JP6028238B2 - Semiconductor fine particle film, diode, photoelectric conversion element, and manufacturing method thereof - Google Patents

Semiconductor fine particle film, diode, photoelectric conversion element, and manufacturing method thereof Download PDF

Info

Publication number
JP6028238B2
JP6028238B2 JP2011025510A JP2011025510A JP6028238B2 JP 6028238 B2 JP6028238 B2 JP 6028238B2 JP 2011025510 A JP2011025510 A JP 2011025510A JP 2011025510 A JP2011025510 A JP 2011025510A JP 6028238 B2 JP6028238 B2 JP 6028238B2
Authority
JP
Japan
Prior art keywords
silicon fine
group
fine particles
fine particle
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011025510A
Other languages
Japanese (ja)
Other versions
JP2012164897A (en
Inventor
小川 一文
小川  一文
Original Assignee
小川 一文
小川 一文
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 小川 一文, 小川 一文 filed Critical 小川 一文
Priority to JP2011025510A priority Critical patent/JP6028238B2/en
Publication of JP2012164897A publication Critical patent/JP2012164897A/en
Application granted granted Critical
Publication of JP6028238B2 publication Critical patent/JP6028238B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Description

本発明は、シリコン微粒子を用いた半導体微粒子膜の改良、それを用いたダイオードおよび光電変換素子ならびにそれらの製造方法に関する。 The present invention relates to an improvement of a semiconductor fine particle film using silicon fine particles, a diode and a photoelectric conversion element using the same, and a method for producing them.

従来のシリコン光電変換素子としては、ガラス基板表面にプラズマCVD法を用いて製膜したシリコンアモルファス型光電変換素子や、シリコン結晶やポリシリコン結晶を切断して板状に加工した後、不純物拡散したシリコン結晶型光電変換素子等が知られている(例えば特許文献1参照)。 As a conventional silicon photoelectric conversion element, a silicon amorphous photoelectric conversion element formed on the surface of a glass substrate using a plasma CVD method, a silicon crystal or a polysilicon crystal is cut and processed into a plate shape, and then impurities are diffused. A silicon crystal photoelectric conversion element or the like is known (see, for example, Patent Document 1).

しかしながら、従来のシリコンアモルファス型光電変換素子では、高価な真空装置を用いるため、製造コストが高くなるという欠点があった。また、シリコン結晶型光電変換素子では、高純度なシリコン結晶やポリシリコン結晶を多量に用いるため、製造コストが高くなるという欠点があった。 However, since the conventional silicon amorphous photoelectric conversion element uses an expensive vacuum device, there is a drawback in that the manufacturing cost increases. In addition, the silicon crystal photoelectric conversion element has a drawback in that the manufacturing cost increases because a large amount of high-purity silicon crystal or polysilicon crystal is used.

本発明者は、上記課題に鑑みて、シリコンを用いながら、従来のアモルファス型光電変換素子やシリコン結晶型光電変換素子に比べ、大幅にコストダウンできる大面積光電変換素子とその製造方法の提供を目的として、表面に共有結合した第1の反応性官能基を含む有機膜で被われたn型シリコン微粒子と表面に共有結合した第2の反応性官能基を含む有機膜で被われたn型シリコン微粒子を有機溶媒中で混合しペースト化し、基材表面に塗布する工程と、表面を有機膜で被われたp型シリコン微粒子と表面に共有結合した第2の反応性官能基を含む有機膜で被われたp型シリコン微粒子を有機溶媒中で混合しペーストを製造する工程と、基材表面に塗布する工程と、硬化させる工程とにより、表面に共有結合した有機薄膜で被われているn型シリコン微粒子層と表面に共有結合した有機薄膜で被われているp型シリコン微粒子層が積層形成されている光電変換素子およびその製造方法を提案した(例えば、特許文献2参照)。 In view of the above problems, the present inventor has provided a large-area photoelectric conversion element and a method for manufacturing the same that can significantly reduce costs compared to conventional amorphous photoelectric conversion elements and silicon crystal photoelectric conversion elements while using silicon. As an object, n-type silicon fine particles covered with an organic film containing a first reactive functional group covalently bonded to the surface and n-type covered with an organic film containing a second reactive functional group covalently bonded to the surface A step of mixing silicon fine particles in an organic solvent to form a paste, and applying the paste to the surface of the substrate; an organic film containing p-type silicon fine particles covered with an organic film; and a second reactive functional group covalently bonded to the surface The p-type silicon fine particles covered in step 1 are mixed in an organic solvent to produce a paste, the step of applying to the substrate surface, and the step of curing n. p-type silicon fine particle layer on the silicon particle layer and the surface is covered with an organic thin film covalently bonded proposed a photoelectric conversion device and a manufacturing method thereof are laminated (e.g., see Patent Document 2).

特開平10−247629号公報JP-A-10-247629 特開2007−173516号公報JP 2007-173516 A

しかしながら、特許文献2記載の光電変換素子およびその製造方法において、接合特性の優れたダイオードを製作しようとすると、粒径10nmのp型またはn型シリコン微粒子を用いる場合には、微粒子を構成する原子数が約10個程度と少なくなるため、不純物原子濃度の制御が困難になる場合がある。すなわち、p型またはn型シリコン微粒子層中の不純物原子濃度を1012〜1017cm−3程度にするには、シリコン原子10〜1011個あたり1個の割合で不純物原子(ホウ素、リン等)を導入する必要があるが、特に粒径10nm程度のp型またはn型シリコン微粒子を用いる場合、微粒子1個あたりの不純物原子数が1個以下となるため、現実には不純物原子の導入および不純物原子濃度の制御が非常に困難になる。 However, in the photoelectric conversion element described in Patent Document 2 and the method for manufacturing the photoelectric conversion element, when a diode having excellent junction characteristics is to be manufactured, when p-type or n-type silicon fine particles having a particle size of 10 nm are used, the atoms constituting the fine particles as the number is reduced to about 106 or so, there is a case where control of the impurity atom concentration is difficult. That is, in order to reduce the impurity atom concentration in the p-type or n-type silicon fine particle layer to about 10 12 to 10 17 cm −3 , the impurity atoms (boron, phosphorus, and silicon atoms at a ratio of 1 per 10 6 to 10 11 silicon atoms. In particular, when p-type or n-type silicon fine particles having a particle size of about 10 nm are used, the number of impurity atoms per fine particle is 1 or less. Moreover, it becomes very difficult to control the impurity atom concentration.

本発明はかかる事情に鑑みてなされたもので、シリコン微粒子本来の機能を損なうことなく、粒子サイズレベルで均一な厚みを有し、安価に製造可能で不純物原子濃度の制御が容易なp型またはn型シリコン微粒子膜、それらを有するダイオードおよび光電変換素子ならびにそれらの安価かつ簡便な製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and does not impair the original function of silicon fine particles, has a uniform thickness at the particle size level, can be manufactured at low cost, and can easily control the impurity atom concentration. An object of the present invention is to provide an n-type silicon fine particle film, a diode and a photoelectric conversion element having the same, and a cheap and simple manufacturing method thereof.

前記目的に沿う本発明の第1の態様は、単分子膜で被覆された不純物原子濃度の異なる2種類以上のシリコン微粒子が、不純物原子の平均濃度が1010〜1020cm−3となるように均一に混合され、前記2種類以上のシリコン微粒子が混在した状態で、前記単分子膜を介して互いに結合した前記2種類以上のシリコン微粒子により膜状構造を形成していることを特徴とする半導体微粒子膜を提供することにより上記課題を解決するものである。 The first aspect of the present invention that meets the above-described object is that two or more types of silicon fine particles having different impurity atom concentrations covered with a monomolecular film have an average impurity atom concentration of 10 10 to 10 20 cm −3. The film-like structure is formed by the two or more types of silicon fine particles that are uniformly mixed and the two or more types of silicon fine particles are mixed with each other through the monomolecular film. The above problem is solved by providing a semiconductor fine particle film.

なお、本発明において、混合された2種類以上のシリコン微粒子全体を指す場合、あるいは不純物原子濃度等に関係なく特定の1つの微粒子を指す場合に、総称としての「シリコン微粒子」という用語を用いる。 In the present invention, the term “silicon fine particles” is used as a general term when referring to two or more kinds of mixed silicon fine particles as a whole or when referring to one specific fine particle regardless of the impurity atom concentration or the like.

本発明の第1の態様に係る半導体微粒子膜において、前記単分子膜を介して互いに結合した前記2種類以上のシリコン微粒子の結合が、分子架橋であることが好ましい。 In the semiconductor fine particle film according to the first aspect of the present invention, the bonding of the two or more types of silicon fine particles bonded to each other via the monomolecular film is preferably molecular crosslinking .

本発明の第1の態様に係る半導体微粒子膜において、前記2種類以上のシリコン微粒子が、純粋シリコン微粒子と、p型シリコン微粒子またはn型シリコン微粒子との組み合わせであってもよい。 In the semiconductor fine particle film according to the first aspect of the present invention, the two or more types of silicon fine particles may be a combination of pure silicon fine particles and p-type silicon fine particles or n-type silicon fine particles.

本発明の第1の態様に係る半導体微粒子膜において、前記2種類以上のシリコン微粒子の混合物が、粒子径が異なるシリコン微粒子を含んでいてもよい。 In the semiconductor fine particle film according to the first aspect of the present invention, the mixture of the two or more types of silicon fine particles may contain silicon fine particles having different particle diameters.

本発明の第1の態様に係る半導体微粒子膜において、前記シリコン微粒子の粒子径が10〜5μmであることが好ましい。 In the semiconductor fine particle film according to the first aspect of the present invention, the silicon fine particles preferably have a particle diameter of 10 to 5 μm.

本発明の第1の態様に係る半導体微粒子膜において、前記シリコン微粒子の表面には、第1の反応性の官能基を有し、Si−O−結合を介して化学結合し、該表面の少なくとも一部を覆った第1の被膜、または前記第1の官能基と反応して化学結合を形成する第2の反応性の官能基を有し、Si−O−結合を介して化学結合し、該表面の少なくとも一部を覆った第2の被膜が形成されており、それぞれ異なるシリコン微粒子上に存在する前記第1の反応性の官能基と前記第2の反応性の官能基とが反応して化学結合することにより、前記分子架橋が形成されていてもよい。 In the semiconductor fine particle film according to the first aspect of the present invention, the surface of the silicon fine particle has a first reactive functional group and is chemically bonded via a Si—O— bond, A first coating covering a part, or a second reactive functional group that reacts with the first functional group to form a chemical bond, and is chemically bonded via a Si-O- bond; A second film covering at least a part of the surface is formed, and the first reactive functional group and the second reactive functional group existing on different silicon fine particles react with each other. The molecular bridge may be formed by chemical bonding.

上記の場合において、前記第1の反応性の官能基と前記第2の反応性の官能基との反応により形成された化学結合が、アミノ基またはイミノ基とエポキシ基との反応により形成されたN−CHCH(OH)結合、およびアミノ基またはイミノ基とイソシアネート基との反応により形成されたNH−CONH結合のいずれかであってもよい。 In the above case, the chemical bond formed by the reaction between the first reactive functional group and the second reactive functional group was formed by the reaction between an amino group or imino group and an epoxy group. Any of an N—CH 2 CH (OH) bond and an NH—CONH bond formed by a reaction between an amino group or an imino group and an isocyanate group may be used.

本発明の第1の態様に係る半導体微粒子膜において、前記シリコン微粒子の表面には、第4の反応性の官能基を有し、Si−O−結合を介して化学結合し、該表面の少なくとも一部を覆った第4の被膜が形成されており、前記シリコン微粒子の1つと化学結合した前記第4の被膜の有する第4の反応性の官能基と、前記1つのシリコン微粒子以外のシリコン微粒子と化学結合した前記第4の被膜の有する前記第4の反応性の官能基と、前記反応性の官能基と熱で反応して化学結合を形成する複数の架橋反応基を有する架橋剤を介して化学結合することにより形成されていてもよい。 In the semiconductor fine particle film according to the first aspect of the present invention, the surface of the silicon fine particle has a fourth reactive functional group, chemically bonded via a Si—O— bond, and at least the surface of the silicon fine particle film. A fourth coating film partially covering the fourth reactive functional group of the fourth coating chemically bonded to one of the silicon microparticles, and silicon microparticles other than the one silicon microparticle Through a cross-linking agent having a plurality of cross-linking reactive groups that form a chemical bond by reacting with the reactive functional group by heat and the fourth reactive functional group of the fourth film chemically bonded to And may be formed by chemical bonding.

上記の場合において、前記第4の反応性の官能基と架橋反応基との反応により形成された化学結合が、アミノ基またはイミノ基とエポキシ基との反応により形成されたN−CHCH(OH)結合、およびアミノ基またはイミノ基とイソシアネート基との反応により形成されたNH−CONH結合のいずれかであってもよい。 In the above case, the chemical bond formed by the reaction between the fourth reactive functional group and the crosslinking reactive group is an N-CH 2 CH (formed by the reaction between an amino group or imino group and an epoxy group. OH) bond and NH-CONH bond formed by reaction of amino group or imino group with isocyanate group.

本発明の第2の態様は、本発明の第1の態様に係る半導体微粒子膜の製造方法であって、第1の反応性の官能基およびハロシリル基またはアルコキシシリル基をそれぞれ有する第1の膜化合物を、不純物原子濃度の異なる2種類以上のシリコン微粒子が、不純物原子の平均濃度が1010〜1020cm−3(ここで、塗膜の好ましい不純物濃度は、1011〜1018/cm、より好ましくは1012〜1017/cm程度であるが、必要に応じて適宜調整すればよい。以下同じ。)となるように均一に混合したシリコン微粒子混合物と接触させ、前記ハロシリル基またはアルコキシシリル基と前記シリコン微粒子の表面官能基との間でSi−O−結合を形成させ、前記第1の膜化合物の形成する第1の被膜で表面の少なくとも一部が覆われた第1の反応性シリコン微粒子混合物を製造する工程と、前記第1の反応性の官能基と熱で反応して化学結合を形成する第2の反応性の官能基およびハロシリル基またはアルコキシシリル基をそれぞれ有する第2の膜化合物を前記シリコン微粒子混合物と接触させ、前記ハロシリル基またはアルコキシシリル基と前記シリコン微粒子の表面官能基との間でSi−O−結合を形成させ、前記第2の膜化合物の形成する第2の被膜で表面の少なくとも一部が覆われた第2の反応性シリコン微粒子混合物を製造する工程と、前記第1の反応性シリコン微粒子混合物と前記第2の反応性シリコン微粒子混合物とを有機溶媒中で混合してペーストを製造する工程と、前記第1および第2の反応性シリコン微粒子混合物を含むペーストを基材表面に塗布する工程と、前記第1の反応性の官能基と前記第2の反応性の官能基との反応により化学結合を形成させ、前記ペーストの塗膜を硬化させる工程とを含むことを特徴とする半導体微粒子膜の製造方法を提供することにより上記課題を解決するものである。 According to a second aspect of the present invention, there is provided a method for producing a semiconductor fine particle film according to the first aspect of the present invention, the first film having a first reactive functional group and a halosilyl group or an alkoxysilyl group. Two or more kinds of silicon fine particles having different impurity atom concentrations are used as compounds, and the average concentration of impurity atoms is 10 10 to 10 20 cm −3 (wherein the preferable impurity concentration of the coating film is 10 11 to 10 18 / cm 3. More preferably, it is about 10 12 to 10 17 / cm 3 , but it may be adjusted as necessary. The same shall apply hereinafter)), and the halosilyl group or A Si—O— bond is formed between the alkoxysilyl group and the surface functional group of the silicon fine particle, and the first film formed by the first film compound has a small surface. A first reactive silicon fine particle mixture partially covered, a second reactive functional group that reacts with the first reactive functional group by heat to form a chemical bond, and A second film compound having a halosilyl group or an alkoxysilyl group is brought into contact with the silicon fine particle mixture to form a Si—O— bond between the halosilyl group or alkoxysilyl group and the surface functional group of the silicon fine particle. Manufacturing a second reactive silicon fine particle mixture having at least part of its surface covered with a second film formed by the second film compound, the first reactive silicon fine particle mixture, and the first A step of producing a paste by mixing the reactive silicon fine particle mixture of 2 in an organic solvent, and a paste containing the first and second reactive silicon fine particle mixture A step of applying to the surface of the base material; and a step of forming a chemical bond by a reaction between the first reactive functional group and the second reactive functional group, and curing the coating film of the paste. The above-mentioned problems are solved by providing a method for producing a semiconductor fine particle film characterized by the above.

本発明の第2の態様に係る半導体微粒子膜の製造方法において、前記第1および第2の被膜を形成後、前記第1および第2の反応性シリコン微粒子混合物を溶媒で洗浄し、余分な前記第1および第2の膜化合物を除去する工程をさらに有することが好ましい。 In the method for producing a semiconductor fine particle film according to the second aspect of the present invention, after the first and second coatings are formed, the first and second reactive silicon fine particle mixtures are washed with a solvent, and the excess It is preferable to further have a step of removing the first and second film compounds.

