JP2007117828A - Fine particle and its manufacturing method - Google Patents

Fine particle and its manufacturing method Download PDF

Info

Publication number
JP2007117828A
JP2007117828A JP2005311035A JP2005311035A JP2007117828A JP 2007117828 A JP2007117828 A JP 2007117828A JP 2005311035 A JP2005311035 A JP 2005311035A JP 2005311035 A JP2005311035 A JP 2005311035A JP 2007117828 A JP2007117828 A JP 2007117828A
Authority
JP
Japan
Prior art keywords
fine particles
compound
fine particle
group
functional group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005311035A
Other languages
Japanese (ja)
Other versions
JP5050190B2 (en
Inventor
Kazufumi Ogawa
小川  一文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kagawa University NUC
Original Assignee
Kagawa University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagawa University NUC filed Critical Kagawa University NUC
Priority to JP2005311035A priority Critical patent/JP5050190B2/en
Publication of JP2007117828A publication Critical patent/JP2007117828A/en
Application granted granted Critical
Publication of JP5050190B2 publication Critical patent/JP5050190B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fine particle to which a function inactivating a surface of the fine particle while the original shape and functions of the fine particle are substantially maintained, a function improving a dispersibility to a solvent, and various reaction functions are given by covering the surface of the fine particle with an organic thin film such a functional monomolecular film containing a functional group, for example, an inactive group having a critical surface energy of 25 mN/m or less, or a reactive functional group. <P>SOLUTION: The fine particles are dispersed in a chemisorption liquid prepared by mixing a chlorosilane compound and a nonaqueous organic solvent, and by reacting the chlorosilane compound and the fine particle surface, a film constituted by molecules bound covalently is formed on the fine particle surface. Thus, the fine particle to which the function improving the dispersibility to the solvent while the function inherent in the fine particle is maintained, and various reactive functions are given is provided. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高機能性微粒子に関するものである。さらに詳しくは、表面を安定化させるか、表面に熱反応性または光反応性、あるいはラジカル反応性またはイオン反応性を付与した金属や金属酸化物よりなる無機微粒子、高分子や高分子ミセルよりなる有機微粒子、あるいは有機−無機ハイブリッド微粒子に関するものである。 The present invention relates to highly functional fine particles. More specifically, it is composed of inorganic fine particles, polymers or polymer micelles made of metals or metal oxides which stabilize the surface or impart thermal reactivity or photoreactivity, or radical reactivity or ion reactivity to the surface. The present invention relates to organic fine particles or organic-inorganic hybrid fine particles.

本発明において、「無機微粒子」には、導体微粒子、半導体微粒子、絶縁体微粒子、磁気微粒子、蛍光体微粒子、光吸収微粒子、光透過微粒子、顔料微粒子が含まれている。「有機微粒子」には、有機蛍光体微粒子、有機光吸収微粒子、有機光透過微粒子、有機顔料微粒子、薬物微粒子が含まれている。「有機−無機ハイブリッド微粒子」には、DDS(Drug Delivery System)用薬物微粒子、化粧用微粒子、有機−無機ハイブリッド顔料微粒子が含まれている。   In the present invention, “inorganic fine particles” include conductor fine particles, semiconductor fine particles, insulator fine particles, magnetic fine particles, phosphor fine particles, light absorbing fine particles, light transmitting fine particles, and pigment fine particles. “Organic fine particles” include organic phosphor fine particles, organic light absorbing fine particles, organic light transmitting fine particles, organic pigment fine particles, and drug fine particles. The “organic-inorganic hybrid fine particles” include drug fine particles for DDS (Drug Delivery System), fine particles for cosmetics, and organic-inorganic hybrid pigment fine particles.

従来から、微粒子の溶液への分散性を向上する目的で、微粒子と溶媒との混合溶液に界面活性剤を添加する方法は数多く知られている。   Conventionally, many methods for adding a surfactant to a mixed solution of fine particles and a solvent are known for the purpose of improving the dispersibility of the fine particles in a solution.

しかしながら、微粒子そのものの表面に化学吸着した(共有結合した)機能性単分子膜等の有機薄膜で微粒子を被うことにより、微粒子本来の機能を損なわずに各種機能を付与した新規な微粒子、及びその製造方法は未だ開発、提供されていない。   However, by covering the fine particles with an organic thin film such as a functional monomolecular film that is chemically adsorbed (covalently bonded) to the surface of the fine particles themselves, novel fine particles having various functions without impairing the original functions of the fine particles, and The manufacturing method has not yet been developed and provided.

従来から、電気機能、磁気機能、光機能等、各種機能を持った微粒子は数々開発製造されている。しかしながら、それら微粒子が持つ本来の機能に、微粒子の形状をほとんど損なうことなくさらに新たな機能を付与するという思想はなかった。   Conventionally, many fine particles having various functions such as an electric function, a magnetic function, and an optical function have been developed and manufactured. However, there has been no idea of adding a new function to the original function of the fine particles with almost no loss of the shape of the fine particles.

本発明は、微粒子の表面を機能性官能基、例えば臨界表面エネルギー25mN/m以下の不活性基、あるいは反応性の官能基を含む機能性単分子膜等の有機薄膜で覆うことにより、前記微粒子に、微粒子の本来の形状や機能をほぼ保ったままで表面を不活性化する機能や溶媒への分散性を向上させる機能や各種反応機能を付与した微粒子を提供することを目的とする。   In the present invention, the surface of the fine particle is covered with an organic thin film such as a functional monomolecular film containing a functional functional group, for example, an inert group having a critical surface energy of 25 mN / m or less, or a reactive functional group. Another object of the present invention is to provide fine particles provided with a function of inactivating the surface, a function of improving dispersibility in a solvent, and various reaction functions while substantially maintaining the original shape and function of the fine particles.

前記課題を解決するための手段として提供される第一の発明は、表面に共有結合した有機薄膜で覆われていることを特徴とする微粒子である。 A first invention provided as means for solving the above problems is a fine particle characterized in that it is covered with an organic thin film covalently bonded to the surface.

第二の発明は、第一の発明において、表面に共有結合した有機薄膜が一端に機能性官能基を含み他端でSiまたはSを介して粒子表面に共有結合する分子で構成されていることを特徴とする微粒子である。   According to a second invention, in the first invention, the organic thin film covalently bonded to the surface is composed of molecules having a functional functional group at one end and covalently bonded to the particle surface via Si or S at the other end. It is a fine particle characterized by the following.

第三の発明は、第二の発明において、機能性官能基が臨界表面エネルギー25mN/m以下の不活性基、または反応性の官能基であることを特徴とする微粒子である。   A third invention is the fine particle according to the second invention, wherein the functional functional group is an inert group having a critical surface energy of 25 mN / m or less, or a reactive functional group.

第四の発明は、第三の発明において、臨界表面エネルギー25mN/m以下の不活性基が、−CFおよび/または−CH3を含むことを特徴とする微粒子である。 The fourth invention is, in the third invention, the following inert base critical surface energy 25 mN / m is a fine particle comprising the -CF 3 and / or -CH 3.

第五の発明は、反応性の官能基が熱反応性または光反応性、あるいはラジカル反応性またはイオン反応性の官能基であることを特徴とする微粒子である。
第六の発明は、第四の発明において、反応性の官能基がエポキシ基やイミノ基、あるいはカルコニル基であることを特徴とする微粒子である。
A fifth invention is a fine particle characterized in that the reactive functional group is a thermal reactive or photo reactive functional group, or a radical reactive or ionic reactive functional group.
A sixth invention is the fine particle according to the fourth invention, wherein the reactive functional group is an epoxy group, an imino group, or a chalconyl group.

第七の発明は、第一の発明及び第二の発明において表面に共有結合した有機薄膜が単分子膜で構成されていることを特徴とする微粒子である。    The seventh invention is a fine particle characterized in that the organic thin film covalently bonded to the surface in the first invention and the second invention is composed of a monomolecular film.

第八の発明は、微粒子を少なくともクロロシラン化合物と非水系の有機溶媒を混合して作成した化学吸着液中に分散させて前記クロロシシラン化合物と前記微粒子表面を反応させる工程を含むことを特徴とする微粒子の製造方法である。 The eighth invention includes a step of dispersing the fine particles in a chemical adsorption solution prepared by mixing at least a chlorosilane compound and a non-aqueous organic solvent, and reacting the surface of the fine particles with the chlorosisilane compound. It is a manufacturing method.

