JP2008277663A - Magnet, and manufacturing method thereof - Google Patents

Magnet, and manufacturing method thereof Download PDF

Info

Publication number
JP2008277663A
JP2008277663A JP2007121866A JP2007121866A JP2008277663A JP 2008277663 A JP2008277663 A JP 2008277663A JP 2007121866 A JP2007121866 A JP 2007121866A JP 2007121866 A JP2007121866 A JP 2007121866A JP 2008277663 A JP2008277663 A JP 2008277663A
Authority
JP
Japan
Prior art keywords
group
magnet
reactive
reaction
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007121866A
Other languages
Japanese (ja)
Inventor
Kazufumi Ogawa
小川  一文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kagawa University NUC
Original Assignee
Kagawa University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagawa University NUC filed Critical Kagawa University NUC
Priority to JP2007121866A priority Critical patent/JP2008277663A/en
Priority to PCT/JP2008/058259 priority patent/WO2008136484A1/en
Publication of JP2008277663A publication Critical patent/JP2008277663A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3893Low-molecular-weight compounds having heteroatoms other than oxygen containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • H01F1/113Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles in a bonding agent

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnet which does not require an elevated temperature at the time of forming and has excellent magnetic property, and a manufacturing method thereof. <P>SOLUTION: A magnet 10 comprises a magnetic particulate 11 the surface of which is covered with a film 12 formed of a film compound having a reactive functional group at one end of a molecule, and a cross-linking agent 13 having a plurality of cross-link reaction groups which react with the functional group and form a connection. The covered magnetic particulate 11 is formed and cured via the connection formed by reaction between the functional group and the cross-link reaction group. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、磁石およびその製造方法に関するものである。さらに詳しくは、表面に反応性の官能基を導入した磁性微粒子と架橋反応基を有する架橋剤とを用いて作製した磁石およびその製造方法に関するものである。 The present invention relates to a magnet and a manufacturing method thereof. More specifically, the present invention relates to a magnet produced using magnetic fine particles having a reactive functional group introduced on the surface and a crosslinking agent having a crosslinking reactive group, and a production method thereof.

従来から、希土類系(Sm−Co系、Nd−Fe−B系等)、およびフェライト系等の磁性微粒子を焼結した焼結磁石(セラミックス磁石)や、プラスチックやゴム等の樹脂中に磁性微粒子を分散し成形固化したボンド磁石(例えば、特許文献1参照)が数多く知られている。 Conventionally, sintered magnets (ceramic magnets) obtained by sintering rare earth-based (Sm-Co-based, Nd-Fe-B-based, etc.) and ferrite-based magnetic particles, and magnetic particles in plastics, rubbers, and other resins. There are many known bonded magnets (see, for example, Patent Document 1) in which the above is dispersed and molded and solidified.

特開平8−264360号公報JP-A-8-264360

しかしながら、焼結磁石においては、1000℃以上の高温で焼結するために多くの熱エネルギーが必要であるとともに、磁性粒子の磁気特性が劣化して高性能な磁石が得にくいという問題点を有している。
また、ボンド磁石では、樹脂をバインダーにしているため成形が容易で、可撓性を有するなどの長所を有するものの、磁化強度に優れた磁石が得にくいという問題点を有している。
However, sintered magnets have problems that a large amount of heat energy is required to sinter at a high temperature of 1000 ° C. or higher, and that magnetic properties of magnetic particles deteriorate and it is difficult to obtain a high-performance magnet. is doing.
In addition, the bonded magnet has advantages such as being easy to mold and having flexibility because it uses a resin as a binder, but has a problem that it is difficult to obtain a magnet with excellent magnetization strength.

本発明は、かかる課題に鑑みてなされたものであり、成形時に高温を必要とせず、かつ優れた磁気特性を有する磁石およびその製造方法を提供することを目的とする。 This invention is made | formed in view of this subject, and it aims at providing the magnet which does not require high temperature at the time of shaping | molding, and has the outstanding magnetic characteristic, and its manufacturing method.

前記目的に沿う第1の発明に係る磁石は、分子の一端に反応性の官能基を有する膜化合物の形成する被膜で表面が被覆された磁性微粒子と、前記官能基と反応して結合を形成する複数の架橋反応基を有する架橋剤とを含み、前記被覆された磁性微粒子が、前記反応性の官能基と前記架橋反応基との反応により形成された結合を介して成形および硬化している。 The magnet according to the first invention in accordance with the above object forms a bond by reacting the functional group with magnetic fine particles whose surface is coated with a film formed by a film compound having a reactive functional group at one end of the molecule. The coated magnetic fine particles are molded and cured via a bond formed by a reaction between the reactive functional group and the crosslinking reactive group. .

第1の発明に係る磁石において、前記膜化合物は、Siを介して前記磁性微粒子の表面に共有結合していてもよい。 In the magnet according to the first invention, the film compound may be covalently bonded to the surface of the magnetic fine particle via Si.

第1の発明に係る磁石において、前記被膜が単分子膜であることが好ましい。 In the magnet according to the first invention, the coating is preferably a monomolecular film.

第1の発明に係る磁石において、前記反応性の官能基および前記架橋反応基が、熱反応性およびイオン反応性の官能基のいずれかであることが好ましい。 In the magnet according to the first aspect of the present invention, it is preferable that the reactive functional group and the cross-linking reactive group are either a thermal reactive group or an ion reactive functional group.

第1の発明に係る磁石において、前記反応性の官能基と前記架橋反応基との架橋反応により形成された結合が、アミノ基またはイミノ基とエポキシ基との反応により形成されたN−CHCH(OH)結合であってもよい。 In the magnet according to the first invention, N—CH 2 in which a bond formed by a crosslinking reaction between the reactive functional group and the crosslinking reactive group is formed by a reaction between an amino group or an imino group and an epoxy group. It may be a CH (OH) bond.

第1の発明に係る磁石において、前記反応性の官能基と前記架橋反応基との架橋反応により形成された結合が、アミノ基またはイミノ基とイソシアネート基との反応により形成されたNH−CONH結合であってもよい。 In the magnet according to the first invention, the bond formed by the crosslinking reaction between the reactive functional group and the crosslinking reaction group is an NH—CONH bond formed by the reaction of an amino group or imino group and an isocyanate group. It may be.

第2の発明に係る磁石の製造方法は、反応性の官能基および結合基を分子の両端にそれぞれ有する膜化合物を磁性微粒子と接触させ、結合基と前記微粒子の表面との間で結合を形成させ、前記膜化合物の形成する被膜で表面が覆われた反応性磁性微粒子を製造する工程Aと、前記反応性磁性微粒子と、前記官能基と反応して結合を形成する複数の架橋反応基を有する架橋剤を混合し鋳型に入れ、該鋳型内で前記反応性の官能基と前記架橋反応基との反応により結合を形成させる工程Bとを含む。 According to a second aspect of the present invention, there is provided a magnet manufacturing method, wherein a film compound having a reactive functional group and a binding group at both ends of a molecule is brought into contact with magnetic fine particles, and a bond is formed between the binding group and the surface of the fine particles Step A for producing reactive magnetic fine particles whose surfaces are covered with a film formed by the film compound, and a plurality of cross-linking reactive groups that react with the functional magnetic groups to form bonds by reacting with the functional groups. And a step B in which the cross-linking agent is mixed and placed in a template, and a bond is formed in the template by a reaction between the reactive functional group and the cross-linking reactive group.

第2の発明に係る磁石の製造方法において、前記膜化合物の形成する被膜が単分子膜であることが好ましい。 In the magnet manufacturing method according to the second invention, it is preferable that the film formed by the film compound is a monomolecular film.

第2の発明に係る磁石の製造方法において、前記反応性の官能基と前記架橋反応基との架橋反応により形成された結合が、アミノ基またはイミノ基とエポキシ基との反応により形成されたN−CHCH(OH)結合であってもよい。 In the method for producing a magnet according to the second invention, the bond formed by the cross-linking reaction between the reactive functional group and the cross-linking reactive group is formed by a reaction between an amino group or imino group and an epoxy group. It may be a —CH 2 CH (OH) bond.

第2の発明に係る磁石の製造方法において、前記反応性の官能基と前記架橋反応基との架橋反応により形成された結合が、アミノ基またはイミノ基とイソシアネート基との反応により形成されたNH−CONH結合であってもよい。 In the magnet manufacturing method according to the second aspect of the present invention, the bond formed by the crosslinking reaction between the reactive functional group and the crosslinking reactive group is formed by the reaction of an amino group or imino group with an isocyanate group. It may be a -CONH bond.

第2の発明に係る磁石の製造方法において、前記工程Bを磁場中で行うことが好ましい。
また、超音波を印加しながら前記工程Bを行うことがより好ましい。
In the method for manufacturing a magnet according to the second invention, it is preferable that the step B is performed in a magnetic field.
Moreover, it is more preferable to perform the said process B, applying an ultrasonic wave.