本発明の第3の態様は、本発明の第1の態様に係る半導体微粒子膜の製造方法であって、第1の反応性の官能基およびハロシリル基またはアルコキシシリル基をそれぞれ有する第1の膜化合物を、不純物原子濃度の異なる2種類以上のシリコン微粒子のそれぞれと接触させ、前記ハロシリル基またはアルコキシシリル基と前記シリコン微粒子の表面官能基との間でSi−O−結合を形成させ、前記第1の膜化合物の形成する第1の被膜で表面の少なくとも一部が覆われた2種類以上の第1の反応性シリコン微粒子を製造する工程と、前記第1の反応性の官能基と熱で反応して化学結合を形成する第2の反応性の官能基およびハロシリル基またはアルコキシシリル基をそれぞれ有する第2の膜化合物を前記2種類以上のシリコン微粒子のそれぞれと接触させ、前記ハロシリル基またはアルコキシシリル基と前記シリコン微粒子の表面官能基との間でSi−O−結合を形成させ、前記第2の膜化合物の形成する第2の被膜で表面の少なくとも一部が覆われた2種類以上の第2の反応性シリコン微粒子を製造する工程と、前記2種類以上の第1の反応性シリコン微粒子と前記2種類以上の第2の反応性シリコン微粒子とを、不純物原子の平均濃度が1010〜1020cm−3となるように均一に有機溶媒中で混合して、反応性シリコン微粒子混合物を含むペーストを製造する工程と、前記ペーストを基材表面に塗布する工程と、前記第1の反応性の官能基と前記第2の反応性の官能基との反応により化学結合を形成させ、前記ペーストの塗膜を硬化させる工程とを含むことを特徴とする半導体微粒子膜の製造方法を提供することにより上記課題を解決するものである。 According to a third aspect of the present invention, there is provided a method for producing a semiconductor fine particle film according to the first aspect of the present invention, the first film having a first reactive functional group and a halosilyl group or alkoxysilyl group, respectively. The compound is brought into contact with each of two or more kinds of silicon fine particles having different impurity atom concentrations to form Si—O— bonds between the halosilyl group or alkoxysilyl group and the surface functional groups of the silicon fine particles, and A step of producing two or more kinds of first reactive silicon fine particles having at least a part of the surface covered with a first film formed by one film compound, and the first reactive functional group and heat. A second reactive functional group that reacts to form a chemical bond and a second film compound each having a halosilyl group or an alkoxysilyl group are added to each of the two or more types of silicon fine particles. At least one surface of the second coating film formed by the second film compound. The Si—O— bond is formed between the halosilyl group or alkoxysilyl group and the surface functional group of the silicon fine particles. A step of producing two or more types of second reactive silicon fine particles covered with a portion, the two or more types of first reactive silicon fine particles and the two or more types of second reactive silicon fine particles, A step of producing a paste containing a mixture of reactive silicon fine particles by uniformly mixing in an organic solvent so that the average concentration of impurity atoms is 10 10 to 10 20 cm −3, and applying the paste to the substrate surface And a step of forming a chemical bond by a reaction between the first reactive functional group and the second reactive functional group and curing the coating film of the paste. The above-mentioned problems are solved by providing a method for producing a semiconductor fine particle film.

本発明の第3の態様に係る半導体微粒子膜の製造方法において、前記第1および第2の被膜を形成後、前記2種類以上の第1および第2の反応性シリコン微粒子をそれぞれ溶媒で洗浄し、余分な前記第1および第2の膜化合物を除去する工程をさらに有することが好ましい。 In the method for producing a semiconductor fine particle film according to the third aspect of the present invention, after the first and second coatings are formed, the two or more types of the first and second reactive silicon fine particles are respectively washed with a solvent. It is preferable that the method further includes a step of removing excess first and second film compounds.

本発明の第2および第3の態様に係る半導体微粒子膜の製造方法において、あらかじめ、前記ペーストを塗布する前の基材表面に、前記第1および第2の反応性官能基の一方または双方と反応する第3の反応性官能基およびハロシリル基またはアルコキシシリル基をそれぞれ有する第3の膜化合物を接触させ、前記ハロシリル基またはアルコキシシリル基と前記基材の表面官能基との間でSi−O−結合を形成させ、前記第3の膜化合物の形成する第3の被膜で表面の少なくとも一部が覆われた反応性基材を製造する工程をさらに有していることが好ましい。 In the method for producing a semiconductor fine particle film according to the second and third aspects of the present invention, one or both of the first and second reactive functional groups are previously formed on the surface of the base material before applying the paste. A third reactive functional group to be reacted and a third film compound each having a halosilyl group or an alkoxysilyl group are brought into contact with each other, and Si—O is interposed between the halosilyl group or alkoxysilyl group and the surface functional group of the substrate. -It is preferable to further have the process of manufacturing the reactive base material in which the bond was formed and at least one part of the surface was covered with the 3rd film which the said 3rd film | membrane compound forms.

本発明の第2および第3の態様に係る半導体微粒子膜の製造方法において、前記第3の被膜を形成後、前記反応性基材の表面を溶媒で洗浄し、余分な前記第3の膜化合物を除去する工程をさらに有することが好ましい。 In the method for producing a semiconductor fine particle film according to the second and third aspects of the present invention, after the formation of the third film, the surface of the reactive substrate is washed with a solvent, and the excess third film compound It is preferable to further include a step of removing.

本発明の第4の態様は、本発明の第1の態様に係る半導体微粒子膜の製造方法であって、第4の反応性の官能基およびハロシリル基またはアルコキシシリル基をそれぞれ有する第4の膜化合物を、不純物原子濃度の異なる2種類以上のシリコン微粒子が、不純物原子の平均濃度が1010〜1020cm−3となるように均一に混合したシリコン微粒子混合物と接触させ、前記ハロシリル基またはアルコキシシリル基と前記純粋シリコン微粒子とp型またはn型シリコン微粒子の表面官能基との間でSi−O−結合を形成させ、前記第4の膜化合物の形成する被膜で表面の少なくとも一部が覆われた第4の反応性シリコン微粒子混合物を製造する工程と、前記第4の反応性シリコン微粒子混合物と、前記第4の反応性の官能基と熱で反応して化学結合を形成する複数の架橋反応基を有する架橋剤とを有機溶媒中で混合してペーストを製造する工程と、前記第4の反応性シリコン微粒子混合物および前記架橋剤を含むペーストを基材表面に塗布する工程と、前記第4の反応性の官能基と前記架橋反応基との反応により化学結合を形成させ、前記ペーストの塗膜を硬化させる工程とを含むことを特徴とする半導体微粒子膜の製造方法を提供することにより上記課題を解決するものである。 A fourth aspect of the present invention is a method for producing a semiconductor fine particle film according to the first aspect of the present invention , wherein the fourth film has a fourth reactive functional group and a halosilyl group or an alkoxysilyl group, respectively. The compound is brought into contact with a silicon fine particle mixture in which two or more kinds of silicon fine particles having different impurity atom concentrations are uniformly mixed so that the average concentration of impurity atoms is 10 10 to 10 20 cm −3, and the halosilyl group or alkoxy Si—O— bonds are formed between the silyl group, the pure silicon fine particles, and the surface functional groups of the p-type or n-type silicon fine particles, and at least a part of the surface is covered with the coating formed by the fourth film compound. Reacting the fourth reactive silicon fine particle mixture, the fourth reactive silicon fine particle mixture, and the fourth reactive functional group with heat. A step of producing a paste by mixing a crosslinking agent having a plurality of crosslinking reactive groups that form a chemical bond in an organic solvent, and a paste containing the fourth reactive silicon fine particle mixture and the crosslinking agent as a base material A semiconductor fine particle comprising: a step of applying to a surface; and a step of forming a chemical bond by a reaction between the fourth reactive functional group and the cross-linking reactive group to cure the paste coating film. The above-mentioned problems are solved by providing a method for producing a film.

本発明の第4の態様に係る半導体微粒子膜の製造方法において、前記第4の被膜を形成後、前記第4の反応性シリコン微粒子混合物を溶媒で洗浄し、余分な前記第4の膜化合物を除去する工程をさらに有することが好ましい。 In the method for producing a semiconductor fine particle film according to the fourth aspect of the present invention, after the formation of the fourth film, the fourth reactive silicon fine particle mixture is washed with a solvent, and the excess fourth film compound is removed. It is preferable to further have the process of removing.

本発明の第5の態様は、本発明の第1の態様に係る半導体微粒子膜の製造方法であって、第4の反応性の官能基およびハロシリル基またはアルコキシシリル基をそれぞれ有する第4の膜化合物を、不純物原子濃度の異なる2種類以上のシリコン微粒子のそれぞれと接触させ、前記ハロシリル基またはアルコキシシリル基と前記純粋シリコン微粒子とp型またはn型シリコン微粒子の表面官能基との間でSi−O−結合を形成させ、前記第4の膜化合物の形成する被膜で表面の少なくとも一部が覆われた2種類以上の第4の反応性シリコン微粒子を製造する工程と、前記2種類以上の第4の反応性シリコン微粒子と、前記第4の反応性の官能基と熱で反応して化学結合を形成する複数の架橋反応基を有する架橋剤とを有機溶媒中で混合してペーストを製造する工程と、前記ペーストを基材表面に塗布する工程と、前記第4の反応性の官能基と前記架橋反応基との反応により化学結合を形成させ、前記ペーストの塗膜を硬化させる工程とを含むことを特徴とする半導体微粒子膜の製造方法を提供することにより上記課題を解決するものである。 A fifth aspect of the present invention is a method for manufacturing a semiconductor fine particle film according to the first aspect of the present invention, wherein the fourth film has a fourth reactive functional group and a halosilyl group or an alkoxysilyl group, respectively. A compound is brought into contact with each of two or more kinds of silicon fine particles having different impurity atom concentrations, and Si-- between the halosilyl group or alkoxysilyl group, the pure silicon fine particles, and the surface functional groups of the p-type or n-type silicon fine particles. A step of producing two or more types of fourth reactive silicon fine particles in which at least part of the surface is covered with a film formed by the fourth film compound by forming an O-bond; 4 reactive silicon fine particles and a cross-linking agent having a plurality of cross-linking reactive groups that react with the fourth reactive functional group by heat to form a chemical bond are mixed in an organic solvent. A chemical bond is formed by the reaction of the fourth reactive functional group and the crosslinking reactive group, and the coating film of the paste is cured. The above-mentioned problems are solved by providing a method for producing a semiconductor fine particle film characterized by comprising a step of:

本発明の第5の態様に係る半導体微粒子膜の製造方法において、前記第4の被膜を形成後、前記2種類以上の第4の反応性シリコン微粒子を溶媒で洗浄し、余分な前記第4の膜化合物を除去する工程をさらに有することが好ましい。 In the method for manufacturing a semiconductor fine particle film according to the fifth aspect of the present invention, after the formation of the fourth film, the two or more types of fourth reactive silicon fine particles are washed with a solvent, and the extra fourth It is preferable to further include a step of removing the membrane compound.

本発明の第4および第5の態様に係る半導体微粒子膜の製造方法において、あらかじめ、前記ペーストを塗布する前の基材表面に、前記第4の膜化合物を接触させ、前記ハロシリル基またはアルコキシシリル基と前記基材の表面官能基との間でSi−O−結合を形成させ、前記第4の膜化合物の形成する第4の被膜で表面の少なくとも一部が覆われた反応性基材を製造する工程をさらに有していることが好ましい。 In the method for producing a semiconductor fine particle film according to the fourth and fifth aspects of the present invention, the halosilyl group or alkoxysilyl group is obtained by bringing the fourth film compound into contact with the surface of the substrate before applying the paste in advance. A reactive base material in which at least a part of the surface is covered with a fourth film formed by the fourth film compound by forming a Si—O— bond between a group and a surface functional group of the base material It is preferable to further have a manufacturing step.

本発明の第4および第5の態様に係る半導体微粒子膜の製造方法において、前記反応性基材の表面の前記第4の被膜を形成後、前記反応性基材の表面を溶媒で洗浄し、余分な未反応の前記第4の膜化合物を除去する工程をさらに有することが好ましい。 In the method for producing a semiconductor fine particle film according to the fourth and fifth aspects of the present invention, after forming the fourth film on the surface of the reactive substrate, the surface of the reactive substrate is washed with a solvent, It is preferable to further include a step of removing excess unreacted fourth film compound.

本発明の第2および第3の態様に係る半導体微粒子膜の製造方法において、前記第1の反応性の官能基と前記第2の反応性の官能基との反応、または前記第1の反応性の官能基と前記第3の反応性の官能基との反応により形成された化学結合が、アミノ基またはイミノ基とエポキシ基との反応により形成されたN−CHCH(OH)結合、およびアミノ基またはイミノ基とイソシアネート基との反応により形成されたNH−CONH結合のいずれかであってもよい。 In the method for producing a semiconductor fine particle film according to the second and third aspects of the present invention, the reaction between the first reactive functional group and the second reactive functional group, or the first reactivity. A chemical bond formed by the reaction of the functional group of the second reactive functional group with an N-CH 2 CH (OH) bond formed by the reaction of an amino group or imino group with an epoxy group, and It may be any NH—CONH bond formed by the reaction of an amino group or imino group with an isocyanate group.

本発明の第4および第5の態様に係る半導体微粒子膜の製造方法において、前記第4の反応性の官能基と前記架橋反応基との反応により形成された化学結合が、アミノ基またはイミノ基とエポキシ基との反応により形成されたN−CHCH(OH)結合、およびアミノ基またはイミノ基とイソシアネート基との反応により形成されたNH−CONH結合のいずれかであってもよい。 In the method for producing a semiconductor fine particle film according to the fourth and fifth aspects of the present invention, the chemical bond formed by the reaction between the fourth reactive functional group and the crosslinking reactive group is an amino group or an imino group. N—CH 2 CH (OH) bond formed by the reaction of the epoxy group with the epoxy group and NH—CONH bond formed by the reaction of the amino group or imino group with the isocyanate group may be used.

本発明の第2から第5の態様に係る半導体微粒子膜の製造方法において、前記2種類以上のシリコン微粒子が、純粋シリコン微粒子と、p型シリコン微粒子またはn型シリコン微粒子との組み合わせ、あるいはp型シリコン微粒子とn型シリコン微粒子との組み合わせであってもよい。 In the method for producing a semiconductor fine particle film according to the second to fifth aspects of the present invention, the two or more types of silicon fine particles are a combination of pure silicon fine particles and p-type silicon fine particles or n-type silicon fine particles, or p-type. A combination of silicon fine particles and n-type silicon fine particles may be used.

本発明の第2から第5の態様に係る半導体微粒子膜の製造方法において、前記シリコン微粒子の粒子径が10nm〜5μmであることが好ましい。 In the method for producing a semiconductor fine particle film according to the second to fifth aspects of the present invention , the silicon fine particles preferably have a particle size of 10 nm to 5 μm.

本発明の第2から第5の態様に係る半導体微粒子膜の製造方法において、前記2種類以上のシリコン微粒子の混合物が、粒子径が異なるシリコン微粒子を含んでいてもよい。 In the method for producing a semiconductor fine particle film according to the second to fifth aspects of the present invention, the mixture of two or more types of silicon fine particles may contain silicon fine particles having different particle diameters.

本発明の第6の態様は、単分子膜で被覆された不純物原子濃度の異なる2種類以上のn型シリコン微粒子、または単分子膜で被覆された純粋シリコン微粒子と単分子膜で被覆されたn型シリコン微粒子が、不純物原子の平均濃度が1010〜1020cm−3となるように均一に混合され、混在した状態で、前記単分子膜を介して互いに分子架橋で結合した積層膜状構造を有するn型半導体層と、単分子膜で被覆された不純物原子濃度の異なる2種類以上のp型シリコン微粒子、または単分子膜で被覆された純粋シリコン微粒子と単分子膜で被覆されたp型シリコン微粒子が、不純物原子の平均濃度が1010〜1020cm−3となるように均一に混合され、混在した状態で、前記単分子膜を介して互いに分子架橋で結合した積層膜状構造を有するp型半導体層とが基材上に積層されていることを特徴とするダイオードを提供することにより上記課題を解決するものである。 A sixth aspect of the present invention was coated with two or more different n-type silicon microparticles or coated pure silicon particles and a monomolecular film with a monomolecular film, impurity atom concentration, which is coated with a monomolecular film n -type silicon particles, the average concentration of the impurity atoms are uniformly mixed such that 10 10 ~10 20 cm -3, mixed with state, the monomolecular film laminated membrane-like structures attached at a molecular cross-linked to each other via And an n-type semiconductor layer coated with a monomolecular film and two or more types of p-type silicon fine particles having different impurity atom concentrations, or a pure silicon fine particle coated with a monomolecular film and a p-type coated with a monomolecular film A laminated film in which silicon fine particles are uniformly mixed so as to have an average concentration of impurity atoms of 10 10 to 10 20 cm −3, and in a mixed state, are bonded to each other through molecular bridges via the monomolecular film. The above problem is solved by providing a diode characterized in that a p-type semiconductor layer having a planar structure is laminated on a base material.

本発明の第6の態様に係るダイオードにおいて、前記2種類以上のシリコン微粒子の粒子径が10nm〜5μmであることが好ましい。 In the diode according to the sixth aspect of the present invention, it is preferable that the two or more types of silicon fine particles have a particle size of 10 nm to 5 μm.

本発明の第6の態様に係るダイオードにおいて、前記2種類以上のシリコン微粒子の混合物が、粒子径が異なるシリコン微粒子を含んでいてもよい。 In the diode according to the sixth aspect of the present invention, the mixture of two or more kinds of silicon fine particles may contain silicon fine particles having different particle diameters.

本発明の第6の態様に係るダイオードにおいて、前記分子架橋が、前記シリコン微粒子の1つと化学結合した第1の被膜の有する第1の反応性の官能基と、前記シリコン微粒子以外のシリコン微粒子と化学結合した第2の被膜の有する前記第1の官能基と反応して化学結合を形成する第2の反応性の官能基とが反応して化学結合することにより形成されていてもよい。 In the diode according to the sixth aspect of the present invention, the molecular bridge includes a first reactive functional group of the first coating chemically bonded to one of the silicon fine particles, and silicon fine particles other than the silicon fine particles. It may be formed by reacting and chemically bonding with a second reactive functional group that reacts with the first functional group of the second chemically bonded film to form a chemical bond.

上記の場合において、前記第1の反応性の官能基と前記第2の反応性の官能基との反応により形成された化学結合が、アミノ基またはイミノ基とエポキシ基との反応により形成されたN−CHCH(OH)結合、およびアミノ基またはイミノ基とイソシアネート基との反応により形成されたNH−CONH結合のいずれかであってもよい。 In the above case, the chemical bond formed by the reaction between the first reactive functional group and the second reactive functional group was formed by the reaction between an amino group or imino group and an epoxy group. Any of an N—CH 2 CH (OH) bond and an NH—CONH bond formed by a reaction between an amino group or an imino group and an isocyanate group may be used.