第九の発明は、微粒子を少なくともアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に分散させてアルコキシシラン化合物と微粒子表面を反応させる工程を含むことを特徴とする微粒子の製造方法である。 The ninth invention includes a step of causing the alkoxysilane compound and the surface of the fine particles to react by dispersing the fine particles in a chemical adsorption solution prepared by mixing at least an alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent. It is the manufacturing method of the fine particle characterized.

第十の発明は、第八の発明及び第九の発明において、微粒子を化学吸着液に分散させてクロロシラン化合物またはアルコキシシラン化合物と微粒子表面を反応させる工程の後、微粒子表面を有機溶剤で洗浄して微粒子表面に共有結合した単分子膜を形成することを特徴とする微粒子の製造方法である。 A tenth invention is the eighth invention and the ninth invention, in which the fine particle surface is washed with an organic solvent after the step of dispersing the fine particle in the chemical adsorption liquid and reacting the chlorosilane compound or alkoxysilane compound with the fine particle surface. And forming a monomolecular film covalently bonded to the surface of the fine particles.

第十一の発明は、第九の発明において、シラノール縮合触媒の代わりに、ケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を用いることを特徴とする微粒子の製造方法である。 An eleventh invention is the fine particle according to the ninth invention, wherein a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, or an aminoalkylalkoxysilane compound is used instead of a silanol condensation catalyst. It is a manufacturing method.

第十二の発明は、第九の発明において、シラノール縮合触媒に助触媒としてケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物から選ばれる少なくとも1つを混合して用いることを特徴とする微粒子の製造方法である。
以下、本発明の要旨を更に説明する。
According to a twelfth invention, in the ninth invention, at least one selected from a ketimine compound, an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, and an aminoalkylalkoxysilane compound is mixed as a cocatalyst with a silanol condensation catalyst. It is a manufacturing method of the microparticle characterized by using.
Hereinafter, the gist of the present invention will be further described.

本発明は、少なくとも微粒子をクロロシラン化合物と非水系の有機溶媒を混合して作成した化学吸着液中に分散させて前記クロロシラン化合物と前記微粒子表面を反応させる工程、あるいは、微粒子をアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に分散させてアルコキシシラン化合物と微粒子表面を反応させる工程とにより、表面に共有結合した有機薄膜で覆われている微粒子を提供することを要旨とする   The present invention includes a step of dispersing at least fine particles in a chemical adsorption solution prepared by mixing a chlorosilane compound and a non-aqueous organic solvent and reacting the chlorosilane compound with the surface of the fine particles, or fine particles of an alkoxysilane compound and a silanol. Providing fine particles covered with an organic thin film covalently bonded to the surface by dispersing them in a chemisorbed liquid prepared by mixing a condensation catalyst and a non-aqueous organic solvent and reacting the alkoxysilane compound with the fine particle surface To do

ここで、表面に共有結合した有機薄膜が一端に機能性官能基を含み他端でSiまたはSを介して粒子表面に共有結合する分子で構成されていると、微粒子の安定性を損なうことなく各種機能を付与する上で都合がよい。
また、機能性官能基が臨界表面エネルギー25mN/m以下の不活性基、または反応性の官能基であると、微粒子に分散性や反応性を付与する上で都合がよい。
Here, when the organic thin film covalently bonded to the surface is composed of molecules having a functional functional group at one end and covalently bonded to the particle surface via Si or S at the other end, the stability of the fine particles is not impaired. This is convenient for providing various functions.
In addition, when the functional functional group is an inert group having a critical surface energy of 25 mN / m or less or a reactive functional group, it is convenient for imparting dispersibility and reactivity to the fine particles.

さらに、臨界表面エネルギー25mN/m以下を得るためには、不活性基として、−CFおよび/または−CH3を用いればよい。
さらにまた、反応性の官能基が熱反応性または光反応性、あるいはラジカル反応性またはイオン反応性の官能基であると微粒子に反応性を付与する上で都合がよい。
Furthermore, in order to obtain a critical surface energy of 25 mN / m or less, —CF 3 and / or —CH 3 may be used as an inert group.
Furthermore, when the reactive functional group is a thermal reactive or photo reactive functional group or a radical reactive or ionic reactive functional group, it is convenient for imparting reactivity to the fine particles.

利用できる実用的な反応性の官能基は、共有結合を生じるエポキシ基やイミノ基、あるいはカルコニル基である。
さらに、表面に共有結合した有機薄膜が単分子膜で構成されていると、微粒子表面の形状を損なわないので都合がよい。
さらにこのとき、微粒子を化学吸着液に分散させてクロロシラン化合物またはアルコキシシラン化合物と微粒子表面を反応させる工程の後、微粒子表面を有機溶剤で洗浄して微粒子表面に共有結合した単分子膜を形成すると低コストで単分子膜を形成できて都合がよい。
Practical reactive functional groups that can be utilized are epoxy groups, imino groups, or chalconyl groups that form covalent bonds.
Furthermore, it is convenient that the organic thin film covalently bonded to the surface is composed of a monomolecular film because the shape of the surface of the fine particles is not impaired.
Further, at this time, after the step of dispersing the fine particles in the chemical adsorption liquid and reacting the chlorosilane compound or alkoxysilane compound with the fine particle surface, the fine particle surface is washed with an organic solvent to form a monomolecular film covalently bonded to the fine particle surface. It is convenient to form a monomolecular film at low cost.

また、シラノール縮合触媒の代わりに、ケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を用いると、処理時間を短縮する上で都合がよい。
さらにまた、シラノール縮合触媒に助触媒としてケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物から選ばれる少なくとも1つを混合して用いると処理時間をより一層短縮できて都合がよい。
In addition, when a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, or an aminoalkylalkoxysilane compound is used instead of the silanol condensation catalyst, it is convenient to shorten the treatment time.
Furthermore, when the silanol condensation catalyst is used as a co-catalyst with a ketimine compound or at least one selected from organic acids, aldimine compounds, enamine compounds, oxazolidine compounds, and aminoalkylalkoxysilane compounds, the treatment time can be further shortened. Convenient.

以上説明したとおり、本発明によれば、微粒子本来の機能をほぼ保ったままで安定化させる機能や各種溶媒への分散性を向上させる機能、各種反応機能を付与した微粒子を提供できる効果がある。さらにまた、化学吸着した単分子膜で被うことにより、微粒子本来の形状と機能をほぼ完全に保ったままで安定化させる機能や分散性を向上する機能、各種化学反応機能を付与した微粒子を提供できる特別の効果がある。   As described above, according to the present invention, there is an effect that it is possible to provide fine particles provided with a function of stabilizing while maintaining the original function of the fine particles, a function of improving dispersibility in various solvents, and various reaction functions. Furthermore, by covering with a chemically adsorbed monomolecular film, we provide fine particles with functions to improve stability, dispersibility, and various chemical reaction functions while maintaining the original shape and function almost completely. There is a special effect that can be done.

本発明は、少なくともクロロシラン化合物と非水系の有機溶媒を混合して作成した化学吸着液に微粒子を分散させてクロロシラン化合物と微粒子表面を反応させる工程の後、微粒子を有機溶剤で洗浄する方法、あるいは少なくともアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液に微粒子を分散させてアルコキシシラン化合物と微粒子表面を反応させる工程の後、有機溶剤で洗浄する方法により、微粒子表面に共有結合した分子が、反応性の官能基、例えば熱反応性または光反応性、あるいはラジカル反応性またはイオン反応性の官能基を有し、且つ単分子膜を構成している微粒子を提供するものである。 The present invention is a method of washing fine particles with an organic solvent after the step of dispersing fine particles in a chemical adsorption solution prepared by mixing at least a chlorosilane compound and a non-aqueous organic solvent and reacting the surface of the fine particles with the chlorosilane compound, or By a method of washing with an organic solvent after a step of dispersing fine particles in a chemical adsorption solution prepared by mixing at least an alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent and reacting the alkoxysilane compound and the fine particle surface, A molecule in which a molecule covalently bonded to the surface of a fine particle has a reactive functional group, for example, a thermal reactive or photoreactive, or a radical reactive or ionic reactive functional group, and constitutes a monomolecular film. It is to provide.

したがって、本発明には、微粒子本来の形状と機能をほぼ完全に保ったままで粒子そのものの表面を安定化する機能や分散性を向上する機能、各種化学反応機能を付与した微粒子を提供できる作用がある。   Therefore, the present invention has the function of providing fine particles having a function of stabilizing the surface of the particles themselves, a function of improving dispersibility, and various chemical reaction functions while maintaining the original shape and function of the fine particles almost completely. is there.