請求項1〜6記載の磁石、および請求項7〜12記載の磁石の製造方法においては、磁性微粒子の表面に形成された膜化合物の形成する被膜の官能基と、架橋剤の有する架橋反応基との反応により形成された結合を介して、磁性微粒子が成形および硬化している。そのため、任意の形状に成形できる。
また、結合の形成のために必要な温度は、磁性微粒子の焼結温度およびキュリー温度よりも低いので、製造に必要なエネルギーコストを低減できるとともに、成形時の加熱による自発磁化の消失を抑制できる。
さらに、樹脂等のバインダーを必要としないため、よりエネルギー密度の高い磁石を提供できる。
In the magnet of Claims 1-6 and the manufacturing method of the magnet of Claims 7-12, the functional group of the film | membrane which the film compound formed in the surface of a magnetic fine particle forms, and the crosslinking reaction group which a crosslinking agent has The magnetic fine particles are shaped and hardened through the bonds formed by the reaction with. Therefore, it can be formed into an arbitrary shape.
In addition, since the temperature necessary for forming the bond is lower than the sintering temperature and the Curie temperature of the magnetic fine particles, it is possible to reduce the energy cost required for production and to suppress the disappearance of spontaneous magnetization due to heating during molding. .
Furthermore, since a binder such as a resin is not required, a magnet having a higher energy density can be provided.

請求項2記載の磁石においては、膜化合物はSiを介して磁性微粒子の表面に共有結合しているので、膜化合物が磁性微粒子表面から剥離しにくくなり、磁石の耐久性を向上できる。 In the magnet according to claim 2, since the film compound is covalently bonded to the surface of the magnetic fine particle through Si, the film compound is hardly peeled off from the surface of the magnetic fine particle, and the durability of the magnet can be improved.

請求項3記載の磁石および請求項8記載の磁石の製造方法においては、前記膜化合物の形成する被膜が単分子膜であるので、磁石中の膜化合物の含量を必要最低限に抑え、磁石の性能を向上できる。 In the magnet according to claim 3 and the magnet manufacturing method according to claim 8, since the film formed by the film compound is a monomolecular film, the content of the film compound in the magnet is minimized, Performance can be improved.

請求項4記載の磁石においては、反応性の官能基が熱反応性およびイオン反応性の官能基のいずれかであるので、特殊な製造設備を必要とせず、通常の成形用金型内で反応性の官能基と架橋反応基との反応を起こさせることができる。 In the magnet according to claim 4, since the reactive functional group is either a thermal reactive group or an ion reactive functional group, no special manufacturing equipment is required, and the reaction is performed in a normal molding die. It is possible to cause a reaction between the functional group and the crosslinking reactive group.

請求項5記載の磁石および請求項9記載の磁石の製造方法においては、反応性の官能基と架橋反応基との架橋反応により形成された結合が、アミノ基またはイミノ基とエポキシ基との反応により形成され、強度が高いN−CHCH(OH)結合であるので、機械的強度および耐久性の高い磁石を提供できる。 The magnet according to claim 5 and the method for producing a magnet according to claim 9, wherein the bond formed by a crosslinking reaction between a reactive functional group and a crosslinking reactive group is a reaction between an amino group or imino group and an epoxy group. Since the N—CH 2 CH (OH) bond is formed and has high strength, a magnet having high mechanical strength and high durability can be provided.

請求項6記載の磁石および請求項10記載の磁石の製造方法においては、前記反応性の官能基と前記架橋反応基との架橋反応により形成された結合が、アミノ基またはイミノ基とイソシアネート基との反応により形成され形成され、強度が高いNH−CONH結合であるので、機械的強度および耐久性の高い磁石を提供できる。 In the magnet according to claim 6 and the method for producing a magnet according to claim 10, a bond formed by a crosslinking reaction between the reactive functional group and the crosslinking reactive group is an amino group or an imino group and an isocyanate group. Since the NH—CONH bond is formed and formed by the above reaction and has high strength, a magnet having high mechanical strength and high durability can be provided.

請求項11記載の磁石の製造方法においては、反応性磁性微粒子と架橋剤とを混合し鋳型に入れ、反応性の官能基と架橋反応基との反応により形成された結合を形成させる工程Bを磁場中で行うので、磁気異方性に優れた磁石を製造できる。
請求項12記載の磁石の製造方法においては、磁場中で超音波を印加しながら工程Bを行うので、さらに磁気異方性に優れた磁石を製造できる。
In the magnet manufacturing method according to claim 11, the step B of forming the bond formed by the reaction of the reactive functional group and the cross-linking reactive group by mixing the reactive magnetic fine particles and the cross-linking agent and putting them in the template. Since it is performed in a magnetic field, a magnet having excellent magnetic anisotropy can be produced.
In the magnet manufacturing method according to the twelfth aspect, since the process B is performed while applying an ultrasonic wave in a magnetic field, a magnet having further excellent magnetic anisotropy can be manufactured.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
ここで、図1は本発明の一実施の形態に係る磁石の断面構造を模式的に表した説明図、図2は同磁石の製造方法において、エポキシ化マグネタイト微粒子を製造する工程を説明するために分子レベルまで拡大した模式図であり、(a)は反応前のマグネタイト微粒子の断面構造、(b)はエポキシ基を含む単分子膜が形成されたエポキシ化マグネタイト微粒子の断面構造をそれぞれ表す。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
Here, FIG. 1 is an explanatory view schematically showing a cross-sectional structure of a magnet according to an embodiment of the present invention, and FIG. 2 is a view for explaining a process of manufacturing epoxidized magnetite fine particles in the magnet manufacturing method. FIG. 2 is a schematic diagram enlarged to a molecular level, where (a) shows a cross-sectional structure of magnetite fine particles before reaction, and (b) shows a cross-sectional structure of epoxidized magnetite fine particles on which a monomolecular film containing an epoxy group is formed.

図1に示すように、本発明の一実施の形態に係る磁石10は、分子の一端にエポキシ基(反応性の官能基の一例)を有するアルコキシシラン化合物(膜化合物の一例)の形成する単分子膜(被膜の一例)12で表面が被覆されたエポキシ化マグネタイト微粒子11(膜化合物の形成する被膜で表面が被覆された磁性微粒子の一例)と、2−メチルイミダゾール13(架橋剤の一例)とを含み、エポキシ化マグネタイト微粒子11が、エポキシ基と、2−メチルイミダゾール13のアミノ基およびイミノ基(架橋反応基の一例)との反応により形成された結合を介して成形および硬化している。 As shown in FIG. 1, a magnet 10 according to an embodiment of the present invention is a single unit in which an alkoxysilane compound (an example of a film compound) having an epoxy group (an example of a reactive functional group) at one end of a molecule is formed. Epoxidized magnetite fine particles 11 (an example of a magnetic fine particle whose surface is coated with a film formed by a film compound) 11 and 2-methylimidazole 13 (an example of a crosslinking agent) The epoxidized magnetite fine particles 11 are molded and cured via a bond formed by a reaction between an epoxy group, an amino group of 2-methylimidazole 13 and an imino group (an example of a cross-linking reactive group). .

磁石10は、エポキシ基およびアルコキシシリル基(結合基の一例)を分子の両端にそれぞれ有する膜化合物をマグネタイト微粒子(磁性微粒子の一例)21と接触させ、アルコキシシリル基とマグネタイト微粒子の表面のヒドロキシル基22との間で結合を形成させ、エポキシ化マグネタイト微粒子11を製造する工程Aと、エポキシ化マグネタイト微粒子11と、2−メチルイミダゾール13とを混合し鋳型に入れ、鋳型内で加熱して、エポキシ基と、2−メチルイミダゾール13のアミノ基およびイミノ基(架橋反応基の一例)との反応により結合を形成させる工程Bとを含む方法により製造される。 The magnet 10 is made by bringing a film compound having an epoxy group and an alkoxysilyl group (an example of a bonding group) at both ends of a molecule into contact with a magnetite fine particle (an example of a magnetic fine particle) 21 so that the alkoxysilyl group and the hydroxyl group on the surface of the magnetite fine particle 22, a process A for producing epoxidized magnetite fine particles 11, epoxidized magnetite fine particles 11, and 2-methylimidazole 13 are mixed and placed in a mold, heated in the mold, and epoxy And a step B in which a bond is formed by the reaction of an amino group and an amino group of 2-methylimidazole 13 and an imino group (an example of a crosslinking reactive group).

以下、工程AおよびBについてより詳細に説明する。
工程Aでは、エポキシ基を有する膜化合物の単分子膜12で表面が覆われたエポキシ化マグネタイト微粒子11を製造する。
エポキシ化マグネタイト微粒子11の製造に用いるマグネタイト微粒子21の直径に特に制限はないが、100μm以下であることが好ましい。直径が100μmよりも大きくなると、エポキシ化微粒子11間の空隙が大きくなるため、磁石10の磁気特性が低下するとともに、表面積に対する質量の割合が大きくなり、架橋反応によりその質量を支持できなくなるので機械的強度が低下する。
市場での入手可能性、製造コスト、二次凝集等によるハンドリング等の種々の要因を考慮すると、マグネタイト微粒子21の直径は、10〜500nmであることが好ましい。
用いられるマグネタイト微粒子21の粒径は単一であってもよいが、2以上の異なる粒径を有するマグネタイト微粒子を混合して用いてもよい。
Hereinafter, steps A and B will be described in more detail.
In step A, epoxidized magnetite fine particles 11 whose surface is covered with a monomolecular film 12 of a film compound having an epoxy group are produced.
The diameter of the magnetite fine particles 21 used for the production of the epoxidized magnetite fine particles 11 is not particularly limited, but is preferably 100 μm or less. When the diameter is larger than 100 μm, the gap between the epoxidized fine particles 11 is increased, so that the magnetic properties of the magnet 10 are lowered and the ratio of the mass to the surface area is increased, and the mass cannot be supported by the crosslinking reaction. The mechanical strength is reduced.
Considering various factors such as availability in the market, manufacturing cost, and handling due to secondary aggregation, the diameter of the magnetite fine particles 21 is preferably 10 to 500 nm.
The magnetite fine particles 21 used may have a single particle size, or may be used by mixing magnetite fine particles having two or more different particle sizes.