本発明の第6の態様に係るダイオードにおいて、前記分子架橋が、2種類以上のシリコン微粒子の1つと化学結合した被膜の有する反応性の第3の官能基と、前記1つの2種類以上のシリコン微粒子以外の2種類以上のシリコン微粒子と化学結合した被膜の有する前記反応性の官能基と、前記反応性の官能基と熱で反応して化学結合を形成する複数の架橋反応基を有する架橋剤を介して化学結合することにより形成されていてもよい。 In the diode according to the sixth aspect of the present invention, the molecular cross-linking is a reactive third functional group of a coating chemically bonded to one of two or more types of silicon fine particles, and the one or more types of two or more types of silicon. A cross-linking agent having the reactive functional group of the coating chemically bonded to two or more types of silicon fine particles other than the fine particles, and a plurality of cross-linking reactive groups that react with the reactive functional group by heat to form a chemical bond. It may be formed by chemical bonding via.

上記の場合において、前記第3の反応性の官能基と架橋反応基との反応により形成された化学結合が、アミノ基またはイミノ基とエポキシ基との反応により形成されたN−CHCH(OH)結合、およびアミノ基またはイミノ基とイソシアネート基との反応により形成されたNH−CONH結合のいずれかであってもよい。 In the above case, the chemical bond formed by the reaction between the third reactive functional group and the crosslinking reactive group is an N-CH 2 CH (formed by the reaction between an amino group or imino group and an epoxy group. OH) bond and NH-CONH bond formed by reaction of amino group or imino group with isocyanate group.

本発明の第7の態様は、本発明の第6の態様に係るダイオードを含む光電変換素子を提供することにより上記課題を解決するものである。 A seventh aspect of the present invention solves the above problem by providing a photoelectric conversion element including a diode according to the sixth aspect of the present invention.

本発明の第7の態様に係る光電変換素子において、前記光電変換素子が太陽電池、またはフォトセンサーであってもよい。 In the photoelectric conversion element according to the seventh aspect of the present invention, the photoelectric conversion element may be a solar cell or a photosensor.

本発明の第8の態様は、本発明の第2から第5の態様に係るいずれかの方法により、透明基材上に不純物原子の平均濃度が1010〜1020cm−3となるように均一に混合された複数の純粋シリコン微粒子と複数のn型シリコン微粒子とが分子架橋を介して互いに化学結合した積層膜状構造を有するn型半導体層を形成する工程と、本発明の第2から第5の態様に係るいずれかの方法により、前記n型シリコン微粒子層上に、不純物原子の平均濃度が1010〜1020cm−3となるように均一に混合された複数の純粋シリコン微粒子と複数のp型シリコン微粒子とが分子架橋を介して互いに化学結合した積層膜状構造を有するp型半導体層を形成する工程とを有することを特徴とする光電変換素子の製造方法を提供することにより上記課題を解決するものである。 According to an eighth aspect of the present invention, an average concentration of impurity atoms is 10 10 to 10 20 cm −3 on a transparent substrate by any one of the methods according to the second to fifth aspects of the present invention. A step of forming an n-type semiconductor layer having a laminated film structure in which a plurality of uniformly mixed pure silicon fine particles and a plurality of n-type silicon fine particles are chemically bonded to each other through molecular crosslinking; A plurality of pure silicon fine particles uniformly mixed on the n-type silicon fine particle layer so as to have an average concentration of impurity atoms of 10 10 to 10 20 cm −3 by any one of the methods according to the fifth aspect; And a step of forming a p-type semiconductor layer having a laminated film structure in which a plurality of p-type silicon fine particles are chemically bonded to each other through molecular crosslinking. The above-mentioned problem is solved more.

本発明の第9の態様は、本発明の第8の態様に係るダイオードの製造方法を含む光電変換素子の製造方法を提供することにより上記課題を解決するものである。 According to a ninth aspect of the present invention, there is provided a method for manufacturing a photoelectric conversion element including the method for manufacturing a diode according to the eighth aspect of the present invention.

本発明の第9の態様に係る光電変換素子の製造方法において、前記光電変換素子が太陽電池またはフォトセンサーであってもよい。 In the method for manufacturing a photoelectric conversion element according to the ninth aspect of the present invention, the photoelectric conversion element may be a solar cell or a photosensor.

以上説明したとおり、本発明によれば、不純物濃度の異なる複数のシリコン微粒子を組み合わせて用いることにより、不純物原子濃度や膜厚を容易に制御可能な半導体微粒子膜およびそれを用いた接合特性に優れた高性能な光電変換素子、ならびにそれらを安価かつ簡便に製造可能な半導体微粒子膜およびそれを用いた光電変換素子の製造方法が提供される。さらに、本発明の半導体微粒子膜および光電変換素子の製造には、高価な真空機器を必要とせず、湿式法を用いて微細形状を有するものから大面積のものまで容易に製造可能である。 As described above, according to the present invention, by using a combination of a plurality of silicon fine particles having different impurity concentrations, the semiconductor fine particle film capable of easily controlling the impurity atom concentration and film thickness and excellent bonding characteristics using the same. A high-performance photoelectric conversion element, a semiconductor fine particle film that can be manufactured inexpensively and simply, and a method for manufacturing a photoelectric conversion element using the same are provided. Furthermore, the manufacture of the semiconductor fine particle film and the photoelectric conversion element of the present invention does not require expensive vacuum equipment, and can be easily manufactured from a fine shape to a large area using a wet method.

本発明の第一の実施の形態に係る半導体微粒子膜の断面構造を模式的に表した説明図である。It is explanatory drawing which represented typically the cross-sectional structure of the semiconductor fine particle film which concerns on 1st embodiment of this invention. 同半導体微粒子膜の製造方法において、エポキシ化シリコン微粒子を製造する工程を説明するために分子レベルまで拡大した模式図であり、(a)は反応前のシリコン微粒子の断面構造、(b)はエポキシ基を含む単分子膜が形成されたエポキシ化シリコン微粒子の断面構造をそれぞれ表す。In the manufacturing method of the semiconductor fine particle film, in order to explain the process of manufacturing the epoxidized silicon fine particles, it is a schematic diagram enlarged to the molecular level, (a) is a cross-sectional structure of the silicon fine particles before the reaction, (b) is an epoxy Each represents a cross-sectional structure of an epoxidized silicon fine particle on which a monomolecular film containing a group is formed. 本発明の第二の実施の形態に係る半導体微粒子膜の断面構造を模式的に表した説明図である。It is explanatory drawing which represented typically the cross-sectional structure of the semiconductor fine particle film which concerns on 2nd embodiment of this invention. 本発明の第三の実施の形態に係る太陽電池の断面構造を模式的に表した説明図である。It is explanatory drawing which represented typically the cross-section of the solar cell which concerns on 3rd embodiment of this invention.

本発明の半導体微粒子膜において、不純物原子濃度の異なる2種類以上のシリコン微粒子が、不純物原子の平均濃度が1010〜1020cm−3となるように均一に混合され、分子架橋を介して互いに化学結合した膜状構造を形成している。以下、分子架橋の形成の態様および製造方法がそれぞれ異なる第一から第四の実施の形態に係る半導体微粒子膜について、図面を参照しながら説明する。なお、以下の各実施の形態において、不純物原子濃度の異なる2種類以上のシリコン微粒子として、純粋シリコン微粒子とn型シリコン微粒子とを組み合わせて用いた場合について説明する。 In the semiconductor fine particle film of the present invention, two or more types of silicon fine particles having different impurity atom concentrations are uniformly mixed so that the average concentration of impurity atoms is 10 10 to 10 20 cm −3. A chemically bonded film-like structure is formed. Hereinafter, semiconductor fine particle films according to the first to fourth embodiments, which are different in the mode of formation of the molecular bridge and the manufacturing method, will be described with reference to the drawings. In each of the following embodiments, a case will be described in which pure silicon fine particles and n-type silicon fine particles are used in combination as two or more types of silicon fine particles having different impurity atom concentrations.

半導体微粒子膜の製造方法は、反応性シリコン微粒子混合物をペースト化し、基材上に塗布後、塗膜を硬化させることにより複数層を一度に積層させる方法と、反応性シリコン微粒子混合物の分散液を基材表面に塗布し結合させ、余分な反応性シリコン微粒子混合物を洗浄除去することにより一層ずつ積層させる方法に大別される。また、分子架橋の形成方法の観点から、対となる2つの反応性の官能基の一方を含む2種類の被膜を用いる方法と、1つの反応性の官能基と2以上の架橋反応基を有する架橋剤とを組み合わせて用いる方法とに大別される。 The method for producing a semiconductor fine particle film includes a method in which a reactive silicon fine particle mixture is pasted, applied onto a substrate, and a coating film is cured to laminate a plurality of layers at once, and a reactive silicon fine particle mixture dispersion It is roughly classified into a method of laminating one layer at a time by applying and bonding to the surface of the substrate and washing away and removing the excess reactive silicon fine particle mixture. Further, from the viewpoint of a method for forming molecular crosslinks, a method using two kinds of coatings including one of two reactive functional groups to be paired, one reactive functional group, and two or more crosslinkable reactive groups It is roughly classified into a method using a combination with a crosslinking agent.

図1、2に示すように、本発明の第一の実施の形態に係るn型シリコン微粒子膜(半導体微粒子膜の一例)10において、シリコン微粒子の表面には、分子の一端にエポキシ基(第1の反応性の官能基の一例)を有し、Si−O−結合を介して化学結合し、その表面の少なくとも一部を覆った、エポキシ基を有するアルコキシシラン化合物の単分子膜(第1の被膜の一例)16、またはエポキシ基と反応して結合を形成するアミノ基(第2の反応性の官能基の一例)を有し、Si−O−結合を介して化学結合し、その表面の少なくとも一部を覆った、図示しないアミノ基を有するアルコキシシラン化合物の単分子膜(第2の被膜の一例)が形成されている。これらのシリコン微粒子間では、エポキシ化純粋シリコン微粒子11およびエポキシ化n型シリコン微粒子11a上に存在するエポキシ基と、アミノ化シリコン微粒子12およびアミノ化n型シリコン微粒子12a上に存在するアミノ基とが反応して化学結合することにより、N−CHCH(OH)結合(分子架橋の一例)が形成されており、この結合を介してシリコン微粒子同士が互いに化学結合した膜状構造を形成している。 As shown in FIGS. 1 and 2, in the n-type silicon fine particle film (an example of a semiconductor fine particle film) 10 according to the first embodiment of the present invention, the surface of the silicon fine particle has an epoxy group (first A monomolecular film of an alkoxysilane compound having an epoxy group, which is chemically bonded via an Si—O— bond and covers at least a part of the surface thereof (first example of a reactive functional group). 16), or an amino group (an example of a second reactive functional group) that reacts with an epoxy group to form a bond, and is chemically bonded via a Si—O— bond. A monomolecular film (an example of a second film) of an alkoxysilane compound having an amino group (not shown) is formed so as to cover at least a part of the film. Among these silicon fine particles, there are epoxy groups present on the epoxidized pure silicon fine particles 11 and the epoxidized n-type silicon fine particles 11a and amino groups present on the aminated silicon fine particles 12 and the aminated n-type silicon fine particles 12a. By reacting and chemically bonding, an N—CH 2 CH (OH) bond (an example of molecular cross-linking) is formed, and a film-like structure in which silicon fine particles are chemically bonded to each other through this bond is formed. Yes.

n型シリコン微粒子膜10が形成された反応性基材13の表面には、エポキシ基またはアミノ基(第3の反応性の官能基の一例)を有し、Si−O−結合を介して化学結合し、その表面の少なくとも一部を覆った、エポキシ基またはアミノ基を有するアルコキシシラン化合物の単分子膜(第3の被膜の一例)が形成されており、エポキシ化純粋シリコン微粒子11およびエポキシ化n型シリコン微粒子11a上に存在するエポキシ基、またはアミノ化シリコン微粒子12およびアミノ化n型シリコン微粒子12a上に存在するアミノ基との間でN−CHCH(OH)結合(分子架橋の一例)を形成し、n型シリコン微粒子膜10と基材とを強固に結びつけている。 The surface of the reactive base material 13 on which the n-type silicon fine particle film 10 is formed has an epoxy group or an amino group (an example of a third reactive functional group), and chemically reacts via Si—O— bonds. A monomolecular film (an example of a third coating film) of an alkoxysilane compound having an epoxy group or an amino group, which is bonded and covers at least a part of the surface thereof, is formed, and epoxidized pure silicon fine particles 11 and epoxidized N—CH 2 CH (OH) bond (an example of molecular cross-linking) between an epoxy group present on the n-type silicon fine particle 11a or an amino group present on the aminated silicon fine particle 12 and the aminated n-type silicon fine particle 12a ) And the n-type silicon fine particle film 10 and the base material are firmly bonded.

n型シリコン微粒子膜10は、下記の工程[1]〜[6]を含む方法により製造される。
[1]エポキシ基を有するアルコキシシラン化合物(第1の膜化合物の一例)を、不純物原子の平均濃度が1010〜1020cm−3となるように均一に混合した純粋シリコン微粒子とn型シリコン微粒子との混合物(シリコン微粒子混合物の一例:以下、単に「シリコン微粒子混合物」と略称する場合がある。)と接触させ、アルコキシシリル基とシリコン微粒子表面のヒドロキシル基(表面官能基の一例)15との間でSi−O−結合を形成させ、エポキシ基を有するアルコキシシラン化合物の単分子膜16で表面の少なくとも一部が覆われたエポキシ化純シリコン微粒子11とエポキシ化n型シリコン微粒子11aの混合物(第1の反応性シリコン微粒子混合物の一例:以下「エポキシ化シリコン微粒子混合物」と略称する場合がある。)を製造する工程
[2]アミノ基を有するアルコキシシラン化合物(第2の膜化合物の一例)をシリコン微粒子混合物と接触させ、アルコキシシリル基とシリコン微粒子表面のヒドロキシル基15との間でSi−O−結合を形成させ、アミノ基を有するアルコキシシラン化合物の単分子膜で表面の少なくとも一部が覆われたアミノ化純シリコン微粒子12とアミノ化n型シリコン微粒子12aの混合物(第2の反応性シリコン微粒子混合物の一例:以下「アミノ化シリコン微粒子混合物」と略称する場合がある。)を製造する工程
[3]基材表面に、エポキシ基またはアミノ基と反応する第3の反応性官能基を有するアルコキシシラン化合物(第3の膜化合物の一例)を接触させ、アルコキシシリル基と基材の表面官能基との間でSi−O−結合を形成させ、第3の膜化合物の単分子膜(第3の被膜の一例)で表面の少なくとも一部が覆われた反応性基材13を製造する工程
[4]エポキシ化シリコン微粒子混合物とアミノ化シリコン微粒子混合物とを有機溶媒中で混合してペーストを製造する工程
[5]エポキシ化シリコン微粒子混合物とアミノ化シリコン微粒子混合物を含むペーストを反応性基材13表面に塗布する工程
[6]エポキシ基とアミノ基との反応によりN−CHCH(OH)結合を形成させ、ペーストの塗膜を硬化させる工程
The n-type silicon fine particle film 10 is manufactured by a method including the following steps [1] to [6].
[1] Pure silicon fine particles and n-type silicon in which an alkoxysilane compound having an epoxy group (an example of a first film compound) is uniformly mixed so that an average concentration of impurity atoms is 10 10 to 10 20 cm −3 Contact with a mixture of fine particles (an example of a silicon fine particle mixture: hereinafter, sometimes simply abbreviated as “silicon fine particle mixture”), and an alkoxysilyl group and a hydroxyl group on the surface of the silicon fine particle (an example of a surface functional group) 15 A mixture of epoxidized pure silicon fine particles 11 and epoxidized n-type silicon fine particles 11a in which at least part of the surface is covered with a monomolecular film 16 of an alkoxysilane compound having an epoxy group, with Si—O— bonds formed between them. (Example of first reactive silicon fine particle mixture: hereinafter referred to as “epoxidized silicon fine particle mixture”) (2) A step of producing an alkoxysilane compound having an amino group (an example of the second film compound) is brought into contact with the silicon fine particle mixture, and Si between the alkoxysilyl group and the hydroxyl group 15 on the surface of the silicon fine particle is obtained. A mixture of aminated pure silicon fine particles 12 and aminated n-type silicon fine particles 12a (second reaction) in which —O— bonds are formed and at least a part of the surface is covered with a monomolecular film of an alkoxysilane compound having an amino group Example of reactive silicon fine particle mixture: hereinafter referred to as “aminated silicon fine particle mixture” in some cases.) [3] Third reactive functional group that reacts with epoxy group or amino group on substrate surface An alkoxysilane compound (an example of a third film compound) having a contact is brought into contact with Si between the alkoxysilyl group and the surface functional group of the substrate. Step [4] Epoxidized silicon for forming a reactive substrate 13 in which —O— bond is formed and at least a part of the surface is covered with a monomolecular film of the third film compound (an example of the third film) A step of producing a paste by mixing the fine particle mixture and the aminated silicon fine particle mixture in an organic solvent [5] A step of applying a paste containing the epoxidized silicon fine particle mixture and the aminated silicon fine particle mixture to the surface of the reactive substrate 13 [6] A step of forming an N—CH 2 CH (OH) bond by a reaction between an epoxy group and an amino group, and curing the coating film of the paste.

以下、各工程についてより詳細に説明する。
[1]エポキシ化シリコン微粒子混合物の製造
エポキシ化シリコン微粒子混合物は、図2に示すように、エポキシ基を含むアルコキシシラン化合物と、アルコキシシリル基とシリコン微粒子の表面のヒドロキシル基15との縮合反応を促進するための縮合触媒と、非水系の有機溶媒とを含む反応液中で、シリコン微粒子をアルコキシシラン化合物と接触させることにより製造される。
Hereinafter, each process will be described in more detail.
[1] Production of Epoxidized Silicon Fine Particle Mixture As shown in FIG. 2, the epoxidized silicon fine particle mixture undergoes a condensation reaction between an alkoxysilane compound containing an epoxy group, an alkoxysilyl group, and a hydroxyl group 15 on the surface of the silicon fine particle. It is produced by bringing silicon fine particles into contact with an alkoxysilane compound in a reaction solution containing a condensation catalyst for promotion and a non-aqueous organic solvent.