以下、本願発明の詳細を実施例を用いて説明するが、本願発明は、これら実施例によって何ら限定されるものではない。   Hereinafter, although the detail of this invention is demonstrated using an Example, this invention is not limited at all by these Examples.

なお、本発明に関する微粒子には、表面に親水性の酸化物あるいは水酸化物を含む導電体粒子、半導体粒子、絶縁体粒子、磁性体粒子、蛍光体粒子、光吸収粒子、光透過粒子、顔料粒子、薬用粒子、化粧品用粒子、研磨材粒子、耐摩耗材粒子等があるが、まず、代表例として顔料粒子である酸化鉛微粒子を取り上げて説明する。   The fine particles according to the present invention include conductor particles, semiconductor particles, insulator particles, magnetic particles, phosphor particles, light-absorbing particles, light-transmitting particles, pigments containing hydrophilic oxides or hydroxides on the surface. There are particles, medicinal particles, cosmetic particles, abrasive particles, antiwear particles, etc. First, lead oxide fine particles which are pigment particles will be described as a representative example.

まず、平均粒径が100nm程度の酸化鉛微粒子1用意し(図1)、よく乾燥した。次に、単分子膜を形成すると臨界表面エネルギー25mN/m以下になるフッ化炭素基(機能部位)及びクロロシリル基(活性部位)を含む化学吸着剤、例えばCF(CF27(CH22SiCl3を0.1重量%程度の濃度で非水系溶媒(例えば、脱水したノナン)に溶かして化学吸着溶液(以下吸着溶液という)とした。この吸着溶液に、乾燥雰囲気中(相対湿度30%以下が好ましかった。)で前記酸化鉛微粒子を漬浸し撹拌反応させると、酸化鉛微粒子1表面は水酸基2が多数含まれているので(図1(a))、前記化学吸着剤のクロロシリル基(SiCl)基と前記微粒子表面の水酸基(OH)が反応し、脱塩酸反応が生じ酸化鉛微粒子表面全面に亘り、下記式(化1)に示す結合が生成さる。次ぎに、フロン系の溶媒を加えて撹拌洗浄すると、前記化学吸着剤よりなる単分子膜3で被われた酸化鉛微粒子が得られた。 First, lead oxide fine particles 1 having an average particle diameter of about 100 nm were prepared (FIG. 1) and dried well. Next, when a monomolecular film is formed, a chemical adsorbent containing a fluorocarbon group (functional site) and a chlorosilyl group (active site) that has a critical surface energy of 25 mN / m or less, such as CF 3 (CF 2 ) 7 (CH 2 ) 2 SiCl 3 was dissolved in a non-aqueous solvent (for example, dehydrated nonane) at a concentration of about 0.1% by weight to obtain a chemical adsorption solution (hereinafter referred to as an adsorption solution). When the lead oxide fine particles are immersed in the adsorbed solution in a dry atmosphere (relative humidity of 30% or less is preferred) and reacted with stirring, the surface of the lead oxide fine particles 1 contains a large number of hydroxyl groups 2 ( FIG. 1 (a)), the chlorosilyl group (SiCl) group of the chemical adsorbent reacts with the hydroxyl group (OH) on the surface of the fine particles, a dehydrochlorination reaction occurs, and the entire surface of the lead oxide fine particles has the following formula (Formula 1) The bond shown in FIG. Next, when a fluorocarbon solvent was added and stirred and washed, lead oxide fine particles 4 covered with the monomolecular film 3 made of the chemical adsorbent were obtained.

Figure 2007117828
Figure 2007117828

なお、このとき形成された微粒子表面の単分子膜の臨界表面エネルギーは6mN/m程度になるので、この顔料微粒子は、臨界表面エネルギーが小さなフロン系溶媒やシリコーン系溶媒、あるいはフッ樹脂中によく分散するようになり、極めて良質の塗料を製造できた。   In addition, since the critical surface energy of the monomolecular film on the surface of the fine particles formed at this time is about 6 mN / m, the pigment fine particles are often contained in a fluorocarbon solvent, a silicone solvent, or a fluororesin having a small critical surface energy. As a result, it was possible to produce a very good quality paint.

また、この化学吸着膜はきわめて強固に微粒子表面に共有結合しているので、通常の反応では剥離することがなかった。さらに、膜厚も1分子の長さのみであるので(およそ1nm程度)、数十ナノメートル程度の粒径の微粒子(ナノ粒子)を用いても、微粒子の表面形状が損なわれることはほとんどなく、色調変化も現れなかった。   Further, since this chemisorbed film is very strongly covalently bonded to the surface of the fine particles, it was not peeled off by a normal reaction. Furthermore, since the film thickness is only one molecule length (about 1 nm), even if fine particles (nanoparticles) having a particle size of about several tens of nanometers are used, the surface shape of the fine particles is hardly damaged. The color change did not appear.

なお、このとき、洗浄せずに空気中に取り出すと、分散性はほぼ変わらないが、溶媒が蒸発し粒子表面に残った化学吸着剤が粒子表面で空気中の水分と反応して、粒子表面に前記化学吸着剤よりなる極薄の化学吸着ポリマー膜が形成された微粒子が得られた。   At this time, if it is taken out into the air without washing, the dispersibility is not substantially changed, but the chemical adsorbent remaining on the particle surface reacts with the moisture in the air due to the evaporation of the solvent, and the particle surface. Fine particles on which an ultrathin chemisorbed polymer film made of the chemisorbent was formed were obtained.

上記実施例では、化学吸着剤として機能部位に表面エネルギーを低減できる作用のあるフッ化炭素系の官能基を持つ薬剤を用いた例を示したが、機能部位に炭化水素基(−CH基)を含む薬剤、例えばCH(CF27(CH22SiCl3を用いた場合には、臨界表面エネルギーは25mN/m程度の被腹膜が得られた。また、これら薬剤を任意に混合して用いると、出来た微粒子表面の被膜の臨界表面エネルギーを6〜25mN/mの間で任意に制御できた。ここで、機能部位の官能基をいろいろ変えることにより、新たな機能を付与し、且つ微粒子の表面エネルギーを目的の値に制御した微粒子を、微粒子本来の形状を損なうことなく製造できることはいうまでもない。 In the above embodiment, an example using a chemical having a fluorocarbon functional group capable of reducing the surface energy at the functional site as a chemical adsorbent was shown. However, a hydrocarbon group (—CH 3 group) was used at the functional site. ), For example, CH 3 (CF 2 ) 7 (CH 2 ) 2 SiCl 3 , a peritoneum having a critical surface energy of about 25 mN / m was obtained. Moreover, when these chemicals were arbitrarily mixed and used, the critical surface energy of the coating on the fine particle surface could be arbitrarily controlled between 6 and 25 mN / m. Here, it goes without saying that by changing the functional group of the functional site in various ways, it is possible to produce fine particles having a new function and controlling the surface energy of the fine particles to a target value without impairing the original shape of the fine particles. Absent.

なお、この方法は、被膜形成時塩酸が発生するので、多少微粒子表面を傷つけることがあったが、実施例1では、微量のため問題は生じなかった。また、このようにして単分子膜で被覆された微粒子、例えば、臨界表面エネルギーが25mN/m程度の炭化水素系単分子膜で被覆された微粒子では、凝集を抑え、炭化水素系の溶媒や炭化水素系あるいはアクリル系のプラスチックに極めて良好な状態で分散できた。
さらにまた、微粒子が、酸素と反応しやすい金属ナノ粒子でも表面を不活性化でき、表面を空気から保護して酸化を防止できた。
In this method, hydrochloric acid is generated during the formation of the film, so that the surface of the fine particles may be slightly damaged. However, in Example 1, there was no problem because of the minute amount. In addition, fine particles coated with a monomolecular film in this way, for example, fine particles coated with a hydrocarbon-based monomolecular film having a critical surface energy of about 25 mN / m, suppresses aggregation, and a hydrocarbon-based solvent or carbonization is suppressed. It was able to disperse in a very good state in hydrogen or acrylic plastics.
Furthermore, even when the fine particles are metal nanoparticles that easily react with oxygen, the surface can be inactivated, and the surface can be protected from air to prevent oxidation.