エポキシ化マグネタイト微粒子11の製造に用いる反応液は、エポキシ基を含むアルコキシシラン化合物と、アルコキシシリル基とマグネタイト微粒子21の表面のヒドロキシル基22との縮合反応を促進するための縮合触媒と、非水系の有機溶媒とを混合することにより調製される。 The reaction liquid used for the production of the epoxidized magnetite fine particles 11 includes an alkoxysilane compound containing an epoxy group, a condensation catalyst for accelerating the condensation reaction between the alkoxysilyl group and the hydroxyl group 22 on the surface of the magnetite fine particle 21, and a non-aqueous system. It is prepared by mixing with an organic solvent.

エポキシ基を含むアルコキシシラン化合物としては、直鎖状アルキレン基の両末端に、エポキシ基(オキシラン環)を含む官能基およびアルコキシシリル基をそれぞれ有し、下記の一般式(化1)で表されるアルコキシシラン化合物が好ましい。 The alkoxysilane compound containing an epoxy group has a functional group containing an epoxy group (oxirane ring) and an alkoxysilyl group at both ends of the linear alkylene group, and is represented by the following general formula (Formula 1). An alkoxysilane compound is preferable.

Figure 2008277663
Figure 2008277663

上式において、Eはエポキシ基を含む官能基を、mは3〜20の整数を、Rは炭素数1〜4のアルキル基をそれぞれ表す。 In the above formula, E represents a functional group containing an epoxy group, m represents an integer of 3 to 20, and R represents an alkyl group having 1 to 4 carbon atoms.

工程Aにおいて用いることができるエポキシ基を有するアルコキシシラン化合物の一例としては、下記(1)〜(12)に示した化合物が挙げられる。 As an example of the alkoxysilane compound which has an epoxy group which can be used in process A, the compound shown to following (1)-(12) is mentioned.

(1) (CHOCH)CH2O(CH2)Si(OCH)3
(2) (CHOCH)CH2O(CH2)Si(OCH)3
(3) (CHOCH)CH2O(CH2)11Si(OCH)3
(4) (CHCHOCH(CH)CH(CH2)Si(OCH)3
(5) (CHCHOCH(CH)CH(CH2)Si(OCH)3
(6) (CHCHOCH(CH)CH(CH2)Si(OCH)3
(7) (CHOCH)CH2O(CH2)Si(OC)3
(8) (CHOCH)CH2O(CH2)Si(OC)3
(9) (CHOCH)CH2O(CH2)11Si(OC)3
(10) (CHCHOCH(CH)CH(CH2)Si(OC)3
(11) (CHCHOCH(CH)CH(CH2)Si(OC)3
(12) (CHCHOCH(CH)CH(CH2)Si(OC)3
(1) (CH 2 OCH) CH 2 O (CH 2 ) 3 Si (OCH 3 ) 3
(2) (CH 2 OCH) CH 2 O (CH 2) 7 Si (OCH 3) 3
(3) (CH 2 OCH) CH 2 O (CH 2 ) 11 Si (OCH 3 ) 3
(4) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 2 Si (OCH 3) 3
(5) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 4 Si (OCH 3) 3
(6) (CH 2 CHOCH (CH 2 ) 2 ) CH (CH 2 ) 6 Si (OCH 3 ) 3
(7) (CH 2 OCH) CH 2 O (CH 2) 3 Si (OC 2 H 5) 3
(8) (CH 2 OCH) CH 2 O (CH 2) 7 Si (OC 2 H 5) 3
(9) (CH 2 OCH) CH 2 O (CH 2 ) 11 Si (OC 2 H 5 ) 3
(10) (CH 2 CHOCH (CH 2 ) 2 ) CH (CH 2 ) 2 Si (OC 2 H 5 ) 3
(11) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 4 Si (OC 2 H 5) 3
(12) (CH 2 CHOCH (CH 2 ) 2 ) CH (CH 2 ) 6 Si (OC 2 H 5 ) 3

ここで、(CHOCH)CHO−基は、化2で表される官能基(グリシジルオキシ基)を表し、(CHCHOCH(CH)CH−基は、化3で表される官能基(3,4−エポキシシクロヘキシル基)を表す。 Here, the (CH 2 OCH) CH 2 O— group represents a functional group (glycidyloxy group) represented by Chemical Formula 2 , and the (CH 2 CHOCH (CH 2 ) 2 ) CH— group is represented by Chemical Formula 3. Represents a functional group (3,4-epoxycyclohexyl group).

Figure 2008277663
Figure 2008277663

Figure 2008277663
Figure 2008277663

縮合触媒としては、カルボン酸金属塩、カルボン酸エステル金属塩、カルボン酸金属塩ポリマー、カルボン酸金属塩キレート、チタン酸エステルおよびチタン酸エステルキレート等の金属塩が利用可能である。
縮合触媒の添加量は、好ましくはアルコキシシラン化合物の0.2〜5質量%であり、より好ましくは0.5〜1質量%である。
As the condensation catalyst, metal salts such as carboxylic acid metal salts, carboxylic acid ester metal salts, carboxylic acid metal salt polymers, carboxylic acid metal salt chelates, titanate esters and titanate ester chelates can be used.
The addition amount of the condensation catalyst is preferably 0.2 to 5% by mass of the alkoxysilane compound, and more preferably 0.5 to 1% by mass.

カルボン酸金属塩の具体例としては、酢酸第1スズ、ジブチルスズジラウレート、ジブチルスズジオクテート、ジブチルスズジアセテート、ジオクチルスズジラウレート、ジオクチルスズジオクテート、ジオクチルスズジアセテート、ジオクタン酸第1スズ、ナフテン酸鉛、ナフテン酸コバルト、2−エチルヘキセン酸鉄が挙げられる。 Specific examples of carboxylic acid metal salts include stannous acetate, dibutyltin dilaurate, dibutyltin dioctate, dibutyltin diacetate, dioctyltin dilaurate, dioctyltin dioctate, dioctyltin diacetate, stannous dioctanoate, naphthenic acid Lead, cobalt naphthenate, and iron 2-ethylhexenoate.

カルボン酸エステル金属塩の具体例としては、ジオクチルスズビスオクチリチオグリコール酸エステル塩、ジオクチルスズマレイン酸エステル塩が挙げられる。
カルボン酸金属塩ポリマーの具体例としては、ジブチルスズマレイン酸塩ポリマー、ジメチルスズメルカプトプロピオン酸塩ポリマーが挙げられる。
カルボン酸金属塩キレートの具体例としては、ジブチルスズビスアセチルアセテート、ジオクチルスズビスアセチルラウレートが挙げられる。
Specific examples of the carboxylic acid ester metal salt include dioctyltin bisoctylthioglycolate ester salt and dioctyltin maleate ester salt.
Specific examples of the carboxylic acid metal salt polymer include dibutyltin maleate polymer and dimethyltin mercaptopropionate polymer.
Specific examples of the carboxylic acid metal salt chelate include dibutyltin bisacetylacetate and dioctyltin bisacetyllaurate.

チタン酸エステルの具体例としては、テトラブチルチタネート、テトラノニルチタネートが挙げられる。
チタン酸エステルキレート類の具体例としては、ビス(アセチルアセトニル)ジ−プロピルチタネートが挙げられる。
Specific examples of the titanate ester include tetrabutyl titanate and tetranonyl titanate.
Specific examples of titanate chelates include bis (acetylacetonyl) dipropyl titanate.

反応液をマグネタイト微粒子21の表面に塗布し、室温の空気中で反応させると、アルコキシシリル基とマグネタイト微粒子21の表面のヒドロキシル基22とが縮合反応を起こし、下記の化4で示されるような構造を有するエポキシ基を有する膜化合物の単分子膜12を生成する。なお、酸素原子から延びた3本の単結合はマグネタイト微粒子21の表面または隣接するシラン化合物のケイ素(Si)原子と結合しており、そのうち少なくとも1本はマグネタイト微粒子21の表面のケイ素原子と結合している。 When the reaction solution is applied to the surface of the magnetite fine particles 21 and reacted in air at room temperature, the alkoxysilyl group and the hydroxyl groups 22 on the surface of the magnetite fine particles 21 cause a condensation reaction, as shown in the following chemical formula 4. A monomolecular film 12 of a film compound having an epoxy group having a structure is generated. The three single bonds extending from the oxygen atom are bonded to the surface of the magnetite fine particle 21 or the silicon (Si) atom of the adjacent silane compound, and at least one of them is bonded to the silicon atom on the surface of the magnetite fine particle 21. is doing.