エポキシ化シリコン微粒子混合物の製造に用いるシリコン微粒子(純シリコン微粒子およびn型シリコン微粒子)の粒径は、10〜5μmであることが好ましい。シリコン微粒子の粒径が10nmを下回ると、n型シリコン微粒子膜10におけるエポキシ基またはアミノ基を有する単分子膜の体積分率が大きくなりすぎるため、電気的特性が低下するおそれがある。一方、シリコン微粒子の粒径が5μmを超えると、n型シリコン微粒子膜10における空隙率が増大するため、やはり電気的特性が低下するおそれがある。また、印刷でデバイス用の微細なシリコン微粒子パターンを形成する際、パターンの切れが悪くなる。 The particle size of silicon fine particles (pure silicon fine particles and n-type silicon fine particles) used for the production of the epoxidized silicon fine particle mixture is preferably 10 to 5 μm. When the particle diameter of the silicon fine particles is less than 10 nm, the volume fraction of the monomolecular film having an epoxy group or amino group in the n-type silicon fine particle film 10 becomes too large, and the electrical characteristics may be deteriorated. On the other hand, if the particle size of the silicon fine particles exceeds 5 μm, the porosity in the n-type silicon fine particle film 10 increases, so that there is a possibility that the electrical characteristics also deteriorate. In addition, when a fine silicon fine particle pattern for a device is formed by printing, the cut of the pattern becomes worse.

シリコン微粒子の混合物は、粒子径が異なるシリコン微粒子を含んでいてもよい。この場合において、純シリコン微粒子とn型シリコン微粒子との粒径が異なっていてもよく、純シリコン微粒子およびn型シリコン微粒子のそれぞれが異なる粒径のシリコン微粒子の混合物であってもよい。例えば、純シリコン微粒子よりも粒径の小さなn型シリコン微粒子を用いた場合、両者を均一に混合すると、前者の空隙を後者が満たすように分布させることができ、不純物原子の空間分布の均一性を向上させることができる。 The mixture of silicon fine particles may contain silicon fine particles having different particle diameters. In this case, the pure silicon fine particles and the n-type silicon fine particles may have different particle sizes, or the pure silicon fine particles and the n-type silicon fine particles may be a mixture of silicon fine particles having different particle sizes. For example, when n-type silicon fine particles having a particle diameter smaller than that of pure silicon fine particles are used, when the two are uniformly mixed, the former voids can be distributed so as to fill the latter, and the spatial distribution of impurity atoms is uniform. Can be improved.

充填率でいえば、2種類の粒径の微粒子を混合して用いる場合には、粒径の大きな微粒子7に対して粒径の小さな微粒子を3の割合にすれば充填率を最高にできるという論文もあるが、実用上Si微粒子は2種類である必要はないので、この限りではない。 In terms of the filling rate, in the case of using a mixture of two kinds of fine particles, the filling rate can be maximized by setting the ratio of 3 fine particles having a small particle size to fine particles 7 having a large particle size. Although there is a paper, it is not necessary to use two kinds of Si fine particles for practical purposes.

純シリコン微粒子とn型シリコン微粒子の混合比は特に制限されず、所望の不純物原子の平均濃度、シリコン微粒子の粒径等に応じて適宜決定される。純シリコン微粒子とn型シリコン微粒子の混合比は、例えば、100:1〜1,000,000:1であることが好ましい。n型シリコン微粒子の割合が高すぎると、n型シリコン微粒子1個あたりの不純物原子の含有数を低く抑える必要が生じ、不純物原子濃度の制御が困難になる場合がある。一方、n型シリコン微粒子の割合が低すぎると、自由電子の担い手となる不純物原子(リン等)の間隔が大きくなりすぎ、電子の移動特性が低下するおそれがある。 The mixing ratio of the pure silicon fine particles and the n-type silicon fine particles is not particularly limited, and is appropriately determined according to the desired average concentration of impurity atoms, the particle diameter of the silicon fine particles, and the like. The mixing ratio of the pure silicon fine particles and the n-type silicon fine particles is preferably, for example, 100: 1 to 1,000,000: 1. If the ratio of the n-type silicon fine particles is too high, it is necessary to keep the number of impurity atoms per n-type silicon fine particle low, and it may be difficult to control the impurity atom concentration. On the other hand, if the proportion of the n-type silicon fine particles is too low, the distance between impurity atoms (phosphorus, etc.) that play a role in free electrons becomes too large, which may deteriorate the electron transfer characteristics.

なお、塗膜の目標とする好ましい不純物濃度は、1011〜1018/cm、より好ましくは1012〜1017/cm程度である。 In addition, the preferable impurity concentration made into the target of a coating film is about 10 < 11 > -10 < 18 > / cm < 3 >, More preferably, it is about 10 < 12 > -10 < 17 > / cm < 3 >.

エポキシ化シリコン微粒子混合物の製造に用いる反応液は、エポキシ基を含むアルコキシシラン化合物と、アルコキシシリル基とシリコン微粒子の表面のヒドロキシル基15との縮合反応を促進するための縮合触媒と、非水系の有機溶媒とを混合することにより調製される。 The reaction liquid used for the production of the epoxidized silicon fine particle mixture includes an alkoxysilane compound containing an epoxy group, a condensation catalyst for accelerating the condensation reaction between the alkoxysilyl group and the hydroxyl group 15 on the surface of the silicon fine particle, and a non-aqueous system. It is prepared by mixing with an organic solvent.

エポキシ基を含むアルコキシシラン化合物としては、直鎖状アルキレン基の両末端に、エポキシ基(オキシラン環)を含む官能基およびアルコキシシリル基をそれぞれ有し、下記の一般式(化1)で表されるアルコキシシラン化合物が好ましい。 The alkoxysilane compound containing an epoxy group has a functional group containing an epoxy group (oxirane ring) and an alkoxysilyl group at both ends of the linear alkylene group, and is represented by the following general formula (Formula 1). An alkoxysilane compound is preferable.

上式において、Eはエポキシ基を含む官能基を、mは3〜20の整数を、Rは炭素数1〜4のアルキル基をそれぞれ表す。 In the above formula, E represents a functional group containing an epoxy group, m represents an integer of 3 to 20, and R represents an alkyl group having 1 to 4 carbon atoms.

エポキシ化シリコン微粒子11、11aの製造に用いることができるエポキシ基を有するアルコキシシラン化合物の一例としては、下記(11)〜(22)に示した化合物が挙げられる。 As an example of the alkoxysilane compound which has an epoxy group which can be used for manufacture of the epoxidized silicon fine particles 11 and 11a, the compounds shown in the following (11) to (22) may be mentioned.

(11) (CHOCH)CH2O(CH2)Si(OCH)3
(12) (CHOCH)CH2O(CH2)Si(OCH)3
(13) (CHOCH)CH2O(CH2)11Si(OCH)3
(14) (CHCHOCH(CH)CH(CH2)Si(OCH)3
(15) (CHCHOCH(CH)CH(CH2)Si(OCH)3
(16) (CHCHOCH(CH)CH(CH2)Si(OCH)3
(17) (CHOCH)CH2O(CH2)Si(OC)3
(18) (CHOCH)CH2O(CH2)Si(OC)3
(19) (CHOCH)CH2O(CH2)11Si(OC)3
(20) (CHCHOCH(CH)CH(CH2)Si(OC)3
(21) (CHCHOCH(CH)CH(CH2)Si(OC)3
(22) (CHCHOCH(CH)CH(CH2)Si(OC)3
(11) (CH 2 OCH) CH 2 O (CH 2 ) 3 Si (OCH 3 ) 3
(12) (CH 2 OCH) CH 2 O (CH 2 ) 7 Si (OCH 3 ) 3
(13) (CH 2 OCH) CH 2 O (CH 2 ) 11 Si (OCH 3 ) 3
(14) (CH 2 CHOCH (CH 2 ) 2 ) CH (CH 2 ) 2 Si (OCH 3 ) 3
(15) (CH 2 CHOCH (CH 2 ) 2 ) CH (CH 2 ) 4 Si (OCH 3 ) 3
(16) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 6 Si (OCH 3) 3
(17) (CH 2 OCH) CH 2 O (CH 2) 3 Si (OC 2 H 5) 3
(18) (CH 2 OCH) CH 2 O (CH 2) 7 Si (OC 2 H 5) 3
(19) (CH 2 OCH) CH 2 O (CH 2 ) 11 Si (OC 2 H 5 ) 3
(20) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 2 Si (OC 2 H 5) 3
(21) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 4 Si (OC 2 H 5) 3
(22) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 6 Si (OC 2 H 5) 3

ここで、(CHOCH)CHO−基は、化2で表される官能基(グリシジルオキシ基)を表し、(CHCHOCH(CH)CH−基は、化3で表される官能基(3,4−エポキシシクロヘキシル基)を表す。 Here, the (CH 2 OCH) CH 2 O— group represents a functional group (glycidyloxy group) represented by Chemical Formula 2 , and the (CH 2 CHOCH (CH 2 ) 2 ) CH— group is represented by Chemical Formula 3. Represents a functional group (3,4-epoxycyclohexyl group).

縮合触媒としては、カルボン酸金属塩、カルボン酸エステル金属塩、カルボン酸金属塩ポリマー、カルボン酸金属塩キレート、チタン酸エステルおよびチタン酸エステルキレート等の金属塩が利用可能である。この様な触媒を用いれば、エポキシ基を開環反応させることなく室温でアルコキシシリル基のみを反応させることが可能となる。
縮合触媒の添加量は、好ましくはアルコキシシラン化合物の0.2〜5質量%であり、より好ましくは0.5〜1質量%である。
As the condensation catalyst, metal salts such as carboxylic acid metal salts, carboxylic acid ester metal salts, carboxylic acid metal salt polymers, carboxylic acid metal salt chelates, titanate esters and titanate ester chelates can be used. By using such a catalyst, it is possible to react only an alkoxysilyl group at room temperature without causing a ring-opening reaction of the epoxy group.
The addition amount of the condensation catalyst is preferably 0.2 to 5% by mass of the alkoxysilane compound, and more preferably 0.5 to 1% by mass.

カルボン酸金属塩の具体例としては、酢酸第1スズ、ジブチルスズジラウレート、ジブチルスズジオクテート、ジブチルスズジアセテート、ジオクチルスズジラウレート、ジオクチルスズジオクテート、ジオクチルスズジアセテート、ジオクタン酸第1スズ、ナフテン酸鉛、ナフテン酸コバルト、2−エチルヘキセン酸鉄が挙げられる。 Specific examples of carboxylic acid metal salts include stannous acetate, dibutyltin dilaurate, dibutyltin dioctate, dibutyltin diacetate, dioctyltin dilaurate, dioctyltin dioctate, dioctyltin diacetate, stannous dioctanoate, naphthenic acid Lead, cobalt naphthenate, and iron 2-ethylhexenoate.

カルボン酸エステル金属塩の具体例としては、ジオクチルスズビスオクチリチオグリコール酸エステル塩、ジオクチルスズマレイン酸エステル塩が挙げられる。
カルボン酸金属塩ポリマーの具体例としては、ジブチルスズマレイン酸塩ポリマー、ジメチルスズメルカプトプロピオン酸塩ポリマーが挙げられる。
カルボン酸金属塩キレートの具体例としては、ジブチルスズビスアセチルアセテート、ジオクチルスズビスアセチルラウレートが挙げられる。
Specific examples of the carboxylic acid ester metal salt include dioctyltin bisoctylthioglycolate ester salt and dioctyltin maleate ester salt.
Specific examples of the carboxylic acid metal salt polymer include dibutyltin maleate polymer and dimethyltin mercaptopropionate polymer.
Specific examples of the carboxylic acid metal salt chelate include dibutyltin bisacetylacetate and dioctyltin bisacetyllaurate.

チタン酸エステルの具体例としては、テトラブチルチタネート、テトラノニルチタネートが挙げられる。
チタン酸エステルキレート類の具体例としては、ビス(アセチルアセトニル)ジ−プロピルチタネートが挙げられる。
Specific examples of the titanate ester include tetrabutyl titanate and tetranonyl titanate.
Specific examples of titanate chelates include bis (acetylacetonyl) dipropyl titanate.

シリコン微粒子混合物を反応液中に浸漬し、室温の空気中で反応させると、アルコキシシリル基とシリコン微粒子の表面のヒドロキシル基15とが縮合反応を起こし、下記の化4で示されるような構造を有するエポキシ基を有するアルコキシシラン化合物の単分子膜16を生成する。なお、酸素原子から延びた3本の単結合はシリコン微粒子の表面または隣接するシラン化合物のケイ素(Si)原子と結合しており、そのうち少なくとも1本はシリコン微粒子の表面のケイ素原子と結合している。 When the silicon fine particle mixture is immersed in the reaction solution and reacted in air at room temperature, the alkoxysilyl group and the hydroxyl group 15 on the surface of the silicon fine particle undergo a condensation reaction, resulting in a structure as shown in Chemical Formula 4 below. A monomolecular film 16 of an alkoxysilane compound having an epoxy group is generated. The three single bonds extending from the oxygen atom are bonded to the surface of the silicon fine particle or the silicon (Si) atom of the adjacent silane compound, and at least one of them is bonded to the silicon atom on the surface of the silicon fine particle. Yes.

アルコキシシリル基は、水分の存在下で分解するので、反応は相対湿度45%以下の空気中で行うことが好ましい。縮合触媒として上述の金属塩のいずれかを用いた場合、縮合反応の完了までに要する時間は2時間程度である。 Since the alkoxysilyl group decomposes in the presence of moisture, the reaction is preferably performed in air with a relative humidity of 45% or less. When any of the above metal salts is used as the condensation catalyst, the time required for completion of the condensation reaction is about 2 hours.

上述の金属塩の代わりに、ケチミン化合物、有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物からなる群より選択される1または2以上の化合物を縮合触媒として用いた場合、反応時間を1/2〜2/3程度まで短縮できる。 When one or more compounds selected from the group consisting of ketimine compounds, organic acids, aldimine compounds, enamine compounds, oxazolidine compounds, and aminoalkylalkoxysilane compounds are used as the condensation catalyst instead of the above metal salts, Time can be shortened to about 1/2 to 2/3.

あるいは、これらの化合物を助触媒として、上述の金属塩と混合(質量比1:9〜9:1の範囲で使用可能だが、1:1前後が好ましい)して用いると、反応時間をさらに短縮できる。 Alternatively, when these compounds are used as a co-catalyst and mixed with the above-described metal salt (mass ratio 1: 9 to 9: 1 can be used, preferably around 1: 1), the reaction time is further shortened. it can.

例えば、縮合触媒として、ジブチルスズオキサイドの代わりにケチミン化合物であるジャパンエポキシレジン社のH3を用い、その他の条件は同一にしてエポキシ化シリコン微粒子11、11aの製造を行うと、エポキシ化シリコン微粒子11、11aの品質を損なうことなく反応時間を1時間程度にまで短縮できる。 For example, when the epoxidized silicon fine particles 11 and 11a are produced by using H3 of Japan Epoxy Resin Co., which is a ketimine compound instead of dibutyltin oxide as the condensation catalyst, and other conditions are the same, the epoxidized silicon fine particles 11, The reaction time can be shortened to about 1 hour without impairing the quality of 11a.

さらに、縮合触媒として、ジャパンエポキシレジン社のH3とジブチルスズビスアセチルアセトネートとの混合物(混合比は1:1)を用い、その他の条件は同一にしてエポキシ化シリコン微粒子11、11aの製造を行うと、反応時間を20分程度に短縮できる。 Further, as a condensation catalyst, a mixture of H3 and dibutyltin bisacetylacetonate (Japan 1: 1) is used as a condensation catalyst, and the other conditions are the same, and the epoxidized silicon fine particles 11 and 11a are produced. The reaction time can be shortened to about 20 minutes.

なお、ここで用いることができるケチミン化合物は特に限定されるものではないが、例えば、2,5,8−トリアザ−1,8−ノナジエン、3,11−ジメチル−4,7,10−トリアザ−3,10−トリデカジエン、2,10−ジメチル−3,6,9−トリアザ−2,9−ウンデカジエン、2,4,12,14−テトラメチル−5,8,11−トリアザ−4,11−ペンタデカジエン、2,4,15,17−テトラメチル−5,8,11,14−テトラアザ−4,14−オクタデカジエン、2,4,20,22−テトラメチル−5,12,19−トリアザ−4,19−トリエイコサジエン等が挙げられる。 The ketimine compound that can be used here is not particularly limited, and examples thereof include 2,5,8-triaza-1,8-nonadiene, 3,11-dimethyl-4,7,10-triaza- 3,10-tridecadiene, 2,10-dimethyl-3,6,9-triaza-2,9-undecadiene, 2,4,12,14-tetramethyl-5,8,11-triaza-4,11-penta Decadiene, 2,4,15,17-tetramethyl-5,8,11,14-tetraaza-4,14-octadecadiene, 2,4,20,22-tetramethyl-5,12,19-triaza -4,19-trieicosadiene and the like.

また、用いることができる有機酸としても特に限定されるものではないが、例えば、ギ酸、酢酸、プロピオン酸、酪酸、マロン酸等が挙げられるが、この場合、濃度が高いと室温でもエポキシ基が開環してしまうので、添加量は、アルコキシシラン化合物の0.2〜0.5%が好ましい。 Further, the organic acid that can be used is not particularly limited, and examples thereof include formic acid, acetic acid, propionic acid, butyric acid, malonic acid, and the like. Since the ring is opened, the addition amount is preferably 0.2 to 0.5% of the alkoxysilane compound.

反応液の調製には、有機塩素系溶媒、炭化水素系溶媒、フッ化炭素系溶媒、シリコーン系溶媒、およびこれらの混合溶媒を用いることができる。アルコキシシラン化合物の加水分解を防止するために、乾燥剤または蒸留により使用する溶媒から水分を除去しておくことが好ましい。また、溶媒の沸点は50〜250℃であることが好ましい。 For the preparation of the reaction solution, an organic chlorine solvent, a hydrocarbon solvent, a fluorocarbon solvent, a silicone solvent, and a mixed solvent thereof can be used. In order to prevent hydrolysis of the alkoxysilane compound, it is preferable to remove water from the desiccant or the solvent used by distillation. Moreover, it is preferable that the boiling point of a solvent is 50-250 degreeC.