なお、上記実施例1では、フッ化炭素系化学吸着剤としてCF3(CF27(CH22SiCl3を用いたが、上記のもの以外にも、炭化水素系を含めて下記(1)〜(12)に示した物質が利用できた。
(1) CF3CH2O(CH2)15SiCl3
(2) CF3(CH2)Si(CH3)2(CH2)15SiCl3
(3) CF3(CF2)(CH2)2Si(CH3)2(CH2)9SiCl3
(4) CF3(CF2)(CH2)2Si(CH3)2(CH2)9SiCl3
(5) CF3COO(CH2)15SiCl3
(6) CF3(CF2)5(CH2)2SiCl3
(7) CH3CH2O(CH2)15SiCl3
(8) CH3(CH2)Si(CH3)2(CH2)15SiCl3
(9) CH3(CH2)Si(CH3)2(CH2)9SiCl3
(10) CH3(CH2) Si(CH3)2(CH2)9SiCl3
(11) CH3COO(CH2)15SiCl3
(12) CH3(CH2)SiCl3
In Example 1, CF 3 (CF 2 ) 7 (CH 2 ) 2 SiCl 3 was used as the fluorocarbon-based chemical adsorbent. The substances shown in 1) to (12) were usable.
(1) CF 3 CH 2 O (CH 2 ) 15 SiCl 3
(2) CF 3 (CH 2 ) 3 Si (CH 3 ) 2 (CH 2 ) 15 SiCl 3
(3) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 SiCl 3
(4) CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 SiCl 3
(5) CF 3 COO (CH 2 ) 15 SiCl 3
(6) CF 3 (CF 2 ) 5 (CH 2 ) 2 SiCl 3
(7) CH 3 CH 2 O (CH 2 ) 15 SiCl 3
(8) CH 3 (CH 2 ) 3 Si (CH 3 ) 2 (CH 2 ) 15 SiCl 3
(9) CH 3 (CH 2 ) 5 Si (CH 3 ) 2 (CH 2 ) 9 SiCl 3
(10) CH 3 (CH 2 ) 7 Si (CH 3 ) 2 (CH 2 ) 9 SiCl 3
(11) CH 3 COO (CH 2 ) 15 SiCl 3
(12) CH 3 (CH 2 ) 9 SiCl 3

また、微粒子の素材がAuの場合には、末端のSiCl3基を−SH基、あるいはトリアジンチオール基で置換した薬剤、例えば、HC(CH2)11−SH、あるいはHC(CH2)−SH等を用いればSを介して単分子膜が形成された金微粒子を製造できた。一方、−SHとメトキシシリル基を両末端にもつ薬剤、例えばHS(CH)3Si(OCH)3をもちいれば、Sを介して表面にメトキシシリル基を含む単分子膜が形成された金微粒子を製造できた。さらに、この方法を用いれば、表面に親水性の酸化物あるいは水酸化物を含む導電体、半導体、絶縁体、磁性体、蛍光体、光吸収物質、光透過物質、顔料、薬用物質、化粧品素材、研磨材、耐摩耗材料(形状には制限されず、微粒子でも同じ。)等と金微粒子を−S・・・Si−基を介して共有結合でき、前記素材表面を金で被覆することが可能であった。 Further, when the material of the fine particles is Au, an agent in which the terminal SiCl 3 group is substituted with —SH group or triazine thiol group, for example, H 3 C (CH 2 ) 11 —SH, or H 3 C (CH 2 ) If 3- SH or the like is used, gold fine particles having a monomolecular film formed through S can be produced. Meanwhile, agents with -SH and methoxy silyl groups at both terminals, for example, HS (CH 2) 3 Si ( OCH 3) 3 to be used, the monomolecular film containing trimethoxysilyl group to the surface via the S is formed Gold fine particles could be produced. Furthermore, if this method is used, conductors, semiconductors, insulators, magnetic substances, phosphors, light-absorbing substances, light-transmitting substances, pigments, medicinal substances, cosmetic materials containing hydrophilic oxides or hydroxides on the surface , Abrasives, wear-resistant materials (not limited by shape, the same applies to fine particles) and the like and gold fine particles can be covalently bonded via -S ... Si- groups, and the surface of the material can be coated with gold. It was possible.

まず、無水の酸化セリウム微粒子11を用意し、よく乾燥した。次に、化学吸着剤として機能部位に反応性の官能基、例えば、エポキシ基あるいはイミノ基と他端にアルコキシシリル基を含む薬剤、例えば、下記化学式(化2)あるいは(化3)に示す薬剤を99重量%、シラノール縮合触媒として、例えば、ジブチル錫ジアセチルアセトナート、あるいは有機酸である酢酸を1重量%となるようそれぞれ秤量し、シリコーンとジメチルホルムアミドを同量混合した溶媒、例えば、ヘキサメチルジシロキサン50%とジメチルホルムアミド50%の溶液に1重量%程度の濃度(好ましくい化学吸着剤の濃度は、0.5〜3%程度)になるように溶かして化学吸着液を調製した。 First, anhydrous cerium oxide fine particles 11 were prepared and well dried. Next, as a chemical adsorbent, a functional group having a reactive functional group such as an epoxy group or imino group and an alkoxysilyl group at the other end, such as a chemical represented by the following chemical formula (Chemical Formula 2) or (Chemical Formula 3) 99% by weight, and as a silanol condensation catalyst, for example, dibutyltin diacetylacetonate or acetic acid as an organic acid is weighed to 1% by weight, and a solvent in which the same amount of silicone and dimethylformamide are mixed, for example, hexamethyl A chemical adsorption solution was prepared by dissolving in a solution of 50% disiloxane and 50% dimethylformamide to a concentration of about 1% by weight (preferably the concentration of the chemical adsorbent is about 0.5 to 3%).

Figure 2007117828
Figure 2007117828

Figure 2007117828
Figure 2007117828

この吸着液に無水の酸化セリウム微粒子を混入撹拌して普通の空気中で(相対湿度45%)で2時間程度反応させた。このとき、無水の酸化セリウム微粒子表面には水酸基12が多数含まれているの(図2(a))で、前記化学吸着剤の−Si(OCH)基と前記水酸基がシラノール縮合触媒、あるいは有機酸である酢酸の存在下で脱アルコール(この場合は、脱CHOH)反応し、下記化学式(化4)あるいは(化5)に示したような結合を形成し、微粒子表面全面に亘り表面と化学結合したエポキシ基を含む化学吸着単分子膜13あるいはアミノ基を含む化学吸着膜14が約1ナノメートル程度の膜厚で形成された(図2(b)、2(c))。 The adsorbed liquid was mixed with anhydrous cerium oxide fine particles and stirred and reacted in ordinary air (relative humidity 45%) for about 2 hours. At this time, since there are many hydroxyl groups 12 on the surface of the anhydrous cerium oxide fine particles (FIG. 2 (a)), the -Si (OCH 3 ) group of the chemical adsorbent and the hydroxyl group are silanol condensation catalysts, or In the presence of acetic acid which is an organic acid, dealcoholization (in this case, de-CH 3 OH) reaction is performed to form a bond as shown in the following chemical formula (Chemical Formula 4) or (Chemical Formula 5), and the entire surface of the fine particles is formed. A chemisorption monomolecular film 13 containing an epoxy group chemically bonded to the surface or a chemisorption film 14 containing an amino group was formed to a thickness of about 1 nanometer (FIGS. 2B and 2C).

なお、ここで、アミノ基を含む吸着剤を使用する場合には、スズ系の触媒では沈殿が生成するので、酢酸等の有機酸を用いた方がよかった。また、アミノ基はイミノ基を含んでいるが、アミノ基以外にイミノ基を含む物質には、ピロール誘導体や、イミダゾール誘導体等の吸着剤がある。さらに、ケチミン誘導体の吸着剤を用いれば、被膜形成後、加水分解により容易にアミノ基を導入できた。 Here, when an adsorbent containing an amino group is used, since a precipitate is generated with a tin-based catalyst, it is better to use an organic acid such as acetic acid. The amino group contains an imino group. Substances containing an imino group in addition to the amino group include adsorbents such as pyrrole derivatives and imidazole derivatives. Further, when an adsorbent of ketimine derivative was used, amino groups could be easily introduced by hydrolysis after the film formation.

その後、トリクレン等の塩素系溶媒を添加撹拌して数回洗浄すると、実施例1と同様に、表面に反応性の官能基、例えば、エポキシ基あるいはアミノ基を有する化学吸着単分子膜で被われた酸化セリウム微粒子を作製できた。 Thereafter, when a chlorinated solvent such as trichlene is added and stirred and washed several times, the surface is covered with a chemically adsorbed monomolecular film having a reactive functional group, for example, an epoxy group or an amino group, as in Example 1. Cerium oxide fine particles could be prepared.