Figure 2008277663
Figure 2008277663

アルコキシシリル基は、水分の存在下で分解するので、反応は相対湿度45%以下の空気中で行うことが好ましい。なお、縮合反応は、マグネタイト微粒子21の表面に付着した油脂分や水分により阻害されるので、マグネタイト微粒子21をよく洗浄して乾燥することにより、これらの不純物を予め除去しておくことが好ましい。
縮合触媒として上述の金属塩のいずれかを用いた場合、縮合反応の完了までに要する時間は2時間程度である。
Since the alkoxysilyl group decomposes in the presence of moisture, the reaction is preferably performed in air with a relative humidity of 45% or less. The condensation reaction is hindered by oils and fats and moisture adhering to the surface of the magnetite fine particles 21. Therefore, it is preferable to remove these impurities in advance by thoroughly washing and drying the magnetite fine particles 21.
When any of the above metal salts is used as the condensation catalyst, the time required for completion of the condensation reaction is about 2 hours.

上述の金属塩の代わりに、ケチミン化合物、有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物からなる群より選択される1または2以上の化合物を縮合触媒として用いた場合、反応時間を1/2〜2/3程度まで短縮できる。 When one or more compounds selected from the group consisting of ketimine compounds, organic acids, aldimine compounds, enamine compounds, oxazolidine compounds, and aminoalkylalkoxysilane compounds are used as the condensation catalyst instead of the above metal salts, Time can be shortened to about 1/2 to 2/3.

あるいは、これらの化合物を助触媒として、上述の金属塩と混合(質量比1:9〜9:1の範囲で使用可能だが、1:1前後が好ましい)して用いると、反応時間をさらに短縮できる。 Alternatively, when these compounds are used as a co-catalyst and mixed with the above-described metal salt (mass ratio 1: 9 to 9: 1 can be used, preferably around 1: 1), the reaction time is further shortened. it can.

例えば、縮合触媒として、ジブチルスズオキサイドの代わりにケチミン化合物であるジャパンエポキシレジン社のH3を用い、その他の条件は同一にしてエポキシ化マグネタイト微粒子11の製造を行うと、エポキシ化マグネタイト微粒子11の品質を損なうことなく反応時間を1時間程度にまで短縮できる。 For example, when H3 from Japan Epoxy Resin Co., Ltd., which is a ketimine compound, is used as the condensation catalyst instead of dibutyltin oxide, and the other conditions are the same, the quality of the epoxidized magnetite fine particles 11 is improved. The reaction time can be shortened to about 1 hour without loss.

さらに、縮合触媒として、ジャパンエポキシレジン社のH3とジブチルスズビスアセチルアセトネートとの混合物(混合比は1:1)を用い、その他の条件は同一にしてエポキシ化マグネタイト微粒子11の製造を行うと、反応時間を20分程度に短縮できる。 Furthermore, when a mixture of H3 and dibutyltin bisacetylacetonate of Japan Epoxy Resin Co., Ltd. (mixing ratio is 1: 1) is used as the condensation catalyst, and the other conditions are the same, the epoxidized magnetite fine particles 11 are produced. The reaction time can be shortened to about 20 minutes.

なお、ここで用いることができるケチミン化合物は特に限定されるものではないが、例えば、2,5,8−トリアザ−1,8−ノナジエン、3,11−ジメチル−4,7,10−トリアザ−3,10−トリデカジエン、2,10−ジメチル−3,6,9−トリアザ−2,9−ウンデカジエン、2,4,12,14−テトラメチル−5,8,11−トリアザ−4,11−ペンタデカジエン、2,4,15,17−テトラメチル−5,8,11,14−テトラアザ−4,14−オクタデカジエン、2,4,20,22−テトラメチル−5,12,19−トリアザ−4,19−トリエイコサジエン等が挙げられる。 The ketimine compound that can be used here is not particularly limited, and examples thereof include 2,5,8-triaza-1,8-nonadiene, 3,11-dimethyl-4,7,10-triaza- 3,10-tridecadiene, 2,10-dimethyl-3,6,9-triaza-2,9-undecadiene, 2,4,12,14-tetramethyl-5,8,11-triaza-4,11-penta Decadiene, 2,4,15,17-tetramethyl-5,8,11,14-tetraaza-4,14-octadecadiene, 2,4,20,22-tetramethyl-5,12,19-triaza -4,19-trieicosadiene and the like.

また、用いることができる有機酸としても特に限定されるものではないが、例えば、ギ酸、酢酸、プロピオン酸、酪酸、マロン酸等が挙げられる。 Moreover, although it does not specifically limit as an organic acid which can be used, For example, a formic acid, an acetic acid, propionic acid, a butyric acid, malonic acid etc. are mentioned.

反応液の調製には、有機塩素系溶媒、炭化水素系溶媒、フッ化炭素系溶媒、シリコーン系溶媒、およびこれらの混合溶媒を用いることができる。アルコキシシラン化合物の加水分解を防止するために、乾燥剤または蒸留により使用する溶媒から水分を除去しておくことが好ましい。また、溶媒の沸点は50〜250℃であることが好ましい。 For the preparation of the reaction solution, an organic chlorine solvent, a hydrocarbon solvent, a fluorocarbon solvent, a silicone solvent, and a mixed solvent thereof can be used. In order to prevent hydrolysis of the alkoxysilane compound, it is preferable to remove water from the desiccant or the solvent used by distillation. Moreover, it is preferable that the boiling point of a solvent is 50-250 degreeC.

具体的に使用可能な溶媒としては、非水系の石油ナフサ、ソルベントナフサ、石油エーテル、石油ベンジン、イソパラフィン、ノルマルパラフィン、デカリン、工業ガソリン、ノナン、デカン、灯油、ジメチルシリコーン、フェニルシリコーン、アルキル変性シリコーン、ポリエーテルシリコーン、ジメチルホルムアミド等を挙げることができる。
さらに、メタノール、エタノール、プロパノール等のアルコール系溶媒、あるいはそれらの混合物を用いることもできる。
Specific usable solvents include non-aqueous petroleum naphtha, solvent naphtha, petroleum ether, petroleum benzine, isoparaffin, normal paraffin, decalin, industrial gasoline, nonane, decane, kerosene, dimethyl silicone, phenyl silicone, and alkyl-modified silicone. , Polyether silicone, dimethylformamide and the like.
Furthermore, alcohol solvents such as methanol, ethanol, propanol, or a mixture thereof can also be used.

また、用いることができるフッ化炭素系溶媒としては、フロン系溶媒、フロリナート(米国3M社製)、アフルード(旭硝子株式会社製)等がある。なお、これらは1種単独で用いても良いし、良く混ざるものなら2種以上を組み合わせてもよい。さらに、ジクロロメタン、クロロホルム等の有機塩素系溶媒を添加してもよい。 Fluorocarbon solvents that can be used include fluorocarbon solvents, Fluorinert (manufactured by 3M, USA), Afludo (manufactured by Asahi Glass Co., Ltd.), and the like. In addition, these may be used individually by 1 type and may mix 2 or more types as long as it mixes well. Furthermore, an organic chlorine solvent such as dichloromethane or chloroform may be added.

反応液におけるアルコキシシラン化合物の好ましい濃度は、0.5〜3質量%である。 The preferable density | concentration of the alkoxysilane compound in a reaction liquid is 0.5-3 mass%.

反応後、溶媒で洗浄し、未反応物として表面に残った過剰なアルコキシシラン化合物および縮合触媒を除去すると、膜化合物の単分子膜12で表面が覆われたエポキシ化マグネタイト微粒子11が得られる。
洗浄には、連続処理およびバッチ処理のいずれの方法を用いてもよい。洗浄溶媒とエポキシ化マグネタイト微粒子との分離は、ろ過、デカンテーション、および遠心分離等の任意の公知の方法を用いて行うことができる。
このようにして製造されるエポキシ化マグネタイト微粒子11の断面構造の模式図を図2(b)に示す。
After the reaction, washing with a solvent to remove excess alkoxysilane compound and condensation catalyst remaining on the surface as unreacted substances yields epoxidized magnetite fine particles 11 whose surface is covered with a monomolecular film 12 of a film compound.
Either continuous processing or batch processing may be used for cleaning. Separation of the washing solvent and the epoxidized magnetite fine particles can be performed using any known method such as filtration, decantation, and centrifugation.
A schematic diagram of the cross-sectional structure of the epoxidized magnetite fine particles 11 produced in this way is shown in FIG.

洗浄溶媒としては、アルコキシシラン化合物を溶解できる任意の溶媒を用いることができるが、安価であり、溶解性が高く、風乾により容易に除去することのできるジクロロメタン、クロロホルム、N−メチルピロリドン等が好ましい。 As the cleaning solvent, any solvent that can dissolve the alkoxysilane compound can be used, but dichloromethane, chloroform, N-methylpyrrolidone, etc. that are inexpensive, have high solubility, and can be easily removed by air drying are preferable. .

