1 (en) * 2007-05-01 2008-11-13 Kazufumi Ogawa Magnetic fine particles and production method therefor, and magnet using the same and production method therefore
JP2009054958A (en) * 2007-08-29 2009-03-12 Kagawa Univ Magnetic fluid, its manufacturing method, magnetic fluid bearing device using the magnetic fluid, and magnetic seal device

Also Published As

Publication number Publication date
JP4820988B2 (en) 2011-11-24

Similar Documents

Publication Publication Date Title
JP5087764B2 (en) Silicon fine particles, production method thereof, solar cell using the same, and production method thereof
JP2007118276A (en) Single-layer fine particle film, cumulated fine particle film and manufacturing method of them
JP2007119545A (en) Fine particle film and method for producing the same
WO2008068873A1 (en) Monolayer nanoparticle film, multilayer nanoparticle film, and manufacturing method thereof
JP2005280020A (en) Mold, its production method, and molding produced by using it
JP5050190B2 (en) Fine particles and production method thereof
JP2007117827A (en) Pattern-like fine particle film and its production method
US9330807B2 (en) Conductive paste and method for manufacturing the same, wiring using the conductive paste and method for manufacturing the same
JP5487460B2 (en) Silicon fine particles, production method thereof, solar cell using the same, and production method thereof
JP4848502B2 (en) WIRING, MANUFACTURING METHOD THEREOF, AND ELECTRONIC COMPONENT AND ELECTRONIC DEVICE USING THEM
JP4820988B2 (en) Magnetic fine particles, method for producing the same, magnet using the same, and method for producing the same
JP5167528B2 (en) Chemisorption solution
JP2007161748A (en) Phosphor microparticle, method for producing the same and phosphor film using the same
JP2007128605A (en) Magnetic recording medium, its manufacturing method and magnetic recording and reading device using the same
JP4993700B2 (en) Protective film and method for producing the same
JP5240959B2 (en) Drug and production method
JP2008277663A (en) Magnet, and manufacturing method thereof
JP2007161913A (en) Adhesion method and biochemical chip produced by the method and optical part
WO2008136132A1 (en) Magnetic fine particles and production method therefor, and magnet using the same and production method therefore
JP2007127847A (en) Antireflection film, its manufacturing method and optical apparatus using same
JP5200244B2 (en) Fine particle film and manufacturing method thereof
WO2008149470A1 (en) Monolayer fluor fine particle film, fluor fine particle film-layered body, and manufacturing method thereof and display device and photoreceptor and sensor, which are made by using them
JP2007142005A (en) Protective film and forming method thereof
WO2008149471A1 (en) Fluor fine particle, manufacturing method thereof, and fluor covering film using them
WO2008068875A1 (en) Chemical adsorption solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080930

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150