Figure 2007117828
Figure 2007117828

Figure 2007117828
Figure 2007117828

この処理部も実施例1と同様に、被膜がナノメートルレベルの膜厚で極めて薄いため、粒子径及び粒子表面形状を損なうことはなかった。
なお、洗浄せずに空気中に取り出すと、反応性はほぼ変わらないが、溶媒が蒸発し粒子表面に残った化学吸着剤が粒子表面で空気中の水分と反応して、粒子表面に前記化学吸着剤よりなる極薄のポリマー膜が形成された微粒子が得られた。
Similarly to Example 1, this treated portion was extremely thin with a film thickness of nanometer level, so the particle diameter and particle surface shape were not impaired.
Note that the reactivity does not substantially change when it is taken out into the air without washing, but the chemical adsorbent remaining on the particle surface reacts with the moisture in the air on the particle surface, and the chemical is adsorbed on the particle surface. Fine particles on which an extremely thin polymer film made of an adsorbent was formed were obtained.

このアルコキシシリル誘導体を用いた方法の特徴は、クロロシリル誘導体を用いた実施例1に比べ、乾燥雰囲気を必要としないことであり、量産性に優れている。また、脱塩酸反応ではなく、脱アルコール反応であるため、微粒子が塩酸で破壊されるような有機あるいは無機物であったとしても使用可能であり、適用範囲が広い。   The feature of the method using the alkoxysilyl derivative is that it does not require a dry atmosphere as compared with Example 1 using the chlorosilyl derivative, and is excellent in mass productivity. Further, since it is a dealcoholization reaction, not a dehydrochlorination reaction, it can be used even if it is an organic or inorganic substance whose fine particles are destroyed by hydrochloric acid, and has a wide range of applications.

次ぎに、前記エポキシ基あるいはアミノ基を有する化学吸着単分子膜で被われた酸化セリウム微粒子をそれぞれ同量取り十分混合し、金型中に入れて50〜60度程度に加熱すると、下記式(化6)に示したような反応でエポキシ基とアミノ基が付加して微粒子は結合固化し、バインダー樹脂を全く含まない砥石を製造できた。また、エポキシ基を有する化学吸着単分子膜で被われた酸化セリウム微粒子に架橋材であるイミダゾールを適量添加し、十分混合して金型中に入れ、50〜60度程度に加熱すると、微粒子表面のエポキシ基が架橋されて結合固化し、バインダー樹脂を含まない砥石を製造できた。さらにまた、このような混合物を有機溶媒に分散させ、金属円盤表面に塗布し加熱すると、バインダー樹脂を含まない切断砥石を製造できた。 Next, the same amount of each of the cerium oxide fine particles covered with the chemisorption monomolecular film having the epoxy group or amino group is sufficiently mixed, put into a mold and heated to about 50 to 60 degrees, and then the following formula ( In the reaction shown in Chemical formula 6), the epoxy group and amino group were added and the fine particles were bonded and solidified to produce a grindstone containing no binder resin. Moreover, when an appropriate amount of imidazole as a cross-linking material is added to cerium oxide fine particles covered with a chemisorbed monomolecular film having an epoxy group, mixed well, put into a mold, and heated to about 50 to 60 degrees, the surface of the fine particles The epoxy group was crosslinked and solidified, and a whetstone containing no binder resin could be produced. Furthermore, when such a mixture was dispersed in an organic solvent, applied to the surface of a metal disk and heated, a cutting grindstone containing no binder resin could be produced.

Figure 2007117828
Figure 2007117828

なお、上記実施例2では、反応性基を含む化学吸着剤として化学式(化2)あるいは(化3)に示した物質を用いたが、上記のもの以外にも、下記(21)〜(36)に示した物質が利用できた。
(21) (CHOCH)CH2O(CH2)Si(OCH)3
(22) (CHOCH)CH2O(CH2)11Si(OCH)3
(23) (CHCHOCH(CH)CH(CH2)Si(OCH)3
(24) (CHCHOCH(CH)CH(CH2)Si(OCH)3
(25) (CHCHOCH(CH)CH(CH2)Si(OCH)3
(26) (CH2OCH)CH2O(CH2)Si(OC)3
(27) (CHOCH)CH2O(CH2)11Si(OC)3
(28) (CHCHOCH(CH)CH(CH2)Si(OC)3
(29) (CHCHOCH(CH)CH(CH2)Si(OC)3
(30) (CHCHOCH(CH)CH(CH2)Si(OC)3
(31) H2N (CH2)Si(OCH)3
(32) H2N (CH2)Si(OCH)3
(33) H2N (CH2)Si(OCH)3
(34) H2N (CH2)Si(OC)3
(35) H2N (CH2)Si(OC)3
(36) H2N (CH2)Si(OC)3
In Example 2 above, the chemical formula (Chemical Formula 2) or the chemical formula (Chemical Formula 3) was used as the chemical adsorbent containing a reactive group. The materials shown in the above were available.
(21) (CH 2 OCH) CH 2 O (CH 2 ) 7 Si (OCH 3 ) 3
(22) (CH 2 OCH) CH 2 O (CH 2 ) 11 Si (OCH 3 ) 3
(23) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 2 Si (OCH 3) 3
(24) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 4 Si (OCH 3) 3
(25) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 6 Si (OCH 3) 3
(26) (CH2OCH) CH 2 O (CH 2) 7 Si (OC 2 H 5) 3
(27) (CH 2 OCH) CH 2 O (CH 2) 11 Si (OC 2 H 5) 3
(28) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 2 Si (OC 2 H 5) 3
(29) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 4 Si (OC 2 H 5) 3
(30) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 6 Si (OC 2 H 5) 3
(31) H 2 N (CH 2 ) 5 Si (OCH 3 ) 3
(32) H 2 N (CH 2 ) 7 Si (OCH 3 ) 3
(33) H 2 N (CH 2 ) 9 Si (OCH 3 ) 3
(34) H 2 N (CH 2 ) 5 Si (OC 2 H 5 ) 3
(35) H 2 N (CH 2 ) 7 Si (OC 2 H 5 ) 3
(36) H 2 N (CH 2 ) 9 Si (OC 2 H 5 ) 3

ここで、(CHOCH)−基は、下記化学式(化7)で表される官能基を表し、(CHCHOCH(CH)CH−基は、下記化学式(化8)で表される官能基を表す。
また、微粒子の素材がAuの場合には、末端のSi(OCH)3を−SH基、あるいはトリアジンチオール基で置換した薬剤、例えば、H2N(CH2)11−SH、あるいはH2N(CH2)−SH等を用いれば、Sを介して官能性の単分子膜が形成された金微粒子を製造できた。
Here, the (CH 2 OCH) — group represents a functional group represented by the following chemical formula (Chemical Formula 7), and the (CH 2 CHOCH (CH 2 ) 2 ) CH— group is represented by the following chemical formula (Chemical Formula 8). Represents a functional group.
When the material of the fine particles is Au, an agent obtained by replacing the terminal Si (OCH 3 ) 3 with —SH group or triazine thiol group, for example, H 2 N (CH 2 ) 11 —SH, or H 2 When N (CH 2 ) 2 —SH or the like is used, gold fine particles in which a functional monomolecular film is formed via S can be produced.

Figure 2007117828
Figure 2007117828

Figure 2007117828
Figure 2007117828

さらに、光または電子線等のエネルギービーム反応性官能基を含む化学吸着剤として、下記(41)〜(46)に示した物質が利用できた。
(41) CH≡C−C≡C−(CH2)15SiCl3
(42) CH≡C−C≡C−(CH2)2Si(CH3)2(CH2)15SiCl3
(43) CH≡C−C≡C−(CH2)2Si(CH3)2(CH2)9SiCl3
(44) (C) (CH)2CO(C)O(CH2)OSi(OCH)3
(45) (C) (CH)2CO(C)O(CH2)OSi(OC)3
(46) (C) CO(CH)2 (C)O(CH2)OSi(OCH)3
ここで、(C) CO(CH)2 (C)はカルコニル基を表す。
これらの被膜で被われた微粒子は、そのままでも成形あるいは被膜を形成し紫外線を照射するだけで硬化した。
Furthermore, the substances shown in the following (41) to (46) can be used as chemical adsorbents containing energy beam reactive functional groups such as light or electron beams.
(41) CH≡C—C≡C— (CH 2 ) 15 SiCl 3
(42) CH≡C—C≡C— (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 15 SiCl 3
(43) CH≡C—C≡C— (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 SiCl 3
(44) (C 6 H 5 ) (CH) 2 CO (C 6 H 4) O (CH 2) 6 OSi (OCH 3) 3
(45) (C 6 H 5 ) (CH) 2 CO (C 6 H 4) O (CH 2) 6 OSi (OC 2 H 5) 3
(46) (C 6 H 5 ) CO (CH) 2 (C 6 H 4) O (CH 2) 6 OSi (OCH 3) 3
Here, (C 6 H 5 ) CO (CH) 2 (C 6 H 4 ) represents a chalconyl group.
The fine particles covered with these coatings were cured by simply forming or forming the coatings and irradiating them with ultraviolet rays.