反応後、生成したエポキシ化マグネタイト微粒子11を溶媒で洗浄せずに空気中に放置すると、表面に残ったアルコキシシラン化合物の一部が空気中の水分により加水分解を受け、生成したシラノール基がアルコキシシリル基と縮合反応を起こす。その結果、エポキシ化マグネタイト微粒子11の表面にポリシロキサンよりなる極薄のポリマー膜が形成される。このポリマー膜は、エポキシ化マグネタイト微粒子11の表面に共有結合により固定されていないが、エポキシ基を含んでいるため、2−メチルイミダゾールに対して膜化合物の単分子膜12と同様の反応性を有している。そのため、洗浄を行わなくても、以後の磁石10の製造工程に特に支障をきたすことはない。 After the reaction, when the produced epoxidized magnetite fine particles 11 are left in the air without being washed with a solvent, a part of the alkoxysilane compound remaining on the surface is hydrolyzed by moisture in the air, and the produced silanol group is converted to alkoxy. Causes a condensation reaction with a silyl group. As a result, an ultrathin polymer film made of polysiloxane is formed on the surface of the epoxidized magnetite fine particles 11. Although this polymer film is not fixed to the surface of the epoxidized magnetite fine particles 11 by a covalent bond, it contains an epoxy group, and therefore has the same reactivity with respect to 2-methylimidazole as the monomolecular film 12 of the film compound. Have. Therefore, there is no particular hindrance to the subsequent manufacturing process of the magnet 10 even without cleaning.

本実施の形態においては、エポキシ基を有するアルコキシシラン化合物を用いたが、直鎖状アルキレン基の両末端に、アミノ基およびアルコキシシリル基をそれぞれ有し、下記の一般式(化5)で表されるアルコキシシラン化合物を用いることもできる。 In the present embodiment, an alkoxysilane compound having an epoxy group is used, but an amino group and an alkoxysilyl group are respectively present at both ends of the linear alkylene group, and represented by the following general formula (Formula 5). An alkoxysilane compound can be used.

Figure 2008277663
Figure 2008277663

上式において、mは3〜20の整数を、Rは炭素数1〜4のアルキル基をそれぞれ表す。なお、エポキシ基は、アルコキシシリル基との副反応を避けるために、保護基によって保護されていてもよい。保護基は加水分解等により容易に除去できるものが好ましく、ケトンとアミノ基との反応により生成するケチミン誘導体等が挙げられる。
また、アミノ基は、化5に示したような1級アミン以外に2級アミンでもよく、アミノ基の代わりにピロール基、イミダゾール基等のイミノ基を有する官能基を含むアルコキシシラン化合物を用いることができる。
この場合において、用いることができるアミノ基を有するアルコキシシラン化合物の一例としては、下記(21)〜(28)に示した化合物が挙げられる。
In the above formula, m represents an integer of 3 to 20, and R represents an alkyl group having 1 to 4 carbon atoms. The epoxy group may be protected by a protecting group in order to avoid side reactions with the alkoxysilyl group. The protecting group is preferably one that can be easily removed by hydrolysis or the like, and examples thereof include a ketimine derivative produced by the reaction between a ketone and an amino group.
The amino group may be a secondary amine other than the primary amine shown in Chemical Formula 5, and an alkoxysilane compound containing a functional group having an imino group such as a pyrrole group or an imidazole group may be used instead of the amino group. Can do.
In this case, examples of the alkoxysilane compound having an amino group that can be used include the compounds shown in the following (21) to (28).

(21) H2N(CH2)Si(OCH)3
(22) H2N(CH2)Si(OCH)3
(23) H2N(CH2)Si(OCH)3
(24) H2N(CH2)Si(OCH)3
(25) H2N(CH2)Si(OC)3
(26) H2N(CH2)Si(OC)3
(27) H2N(CH2)Si(OC)3
(28) H2N(CH2)Si(OC)3
(21) H 2 N (CH 2 ) 3 Si (OCH 3 ) 3
(22) H 2 N (CH 2 ) 5 Si (OCH 3 ) 3
(23) H 2 N (CH 2 ) 7 Si (OCH 3 ) 3
(24) H 2 N (CH 2 ) 9 Si (OCH 3 ) 3
(25) H 2 N (CH 2 ) 5 Si (OC 2 H 5 ) 3
(26) H 2 N (CH 2 ) 5 Si (OC 2 H 5 ) 3
(27) H 2 N (CH 2 ) 7 Si (OC 2 H 5 ) 3
(28) H 2 N (CH 2 ) 9 Si (OC 2 H 5 ) 3

縮合触媒のうち、スズ(Sn)塩を含む化合物は、アルコキシシラン誘導体に含まれるアミノ基と反応して沈殿を生成するため、縮合触媒として用いることができない。
したがって、アミノ基を有するアルコキシシラン化合物を用いる場合には、カルボン酸スズ塩、カルボン酸エステルスズ塩、カルボン酸スズ塩ポリマー、カルボン酸スズ塩キレートを除き、反応液と同様の化合物を単独でまたは2種類以上を混合して縮合触媒として用いることができる。
用いることのできる助触媒の種類およびそれらの組み合わせ、溶媒の種類、アルコキシシラン化合物、縮合触媒、および助触媒の濃度、反応条件ならびに反応時間についてはエポキシ基を有するアルコキシシラン化合物を用いる場合と同様であるので、説明を省略する。
Among condensation catalysts, a compound containing a tin (Sn) salt reacts with an amino group contained in an alkoxysilane derivative to generate a precipitate, and thus cannot be used as a condensation catalyst.
Therefore, when using an alkoxysilane compound having an amino group, except for a carboxylic acid tin salt, a carboxylic acid ester tin salt, a carboxylic acid tin salt polymer, and a carboxylic acid tin salt chelate, a compound similar to the reaction solution alone or Two or more types can be mixed and used as a condensation catalyst.
The types of cocatalysts that can be used and combinations thereof, the types of solvents, the concentration of alkoxysilane compounds, condensation catalysts, and cocatalysts, the reaction conditions, and the reaction time are the same as when using alkoxysilane compounds having an epoxy group. Since there is, description is abbreviate | omitted.

なお、本実施の形態においては、磁性微粒子としてマグネタイト微粒子を用いたが、磁石の製造に用いられる任意の磁性微粒子を用いることもできる。
磁性微粒子の具体例としては、鉄、コバルト、およびニッケル微粒子、マルテンサイト鋼−コバルト、鉄−クロム−コバルト、鉄−白金、アルニコ等の合金系磁性微粒子、フェライト、酸化クロム等の金属酸化物系微粒子、SmCo、NdFe14B等の希土類系磁性微粒子等が挙げられる。
用いることができる磁性微粒子の粒径については、一義的に決定することが困難であり、個々の材料特性、市場での入手可能性、製造コスト等の種々の要因に応じてそれぞれ異なる最適範囲を有する。例えば、球形鉄粉の場合には、十分な保持力を確保するために、その粒径は10〜100nmでなければならない。
(以上工程A)
In the present embodiment, magnetite fine particles are used as the magnetic fine particles, but any magnetic fine particles used in the manufacture of magnets can also be used.
Specific examples of magnetic fine particles include iron, cobalt, and nickel fine particles, martensitic steel-cobalt, iron-chromium-cobalt, alloy-based magnetic fine particles such as iron-platinum, alnico, and metal oxides such as ferrite and chromium oxide. Fine particles, rare earth magnetic fine particles such as Sm 2 Co 7 , Nd 2 Fe 14 B, and the like.
The particle size of magnetic fine particles that can be used is difficult to determine unambiguously, and has different optimum ranges depending on various factors such as individual material characteristics, market availability, and manufacturing costs. Have. For example, in the case of spherical iron powder, the particle size must be 10 to 100 nm in order to ensure sufficient holding power.
(End of process A)

工程Bでは、エポキシ化マグネタイト微粒子11と、2−メチルイミダゾール13とを混合し鋳型に入れ、鋳型内で加熱して、エポキシ基と、2−メチルイミダゾール13のアミノ基およびイミノ基との反応により結合を形成させ、磁石10を製造する(図1)。
2−メチルイミダゾールはエポキシ基と反応するアミノ基(>NH)およびイミノ基(=N−)を、それぞれ1−位および3−位に有しており、下記の化6に示すような架橋反応により結合を形成する。
In step B, the epoxidized magnetite fine particles 11 and 2-methylimidazole 13 are mixed and placed in a mold, heated in the mold, and reacted with the epoxy group and the amino group and imino group of 2-methylimidazole 13. A bond is formed to produce the magnet 10 (FIG. 1).
2-methylimidazole has an amino group (> NH) and an imino group (= N-) which react with an epoxy group at the 1-position and 3-position, respectively, and a crosslinking reaction as shown in the following chemical formula 6 To form a bond.

Figure 2008277663
Figure 2008277663

2−メチルイミダゾール13の添加量は、エポキシ化マグネタイト微粒子11の5〜15重量%が好ましい。2−メチルイミダゾール13の添加量がエポキシ化マグネタイト微粒子11の5重量%未満であると、製造させる磁石10の機械的強度が低くなり、15重量%を上回ると、エポキシ化マグネタイト微粒子11との存在比率が低下するので得られる磁石10の磁気特性が悪化する。 The addition amount of 2-methylimidazole 13 is preferably 5 to 15% by weight of the epoxidized magnetite fine particles 11. When the addition amount of 2-methylimidazole 13 is less than 5 wt% of the epoxidized magnetite fine particles 11, the mechanical strength of the magnet 10 to be produced is low, and when it exceeds 15 wt%, the presence of the epoxidized magnetite fine particles 11 is present. Since the ratio is lowered, the magnetic properties of the obtained magnet 10 are deteriorated.