具体的に使用可能な溶媒としては、非水系の石油ナフサ、ソルベントナフサ、石油エーテル、石油ベンジン、イソパラフィン、ノルマルパラフィン、デカリン、工業ガソリン、ノナン、デカン、灯油、ジメチルシリコーン、フェニルシリコーン、アルキル変性シリコーン、ポリエーテルシリコーン、ジメチルホルムアミド等を挙げることができる。
さらに、メタノール、エタノール、プロパノール等のアルコール系溶媒、あるいはそれらの混合物を用いることもできる。
Specific usable solvents include non-aqueous petroleum naphtha, solvent naphtha, petroleum ether, petroleum benzine, isoparaffin, normal paraffin, decalin, industrial gasoline, nonane, decane, kerosene, dimethyl silicone, phenyl silicone, and alkyl-modified silicone. , Polyether silicone, dimethylformamide and the like.
Furthermore, alcohol solvents such as methanol, ethanol, propanol, or a mixture thereof can also be used.

また、用いることができるフッ化炭素系溶媒としては、フロン系溶媒、フロリナート(米国3M社製)、アフルード(旭硝子株式会社製)等がある。なお、これらは1種単独で用いても良いし、良く混ざるものなら2種以上を組み合わせてもよい。さらに、ジクロロメタン、クロロホルム等の有機塩素系溶媒を添加してもよい。 Fluorocarbon solvents that can be used include fluorocarbon solvents, Fluorinert (manufactured by 3M, USA), Afludo (manufactured by Asahi Glass Co., Ltd.), and the like. In addition, these may be used individually by 1 type and may mix 2 or more types as long as it mixes well. Furthermore, an organic chlorine solvent such as dichloromethane or chloroform may be added.

反応液におけるアルコキシシラン化合物の好ましい濃度は、0.5〜3質量%である。 The preferable density | concentration of the alkoxysilane compound in a reaction liquid is 0.5-3 mass%.

反応後、溶媒で洗浄し、未反応物として表面に残った過剰なアルコキシシラン化合物および縮合触媒を除去すると、エポキシ基を有するアルコキシシラン化合物の単分子膜16で表面が覆われたエポキシ化シリコン微粒子11、11aが得られる。洗浄には、連続処理およびバッチ処理のいずれの方法を用いてもよい。洗浄溶媒とエポキシ化シリコン微粒子11、11aとの分離は、ろ過、デカンテーション、および遠心分離等の任意の公知の方法を用いて行うことができる。このようにして製造されるエポキシ化シリコン微粒子11、11aの断面構造の模式図を図2(b)に示す。 After the reaction, the surface is covered with a monomolecular film 16 of an alkoxysilane compound having an epoxy group by washing with a solvent and removing excess alkoxysilane compound and condensation catalyst remaining on the surface as unreacted substances. 11 and 11a are obtained. Either continuous processing or batch processing may be used for cleaning. Separation of the cleaning solvent from the epoxidized silicon fine particles 11 and 11a can be performed using any known method such as filtration, decantation, and centrifugation. A schematic view of the cross-sectional structure of the epoxidized silicon fine particles 11 and 11a produced in this way is shown in FIG.

洗浄溶媒としては、アルコキシシラン化合物を溶解できる任意の溶媒を用いることができるが、安価であり、溶解性が高く、風乾により容易に除去することのできるジクロロメタン、クロロホルム、N−メチルピロリドン等が好ましい。 As the cleaning solvent, any solvent that can dissolve the alkoxysilane compound can be used, but dichloromethane, chloroform, N-methylpyrrolidone, etc. that are inexpensive, have high solubility, and can be easily removed by air drying are preferable. .

反応後、生成したエポキシ化シリコン微粒子11、11aを溶媒で洗浄せずに空気中に放置すると、表面に残ったアルコキシシラン化合物の一部が空気中の水分により加水分解を受け、生成したシラノール基がアルコキシシリル基と縮合反応を起こす。その結果、エポキシ化シリコン微粒子11、11aの表面にポリシロキサンよりなる極薄のポリマー膜が形成される。このポリマー膜は、エポキシ化シリコン微粒子11、11aの表面に共有結合により固定されていないが、エポキシ基を含んでいるため、アミノ基に対してエポキシ基を有するアルコキシシラン化合物の単分子膜16と同様の反応性を有している。そのため、洗浄を行わなくても、以後のn型シリコン微粒子膜10の製造工程に特に支障をきたすことはない。 After the reaction, when the produced epoxidized silicon fine particles 11 and 11a are left in the air without being washed with a solvent, a part of the alkoxysilane compound remaining on the surface is hydrolyzed by moisture in the air, and the produced silanol group Causes a condensation reaction with an alkoxysilyl group. As a result, an ultrathin polymer film made of polysiloxane is formed on the surfaces of the epoxidized silicon fine particles 11 and 11a. Although this polymer film is not fixed to the surface of the epoxidized silicon fine particles 11 and 11a by a covalent bond, it contains an epoxy group. Therefore, the polymer film has a monomolecular film 16 of an alkoxysilane compound having an epoxy group with respect to an amino group. Similar reactivity. For this reason, even if the cleaning is not performed, the subsequent manufacturing process of the n-type silicon fine particle film 10 is not particularly hindered.

[2]アミノ化シリコン微粒子混合物の製造
アミノ化シリコン微粒子混合物は、アルコキシシラン化合物として、直鎖状アルキレン基の両末端に、アミノ基およびアルコキシシリル基をそれぞれ有し、下記の一般式(化5)で表されるアルコキシシラン化合物を用いること以外は、上述のエポキシ化シリコン微粒子混合物と同様に製造することができる。
[2] Production of Aminated Silicon Fine Particle Mixture The aminated silicon fine particle mixture has an amino group and an alkoxysilyl group at both ends of a linear alkylene group as an alkoxysilane compound, respectively. It can be produced in the same manner as the above-mentioned epoxidized silicon fine particle mixture except that an alkoxysilane compound represented by

上式において、mは3〜20の整数を、Rは炭素数1〜4のアルキル基をそれぞれ表す。なお、エポキシ基は、アルコキシシリル基との副反応を避けるために、保護基によって保護されていてもよい。保護基は加水分解等により容易に除去できるものが好ましく、ケトンとアミノ基との反応により生成するケチミン誘導体等が挙げられる。
また、アミノ基は、化5に示したような1級アミン以外に2級アミンでもよく、アミノ基の代わりにピロール基、イミダゾール基等のイミノ基を有する官能基を含むアルコキシシラン化合物を用いることができる。
この場合において、用いることができるアミノ基を有するアルコキシシラン化合物の一例としては、下記(31)〜(38)に示した化合物が挙げられる。
In the above formula, m represents an integer of 3 to 20, and R represents an alkyl group having 1 to 4 carbon atoms. The epoxy group may be protected with a protecting group in order to avoid side reactions with the alkoxysilyl group. The protecting group is preferably one that can be easily removed by hydrolysis or the like, and examples thereof include a ketimine derivative produced by the reaction between a ketone and an amino group.
The amino group may be a secondary amine other than the primary amine shown in Chemical Formula 5, and an alkoxysilane compound containing a functional group having an imino group such as a pyrrole group or an imidazole group may be used instead of the amino group. Can do.
In this case, examples of the alkoxysilane compound having an amino group that can be used include the compounds shown in the following (31) to (38).

(31) H2N(CH2)Si(OCH)3
(32) H2N(CH2)Si(OCH)3
(33) H2N(CH2)Si(OCH)3
(34) H2N(CH2)Si(OCH)3
(35) H2N(CH2)Si(OC)3
(36) H2N(CH2)Si(OC)3
(37) H2N(CH2)Si(OC)3
(38) H2N(CH2)Si(OC)3
(31) H 2 N (CH 2 ) 3 Si (OCH 3 ) 3
(32) H 2 N (CH 2 ) 5 Si (OCH 3 ) 3
(33) H 2 N (CH 2 ) 7 Si (OCH 3 ) 3
(34) H 2 N (CH 2 ) 9 Si (OCH 3 ) 3
(35) H 2 N (CH 2 ) 5 Si (OC 2 H 5 ) 3
(36) H 2 N (CH 2 ) 5 Si (OC 2 H 5 ) 3
(37) H 2 N (CH 2) 7 Si (OC 2 H 5) 3
(38) H 2 N (CH 2 ) 9 Si (OC 2 H 5 ) 3

縮合触媒のうち、スズ(Sn)塩を含む化合物は、アルコキシシラン誘導体に含まれるアミノ基と反応して沈殿を生成するため、縮合触媒として用いることができない。したがって、アミノ基を有するアルコキシシラン化合物を用いる場合には、カルボン酸スズ塩、カルボン酸エステルスズ塩、カルボン酸スズ塩ポリマー、カルボン酸スズ塩キレートを除き、反応液と同様の化合物を単独でまたは2種類以上を混合して縮合触媒として用いることができる。 Among condensation catalysts, a compound containing a tin (Sn) salt reacts with an amino group contained in an alkoxysilane derivative to generate a precipitate, and thus cannot be used as a condensation catalyst. Therefore, when using an alkoxysilane compound having an amino group, except for a carboxylic acid tin salt, a carboxylic acid ester tin salt, a carboxylic acid tin salt polymer, and a carboxylic acid tin salt chelate, a compound similar to the reaction solution alone or Two or more types can be mixed and used as a condensation catalyst.

用いることのできる助触媒の種類およびそれらの組み合わせ、溶媒の種類、アルコキシシラン化合物、縮合触媒、および助触媒の濃度、反応条件ならびに反応時間についてはエポキシ化シリコン微粒子11、11aの製造の場合と同様であるので、ここでは詳しい説明を省略する。 The types of cocatalysts that can be used and combinations thereof, the types of solvents, alkoxysilane compounds, condensation catalysts, and cocatalyst concentrations, reaction conditions, and reaction times are the same as in the production of the epoxidized silicon fine particles 11 and 11a. Therefore, detailed description is omitted here.

[3]反応性基材の製造
エポキシ化シリコン微粒子混合物およびアミノ化シリコン微粒子混合物の製造において用いたアルコキシシラン化合物と同様の、エポキシ基またはアミノ基を有するアルコキシシラン化合物を基材の表面に接触させ、アルコキシシラン化合物の単分子膜で表面が覆われた反応性基材13を製造する。
[3] Production of Reactive Substrate An alkoxysilane compound having an epoxy group or an amino group, which is the same as the alkoxysilane compound used in the production of the epoxidized silicon fine particle mixture and aminated silicon fine particle mixture, is brought into contact with the surface of the substrate. Then, a reactive substrate 13 whose surface is covered with a monomolecular film of an alkoxysilane compound is manufactured.

基材の大きさ、形状及び厚さには特に制限はなく、表面官能基として、アルコキシシリル基と反応して共有結合を形成しうる官能基を有していれば、任意の材質のものを用いることができる。太陽電池、光センサー等の光電変換素子に使用される基材としては、ガラス等の透光性を有する透明基材であってもよく、透明電極としてITO等の導電性被膜が表面に形成されていてもよい。アルミニウム等の金属、ポリカーボネート等の合成樹脂を用いることもできる。 There are no particular restrictions on the size, shape, and thickness of the substrate, and any surface functional group can be used as long as it has a functional group that can react with an alkoxysilyl group to form a covalent bond. Can be used. As a base material used for photoelectric conversion elements such as solar cells and photosensors, a transparent base material having translucency such as glass may be used, and a conductive film such as ITO is formed on the surface as a transparent electrode. It may be. A metal such as aluminum or a synthetic resin such as polycarbonate can also be used.

基材材料の表面に水酸基、アミノ基等の活性水素基を有する場合には、ガラスの場合と同様に、第2の膜化合物としてアルコキシシラン化合物を用いることができる。この様な基材の具体例としては、アルミニウム等の金属、セラミックス等が挙げられる。
基材材料として合成樹脂を用いる場合には、プラズマ処理等により活性水素基を有する化合物をグラフトする等の処理を行うことにより、アルコキシシラン化合物を用いることができる場合がある。
When the surface of the base material has an active hydrogen group such as a hydroxyl group or an amino group, an alkoxysilane compound can be used as the second film compound as in the case of glass. Specific examples of such a substrate include metals such as aluminum, ceramics, and the like.
When a synthetic resin is used as the base material, an alkoxysilane compound may be used by performing a treatment such as grafting a compound having an active hydrogen group by plasma treatment or the like.

反応性基材13の製造に用いることのできるアルコキシシラン化合物の種類、縮合触媒、助触媒の種類及びそれらの組み合わせ、溶媒の種類、アルコキシシラン化合物、縮合触媒、及び助触媒の濃度、反応条件並びに反応時間についてはエポキシ化シリコン微粒子混合物の製造の場合と同様であるので、説明を省略する。なお、エポキシ化シリコン微粒子11、11aおよびアミノ化シリコン微粒子12、12aの両者と反応可能なように、エポキシ基を有するアルコキシシラン化合物とアミノ基を有するアルコキシシラン化合物とを混合して用い、両者の混合単分子膜を形成するようにしてもよい。 Types of alkoxysilane compounds, condensation catalysts, types of cocatalysts and combinations thereof that can be used for the production of the reactive substrate 13, types of solvents, concentrations of alkoxysilane compounds, condensation catalysts, and cocatalysts, reaction conditions, and Since the reaction time is the same as in the case of producing the epoxidized silicon fine particle mixture, the description thereof is omitted. In addition, an alkoxysilane compound having an epoxy group and an alkoxysilane compound having an amino group are mixed and used so as to be able to react with both the epoxidized silicon fine particles 11 and 11a and the aminated silicon fine particles 12 and 12a. A mixed monomolecular film may be formed.

反応後、溶媒で洗浄し、未反応物として表面に残った過剰なアルコキシシラン化合物及び縮合触媒を除去すると、アルコキシシラン化合物の単分子膜で表面が覆われた反応性基材13が得られる。洗浄溶媒としては、エポキシ化シリコン微粒子混合物の製造の場合と同様の洗浄溶媒を用いることができる。 After the reaction, the substrate is washed with a solvent, and the excess alkoxysilane compound and the condensation catalyst remaining on the surface as unreacted substances are removed to obtain the reactive substrate 13 whose surface is covered with a monomolecular film of the alkoxysilane compound. As the cleaning solvent, the same cleaning solvent as in the production of the epoxidized silicon fine particle mixture can be used.

反応後、生成した反応性基材13を溶媒で洗浄せずに空気中に放置すると、表面に残ったアルコキシシラン化合物の一部が空気中の水分により加水分解を受け、生成したシラノール基がアルコキシシリル基と縮合反応を起こす。その結果、反応性基材13の表面にポリシロキサンよりなる極薄のポリマー膜が形成される。このポリマー膜は、反応性基材13の表面に共有結合により固定されていないが、エポキシ基またはアミノ基を含んでいるため、洗浄を行わなくても、以下の製造工程に特に支障をきたすことはない。 After the reaction, when the generated reactive base material 13 is left in the air without washing with a solvent, a part of the alkoxysilane compound remaining on the surface is hydrolyzed by moisture in the air, and the generated silanol group is converted to alkoxy. Causes a condensation reaction with a silyl group. As a result, an ultrathin polymer film made of polysiloxane is formed on the surface of the reactive substrate 13. Although this polymer film is not fixed to the surface of the reactive substrate 13 by a covalent bond, it contains an epoxy group or an amino group, so that the following manufacturing process is particularly hindered without cleaning. There is no.

[4]ペーストの製造
上記[1]および[2]の工程においてそれぞれ製造したエポキシ化シリコン微粒子混合物とアミノ化シリコン微粒子混合物とを有機溶媒中で混合してペーストを製造する。ペーストの製造に用いる溶媒の量は、シリコン微粒子の粒径、製造するn型シリコン微粒子膜10の膜厚等によって適宜定められるため一義的に決定することは困難であるが、得られるペーストの粘度が5〜300Pa・sとなる程度の量が好ましく、より具体的にはシリコン微粒子の10〜50重量%である。エポキシ化シリコン微粒子混合物、アミノ化シリコン微粒子混合物、および溶媒の混合は、撹拌ばね、ハンドミキサー等の任意の手段により行うことができる。
[4] Production of paste A paste is produced by mixing the epoxidized silicon fine particle mixture and the aminated silicon fine particle mixture produced in the steps [1] and [2], respectively, in an organic solvent. The amount of the solvent used for the production of the paste is appropriately determined depending on the particle size of the silicon fine particles, the film thickness of the n-type silicon fine particle film 10 to be produced, etc. Is preferably about 5 to 300 Pa · s, more specifically 10 to 50% by weight of the silicon fine particles. The epoxidized silicon fine particle mixture, the aminated silicon fine particle mixture, and the solvent can be mixed by any means such as a stirring spring and a hand mixer.

[5]ペーストの塗布
反応性基材13の表面へのペーストの塗布には、インクジェット法、ドクターブレード法、スピンコート法、スプレー法等の任意の方法により行うことができる。形成される塗膜の膜厚は、ペーストの粘度、溶媒含量、原料として用いたシリコン微粒子の粒径、塗布回数等によって適宜制御することができる。
[5] Application of paste The paste can be applied to the surface of the reactive substrate 13 by any method such as an ink jet method, a doctor blade method, a spin coating method, or a spray method. The film thickness of the coating film to be formed can be appropriately controlled by the viscosity of the paste, the solvent content, the particle size of the silicon fine particles used as a raw material, the number of coatings, and the like.

[6]塗膜の硬化
次いで塗膜を加熱し、シリコン微粒子及び反応性基材13上のエポキシ基とアミノ基との結合形成により塗膜を硬化させ、n型シリコン微粒子膜10を製造する。
加熱温度は、50〜200℃が好ましい。加熱温度が50℃未満だと、架橋反応の進行に長時間を要し、200℃を上回ると、塗膜の表面で架橋反応が迅速に進行することにより、閉じ込められた溶媒が揮発しにくくなり、均一なn型シリコン微粒子膜10が得られない。
[6] Curing of coating film Next, the coating film is heated, and the coating film is cured by bond formation between epoxy groups and amino groups on the silicon microparticles and the reactive substrate 13 to produce the n-type silicon microparticle film 10.
The heating temperature is preferably 50 to 200 ° C. If the heating temperature is less than 50 ° C, it takes a long time for the crosslinking reaction to proceed. If the heating temperature exceeds 200 ° C, the crosslinking reaction proceeds rapidly on the surface of the coating film, and the confined solvent is less likely to volatilize. The uniform n-type silicon fine particle film 10 cannot be obtained.