なお、実施例2に置いて、シラノール縮合触媒には、カルボン酸金属塩、カルボン酸エステル金属塩、カルボン酸金属塩ポリマー、カルボン酸金属塩キレート、チタン酸エステル及びチタン酸エステルキレート類が利用可能である。さらに具体的には、酢酸第1錫、ジブチル錫ジラウレート、ジブチル錫ジオクテート、ジブチル錫ジアセテート、ジオクチル錫ジラウレート、ジオクチル錫ジオクテート、ジオクチル錫ジアセテート、ジオクタン酸第1錫、ナフテン酸鉛、ナフテン酸コバルト、2−エチルヘキセン酸鉄、ジオクチル錫ビスオクチリチオグリコール酸エステル塩、ジオクチル錫マレイン酸エステル塩、ジブチル錫マレイン酸塩ポリマー、ジメチル錫メルカプトプロピオン酸塩ポリマー、ジブチル錫ビスアセチルアセテート、ジオクチル錫ビスアセチルラウレート、テトラブチルチタネート、テトラノニルチタネート及びビス(アセチルアセトニル)ジープロピルチタネートを用いることが可能であった。 In Example 2, carboxylic acid metal salts, carboxylic acid ester metal salts, carboxylic acid metal salt polymers, carboxylic acid metal salt chelates, titanate esters, and titanate ester chelates can be used as silanol condensation catalysts. It is. More specifically, stannous acetate, dibutyltin dilaurate, dibutyltin dioctate, dibutyltin diacetate, dioctyltin dilaurate, dioctyltin dioctate, dioctyltin diacetate, stannous dioctanoate, lead naphthenate, cobalt naphthenate , Iron 2-ethylhexenoate, dioctyltin bisoctylthioglycolate, dioctyltin maleate, dibutyltin maleate polymer, dimethyltin mercaptopropionate polymer, dibutyltin bisacetylacetate, dioctyltin bisacetyl Laurate, tetrabutyl titanate, tetranonyl titanate and bis (acetylacetonyl) dipropyl titanate could be used.

また、膜形成溶液の溶媒としては、化学吸着剤がアルコキシシラン系、クロロシラン系、何れの場合も水を含まない有機塩素系溶媒、炭化水素系溶媒、あるいはフッ化炭素系溶媒やシリコーン系溶媒、あるいはそれら混合物を用いることが可能であった。なお、洗浄を行わず、溶媒を蒸発させて粒子濃度を上げようとする場合には、溶媒の沸点は50〜250℃程度がよい。
さらに、吸着剤がアルコキシシラン系の場合で且つ溶媒を蒸発させて有機被膜を形成する場合には、前記溶媒に加え、メタノール、エタノール、プロパノール等のアルコール系溶媒、あるいはそれら混合物が使用できた。
In addition, as a solvent for the film forming solution, the chemical adsorbent is an alkoxysilane-based solvent, a chlorosilane-based solvent, an organic chlorine-based solvent that does not contain water in any case, a hydrocarbon-based solvent, a fluorocarbon-based solvent, a silicone-based solvent, Alternatively, it was possible to use a mixture thereof. In addition, when it is going to raise particle concentration by evaporating a solvent, without wash | cleaning, the boiling point of a solvent is good at about 50-250 degreeC.
Further, when the adsorbent is an alkoxysilane type and the organic film is formed by evaporating the solvent, an alcohol type solvent such as methanol, ethanol, propanol, or a mixture thereof can be used in addition to the solvent.

具体的に使用可能なものは、有機塩素系溶媒、非水系の石油ナフサ、ソルベントナフサ、石油エーテル、石油ベンジン、イソパラフィン、ノルマルパラフィン、デカリン、工業ガソリン、ノナン、デカン、灯油、ジメチルシリコーン、フェニルシリコーン、アルキル変性シリコーン、ポリエーテルシリコーン、ジメチルホルムアミド等を挙げることができる。 Specifically usable are organic chlorinated solvents, non-aqueous petroleum naphtha, solvent naphtha, petroleum ether, petroleum benzine, isoparaffin, normal paraffin, decalin, industrial gasoline, nonane, decane, kerosene, dimethyl silicone, phenyl silicone , Alkyl-modified silicone, polyether silicone, dimethylformamide and the like.

また、フッ化炭素系溶媒には、フロン系溶媒や、フロリナート(3M社製品)、アフルード(旭ガラス社製品)等がある。なお、これらは1種単独で用いても良いし、良く混ざるものなら2種以上を組み合わせてもよい。さらに、クロロホルム等有機塩素系の溶媒を添加しても良い。 Fluorocarbon solvents include fluorocarbon solvents, Fluorinert (product of 3M), Afludo (product of Asahi Glass). In addition, these may be used individually by 1 type and may mix 2 or more types as long as it mixes well. Further, an organic chlorine solvent such as chloroform may be added.

一方、上述のシラノール縮合触媒の代わりに、ケチミン化合物又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を用いた場合、同じ濃度でも処理時間を半分〜2/3程度まで短縮できた。 On the other hand, when a ketimine compound or organic acid, aldimine compound, enamine compound, oxazolidine compound, aminoalkylalkoxysilane compound is used instead of the above-mentioned silanol condensation catalyst, the treatment time is reduced to about half to 2/3 even at the same concentration. did it.

さらに、シラノール縮合触媒とケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を混合(1:9〜9:1範囲で使用可能だが、通常1:1前後が好ましい。)して用いると、処理時間をさらに数倍早く(30分程度まで)でき、製膜時間を数分の一まで短縮できる。 Furthermore, a silanol condensation catalyst and a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, and an aminoalkylalkoxysilane compound can be used in a range of 1: 9 to 9: 1. )), The processing time can be increased several times faster (up to about 30 minutes), and the film forming time can be reduced to a fraction of a minute.

例えば、シラノール触媒であるジブチル錫オキサイドをケチミン化合物であるジャパンエポキシレジン社のH3に置き換え、その他の条件は同一にしてみたが、反応時間を1時間程度にまで短縮できた他は、ほぼ同様の結果が得られた。 For example, dibutyltin oxide, which is a silanol catalyst, was replaced with H3 from Japan Epoxy Resin, which is a ketimine compound, and the other conditions were the same, but the reaction time was reduced to about 1 hour. Results were obtained.

さらに、シラノール触媒を、ケチミン化合物であるジャパンエポキシレジン社のH3と、シラノール触媒であるジブチル錫ビスアセチルアセトネートの混合物(混合比は1:1)に置き換え、その他の条件は同一にしてみたが、反応時間を30分程度に短縮できた他は、ほぼ同様の結果が得られた。 Furthermore, the silanol catalyst was replaced with a mixture of ketimine compound Japan Epoxy Resin H3 and silanol catalyst dibutyltin bisacetylacetonate (mixing ratio is 1: 1), and other conditions were the same. The same results were obtained except that the reaction time could be shortened to about 30 minutes.

したがって、以上の結果から、ケチミン化合物や有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物がシラノール縮合触媒より活性が高いことが明らかとなった。 Therefore, the above results revealed that ketimine compounds, organic acids, aldimine compounds, enamine compounds, oxazolidine compounds, and aminoalkylalkoxysilane compounds are more active than silanol condensation catalysts.

さらにまた、ケチミン化合物や有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物の内の1つとシラノール縮合触媒を混合して用いると、さらに活性が高くなることが確認された。 Furthermore, it was confirmed that the activity is further increased when one of a ketimine compound, an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, and an aminoalkylalkoxysilane compound is mixed with a silanol condensation catalyst.

なお、ここで、利用できるケチミン化合物は特に限定されるものではないが、例えば、2,5,8−トリアザ−1,8−ノナジエン、3,11−ジメチル−4,7,10−トリアザ−3,10−トリデカジエン、2,10−ジメチル−3,6,9−トリアザ−2,9−ウンデカジエン、2,4,12,14−テトラメチル−5,8,11−トリアザ−4,11−ペンタデカジエン、2,4,15,17−テトラメチル−5,8,11,14−テトラアザ−4,14−オクタデカジエン、2,4,20,22−テトラメチル−5,12,19−トリアザ−4,19−トリエイコサジエン等がある。 Here, the ketimine compound that can be used is not particularly limited. For example, 2,5,8-triaza-1,8-nonadiene, 3,11-dimethyl-4,7,10-triaza-3 , 10-tridecadiene, 2,10-dimethyl-3,6,9-triaza-2,9-undecadiene, 2,4,12,14-tetramethyl-5,8,11-triaza-4,11-pentadeca Diene, 2,4,15,17-tetramethyl-5,8,11,14-tetraaza-4,14-octadecadiene, 2,4,20,22-tetramethyl-5,12,19-triaza- 4,19-trieicosadiene and the like.