エポキシ化マグネタイト微粒子11と、2−メチルイミダゾール13とは、固体状態で混合してもよいが、エポキシ化マグネタイト微粒子11を混合しながら2−メチルイミダゾール13を含む溶液を加えて、エポキシ化マグネタイト微粒子11の表面に2−メチルイミダゾール13が均一に付着した混合物を作製してもよい。
あるいは、溶媒の添加量を増大させ、ペースト状あるいはスラリー状の混合物を調製してもよい。
Epoxidized magnetite fine particles 11 and 2-methylimidazole 13 may be mixed in a solid state, but a solution containing 2-methylimidazole 13 is added while mixing epoxidized magnetite fine particles 11, and epoxidized magnetite fine particles. 11 may be prepared by uniformly attaching 2-methylimidazole 13 to the surface of 11.
Or you may increase the addition amount of a solvent and may prepare a paste-form or slurry-form mixture.

2−メチルイミダゾール13の溶液の調製には、2−メチルイミダゾール13が可溶な任意の溶媒を用いることができるが、価格、室温での揮発性、および毒性等を考慮すると、イソプロピルアルコール、エタノール等の低級アルコール系溶媒が好ましい。 For the preparation of the solution of 2-methylimidazole 13, any solvent in which 2-methylimidazole 13 is soluble can be used. However, considering the price, volatility at room temperature, toxicity, etc., isopropyl alcohol, ethanol A lower alcohol solvent such as

ペースト状あるいはスラリー状の混合物の調製に用いる溶媒の量は、エポキシ化マグネタイト微粒子11の直系等によって適宜定められるため一義的に決定することは困難であるが、エポキシ化マグネタイト微粒子11および2−メチルイミダゾール13の10〜50重量%である。
具体的には、エポキシ化マグネタイト微粒子11の表面を2−メチルイミダゾール13の単分子被膜で被覆するために必要な量に設定すればよい。
エポキシ化マグネタイト微粒子11、2−メチルイミダゾール13、および溶媒の混合は、撹拌ばね、ハンドミキサー等の任意の手段により行うことができる。
The amount of the solvent used for the preparation of the paste-like or slurry-like mixture is determined appropriately depending on the direct system of the epoxidized magnetite fine particles 11 and the like, and thus it is difficult to determine uniquely, but the epoxidized magnetite fine particles 11 and 2-methyl 10 to 50% by weight of imidazole 13.
Specifically, an amount necessary for coating the surface of the epoxidized magnetite fine particles 11 with a monomolecular film of 2-methylimidazole 13 may be set.
Mixing of the epoxidized magnetite fine particles 11, the 2-methylimidazole 13, and the solvent can be performed by any means such as a stirring spring or a hand mixer.

このようにして得られたエポキシ化マグネタイト微粒子11と、2−メチルイミダゾール13との混合物を金型に充填し、加圧しながら加熱して、エポキシ化マグネタイト微粒子11の表面のエポキシ基と、2−メチルイミダゾール13の窒素官能基との間で架橋反応を形成させる。金型の加圧および加熱は、任意の公知の手段を用いて行うことができる。
加熱温度は、エポキシ化マグネタイト微粒子の粒径、製造しようとする磁石10の大きさおよび形状等の種々の因子に依存するため一義的に決定するのは困難であるが、50〜300℃が好ましい。加熱温度が50℃未満だと、架橋反応が十分に進行しない上に、溶媒が完全に除去できない。加熱温度が300℃を超えると、エポキシ基を有する膜化合物の単分子膜12や、2−メチルイミダゾール13の熱分解が起こる。
加熱時間は、エポキシ化マグネタイト微粒子の粒径、製造しようとする磁石10の大きさおよび形状等に加え、加熱温度にも依存するので、これらの因子を考慮して適宜決定される。
A mixture of the epoxidized magnetite fine particles 11 thus obtained and 2-methylimidazole 13 is filled in a mold, heated while being pressurized, and the epoxy groups on the surface of the epoxidized magnetite fine particles 11 and 2- A cross-linking reaction is formed with the nitrogen functional group of methylimidazole 13. The pressurization and heating of the mold can be performed using any known means.
Although the heating temperature depends on various factors such as the particle size of the epoxidized magnetite fine particles and the size and shape of the magnet 10 to be produced, it is difficult to determine uniquely, but 50 to 300 ° C. is preferable. . When the heating temperature is less than 50 ° C., the crosslinking reaction does not proceed sufficiently and the solvent cannot be completely removed. When the heating temperature exceeds 300 ° C., thermal decomposition of the monomolecular film 12 of the film compound having an epoxy group and 2-methylimidazole 13 occurs.
The heating time depends on the heating temperature in addition to the particle size of the epoxidized magnetite fine particles, the size and shape of the magnet 10 to be manufactured, and is appropriately determined in consideration of these factors.

金型への充填、ならびに金型の加圧および加熱を磁場中で行うことにより(磁場配向処理)、エポキシ化マグネタイト微粒子11の配向性を向上させ、より強力な磁石10を得ることができる。磁場の印加には、永久磁石、電磁石、および超伝導磁石のいずれを用いてもよい。印加する磁場の強度および方向は、製造する磁石10の形状、用途等に応じて適宜決定される。 By performing filling into the mold and pressurization and heating of the mold in a magnetic field (magnetic field orientation treatment), the orientation of the epoxidized magnetite fine particles 11 can be improved, and a stronger magnet 10 can be obtained. Any of a permanent magnet, an electromagnet, and a superconducting magnet may be used for applying the magnetic field. The intensity and direction of the magnetic field to be applied are appropriately determined according to the shape, application, etc. of the magnet 10 to be manufactured.

また、金型への充填の際に、磁場中でさらに超音波を印加することが好ましい。超音波によって、エポキシ化マグネタイト微粒子11の配向が促進され、より強力な磁石10を得ることができる。
超音波の印加にも、任意の公知の手段を用いることができる。
Further, it is preferable to further apply ultrasonic waves in a magnetic field when filling the mold. By ultrasonic waves, the orientation of the epoxidized magnetite fine particles 11 is promoted, and a stronger magnet 10 can be obtained.
Any known means can also be used for application of ultrasonic waves.

本実施の形態においては、架橋剤として2−メチルイミダゾールを用いたが、下記化7で表される任意のイミダゾール誘導体を用いることができる。あるいは、イミダゾール−金属錯体を用いてもよい。 In the present embodiment, 2-methylimidazole is used as a crosslinking agent, but any imidazole derivative represented by the following chemical formula 7 can be used. Alternatively, an imidazole-metal complex may be used.

Figure 2008277663
Figure 2008277663

化7で表されるイミダゾール誘導体の具体例としては、下記(31)〜(38)に示すものが挙げられる。
(31) 2−メチルイミダゾール(R=Me、R=R=H)
(32) 2−ウンデシルイミダゾール(R=C1123、R=R=H)
(33) 2−ペンタデシルイミダゾール(R=C1531、R=R=H)
(34) 2−メチル−4−エチルイミダゾール(R=Me、R=Et、R=H)
(35) 2−フェニルイミダゾール(R=Ph、R=R=H)
(36) 2−フェニル−4−エチルイミダゾール(R=Ph、R=Et、R=H)
(37) 2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール(R=Ph、R=Me、R=CHOH)
(38) 2−フェニル−4,5−ビス(ヒドロキシメチル)イミダゾール(R=Ph、R=R=CHOH)
なお、Me、Et、およびPhは、それぞれメチル基、エチル基、およびフェニル基を表す。
Specific examples of the imidazole derivative represented by Chemical Formula 7 include those shown in the following (31) to (38).
(31) 2-Methylimidazole (R 2 = Me, R 4 = R 5 = H)
(32) 2-Undecylimidazole (R 2 = C 11 H 23 , R 4 = R 5 = H)
(33) 2-Pentadecylimidazole (R 2 = C 15 H 31 , R 4 = R 5 = H)
(34) 2-methyl-4-ethylimidazole (R 2 = Me, R 4 = Et, R 5 = H)
(35) 2-Phenylimidazole (R 2 = Ph, R 4 = R 5 = H)
(36) 2-phenyl-4-ethylimidazole (R 2 = Ph, R 4 = Et, R 5 = H)
(37) 2-phenyl-4-methyl-5-hydroxymethylimidazole (R 2 = Ph, R 4 = Me, R 5 = CH 2 OH)
(38) 2-Phenyl-4,5-bis (hydroxymethyl) imidazole (R 2 = Ph, R 4 = R 5 = CH 2 OH)
Me, Et, and Ph represent a methyl group, an ethyl group, and a phenyl group, respectively.

また、エポキシ樹脂の硬化剤として用いられる無水フタル酸、無水マレイン酸等の酸無水物、ジシアンジアミド、ノボラック等のフェノール誘導体等の化合物を架橋剤として用いてもよい。この場合、架橋反応を促進するためにイミダゾール誘導体を触媒として用いてもよい。 In addition, compounds such as acid anhydrides such as phthalic anhydride and maleic anhydride, and phenol derivatives such as dicyandiamide and novolak, which are used as curing agents for epoxy resins, may be used as a crosslinking agent. In this case, an imidazole derivative may be used as a catalyst in order to accelerate the crosslinking reaction.