なお、本実施の形態においては反応性基材13を用いたが、アルコキシシラン化合物の単分子膜を形成してない基材を直接用いてもよい。 Although the reactive base material 13 is used in the present embodiment, a base material on which no monomolecular film of an alkoxysilane compound is formed may be used directly.

分子架橋の形成に利用される結合は、共有結合、イオン結合、配位結合、及び分子間力による結合のいずれであってもよいが、形成されるn型シリコン微粒子膜10の強度及びペーストや塗膜の形成の容易さ等を考慮すると、塗膜の形成後に、加熱又は光等のエネルギー線の照射により形成される共有結合が好ましい。
加熱により形成される共有結合の具体例としては、エポキシ基とアミノ基又はイミノ基との反応により形成されるN−CHCH(OH)結合以外に、イソシアネート基とアミノ基との反応により形成されるNH−CONH結合等であってもよい。
The bond used for forming the molecular bridge may be any of a covalent bond, an ionic bond, a coordinate bond, and a bond due to intermolecular force. However, the strength and paste of the formed n-type silicon fine particle film 10 In consideration of the ease of forming the coating film, a covalent bond formed by heating or irradiation with energy rays such as light is preferable after the coating film is formed.
As a specific example of the covalent bond formed by heating, in addition to the N—CH 2 CH (OH) bond formed by a reaction between an epoxy group and an amino group or an imino group, it is formed by a reaction between an isocyanate group and an amino group. NH-CONH bond may be used.

光照射により形成される共有結合の具体例としては、シンナモイル基またはカルコニル基の光二量化反応により形成される共有結合が挙げられる。 Specific examples of the covalent bond formed by light irradiation include a covalent bond formed by a photodimerization reaction of a cinnamoyl group or a chalconyl group.

次に、本発明の第二の実施の形態に係る半導体微粒子膜について説明する。
図3に示すように、本発明の第二の実施の形態に係るn型シリコン微粒子膜20は、分子の一端にエポキシ基(第4の反応性の官能基の一例)を有するアルコキシシラン化合物(第4の膜化合物の一例)の形成する単分子膜(第4の被膜の一例)で表面の少なくとも一部が被覆されたエポキシ化純シリコン微粒子31とエポキシ化n型シリコン微粒子31aとの混合物(第4の反応性シリコン微粒子混合物の一例)と、2−メチルイミダゾール(第2の架橋剤の一例)とを含み、エポキシ化シリコン微粒子31、31aが、エポキシ基と、2−メチルイミダゾールのアミノ基およびイミノ基(架橋反応基の一例)との反応により形成された結合を介して成形および硬化している。
Next, a semiconductor fine particle film according to a second embodiment of the present invention will be described.
As shown in FIG. 3, the n-type silicon fine particle film 20 according to the second embodiment of the present invention includes an alkoxysilane compound having an epoxy group (an example of a fourth reactive functional group) at one end of the molecule ( A mixture of epoxidized pure silicon fine particles 31 and epoxidized n-type silicon fine particles 31a (at least part of the surface of which is coated with a monomolecular film (an example of a fourth film) formed by an example of a fourth film compound) An example of a fourth reactive silicon fine particle mixture) and 2-methylimidazole (an example of a second cross-linking agent), and the epoxidized silicon fine particles 31 and 31a include an epoxy group and an amino group of 2-methylimidazole. And is formed and cured via a bond formed by reaction with an imino group (an example of a crosslinking reactive group).

n型シリコン微粒子膜20は、下記の工程[1]〜[5]を含む方法により製造される。
[1]エポキシ基を有するアルコキシシラン化合物(第4の膜化合物の一例)を、シリコン微粒子混合物と接触させ、アルコキシシリル基とシリコン微粒子表面のヒドロキシル基との間でSi−O−結合を形成させ、エポキシ基を有するアルコキシシラン化合物の単分子膜で表面の少なくとも一部が覆われたエポキシ化純シリコン微粒子21とエポキシ化n型シリコン微粒子21aの混合物(第4の反応性シリコン微粒子混合物の一例:以下「エポキシ化シリコン微粒子混合物」と略称する場合がある。)を製造する工程
[2]エポキシ化シリコン微粒子混合物と、2−メチルイミダゾールとを有機溶媒中で混合してペーストを製造する工程
[3]基材表面に、エポキシ基を有するアルコキシシラン化合物(第4の膜化合物の一例)を接触させ、アルコキシシリル基と基材の表面官能基との間でSi−O−結合を形成させ、エポキシ基を有するアルコキシシラン化合物の単分子膜(第4の被膜の一例)で表面の少なくとも一部が覆われた反応性基材23を製造する工程
[4]エポキシ化シリコン微粒子混合物と、2−メチルイミダゾールとを含むペーストを反応性基材23表面に塗布する工程
[5]エポキシ基とアミノ基またはイミノ基(架橋反応基の一例)との反応によりN−CHCH(OH)結合を形成させ、ペーストの塗膜を硬化させる工程
The n-type silicon fine particle film 20 is manufactured by a method including the following steps [1] to [5].
[1] An alkoxysilane compound having an epoxy group (an example of a fourth film compound) is brought into contact with a silicon fine particle mixture to form a Si—O— bond between the alkoxysilyl group and the hydroxyl group on the surface of the silicon fine particle. , A mixture of epoxidized pure silicon fine particles 21 and epoxidized n-type silicon fine particles 21a, the surface of which is at least partially covered with a monomolecular film of an alkoxysilane compound having an epoxy group (an example of a fourth reactive silicon fine particle mixture: Hereinafter, the step [2] of producing a paste by mixing the epoxidized silicon fine particle mixture and 2-methylimidazole in an organic solvent [3]. ] An alkoxysilane compound having an epoxy group (an example of a fourth film compound) is brought into contact with the substrate surface. , A Si—O— bond is formed between the alkoxysilyl group and the surface functional group of the base material, and at least a part of the surface is a monomolecular film (an example of the fourth film) of an alkoxysilane compound having an epoxy group. Step [4] for manufacturing the coated reactive base material 23 [4] Step for applying a paste containing the epoxidized silicon fine particle mixture and 2-methylimidazole to the surface of the reactive base material [5] Epoxy group and amino group or A process of forming a N—CH 2 CH (OH) bond by reaction with an imino group (an example of a crosslinking reactive group) and curing a coating film of a paste.

以下、各工程についてより詳細に説明する。
[1]エポキシ化シリコン微粒子の製造
エポキシ化シリコン微粒子21の製造については、本発明の第一の実施の形態に係るn型シリコン微粒子膜10の製造におけるエポキシ化シリコン微粒子11、11aの製造の場合と同様であるので、詳しい説明を省略する。
Hereinafter, each process will be described in more detail.
[1] Production of Epoxidized Silicon Fine Particles As for the production of the epoxidized silicon fine particles 21, the epoxidized silicon fine particles 11 and 11a are produced in the production of the n-type silicon fine particle film 10 according to the first embodiment of the present invention. Detailed description is omitted.

[2]ペーストの製造
上述のように製造したエポキシ化シリコン微粒子混合物と、2−メチルイミダゾールとを有機溶媒中で混合し、ペーストを製造する。2−メチルイミダゾールはエポキシ基と反応するアミノ基(>NH)およびイミノ基(=N−)を、それぞれ1−位および3−位に有しており、下記の化6に示すような架橋反応により化学結合を形成する。
[2] Production of Paste The epoxidized silicon fine particle mixture produced as described above and 2-methylimidazole are mixed in an organic solvent to produce a paste. 2-methylimidazole has an amino group (> NH) and an imino group (= N-) which react with an epoxy group at the 1-position and 3-position, respectively, and a crosslinking reaction as shown in the following chemical formula 6 To form a chemical bond.

2−メチルイミダゾールの添加量は、シリコン微粒子の大きさに依存して制御する必要があるが、エポキシ化シリコン微粒子混合物の0.5〜15重量%が好ましい。2−メチルイミダゾールの添加量がエポキシ化シリコン微粒子混合物の表面のエポキシ基の数に比べて極端に少なくなると、得られるn型シリコン微粒子膜20の機械的強度が低くなり、同等以上になると、架橋反応に必要な2−メチルイミダゾールの必要を超えることとなるので経済的でない。 The addition amount of 2-methylimidazole needs to be controlled depending on the size of the silicon fine particles, but is preferably 0.5 to 15% by weight of the epoxidized silicon fine particle mixture. If the amount of 2-methylimidazole added is extremely small compared to the number of epoxy groups on the surface of the epoxidized silicon fine particle mixture, the mechanical strength of the resulting n-type silicon fine particle film 20 will be low. Since it exceeds the requirement of 2-methylimidazole required for the reaction, it is not economical.

ペーストの製造に用いる有機溶媒の種類および量、撹拌の方法等については、本発明の第一の実施の形態に係るn型シリコン微粒子膜10の製造におけるエポキシ化シリコン微粒子11、11aを含むペーストの製造の場合と同様であるので、詳しい説明を省略する。 Regarding the type and amount of the organic solvent used in the manufacture of the paste, the stirring method, etc., the paste containing the epoxidized silicon fine particles 11 and 11a in the production of the n-type silicon fine particle film 10 according to the first embodiment of the present invention is used. Since it is the same as in the case of manufacturing, detailed description is omitted.

本実施の形態においては、架橋剤として2−メチルイミダゾールを用いたが、下記化7で表される任意のイミダゾール誘導体を用いることができる。あるいは、イミダゾール−金属錯体やトリアゾールを用いてもよい。 In the present embodiment, 2-methylimidazole is used as a crosslinking agent, but any imidazole derivative represented by the following chemical formula 7 can be used. Alternatively, an imidazole-metal complex or triazole may be used.

化7で表されるイミダゾール誘導体の具体例としては、下記(41)〜(48)に示すものが挙げられる。
(41) 2−メチルイミダゾール(R=Me、R=R=H)
(42) 2−ウンデシルイミダゾール(R=C1123、R=R=H)
(43) 2−ペンタデシルイミダゾール(R=C1531、R=R=H)
(44) 2−メチル−4−エチルイミダゾール(R=Me、R=Et、R=H)
(45) 2−フェニルイミダゾール(R=Ph、R=R=H)
(46) 2−フェニル−4−エチルイミダゾール(R=Ph、R=Et、R=H)
(47) 2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール(R=Ph、R=Me、R=CHOH)
(48) 2−フェニル−4,5−ビス(ヒドロキシメチル)イミダゾール(R=Ph、R=R=CHOH)
なお、Me、Et、およびPhは、それぞれメチル基、エチル基、およびフェニル基を表す。
Specific examples of the imidazole derivative represented by Chemical formula 7 include those shown in the following (41) to (48).
(41) 2-methylimidazole (R 2 = Me, R 4 = R 5 = H)
(42) 2-undecyl imidazole (R 2 = C 11 H 23 , R 4 = R 5 = H)
(43) 2-pentadecyl-imidazole (R 2 = C 15 H 31 , R 4 = R 5 = H)
(44) 2-methyl-4-ethylimidazole (R 2 = Me, R 4 = Et, R 5 = H)
(45) 2-Phenylimidazole (R 2 = Ph, R 4 = R 5 = H)
(46) 2-phenyl-4-ethylimidazole (R 2 = Ph, R 4 = Et, R 5 = H)
(47) 2-phenyl-4-methyl-5-hydroxymethylimidazole (R 2 = Ph, R 4 = Me, R 5 = CH 2 OH)
(48) 2-Phenyl-4,5-bis (hydroxymethyl) imidazole (R 2 = Ph, R 4 = R 5 = CH 2 OH)
Me, Et, and Ph represent a methyl group, an ethyl group, and a phenyl group, respectively.

また、エポキシ樹脂の硬化剤として用いられる無水フタル酸、無水マレイン酸等の酸無水物、ジシアンジアミド、ノボラック等のフェノール誘導体、トリアゾール等の化合物を第2の架橋剤として用いてもよい。この場合、架橋反応を促進するためにイミダゾール誘導体を触媒として用いてもよい。 Further, acid anhydrides such as phthalic anhydride and maleic anhydride used as a curing agent for epoxy resins, phenol derivatives such as dicyandiamide and novolac, and compounds such as triazole may be used as the second crosslinking agent. In this case, an imidazole derivative may be used as a catalyst in order to accelerate the crosslinking reaction.

なお、本実施の形態においてはエポキシ基を有する膜化合物を用いた場合について説明しているが、アミノ基またはイミノ基を有する膜化合物を用いる場合には、架橋反応基として2もしくは3以上のエポキシ基または2もしくは3以上のイソシアネート基を有するカップリング剤を用いる。イソシアネート基を有する化合物の具体例としては、ヘキサメチレン−1,6−ジイソシアネート、トルエン−2,6−ジイソシアネート、トルエン−2,4−ジイソシアネート等が挙げられる。
これらのジイソシアネート化合物の添加量は、2−メチルイミダゾールの場合と同様、エポキシ化シリコン微粒子の5〜15重量%が好ましい。この場合、膜前駆体の製造に用いることのできる溶媒としては、キシレン等の芳香族有機溶媒が挙げられる。
また、架橋剤としては、エチレングリコールジグリシジルエーテル等の2または3以上のエポキシ基を有する化合物を用いることもできる。
In this embodiment, the case of using a film compound having an epoxy group is described. However, in the case of using a film compound having an amino group or an imino group, 2 or 3 or more epoxy groups are used as a cross-linking reactive group. Or a coupling agent having two or more isocyanate groups. Specific examples of the compound having an isocyanate group include hexamethylene-1,6-diisocyanate, toluene-2,6-diisocyanate, and toluene-2,4-diisocyanate.
The addition amount of these diisocyanate compounds is preferably 5 to 15% by weight of the epoxidized silicon fine particles as in the case of 2-methylimidazole. In this case, examples of the solvent that can be used for the production of the film precursor include aromatic organic solvents such as xylene.
Moreover, as a crosslinking agent, the compound which has 2 or 3 or more epoxy groups, such as ethylene glycol diglycidyl ether, can also be used.

[3]反応性基材の製造、
アルコキシシラン化合物としてエポキシ基を有するアルコキシシラン化合物を用いる以外は、本発明の第一の実施の形態に係るn型シリコン微粒子膜10の製造における反応性基材13の製造と同様であるので、詳しい説明を省略する。
[3] Production of reactive substrate,
Except for using an alkoxysilane compound having an epoxy group as the alkoxysilane compound, it is the same as the production of the reactive substrate 13 in the production of the n-type silicon fine particle film 10 according to the first embodiment of the present invention. Description is omitted.

[4]ペーストの塗布、および[5]塗膜の硬化の各工程については、本発明の第一の実施の形態に係るn型シリコン微粒子膜10の製造における対応する各工程と同様であるので、詳しい説明を省略する。 [4] The steps of applying the paste and [5] curing the coating film are the same as the corresponding steps in the manufacture of the n-type silicon fine particle film 10 according to the first embodiment of the present invention. Detailed explanation is omitted.

なお、上述の各実施形態においては、不純物原子の平均濃度が1010〜1020cm−3となるように均一に混合した純粋シリコン微粒子とn型シリコン微粒子との混合物を出発物質として、エポキシ化n型シリコン微粒子混合物およびアミノ化n型シリコン微粒子混合物の製造を行ったが、不純物原子濃度の異なる2種類以上のn型シリコン微粒子を均一に混合したものを用いてもよい。 In each of the above-described embodiments, epoxidation is performed using a mixture of pure silicon fine particles and n-type silicon fine particles uniformly mixed so that the average concentration of impurity atoms is 10 10 to 10 20 cm −3 as a starting material. Although the n-type silicon fine particle mixture and the aminated n-type silicon fine particle mixture were produced, a mixture of two or more types of n-type silicon fine particles having different impurity atom concentrations may be used.

あるいは、純粋シリコン微粒子とn型シリコン微粒子もしくは不純物原子濃度の異なる2種類以上のn型シリコン微粒子のそれぞれについて、上述の方法と同様の手順を用いてエポキシ化n型シリコン微粒子およびアミノ化n型シリコン微粒子をそれぞれ製造後、不純物原子の平均濃度が、上述の範囲内の所望の値となるような混合比でこれらを混合してペーストを製造してもよい。 Alternatively, for each of pure silicon fine particles and n-type silicon fine particles or two or more types of n-type silicon fine particles having different impurity atom concentrations, epoxidized n-type silicon fine particles and aminated n-type silicon are obtained using the same procedure as described above. After each fine particle is produced, the paste may be produced by mixing them at a mixing ratio such that the average concentration of impurity atoms is a desired value within the above-mentioned range.

本発明の各実施の形態に係るn型シリコン微粒子膜10、20において、表層に位置する反応性シリコン微粒子混合物には、未反応の反応性の官能基(例えば、エポキシ基およびアミノ基)が残っているので、上述の方法と同様の手順を用いて、その上にp型シリコン微粒子膜を積層させ、pn接合を形成することができる。このようにして製造されたpn接合を有する半導体微粒子膜は、整流作用等のダイオードとしての特性を示す。そのため、本発明はダイオードおよびその安価かつ簡便な製造方法も提供する。 In the n-type silicon fine particle films 10 and 20 according to the respective embodiments of the present invention, unreacted reactive functional groups (for example, epoxy groups and amino groups) remain in the reactive silicon fine particle mixture located on the surface layer. Therefore, the p-type silicon fine particle film can be laminated thereon by using the same procedure as the above method, and a pn junction can be formed. The semiconductor fine particle film having a pn junction manufactured in this way exhibits diode characteristics such as rectification. Therefore, the present invention also provides a diode and its inexpensive and simple manufacturing method.