また、利用できる有機酸としても特に限定されるものではないが、例えば、ギ酸、あるいは酢酸、プロピオン酸、ラク酸、マロン酸等があり、ほぼ同様の効果があった。 Further, the organic acid that can be used is not particularly limited, but there are, for example, formic acid, acetic acid, propionic acid, lactic acid, malonic acid, and the like, which have almost the same effects.

また、上記2つの実施例では、酸化鉛微粒子と酸化セリウム微粒子を例として説明したが、本発明は、表面に活性水素、すなわち水酸基の水素やアミノ基あるいはイミノ基の水素などを含んだ微粒子で有れば、どのような微粒子にでも適用可能である。 In the above two embodiments, lead oxide fine particles and cerium oxide fine particles have been described as examples. However, the present invention is a fine particle containing, on the surface, active hydrogen, that is, hydrogen of a hydroxyl group, hydrogen of an amino group or imino group. Any fine particles can be applied.

具体的には、「無機微粒子」として、導体微粒子、半導体微粒子、絶縁体微粒子、磁気微粒子、蛍光体微粒子、光吸収微粒子、光透過微粒子、顔料微粒子、「有機微粒子」として、有機蛍光体微粒子、有機光吸収微粒子、有機光透過微粒子、有機顔料微粒子、薬物微粒子、「有機−無機ハイブリッド微粒子」として、DDS(Drug Delivery System)用薬物微粒子、化粧用微粒子、有機−無機ハイブリッド顔料微粒子等に適用可能である。 Specifically, as “inorganic fine particles”, conductive fine particles, semiconductor fine particles, insulator fine particles, magnetic fine particles, fluorescent fine particles, light absorbing fine particles, light transmitting fine particles, pigment fine particles, “organic fine particles”, organic fluorescent fine particles, Organic light-absorbing fine particles, organic light-transmitting fine particles, organic pigment fine particles, drug fine particles, "organic-inorganic hybrid fine particles", applicable to drug fine particles for DDS (Drug Delivery System), cosmetic fine particles, organic-inorganic hybrid pigment fine particles, etc. It is.

本発明の第1の実施例における微粒子の反応を分子レベルまで拡大した概念図であり、(a)は反応前の微粒子表面の図、(b)は、単分子膜が形成された後の図を示す。It is the conceptual diagram which expanded reaction of the microparticles | fine-particles in the 1st Example of this invention to a molecular level, (a) is a figure of the fine particle surface before reaction, (b) is a figure after the monomolecular film was formed. Indicates. 本発明の第2の実施例における微粒子の反応を分子レベルまで拡大した概念図であり、(a)は反応前の微粒子表面の図、(b)は、エポキシ基を含む単分子膜が形成された後の図、(c)は、アミノ基を含む単分子膜が形成された後の図を示す。It is the conceptual diagram which expanded reaction of the microparticles | fine-particles in the 2nd Example of this invention to the molecular level, (a) is a figure of the microparticle surface before reaction, (b) is a monomolecular film containing an epoxy group formed. (C) shows a view after a monomolecular film containing an amino group is formed.

符号の説明Explanation of symbols

1 酸化鉛微粒子
2 水酸基
3 フッ化炭素基を含む単分子膜
単分子膜で被われた酸化鉛微粒子
11 酸化セリウム微粒子
12 水酸基
13 エポキシ基を含む単分子膜
14 アミノ基を含む単分子膜
1 Lead oxide fine particles 2 Hydroxyl groups 3 Monomolecular films containing fluorocarbon groups
4 Lead oxide fine particles covered with monomolecular film 11 Cerium oxide fine particles 12 Hydroxyl group
13 Monomolecular film containing an epoxy group 14 Monomolecular film containing an amino group

Claims (12)

表面に共有結合した有機薄膜で覆われていることを特徴とする微粒子。 Fine particles characterized by being covered with an organic thin film covalently bonded to the surface. 表面に共有結合した有機薄膜が一端に機能性官能基を含み他端でSiまたはSを介して粒子表面に共有結合する分子で構成されていることを特徴とする請求項1記載の微粒子。 2. The fine particle according to claim 1, wherein the organic thin film covalently bonded to the surface is composed of molecules having a functional functional group at one end and covalently bonded to the particle surface via Si or S at the other end. 機能性官能基が臨界表面エネルギー25mN/m以下の不活性基、または反応性の官能基であることを特徴とする請求項2記載の微粒子。 The fine particle according to claim 2, wherein the functional functional group is an inert group having a critical surface energy of 25 mN / m or less, or a reactive functional group. 臨界表面エネルギー25mN/m以下の不活性基が、−CFおよび/または−CH3を含むことを特徴とする請求項3記載の微粒子。 Critical surface energy 25 mN / m or less inert groups, according to claim 3 fine particles, wherein the including -CF 3 and / or -CH 3. 反応性の官能基が熱反応性または光反応性、あるいはラジカル反応性またはイオン反応性の官能基であることを特徴とする請求項3記載の微粒子。 4. The fine particle according to claim 3, wherein the reactive functional group is a thermal reactive or photo reactive functional group or a radical reactive or ionic reactive functional group. 反応性の官能基がエポキシ基やイミノ基、あるいはカルコニル基であることを特徴とする請求項4記載の微粒子。 The fine particles according to claim 4, wherein the reactive functional group is an epoxy group, an imino group, or a chalconyl group. 表面に共有結合した有機薄膜が単分子膜で構成されていることを特徴とする請求項1および2記載の微粒子。 3. The fine particles according to claim 1, wherein the organic thin film covalently bonded to the surface is composed of a monomolecular film. 微粒子を少なくともクロロシラン化合物と非水系の有機溶媒を混合して作成した化学吸着液中に分散させて前記クロロシシラン化合物と前記微粒子表面を反応させる工程を含むことを特徴とする微粒子の製造方法。 A method for producing fine particles, comprising a step of dispersing fine particles in a chemical adsorption solution prepared by mixing at least a chlorosilane compound and a non-aqueous organic solvent and reacting the chlorosisilane compound with the surface of the fine particles. 微粒子を少なくともアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に分散させてアルコキシシラン化合物と微粒子表面を反応させる工程を含むことを特徴とする微粒子の製造方法。 Production of fine particles comprising a step of dispersing fine particles in a chemical adsorption solution prepared by mixing at least an alkoxysilane compound, a silanol condensation catalyst and a non-aqueous organic solvent, and reacting the alkoxysilane compound with the fine particle surface. Method. 微粒子を化学吸着液に分散させてクロロシラン化合物またはアルコキシシラン化合物と微粒子表面を反応させる工程の後、微粒子表面を有機溶剤で洗浄して微粒子表面に共有結合した単分子膜を形成することを特徴とする請求項8および9記載の微粒子の製造方法。 After the step of dispersing the fine particles in the chemical adsorption liquid and reacting the chlorosilane compound or alkoxysilane compound with the fine particle surface, the fine particle surface is washed with an organic solvent to form a monomolecular film covalently bonded to the fine particle surface. The method for producing fine particles according to claim 8 and 9. シラノール縮合触媒の代わりに、ケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を用いることを特徴とする請求項9に記載の微粒子の製造方法。 The method for producing fine particles according to claim 9, wherein a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, or an aminoalkylalkoxysilane compound is used in place of the silanol condensation catalyst. シラノール縮合触媒に助触媒としてケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物から選ばれる少なくとも1つを混合して用いることを特徴とする請求項9に記載の微粒子の製造方法。 10. The silanol condensation catalyst as a co-catalyst used as a co-catalyst, or at least one selected from an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, and an aminoalkylalkoxysilane compound is used. A method for producing fine particles.
JP2005311035A 2005-10-26 2005-10-26 Fine particles and production method thereof Active JP5050190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005311035A JP5050190B2 (en) 2005-10-26 2005-10-26 Fine particles and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005311035A JP5050190B2 (en) 2005-10-26 2005-10-26 Fine particles and production method thereof

Publications (2)

Publication Number Publication Date
JP2007117828A true JP2007117828A (en) 2007-05-17
JP5050190B2 JP5050190B2 (en) 2012-10-17