なお、本実施の形態においてはエポキシ基を有する膜化合物を用いた場合について説明しているが、工程Aにおいて、アミノ基またはイミノ基を有する膜化合物を用いる場合には、架橋反応基として2もしくは3以上のエポキシ基または2もしくは3以上のイソシアネート基を有するカップリング剤を用いる。イソシアネート基を有する化合物の具体例としては、ヘキサメチレン−1,6−ジイソシアネート、トルエン−2,6−ジイソシアネート、トルエン−2,4−ジイソシアネート等が挙げられる。
これらのジイソシアネート化合物の添加量は、2−メチルイミダゾールの場合と同様、エポキシ化シリカ微粒子の5〜15重量%が好ましい。この場合、膜前駆体の製造に用いることのできる溶媒としては、キシレン等の芳香族有機溶媒が挙げられる。
また、架橋剤としては、エチレングリコールジグリシジルエーテル等の2または3以上のエポキシ基を有する化合物を用いることもできる。
(以上工程B)
In this embodiment, the case where a film compound having an epoxy group is used is described. However, in the case where a film compound having an amino group or an imino group is used in Step A, 2 or A coupling agent having 3 or more epoxy groups or 2 or 3 or more isocyanate groups is used. Specific examples of the compound having an isocyanate group include hexamethylene-1,6-diisocyanate, toluene-2,6-diisocyanate, and toluene-2,4-diisocyanate.
The addition amount of these diisocyanate compounds is preferably 5 to 15% by weight of the epoxidized silica fine particles as in the case of 2-methylimidazole. In this case, examples of the solvent that can be used for the production of the film precursor include aromatic organic solvents such as xylene.
Moreover, as a crosslinking agent, the compound which has 2 or 3 or more epoxy groups, such as ethylene glycol diglycidyl ether, can also be used.
(End of process B)

以下、本願発明の詳細を実施例を用いて説明するが、本願発明は、これら実施例によって何ら限定されるものではない。
本実施例では、磁性微粒子としてマグネタイト微粒子を用いた場合について説明する。
Hereinafter, although the detail of this invention is demonstrated using an Example, this invention is not limited at all by these Examples.
In this example, a case where magnetite fine particles are used as magnetic fine particles will be described.

実施例1:磁石の製造[1]
(1)エポキシ化マグネタイト微粒子の製造
粒径が100nm程度の乾燥したマグネタイト微粒子を用意し、よく乾燥した。
3−グリシジルオキシプロピルトリメトキシシラン(化8)0.99重量部、およびジブチルスズビスアセチルアセトナート(縮合触媒)0.01重量部を秤量し、これを100重量部のヘキサメチルジシロキサン溶媒に溶解し、反応液を調製した。
Example 1: Manufacture of magnet [1]
(1) Production of epoxidized magnetite fine particles Dry magnetite fine particles having a particle diameter of about 100 nm were prepared and dried well.
0.99 parts by weight of 3-glycidyloxypropyltrimethoxysilane (Chemical Formula 8) and 0.01 parts by weight of dibutyltin bisacetylacetonate (condensation catalyst) are weighed and dissolved in 100 parts by weight of hexamethyldisiloxane solvent. The reaction solution was prepared.

Figure 2008277663
Figure 2008277663

このようにして得られた反応液中にマグネタイト微粒子を混合し、撹拌しながら空気中(相対湿度45%)で2時間程度反応させた。
その後、トリクレンで洗浄し、余分なアルコキシシラン化合物およびジブチルスズビスアセチルアセトナートを除去した。
Magnetite fine particles were mixed in the reaction solution thus obtained, and reacted in the air (relative humidity 45%) for about 2 hours while stirring.
Thereafter, the resultant was washed with trichlene to remove excess alkoxysilane compound and dibutyltin bisacetylacetonate.

(2)エポキシ化マグネタイト微粒子の成形および硬化
(1)で調製したエポキシ化マグネタイト微粒子100重量部に、2−メチルイミダゾールを5%重量部加え十分混合し、金型へ充填した。磁場中で超音波照射しながら加圧し、さらに50〜100℃程度に加熱すると、エポキシ基と、イミダゾール基の窒素官能基との架橋反応により形成された共有結合を介して硬化し、十分な機械的強度を有する磁石を製造できた。
(2) Molding and curing of epoxidized magnetite fine particles 5% by weight of 2-methylimidazole was added to 100 parts by weight of the epoxidized magnetite fine particles prepared in (1) and sufficiently mixed, and filled into a mold. When pressure is applied while irradiating with ultrasonic waves in a magnetic field and further heated to about 50 to 100 ° C., it cures through a covalent bond formed by a cross-linking reaction between an epoxy group and a nitrogen functional group of an imidazole group. A magnet with sufficient strength could be manufactured.

実施例2:磁石の製造[2]
(1)アミノ化マグネタイト微粒子の製造
粒径が100nm程度の乾燥したマグネタイト微粒子を用意し、よく乾燥した。
3−アミノプロピルトリメトキシシラン(化9、信越化学工業株式会社製)0.99重量部、および酢酸(縮合触媒)0.01重量部を秤量し、これを100重量部のヘキサメチルジシロキサン溶媒に溶解し、反応液を調製した。
Example 2: Manufacture of magnet [2]
(1) Production of aminated magnetite fine particles Dry magnetite fine particles having a particle diameter of about 100 nm were prepared and dried well.
0.99 parts by weight of 3-aminopropyltrimethoxysilane (Chemical 9; manufactured by Shin-Etsu Chemical Co., Ltd.) and 0.01 part by weight of acetic acid (condensation catalyst) were weighed and added to 100 parts by weight of a hexamethyldisiloxane solvent. To prepare a reaction solution.

Figure 2008277663
Figure 2008277663

このようにして得られた反応液中にマグネタイト微粒子を混合し、撹拌しながら空気中(相対湿度45%)で2時間程度反応させた。
その後、トリクレンで洗浄し、余分なアルコキシシラン化合物およびジブチルスズビスアセチルアセトナートを除去した。
Magnetite fine particles were mixed in the reaction solution thus obtained, and reacted in the air (relative humidity 45%) for about 2 hours while stirring.
Thereafter, the resultant was washed with trichlene to remove excess alkoxysilane compound and dibutyltin bisacetylacetonate.

(2)アミノ化マグネタイト微粒子の成形および硬化
(1)で調製したアミノ化マグネタイト微粒子100重量部に、ヘキサメチレン−1,6−ジイソシアネート5重量部を加え十分混合し、金型へ充填した。磁場中で超音波照射しながら加圧し、さらに50〜100℃程度に加熱すると、アミノ基と、イソシアネート基の窒素官能基との架橋反応により形成された共有結合を介して硬化し、十分な機械的強度を有する磁石を製造できた。
(2) Molding and curing of aminated magnetite fine particles 5 parts by weight of hexamethylene-1,6-diisocyanate was added to 100 parts by weight of the aminated magnetite fine particles prepared in (1), and the mixture was sufficiently mixed and filled into a mold. When pressure is applied while irradiating with ultrasonic waves in a magnetic field, and further heated to about 50 to 100 ° C., it cures through a covalent bond formed by a crosslinking reaction between an amino group and a nitrogen functional group of an isocyanate group, and sufficient machinery A magnet with sufficient strength could be manufactured.

本発明の一実施の形態に係る磁石の断面構造を模式的に表した説明図である。It is explanatory drawing which represented typically the cross-section of the magnet which concerns on one embodiment of this invention. 同磁石の製造方法において、エポキシ化マグネタイト微粒子を製造する工程を説明するために分子レベルまで拡大した模式図であり、(a)は反応前のマグネタイト微粒子の断面構造、(b)はエポキシ基を含む単分子膜が形成されたエポキシ化マグネタイト微粒子の断面構造をそれぞれ表す。It is the schematic diagram expanded to the molecular level in order to demonstrate the process of manufacturing the epoxidized magnetite fine particle in the manufacturing method of the magnet, (a) is the cross-sectional structure of the magnetite fine particle before reaction, (b) is an epoxy group. Each represents a cross-sectional structure of an epoxidized magnetite fine particle on which a monomolecular film is formed.

符号の説明Explanation of symbols

10:磁石、11:エポキシ化マグネタイト微粒子、12:エポキシ基を有するアルコキシシラン化合物の形成する単分子膜、13:2−メチルイミダゾール、21:マグネタイト微粒子、22:ヒドロキシル基 10: magnet, 11: epoxidized magnetite fine particle, 12: monomolecular film formed by alkoxysilane compound having epoxy group, 13: 2-methylimidazole, 21: magnetite fine particle, 22: hydroxyl group

Claims (12)