また、n型およびp型シリコン微粒子膜の膜厚は、nm〜μmオーダーで制御可能であるので、光透過性を確保できるため、本発明により提供されるダイオードは各種光電変換素子に応用できる。図4に、光電変換素子の一例である太陽電池50の断面構造の模式図を示す。上記いずれかの方法を用いて形成されたn型シリコン微粒子膜51およびp型シリコン微粒子膜52が、光の入射側となる透明電極であるITO基板53上に積層されている。p型シリコン微粒子膜52の上には、アルミニウム電極54が蒸着されている。なお、n型シリコン微粒子膜51とITO基板53との間あるいはITO基板53上には、図示しない反射防止膜を設けてもよく、n型シリコン微粒子膜51およびp型シリコン微粒子膜52との間に純シリコン微粒子膜を設けたpin接合を有する構造としてもよい。また、n型シリコン微粒子膜51およびp型シリコン微粒子膜52は平面上である必要はなく、ジグザグ型の断面を有するように積層してもよい。 In addition, since the film thickness of the n-type and p-type silicon fine particle films can be controlled in the order of nm to μm, and the light transmittance can be secured, the diode provided by the present invention can be applied to various photoelectric conversion elements. In FIG. 4, the schematic diagram of the cross-section of the solar cell 50 which is an example of a photoelectric conversion element is shown. An n-type silicon fine particle film 51 and a p-type silicon fine particle film 52 formed using any one of the above methods are laminated on an ITO substrate 53 which is a transparent electrode on the light incident side. An aluminum electrode 54 is deposited on the p-type silicon fine particle film 52. An antireflection film (not shown) may be provided between the n-type silicon fine particle film 51 and the ITO substrate 53, or between the n-type silicon fine particle film 51 and the p-type silicon fine particle film 52. Alternatively, a structure having a pin junction provided with a pure silicon fine particle film may be used. Further, the n-type silicon fine particle film 51 and the p-type silicon fine particle film 52 do not have to be flat, and may be laminated so as to have a zigzag type cross section.

以下、実施例を用いて本発明の詳細を説明するが、本願発明は、これら実施例によって何ら限定されるものではない。 Hereinafter, although the detail of this invention is demonstrated using an Example, this invention is not limited at all by these Examples.

実施例1:n型シリコン微粒子膜の製造[1]
(1)エポキシ化シリコン微粒子混合物の製造
平均粒径10nmの純シリコン微粒子と平均粒径10nmのn型シリコン微粒子(不純物原子濃度1019cm−3)を用意し、重量比99.99:0.01となるよう混合した。このようにして得られたシリコン微粒子混合物(不純物原子の平均濃度1016cm−3)をよく乾燥した。
ここで、塗膜の目標とする好ましい不純物濃度は、1011〜1018/cm、より好ましくは1012〜1017/cm程度であるが、必要に応じて適宜混合条件を調整すればよい。
Example 1: Production of n-type silicon fine particle film [1]
(1) Production of Epoxidized Silicon Fine Particle Mixture Pure silicon fine particles having an average particle diameter of 10 nm and n-type silicon fine particles having an average particle diameter of 10 nm (impurity atom concentration 10 19 cm −3 ) are prepared, and the weight ratio is 99.99: 0. It mixed so that it might become 01. The silicon fine particle mixture thus obtained (average concentration of impurity atoms: 10 16 cm −3 ) was thoroughly dried.
Here, the preferable impurity concentration targeted for the coating film is about 10 11 to 10 18 / cm 3 , more preferably about 10 12 to 10 17 / cm 3. However, if the mixing conditions are adjusted as necessary, Good.

3−グリシジルオキシプロピルトリメトキシシラン(化8)0.99重量部、およびジブチルスズビスアセチルアセトナート(縮合触媒)0.01重量部を秤量し、これを100重量部のヘキサメチルジシロキサン溶媒に溶解し、反応液を調製した。 0.99 parts by weight of 3-glycidyloxypropyltrimethoxysilane (Chemical Formula 8) and 0.01 parts by weight of dibutyltin bisacetylacetonate (condensation catalyst) are weighed and dissolved in 100 parts by weight of hexamethyldisiloxane solvent. The reaction solution was prepared.

このようにして得られた反応液中にシリコン微粒子混合物を分散させ、撹拌しながら空気中(相対湿度45%)で2時間程度反応させた。
その後、エタノールで洗浄し、余分なアルコキシシラン化合物およびジブチルスズビスアセチルアセトナートを除去した。
The silicon fine particle mixture was dispersed in the reaction solution thus obtained and reacted in air (relative humidity 45%) for about 2 hours while stirring.
Thereafter, it was washed with ethanol to remove excess alkoxysilane compound and dibutyltin bisacetylacetonate.

(2)アミノ化シリコン微粒子混合物の製造
平均粒径が10nm程度のシリコン微粒子混合物((1)で用いたものと同一。)を用意し、よく乾燥した。
3−アミノプロピルトリメトキシシラン(化9、信越化学工業株式会社製)0.99重量部、および酢酸(縮合触媒)0.01重量部を秤量し、これを100重量部のヘキサメチルジシロキサン溶媒に溶解し、反応液を調製した。
(2) Production of aminated silicon fine particle mixture A silicon fine particle mixture having the average particle diameter of about 10 nm (same as that used in (1)) was prepared and dried well.
0.99 parts by weight of 3-aminopropyltrimethoxysilane (Chemical 9; manufactured by Shin-Etsu Chemical Co., Ltd.) and 0.01 part by weight of acetic acid (condensation catalyst) were weighed and added to 100 parts by weight of a hexamethyldisiloxane solvent. To prepare a reaction solution.

このようにして得られた反応液中にシリコン微粒子を分散させ、撹拌しながら空気中(相対湿度45%)で2時間程度反応させた。
その後、エタノールで洗浄し、余分なアルコキシシラン化合物およびジブチルスズビスアセチルアセトナートを除去した。
Silicon fine particles were dispersed in the reaction solution thus obtained, and reacted in air (relative humidity 45%) for about 2 hours while stirring.
Thereafter, it was washed with ethanol to remove excess alkoxysilane compound and dibutyltin bisacetylacetonate.

(3)シリコン微粒子ペーストの製造
(1)で製造したエポキシ化シリコン微粒子混合物50重量部と、(2)で製造したアミノ化シリコン微粒子混合物50重量部とを混合し、これにイソプロピルアルコール40重量部を加えた。得られた混合物を十分混合してシリコン微粒子ペーストを得た。
(3) Production of silicon fine particle paste 50 parts by weight of the epoxidized silicon fine particle mixture produced in (1) and 50 parts by weight of the aminated silicon fine particle mixture produced in (2) are mixed, and 40 parts by weight of isopropyl alcohol are mixed therewith. Was added. The obtained mixture was sufficiently mixed to obtain a silicon fine particle paste.

(4)エポキシ化ガラス基材の製造
ガラス基材を用意し、よく洗浄して乾燥した。
3−グリシジルオキシプロピルトリメトキシシラン(化8)0.99重量部、及びジブチルスズビスアセチルアセトナート(縮合触媒)0.01重量部を秤量し、これを100重量部のヘキサメチルジシロキサン−ジメチルホルムアミド混合溶媒(1:1 v/v)に溶解し、反応液を調製した。
(4) Production of epoxidized glass substrate A glass substrate was prepared, washed well and dried.
0.99 parts by weight of 3-glycidyloxypropyltrimethoxysilane (Chemical Formula 8) and 0.01 parts by weight of dibutyltin bisacetylacetonate (condensation catalyst) were weighed, and 100 parts by weight of hexamethyldisiloxane-dimethylformamide was measured. The reaction solution was prepared by dissolving in a mixed solvent (1: 1 v / v).

反応液をガラス基材板の表面に塗布し、空気中(相対湿度45%)で2時間程度反応させた。その後、クロロホルムで洗浄し、過剰なアルコキシシラン化合物及びジブチルスズビスアセチルアセトナートを除去した。 The reaction solution was applied to the surface of the glass substrate and reacted in air (relative humidity 45%) for about 2 hours. Thereafter, the mixture was washed with chloroform to remove excess alkoxysilane compound and dibutyltin bisacetylacetonate.

(5)塗膜の形成およびn型シリコン微粒子膜の形成
(3)で製造したシリコン微粒子ペーストを、(4)で製造したエポキシ化ガラス基材上に塗布し、膜厚3μmの塗膜を形成した。
室温下でイソプロピルアルコールを蒸発させた後、ガラス基材及びその上に形成された塗膜を170℃で30分間加熱することにより、n型シリコン微粒子膜を形成した。
(5) Formation of coating film and formation of n-type silicon fine particle film The silicon fine particle paste produced in (3) is applied on the epoxidized glass substrate produced in (4) to form a coating film having a thickness of 3 μm. did.
After evaporating isopropyl alcohol at room temperature, the glass substrate and the coating film formed thereon were heated at 170 ° C. for 30 minutes to form an n-type silicon fine particle film.

実施例2:n型シリコン微粒子膜の製造方法[2]
実施例1の(1)と同様にn型不純物原子の平均濃度1017cm−3になるように調整したn型シリコン微粒子混合物を用いて製造したエポキシ化シリコン微粒子混合物100重量部に、2−メチルイミダゾールを5重量部とイソプロピルアルコール40重量部を加えた。得られた混合物を十分混合してシリコン微粒子ペーストを得た。このようにして製造したシリコン微粒子ペーストを、実施例1の(4)と同様に製造したエポキシ化ガラス基材上に塗布し、膜厚3μmの塗膜を形成した。
室温下でイソプロピルアルコールを蒸発させた後、ガラス基材及びその上に形成された塗膜を170℃で30分間加熱することにより、n型シリコン微粒子膜を形成した。
塗膜の目標とする好ましい不純物濃度は、1011〜1018/cm、より好ましくは1012〜1017/cm程度であるが、必要に応じて適宜混合条件を調整すればよい。
Example 2: Method for producing n-type silicon fine particle film [2]
In the same manner as in Example 1 (1), 100 parts by weight of an epoxidized silicon fine particle mixture produced using an n-type silicon fine particle mixture adjusted to have an average n-type impurity atom concentration of 10 17 cm −3 was added to 2- 5 parts by weight of methylimidazole and 40 parts by weight of isopropyl alcohol were added. The obtained mixture was sufficiently mixed to obtain a silicon fine particle paste. The silicon fine particle paste thus produced was applied on the epoxidized glass substrate produced in the same manner as in Example 1 (4) to form a coating film having a thickness of 3 μm.
After evaporating isopropyl alcohol at room temperature, the glass substrate and the coating film formed thereon were heated at 170 ° C. for 30 minutes to form an n-type silicon fine particle film.
The preferable impurity concentration targeted for the coating film is about 10 11 to 10 18 / cm 3 , more preferably about 10 12 to 10 17 / cm 3 , but the mixing conditions may be adjusted as necessary.

実施例3:n型シリコン微粒子膜の製造[3]
実施例1の(2)と同様に製造したアミノ化シリコン微粒子混合物100重量部に、ヘキサメチレン−1,6−ジイソシアネート5重量部とイソプロピルアルコール40重量部を加えた。得られた混合物を十分混合してシリコン微粒子ペーストを得た。このようにして製造したシリコン微粒子ペーストを、実施例1の(4)と同様に製造したエポキシ化ガラス基材上に塗布し、膜厚3μmの塗膜を形成した。
室温下でイソプロピルアルコールを蒸発させた後、ガラス基材及びその上に形成された塗膜を170℃で30分間加熱することにより、n型シリコン微粒子膜を形成した。
Example 3: Production of n-type silicon fine particle film [3]
5 parts by weight of hexamethylene-1,6-diisocyanate and 40 parts by weight of isopropyl alcohol were added to 100 parts by weight of the aminated silicon fine particle mixture produced in the same manner as (2) of Example 1. The obtained mixture was sufficiently mixed to obtain a silicon fine particle paste. The silicon fine particle paste thus produced was applied on the epoxidized glass substrate produced in the same manner as in Example 1 (4) to form a coating film having a thickness of 3 μm.
After evaporating isopropyl alcohol at room temperature, the glass substrate and the coating film formed thereon were heated at 170 ° C. for 30 minutes to form an n-type silicon fine particle film.

実施例4:n型シリコン微粒子膜の製造[4]
平均粒径10nmの純シリコン微粒子と平均粒径10nmのn型シリコン微粒子(不純物原子濃度1019cm−3)を混合することなく、それぞれについて、実施例1の(1)および(2)と同様の手順により、エポキシ化純シリコン微粒子、エポキシ化n型シリコン微粒子、アミノ化純シリコン微粒子およびアミノ化n型シリコン微粒子を製造後、これらを99.9:0.1:99.9:0.1の重量比で混合し、実施例1の(3)と同様の手順を用いてペーストを製造した以外は実施例1と同様の手順により、n型シリコン微粒子膜を製造した。
Example 4: Production of n-type silicon fine particle film [4]
Without mixing pure silicon fine particles having an average particle diameter of 10 nm and n-type silicon fine particles having an average particle diameter of 10 nm (impurity atom concentration of 10 19 cm −3 ), the same as in (1) and (2) of Example 1 After producing epoxidized pure silicon fine particles, epoxidized n-type silicon fine particles, aminated pure silicon fine particles and aminated n-type silicon fine particles, these were prepared 99.9: 0.1: 99.9: 0.1. An n-type silicon fine particle film was produced by the same procedure as in Example 1 except that the paste was produced using the same procedure as in Example 1 (3).

実施例5:太陽電池の調製[1]
実施例1の(4)と同様の手順により、ITOガラス板の表面に、エポキシ基を有するアルコキシシラン化合物の単分子膜を形成した。このようにして製造したエポキシ化ITOガラス板の表面に、実施例1の(2)と同様に製造したアミノ化n型シリコン微粒子混合物のエタノール分散液を塗布し、100℃で加熱した。反応後、水で洗浄し、余分なアミノ化n型シリコン微粒子混合物を除去した。
次いで、n型シリコン微粒子の代わりにp型シリコン微粒子を用いた以外は実施例1の(1)と同様に製造したエポキシ化p型シリコン微粒子混合物のエタノール分散液をさらに塗布し、100℃で加熱した。さらに、その上にアルミニウム電極を蒸着するとダイオード構造の太陽電池が得られた。
Example 5: Preparation of solar cell [1]
A monomolecular film of an alkoxysilane compound having an epoxy group was formed on the surface of the ITO glass plate by the same procedure as (4) of Example 1. An ethanol dispersion of the aminated n-type silicon fine particle mixture produced in the same manner as in Example 1 (2) was applied to the surface of the epoxidized ITO glass plate thus produced and heated at 100 ° C. After the reaction, the mixture was washed with water to remove excess aminated n-type silicon fine particle mixture.
Next, an ethanol dispersion of an epoxidized p-type silicon fine particle mixture produced in the same manner as in Example 1 (1) except that p-type silicon fine particles were used instead of n-type silicon fine particles was further applied and heated at 100 ° C. did. Furthermore, when an aluminum electrode was deposited thereon, a solar cell having a diode structure was obtained.

実施例6:太陽電池の調製[2]
実施例1の(4)と同様の手順により、ITOガラス板の表面に、エポキシ基を有するアルコキシシラン化合物の単分子膜を形成した。このようにして製造したエポキシ化ITOガラス板の表面に、実施例2と同様に製造したn型シリコン微粒子混合物を含むペーストを塗布し、得られた塗膜を170℃で30分間加熱した。
次いで、n型シリコン微粒子の代わりにp型シリコン微粒子を用いた以外は実施例2と同様に製造したp型シリコン微粒子混合物を含むペーストを塗布し、得られた塗膜を170℃で30分間加熱した。その後、その上にアルミニウム電極を蒸着すると太陽電池が得られた。
Example 6: Preparation of solar cell [2]
A monomolecular film of an alkoxysilane compound having an epoxy group was formed on the surface of the ITO glass plate by the same procedure as (4) of Example 1. The paste containing the n-type silicon fine particle mixture produced in the same manner as in Example 2 was applied to the surface of the epoxidized ITO glass plate thus produced, and the resulting coating film was heated at 170 ° C. for 30 minutes.
Next, a paste containing a mixture of p-type silicon fine particles produced in the same manner as in Example 2 was applied except that p-type silicon fine particles were used in place of the n-type silicon fine particles, and the obtained coating film was heated at 170 ° C. for 30 minutes. did. Then, the solar cell was obtained when the aluminum electrode was vapor-deposited on it.

なお、この太陽電池は、容易に小型化が可能であり、上記と同様の製造方法によりフォトセンサーも製造できた。 The solar cell can be easily downsized, and a photosensor can be manufactured by the same manufacturing method as described above.