Family

ID=38142254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005311035A Active JP5050190B2 (en) 2005-10-26 2005-10-26 Fine particles and production method thereof

Country Status (1)

Country Link
JP (1) JP5050190B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007117826A (en) * 2005-10-26 2007-05-17 Kagawa Univ Chemisorption solution
JP2007129079A (en) * 2005-11-04 2007-05-24 Kagawa Univ Magnetic particulate, its manufacturing method, magnet using them, and its manufacturing method
JP2007161748A (en) * 2005-12-09 2007-06-28 Kagawa Univ Phosphor microparticle, method for producing the same and phosphor film using the same
WO2008149471A1 (en) * 2007-06-07 2008-12-11 Kazufumi Ogawa Fluor fine particle, manufacturing method thereof, and fluor covering film using them
WO2009001471A1 (en) * 2007-06-22 2008-12-31 Kazufumi Ogawa Fine silicon particle and method of manufacture and solar cell using the fine silicon particle and method of manufacture
WO2009022436A1 (en) * 2007-08-16 2009-02-19 Kazufumi Ogawa Conductive paste and method for manufacturing the same, wiring using the conductive paste and method for manufacturing the same
JP2010070786A (en) * 2008-09-17 2010-04-02 Shin-Etsu Chemical Co Ltd Metal surface treatment agent, surface-treated steel, method for treating the same, coated steel, and method for producing the same
WO2013057945A1 (en) 2011-10-18 2013-04-25 日本曹達株式会社 Surface-covered inorganic powder

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63141673A (en) * 1986-03-10 1988-06-14 Kanegafuchi Chem Ind Co Ltd Extremely thin film improved in adhesiveness to substrate and its preparation
JPH10339877A (en) * 1997-06-05 1998-12-22 Matsushita Electric Ind Co Ltd Liquid crystal alignment layer, manufacture therefor, liquid crystal display device using the same and manufacture therefor
JP2002287151A (en) * 2001-01-17 2002-10-03 Matsushita Electric Ind Co Ltd Liquid crystal display element and manufacturing method therefor
JP2003168606A (en) * 2001-01-24 2003-06-13 Matsushita Electric Ind Co Ltd Fine particle array, its manufacturing method and device using the method
JP2005280020A (en) * 2004-03-29 2005-10-13 Kazufumi Ogawa Mold, its production method, and molding produced by using it
JP2007119545A (en) * 2005-10-26 2007-05-17 Kagawa Univ Fine particle film and method for producing the same
JP2007117826A (en) * 2005-10-26 2007-05-17 Kagawa Univ Chemisorption solution

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63141673A (en) * 1986-03-10 1988-06-14 Kanegafuchi Chem Ind Co Ltd Extremely thin film improved in adhesiveness to substrate and its preparation
JPH10339877A (en) * 1997-06-05 1998-12-22 Matsushita Electric Ind Co Ltd Liquid crystal alignment layer, manufacture therefor, liquid crystal display device using the same and manufacture therefor
JP2002287151A (en) * 2001-01-17 2002-10-03 Matsushita Electric Ind Co Ltd Liquid crystal display element and manufacturing method therefor
JP2003168606A (en) * 2001-01-24 2003-06-13 Matsushita Electric Ind Co Ltd Fine particle array, its manufacturing method and device using the method
JP2005280020A (en) * 2004-03-29 2005-10-13 Kazufumi Ogawa Mold, its production method, and molding produced by using it
JP2007119545A (en) * 2005-10-26 2007-05-17 Kagawa Univ Fine particle film and method for producing the same
JP2007117826A (en) * 2005-10-26 2007-05-17 Kagawa Univ Chemisorption solution

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007117826A (en) * 2005-10-26 2007-05-17 Kagawa Univ Chemisorption solution
JP2007129079A (en) * 2005-11-04 2007-05-24 Kagawa Univ Magnetic particulate, its manufacturing method, magnet using them, and its manufacturing method
JP2007161748A (en) * 2005-12-09 2007-06-28 Kagawa Univ Phosphor microparticle, method for producing the same and phosphor film using the same
WO2008149471A1 (en) * 2007-06-07 2008-12-11 Kazufumi Ogawa Fluor fine particle, manufacturing method thereof, and fluor covering film using them
WO2009001471A1 (en) * 2007-06-22 2008-12-31 Kazufumi Ogawa Fine silicon particle and method of manufacture and solar cell using the fine silicon particle and method of manufacture
US8623500B2 (en) 2007-08-16 2014-01-07 Empire Technology Development Llc Conductive paste and method for manufacturing the same, wiring using the conductive paste and method for manufacturing the same
WO2009022436A1 (en) * 2007-08-16 2009-02-19 Kazufumi Ogawa Conductive paste and method for manufacturing the same, wiring using the conductive paste and method for manufacturing the same
US9330807B2 (en) 2007-08-16 2016-05-03 Empire Technology Development Llc Conductive paste and method for manufacturing the same, wiring using the conductive paste and method for manufacturing the same
JP2010070786A (en) * 2008-09-17 2010-04-02 Shin-Etsu Chemical Co Ltd Metal surface treatment agent, surface-treated steel, method for treating the same, coated steel, and method for producing the same
WO2013057945A1 (en) 2011-10-18 2013-04-25 日本曹達株式会社 Surface-covered inorganic powder
KR20140068168A (en) 2011-10-18 2014-06-05 닛뽕소다 가부시키가이샤 Surface-covered inorganic powder
CN103874654A (en) * 2011-10-18 2014-06-18 日本曹达株式会社 Surface-covered inorganic powder
TWI466960B (en) * 2011-10-18 2015-01-01 Nippon Soda Co An inorganic powder coated with a surface
JPWO2013057945A1 (en) * 2011-10-18 2015-04-02 日本曹達株式会社 Surface-coated inorganic powder
CN103874654B (en) * 2011-10-18 2015-11-25 日本曹达株式会社 Through the inorganic powder of surface coverage process
KR101588149B1 (en) * 2011-10-18 2016-01-22 닛뽕소다 가부시키가이샤 Surface-covered inorganic powder

Also Published As

Publication number Publication date
JP5050190B2 (en) 2012-10-17

Similar Documents

Publication Publication Date Title
JP5050190B2 (en) Fine particles and production method thereof
JP2007118276A (en) Single-layer fine particle film, cumulated fine particle film and manufacturing method of them
JP5087764B2 (en) Silicon fine particles, production method thereof, solar cell using the same, and production method thereof
WO2008068873A1 (en) Monolayer nanoparticle film, multilayer nanoparticle film, and manufacturing method thereof
JP2007119545A (en) Fine particle film and method for producing the same
JP2007117827A (en) Pattern-like fine particle film and its production method
JP2005280020A (en) Mold, its production method, and molding produced by using it
WO2006087986A1 (en) Dispersion of titanium oxide particles, titanium oxide thin film, solution for forming organic functional film, substrate having organic functional film formed thereon and method for producing same
JP2007126332A (en) Water-repellent glass plate, its producing method, and vehicle or glass window using the glass plate
JP4848502B2 (en) WIRING, MANUFACTURING METHOD THEREOF, AND ELECTRONIC COMPONENT AND ELECTRONIC DEVICE USING THEM
JP2007161748A (en) Phosphor microparticle, method for producing the same and phosphor film using the same
JP4868496B2 (en) Solar cell and manufacturing method thereof
US9200012B2 (en) Patterned fine particle film structures
JP5167528B2 (en) Chemisorption solution
JP2007173518A (en) Optical sensor and manufacturing method thereof
JP2009088388A (en) Solar energy utilization device and its manufacturing method
JP2007220883A (en) Wiring and its manufacturing method, and electronic parts and electronic apparatus using the same
JP4993700B2 (en) Protective film and method for producing the same
JP2010129619A (en) Solar cell using silicon particulate, optical sensor, and method of manufacturing them
JP2007161913A (en) Adhesion method and biochemical chip produced by the method and optical part
JP2007128605A (en) Magnetic recording medium, its manufacturing method and magnetic recording and reading device using the same
JP2007127847A (en) Antireflection film, its manufacturing method and optical apparatus using same
JP2007161749A (en) Pattern-like phosphor microparticle film and method for producing the same
JP5200244B2 (en) Fine particle film and manufacturing method thereof
JP2007129079A (en) Magnetic particulate, its manufacturing method, magnet using them, and its manufacturing method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060529

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080827

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080929

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20081230

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090619

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20090619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090828

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100225

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100302

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100521

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120324

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150