分子の一端に反応性の官能基を有する膜化合物の形成する被膜で表面が被覆された磁性微粒子と、前記官能基と反応して結合を形成する複数の架橋反応基を有する架橋剤とを含み、前記被覆された磁性微粒子が、前記反応性の官能基と前記架橋反応基との反応により形成された結合を介して成形および硬化していることを特徴とする磁石。 A magnetic fine particle whose surface is coated with a film formed by a film compound having a reactive functional group at one end of the molecule, and a cross-linking agent having a plurality of cross-linking reactive groups that react with the functional group to form a bond. The magnet is characterized in that the coated magnetic fine particles are molded and cured through a bond formed by a reaction between the reactive functional group and the crosslinking reactive group. 請求項1記載の磁石において、前記膜化合物は、Siを介して前記磁性微粒子の表面に共有結合していることを特徴とする磁石。 The magnet according to claim 1, wherein the film compound is covalently bonded to the surface of the magnetic fine particle through Si. 請求項1および2のいずれか1項に記載の磁石において、前記被膜が単分子膜であることを特徴とする磁石。 The magnet according to any one of claims 1 and 2, wherein the coating is a monomolecular film. 請求項1〜3のいずれか1項に記載の磁石において、前記反応性の官能基および前記架橋反応基が、熱反応性およびイオン反応性の官能基のいずれかであることを特徴とする磁石。 The magnet according to any one of claims 1 to 3, wherein the reactive functional group and the crosslinking reactive group are any one of a thermally reactive and an ion reactive functional group. . 請求項1〜4のいずれか1項に記載の磁石において、前記反応性の官能基と前記架橋反応基との架橋反応により形成された結合が、アミノ基またはイミノ基とエポキシ基との反応により形成されたN−CHCH(OH)結合であることを特徴とする磁石。 The magnet according to any one of claims 1 to 4, wherein a bond formed by a crosslinking reaction between the reactive functional group and the crosslinking reactive group is caused by a reaction between an amino group or an imino group and an epoxy group. magnets, characterized in that formed is a N-CH 2 CH (OH) bond. 請求項1〜4のいずれか1項に記載の磁石において、前記反応性の官能基と前記架橋反応基との架橋反応により形成された結合が、アミノ基またはイミノ基とイソシアネート基との反応により形成されたNH−CONH結合であることを特徴とする磁石。 The magnet according to any one of claims 1 to 4, wherein a bond formed by a crosslinking reaction between the reactive functional group and the crosslinking reactive group is caused by a reaction between an amino group or imino group and an isocyanate group. A magnet characterized by being formed NH-CONH bonds. 反応性の官能基および結合基を分子の両端にそれぞれ有する膜化合物を磁性微粒子と接触させ、結合基と前記微粒子の表面との間で結合を形成させ、前記膜化合物の形成する被膜で表面が覆われた反応性磁性微粒子を製造する工程Aと、
前記反応性磁性微粒子と、前記官能基と反応して結合を形成する複数の架橋反応基を有する架橋剤を混合し鋳型に入れ、該鋳型内で前記反応性の官能基と前記架橋反応基との反応により結合を形成させる工程Bとを含むことを特徴とする磁石の製造方法。
A film compound having a reactive functional group and a bonding group at both ends of the molecule is brought into contact with the magnetic fine particles, and a bond is formed between the bonding group and the surface of the fine particles. Step A for producing the coated reactive magnetic fine particles,
The reactive magnetic fine particles and a cross-linking agent having a plurality of cross-linking reactive groups that react with the functional group to form a bond are mixed and placed in a template, and the reactive functional group and the cross-linking reactive group in the template And a step B of forming a bond by the reaction of the method.
請求項7記載の磁石の製造方法において、前記膜化合物の形成する被膜が単分子膜であることを特徴とする磁石の製造方法。 8. The method for manufacturing a magnet according to claim 7, wherein the film formed by the film compound is a monomolecular film. 請求項7および8のいずれか1項に記載の磁石の製造方法において、前記反応性の官能基と前記架橋反応基との架橋反応により形成された結合が、アミノ基またはイミノ基とエポキシ基との反応により形成されたN−CHCH(OH)結合であることを特徴とする磁石の製造方法。 9. The magnet manufacturing method according to claim 7, wherein a bond formed by a crosslinking reaction between the reactive functional group and the crosslinking reactive group is an amino group or an imino group and an epoxy group. A method for producing a magnet, which is an N—CH 2 CH (OH) bond formed by the reaction of 請求項7および8のいずれか1項に記載の磁石の製造方法において、前記反応性の官能基と前記架橋反応基との架橋反応により形成された結合が、アミノ基またはイミノ基とイソシアネート基との反応により形成されたNH−CONH結合であることを特徴とする磁石の製造方法。 9. The magnet manufacturing method according to claim 7, wherein a bond formed by a crosslinking reaction between the reactive functional group and the crosslinking reactive group is an amino group or an imino group and an isocyanate group. A method for producing a magnet, which is an NH—CONH bond formed by the reaction of 請求項7〜10のいずれか1項に記載の磁石の製造方法において、前記工程Bを磁場中で行うことを特徴とする磁石の製造方法。 The method for producing a magnet according to any one of claims 7 to 10, wherein the step B is performed in a magnetic field. 請求項11記載の磁石の製造方法において、超音波を印加しながら前記工程Bを行うことを特徴とする磁石の製造方法。 12. The method of manufacturing a magnet according to claim 11, wherein the step B is performed while applying an ultrasonic wave.
JP2007121866A 2007-05-02 2007-05-02 Magnet, and manufacturing method thereof Pending JP2008277663A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007121866A JP2008277663A (en) 2007-05-02 2007-05-02 Magnet, and manufacturing method thereof
PCT/JP2008/058259 WO2008136484A1 (en) 2007-05-02 2008-04-30 Magnet and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007121866A JP2008277663A (en) 2007-05-02 2007-05-02 Magnet, and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2008277663A true JP2008277663A (en) 2008-11-13

Family

ID=39943591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007121866A Pending JP2008277663A (en) 2007-05-02 2007-05-02 Magnet, and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP2008277663A (en)
WO (1) WO2008136484A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013193890A (en) * 2012-03-16 2013-09-30 Mitsui Mining & Smelting Co Ltd Coated magnetite particle and method of producing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112331472B (en) * 2020-11-19 2022-08-23 江西中石新材料有限公司 Preparation method of high-performance modified SmFeN magnetic powder and permanent magnet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003015109A1 (en) * 2001-08-09 2003-02-20 The Circle For The Promotion Of Science And Engineering Composite magnetic material prepared by compression forming of ferrite-coated metal particles and method for preparation thereof
JP2003168606A (en) * 2001-01-24 2003-06-13 Matsushita Electric Ind Co Ltd Fine particle array, its manufacturing method and device using the method
JP2004296875A (en) * 2003-03-27 2004-10-21 Matsushita Electric Ind Co Ltd Process for producing flexible hybrid rare earth bonded magnet, magnet and motor
JP2006169618A (en) * 2004-12-20 2006-06-29 Sumitomo Metal Mining Co Ltd Iron based magnet alloy powder comprising rare earth element, method for producing the same, resin composition for bond magnet obtained therefrom, and bond magnet and consolidated magnet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003168606A (en) * 2001-01-24 2003-06-13 Matsushita Electric Ind Co Ltd Fine particle array, its manufacturing method and device using the method
WO2003015109A1 (en) * 2001-08-09 2003-02-20 The Circle For The Promotion Of Science And Engineering Composite magnetic material prepared by compression forming of ferrite-coated metal particles and method for preparation thereof
JP2004296875A (en) * 2003-03-27 2004-10-21 Matsushita Electric Ind Co Ltd Process for producing flexible hybrid rare earth bonded magnet, magnet and motor
JP2006169618A (en) * 2004-12-20 2006-06-29 Sumitomo Metal Mining Co Ltd Iron based magnet alloy powder comprising rare earth element, method for producing the same, resin composition for bond magnet obtained therefrom, and bond magnet and consolidated magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013193890A (en) * 2012-03-16 2013-09-30 Mitsui Mining & Smelting Co Ltd Coated magnetite particle and method of producing the same

Also Published As

Publication number Publication date
WO2008136484A1 (en) 2008-11-13

Similar Documents

Publication Publication Date Title
US8465855B2 (en) Protective coating of magnetic nanoparticles
US11476019B2 (en) Composition
KR101233725B1 (en) The rapidly solidified rare earth-transition metal-boron magnet material and the process for making the same
JP5088195B2 (en) Insulating film-coated powder and method for producing the same
KR102250098B1 (en) Temperature-stable soft-magnetic powder
JP5487460B2 (en) Silicon fine particles, production method thereof, solar cell using the same, and production method thereof
KR101454447B1 (en) manufacturing method of hybrid materials for insulation and durability
JP2007119545A (en) Fine particle film and method for producing the same
JP2008277663A (en) Magnet, and manufacturing method thereof
JP2020114939A (en) Magnetic powder and molding material using the same
CN108884296B (en) Curable composition, cured product thereof, and rotary machine
JP4993700B2 (en) Protective film and method for producing the same
JP4820988B2 (en) Magnetic fine particles, method for producing the same, magnet using the same, and method for producing the same
WO2022220295A1 (en) Magnetic powder, compound, molded body, bonded magnet, and powder magnetic core
JP5200244B2 (en) Fine particle film and manufacturing method thereof
JP2008221369A (en) Particulate membrane and method of manufacturing the same
JP5391387B2 (en) Magnetosensitive drug and method for producing the same
JP2008276887A (en) Magnetic recording medium and manufacturing method thereof
JP5077747B2 (en) Magnetic fluid, manufacturing method thereof, magnetic fluid bearing device and magnetic seal device using magnetic fluid
JP6028238B2 (en) Semiconductor fine particle film, diode, photoelectric conversion element, and manufacturing method thereof
JP2021524678A (en) Improved temperature-stable soft magnetic powder
WO2008136132A1 (en) Magnetic fine particles and production method therefor, and magnet using the same and production method therefore
WO2008149469A1 (en) Pattern-like fluor fine particle film and manufacturing method thereof
WO2008136128A1 (en) Particulate film and manufacturing method thereof
WO2008149470A1 (en) Monolayer fluor fine particle film, fluor fine particle film-layered body, and manufacturing method thereof and display device and photoreceptor and sensor, which are made by using them

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100422

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130514