10、20 n型シリコン微粒子層
11、21 エポキシ化純粋シリコン微粒子
11a、21a エポキシ化n型シリコン微粒子
12 アミノ化純粋シリコン微粒子
12a アミノ化n型シリコン微粒子
13、23 反応性基材
14 純粋シリコン微粒子
15 ヒドロキシル基
16 エポキシ基を有するアルコキシシラン化合物の単分子膜
50 太陽電池
51 n型シリコン微粒子層
52 p型シリコン微粒子層
53 ITO電極
54 アルミニウム電極
10, 20 n-type silicon fine particle layers 11, 21 Epoxidized pure silicon fine particles 11a, 21a Epoxidized n-type silicon fine particles 12 Aminated pure silicon fine particles 12a Aminated n-type silicon fine particles 13, 23 Reactive substrate 14 Pure silicon fine particles 15 Monomolecular film 50 of alkoxysilane compound having hydroxyl group 16 epoxy group Solar cell 51 n-type silicon fine particle layer 52 p-type silicon fine particle layer 53 ITO electrode 54 Aluminum electrode

Claims (6)

不純物原子濃度の異なる2種類以上のシリコン微粒子が、不純物原子の平均濃度が1010〜1020cm−3となるように均一に混合したシリコン微粒子混合物を製造する工程と、
第1の反応性の官能基およびハロシリル基またはアルコキシシリル基をそれぞれ有する第1の膜化合物を、前記混合したシリコン微粒子混合物と接触させ、前記混合したシリコン微粒子混合物と前記ハロシリル基またはアルコキシシリル基と前記シリコン微粒子の表面官能基との間でSi−O−結合を形成させ、前記第1の膜化合物の形成する第1の被膜で表面の少なくとも一部が覆われた第1の反応性シリコン微粒子混合物を製造する工程と、
別途、前記第1の反応性の官能基と熱で反応して化学結合を形成する第2の反応性の官能基およびハロシリル基またはアルコキシシリル基をそれぞれ有する第2の膜化合物を前記と同様のシリコン微粒子混合物と接触させ、前記ハロシリル基またはアルコキシシリル基と前記シリコン微粒子の表面官能基との間でSi−O−結合を形成させ、前記第2の膜化合物で形成する第2の被膜で表面の少なくとも一部が覆われた第2の反応性シリコン微粒子混合物を製造する工程と、
前記第1の反応性シリコン微粒子混合物と前記第2の反応性シリコン微粒子混合物とを有機溶媒中で混合してペーストを製造する工程と、
前記ペーストを基材表面に塗布する工程と、
前記第1の反応性の官能基と前記第2の反応性の官能基との反応により化学結合を形成させ、前記ペーストの塗膜を硬化させる工程と
を含み、前記不純物原子濃度の異なる2種類以上のシリコン微粒子は、純シリコン微粒子及びp型又はn型シリコン微粒子を含むものであることを特徴とする半導体微粒子膜の製造方法。
A step of producing a silicon fine particle mixture in which two or more types of silicon fine particles having different impurity atom concentrations are uniformly mixed so that an average concentration of impurity atoms is 10 10 to 10 20 cm −3 ;
A first film compound having a first reactive functional group and a halosilyl group or alkoxysilyl group, respectively, is brought into contact with the mixed silicon fine particle mixture, and the mixed silicon fine particle mixture and the halosilyl group or alkoxysilyl group First reactive silicon fine particles in which at least a part of the surface is covered with a first film formed by the first film compound by forming a Si—O— bond with a surface functional group of the silicon fine particles. Producing a mixture;
Separately, a second reactive functional group that reacts with the first reactive functional group by heat to form a chemical bond and a second film compound each having a halosilyl group or an alkoxysilyl group are the same as described above. Contact with a silicon fine particle mixture to form a Si—O— bond between the halosilyl group or alkoxysilyl group and the surface functional group of the silicon fine particle, and the surface with a second film formed of the second film compound Producing a second reactive silicon particulate mixture that is at least partially covered by:
Mixing the first reactive silicon fine particle mixture and the second reactive silicon fine particle mixture in an organic solvent to produce a paste;
Applying the paste to the substrate surface;
Wherein the reaction of the first reactive functional group and the second reactive functional groups to form chemical bonds, see containing and curing the coating film of the paste, different the impurity atom concentration 2 The method for producing a semiconductor fine particle film, wherein the silicon fine particles of a kind or more include pure silicon fine particles and p-type or n-type silicon fine particles .
第1の反応性の官能基およびハロシリル基またはアルコキシシリル基をそれぞれ有する第1の膜化合物を、不純物原子濃度の異なる2種類以上のシリコン微粒子のそれぞれと接触させ、前記ハロシリル基またはアルコキシシリル基と前記シリコン微粒子の表面官能基との間でSi−O−結合を形成させ、前記第1の膜化合物の形成する第1の被膜で表面の少なくとも一部が覆われた2種類以上の第1の反応性シリコン微粒子を製造する工程と、
前記第1の反応性の官能基と熱で反応して化学結合を形成する第2の反応性の官能基およびハロシリル基またはアルコキシシリル基をそれぞれ有する第2の膜化合物を前記2種類以上のシリコン微粒子のそれぞれと接触させ、前記ハロシリル基またはアルコキシシリル基と前記シリコン微粒子の表面官能基との間でSi−O−結合を形成させ、前記第2の膜化合物の形成する第2の被膜で表面の少なくとも一部が覆われた2種類以上の第2の反応性シリコン微粒子を製造する工程と、
前記2種類以上の第1の反応性シリコン微粒子と前記2種類以上の第2の反応性シリコン微粒子とを、不純物原子の平均濃度が1010〜1020cm−3となるように均一に有機溶媒中で混合して、反応性シリコン微粒子混合物を含むペーストを製造する工程と、
前記ペーストを基材表面に塗布する工程と、
前記第1の反応性の官能基と前記第2の反応性の官能基との反応により化学結合を形成させ、前記ペーストの塗膜を硬化させる工程と
を含み、前記不純物原子濃度の異なる2種類以上のシリコン微粒子は、純シリコン微粒子及びp型又はn型シリコン微粒子を含むものであることを特徴とする半導体微粒子膜の製造方法。
The first reactive functional group and the first film compound each having a halosilyl group or an alkoxysilyl group are brought into contact with two or more types of silicon fine particles having different impurity atom concentrations, and the halosilyl group or alkoxysilyl group Si—O— bonds are formed with the surface functional groups of the silicon fine particles, and at least a part of the surface is covered with a first film formed by the first film compound. Producing reactive silicon fine particles;
The second reactive functional group that reacts with the first reactive functional group by heat to form a chemical bond and the second film compound each having a halosilyl group or an alkoxysilyl group are used as the two or more types of silicon. Contact with each of the fine particles to form Si—O— bonds between the halosilyl group or alkoxysilyl group and the surface functional groups of the silicon fine particles, and the surface with the second film formed by the second film compound A step of producing two or more kinds of second reactive silicon fine particles covered at least in part,
The two or more types of first reactive silicon fine particles and the two or more types of second reactive silicon fine particles are uniformly mixed with an organic solvent so that an average concentration of impurity atoms is 10 10 to 10 20 cm −3. Mixing in to produce a paste comprising a reactive silicon particulate mixture;
Applying the paste to the substrate surface;
Wherein the reaction of the first reactive functional group and the second reactive functional groups to form chemical bonds, see containing and curing the coating film of the paste, different the impurity atom concentration 2 The method for producing a semiconductor fine particle film, wherein the silicon fine particles of a kind or more include pure silicon fine particles and p-type or n-type silicon fine particles .
あらかじめ、前記ペーストを塗布する前の基材表面に、前記第1および第2の反応性官能基の一方または双方反応する第3の反応性官能基およびハロシリル基またはアルコキシシリル基をそれぞれ有する第3の膜化合物を接触させ、前記ハロシリル基またはアルコキシシリル基と前記基材の表面官能基との間でSi−O−結合を形成させ、前記第3の膜化合物の形成する第3の被膜で表面の少なくとも一部が覆われた反応性基材を製造する工程と
を含むことを特徴とする請求項1または2に記載の半導体微粒子膜の製造方法。
A third reactive functional group that reacts with one or both of the first and second reactive functional groups and a halosilyl group or an alkoxysilyl group on the substrate surface before applying the paste in advance. The film compound is contacted, and a Si—O— bond is formed between the halosilyl group or alkoxysilyl group and the surface functional group of the substrate, and the surface is formed by the third film formed by the third film compound. The method for producing a semiconductor fine particle film according to claim 1, further comprising a step of producing a reactive substrate in which at least a part of the substrate is covered.
不純物原子濃度の異なる2種類以上のシリコン微粒子が、不純物原子の平均濃度が1010〜1020cm−3となるように均一に混合したシリコン微粒子混合物を製造する工程と、
第4の反応性の官能基およびハロシリル基またはアルコキシシリル基をそれぞれ有する第4の膜化合物を、前記シリコン微粒子混合物と接触させ、前記ハロシリル基またはアルコキシシリル基と前記混合したシリコン微粒子の表面官能基との間でSi−O−結合を形成させ、前記第4の膜化合物の形成する被膜で表面の少なくとも一部が覆われた第4の反応性シリコン微粒子混合物を製造する工程と、
前記第4の反応性シリコン微粒子混合物と、前記第4の反応性の官能基と熱で反応して化学結合を形成する複数の架橋反応基を有する架橋剤とを有機溶媒中で混合してペーストを製造する工程と、
前記ペーストを基材表面に塗布する工程と、
前記第4の反応性の官能基と前記架橋反応基との反応により化学結合を形成させ、前記ペーストの塗膜を硬化させる工程と
を含み、前記不純物原子濃度の異なる2種類以上のシリコン微粒子は、純シリコン微粒子及びp型又はn型シリコン微粒子を含むものであることを特徴とする半導体微粒子膜の製造方法。
A step of producing a silicon fine particle mixture in which two or more types of silicon fine particles having different impurity atom concentrations are uniformly mixed so that an average concentration of impurity atoms is 10 10 to 10 20 cm −3 ;
A fourth film compound having a fourth reactive functional group and a halosilyl group or alkoxysilyl group, respectively, is brought into contact with the silicon fine particle mixture, and the surface functional groups of the silicon fine particles mixed with the halosilyl group or alkoxysilyl group. Forming a fourth reactive silicon fine particle mixture in which at least a part of the surface is covered with a film formed by the fourth film compound;
Paste obtained by mixing the fourth reactive silicon fine particle mixture and a crosslinking agent having a plurality of crosslinking reactive groups that react with heat with the fourth reactive functional group to form a chemical bond in an organic solvent. Manufacturing process,
Applying the paste to the substrate surface;
To form a chemical bond by reaction with the crosslinking reactive group and the fourth reactive functional groups, see containing and curing the coating film of the paste, 2 kinds or more of silicon microparticles having the different impurity atom concentration Comprises a pure silicon fine particle and a p-type or n-type silicon fine particle .
第4の反応性の官能基およびハロシリル基またはアルコキシシリル基をそれぞれ有する第4の膜化合物を、不純物濃度の異なる2種以上のシリコン微粒子とそれぞれ別個に接触させ、前記ハロシリル基またはアルコキシシリル基と前記それぞれのシリコン微粒子の表面官能基との間でSi−O−結合を形成させ、前記第4の膜化合物の形成する被膜で表面の少なくとも一部が覆われた少なくとも不純物原子濃度の異なる2種以上の第4の反応性シリコン微粒子をそれぞれ製造する工程と、
前記不純物原子濃度の異なる2種類以上の第4の反応性シリコン微粒子を、不純物原子の平均濃度が1010〜1020cm−3となるように均一に混合した第4の反応性のシリコン微粒子混合物を製造する工程と、
前記第4の反応性シリコン微粒子混合物と、前記第4の反応性の官能基と熱で反応して化学結合を形成する複数の架橋反応基を有する架橋剤とを有機溶媒中で混合してペーストを製造する工程と、
前記ペーストを基材表面に塗布する工程と、
前記第4の反応性の官能基と前記架橋反応基との反応により化学結合を形成させ、前記ペーストの塗膜を硬化させる工程と
を含み、前記不純物原子濃度の異なる2種類以上のシリコン微粒子は、純シリコン微粒子及びp型又はn型シリコン微粒子を含むものであることを特徴とする半導体微粒子膜の製造方法。
A fourth film compound having a fourth reactive functional group and a halosilyl group or an alkoxysilyl group, respectively, is contacted separately with two or more silicon fine particles having different impurity concentrations, and the halosilyl group or alkoxysilyl group Two types having different impurity atom concentrations, at least part of the surface of which is formed by forming a Si—O— bond with the surface functional group of each of the silicon fine particles, and covering at least part of the surface with the coating formed by the fourth film compound. A step of producing each of the fourth reactive silicon fine particles,
A fourth reactive silicon fine particle mixture in which two or more types of fourth reactive silicon fine particles having different impurity atom concentrations are uniformly mixed so that an average concentration of impurity atoms is 10 10 to 10 20 cm −3 . Manufacturing process,
Paste obtained by mixing the fourth reactive silicon fine particle mixture and a crosslinking agent having a plurality of crosslinking reactive groups that react with heat with the fourth reactive functional group to form a chemical bond in an organic solvent. Manufacturing process,
Applying the paste to the substrate surface;
To form a chemical bond by reaction with the crosslinking reactive group and the fourth reactive functional groups, see containing and curing the coating film of the paste, 2 kinds or more of silicon microparticles having the different impurity atom concentration Comprises a pure silicon fine particle and a p-type or n-type silicon fine particle .
あらかじめ、前記ペーストを塗布する前の基材表面に、前記第4の膜化合物を接触させ、前記ハロシリル基またはアルコキシシリル基と前記基材の表面官能基との間でSi−O−結合を形成させ、前記第4の膜化合物の形成する第4の被膜で表面の少なくとも一部が覆われた反応性基材を製造する工程をさらに有することを特徴とする請求項4または5に記載の半導体微粒子膜の製造方法。

In advance, the fourth film compound is brought into contact with the substrate surface before the paste is applied, and a Si—O— bond is formed between the halosilyl group or alkoxysilyl group and the surface functional group of the substrate. 6. The semiconductor according to claim 4, further comprising a step of manufacturing a reactive base material in which at least a part of the surface is covered with the fourth film formed by the fourth film compound. Manufacturing method of fine particle film.

JP2011025510A 2011-02-08 2011-02-08 Semiconductor fine particle film, diode, photoelectric conversion element, and manufacturing method thereof Expired - Fee Related JP6028238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011025510A JP6028238B2 (en) 2011-02-08 2011-02-08 Semiconductor fine particle film, diode, photoelectric conversion element, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011025510A JP6028238B2 (en) 2011-02-08 2011-02-08 Semiconductor fine particle film, diode, photoelectric conversion element, and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012164897A JP2012164897A (en) 2012-08-30
JP6028238B2 true JP6028238B2 (en) 2016-11-16

Family

ID=46843975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011025510A Expired - Fee Related JP6028238B2 (en) 2011-02-08 2011-02-08 Semiconductor fine particle film, diode, photoelectric conversion element, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6028238B2 (en)

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4075308B2 (en) * 1999-03-30 2008-04-16 セイコーエプソン株式会社 Thin film transistor manufacturing method
JP2004186320A (en) * 2002-12-02 2004-07-02 Jsr Corp Composition for forming silicon film, and solar battery
KR101100562B1 (en) * 2003-06-13 2011-12-29 제이에스알 가부시끼가이샤 Silane Polymer and Method for Forming Silicon Film
JP2005332913A (en) * 2004-05-19 2005-12-02 Jsr Corp Method for forming silicon film for solar battery, and solar battery
JP4868496B2 (en) * 2005-12-22 2012-02-01 国立大学法人 香川大学 Solar cell and manufacturing method thereof
JP5087764B2 (en) * 2005-12-22 2012-12-05 国立大学法人 香川大学 Silicon fine particles, production method thereof, solar cell using the same, and production method thereof
JP2007173518A (en) * 2005-12-22 2007-07-05 Kagawa Univ Optical sensor and manufacturing method thereof
JP4872419B2 (en) * 2006-04-06 2012-02-08 ソニー株式会社 Method for producing polysilane-modified silicon fine particles and method for forming silicon film
JP5374674B2 (en) * 2007-03-31 2013-12-25 国立大学法人 香川大学 Solar cell and method for manufacturing the same
JP5235059B2 (en) * 2007-03-31 2013-07-10 国立大学法人 香川大学 Optical sensor and manufacturing method thereof
JP5487460B2 (en) * 2007-03-31 2014-05-07 国立大学法人 香川大学 Silicon fine particles, production method thereof, solar cell using the same, and production method thereof
US20100275982A1 (en) * 2007-09-04 2010-11-04 Malcolm Abbott Group iv nanoparticle junctions and devices therefrom
JP2010129619A (en) * 2008-11-26 2010-06-10 Kazufumi Ogawa Solar cell using silicon particulate, optical sensor, and method of manufacturing them
JP2010278370A (en) * 2009-06-01 2010-12-09 Kazufumi Ogawa Polysilicon thin film, method of manufacturing the same, and solar cell and tft using the film, tft array and display device, and method of manufacturing them

Also Published As

Publication number Publication date
JP2012164897A (en) 2012-08-30

Similar Documents

Publication Publication Date Title
JP5087764B2 (en) Silicon fine particles, production method thereof, solar cell using the same, and production method thereof
JP5487460B2 (en) Silicon fine particles, production method thereof, solar cell using the same, and production method thereof
JP2007118276A (en) Single-layer fine particle film, cumulated fine particle film and manufacturing method of them
WO2008068873A1 (en) Monolayer nanoparticle film, multilayer nanoparticle film, and manufacturing method thereof
JP2007119545A (en) Fine particle film and method for producing the same
JP2010278370A (en) Polysilicon thin film, method of manufacturing the same, and solar cell and tft using the film, tft array and display device, and method of manufacturing them
JP4868496B2 (en) Solar cell and manufacturing method thereof
US20100183880A1 (en) Fluorescent fine particle films
JP5326086B2 (en) Solar energy utilization apparatus and manufacturing method thereof
JP2007173518A (en) Optical sensor and manufacturing method thereof
JP6028238B2 (en) Semiconductor fine particle film, diode, photoelectric conversion element, and manufacturing method thereof
JP4993700B2 (en) Protective film and method for producing the same
US9373805B2 (en) Optical sensor and method for making the same
JP2010129619A (en) Solar cell using silicon particulate, optical sensor, and method of manufacturing them
US20150295196A1 (en) Method of producing a photovoltaic device
JP5374674B2 (en) Solar cell and method for manufacturing the same
JP2012164898A (en) Semiconductor fine particle film, diode, photoelectric conversion element and manufacturing method therefor
JP5082057B2 (en) Conductive paste and manufacturing method thereof, wiring and manufacturing method thereof, and electronic component and electronic device using the same
JP5526331B2 (en) Antireflection film and method for producing the same.
JP2008221369A (en) Particulate membrane and method of manufacturing the same
JP5200244B2 (en) Fine particle film and manufacturing method thereof
US8592676B2 (en) Solar cell and method for manufacturing the same
JP2008226545A (en) Insulating particulate film, its manufacturing method, and capacitor using insulating particulate film
JP5750706B2 (en) TFT using Si fine particles, manufacturing method thereof, TFT array using the same, and display device
WO2008139634A1 (en) Insulant fine particle film, a method of manufacturing the same, and a capacitor made thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140117

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140623

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140805

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141022

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20141029

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20141212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160427

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160921

R150 Certificate of patent or registration of utility model

Ref document number: 6028238

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees