JP2007173518A - Optical sensor and manufacturing method thereof - Google Patents

Optical sensor and manufacturing method thereof Download PDF

Info

Publication number
JP2007173518A
JP2007173518A JP2005369134A JP2005369134A JP2007173518A JP 2007173518 A JP2007173518 A JP 2007173518A JP 2005369134 A JP2005369134 A JP 2005369134A JP 2005369134 A JP2005369134 A JP 2005369134A JP 2007173518 A JP2007173518 A JP 2007173518A
Authority
JP
Japan
Prior art keywords
film
fine particle
organic
type
semiconductor fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005369134A
Other languages
Japanese (ja)
Inventor
Kazufumi Ogawa
小川  一文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shikoku Research Institute Inc
Kagawa University NUC
Original Assignee
Shikoku Research Institute Inc
Kagawa University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shikoku Research Institute Inc, Kagawa University NUC filed Critical Shikoku Research Institute Inc
Priority to JP2005369134A priority Critical patent/JP2007173518A/en
Publication of JP2007173518A publication Critical patent/JP2007173518A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical sensor capable of realizing remarkable cost reduction, as compared to a conventional amorphous silicon-type optical sensor or a silicon-crystal type optical sensor while using silicon, and to provide a manufacturing method thereof. <P>SOLUTION: In the optical sensor 31, an n-type silicon fine particle film, a p-type silicon fine particle film and a transparent electrode are laminated and formed on the surface of a substrate via an electrode. A first organic film, previously selectively formed on the surface of the electrode and a second organic film formed on the surface of an n-type silicon fine particle film are covalently bonded to each other, a second organic film formed on the surface of an n-type silicon fine particle film and a third organic film formed on the surface of a p-type silicon fine particle film are covalently bonded to each other. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、光センサーとその製造方法に関するものである。さらに詳しくは、半導体性シリコン微粒子の表面に熱反応性または光反応性、あるいはラジカル反応性またはイオン反応性を付与した微粒子を用いて、選択的にシリコン微粒子膜が形成された、あるいはシリコン微粒子膜が積層された光センサー(光センサーアレイも含む。)とその製造方法に関するものである。 The present invention relates to an optical sensor and a manufacturing method thereof. More specifically, a silicon fine particle film is selectively formed by using fine particles having thermal reactivity or photoreactivity, radical reactivity or ionic reactivity on the surface of semiconducting silicon fine particles, or a silicon fine particle film The present invention relates to an optical sensor (including an optical sensor array) and a manufacturing method thereof.

本発明において、「シリコン微粒子」には、半導体性n型シリコン微粒子と半導体性p型シリコン微粒子が含まれる。   In the present invention, “silicon fine particles” include semiconductive n-type silicon fine particles and semiconductive p-type silicon fine particles.

従来、シリコンを用いた光センサーでは、電極表面にプラズマCVD を用いて製膜したアモルファスシリコン型光センサーや、シリコン結晶のウエハーに不純物拡散して製造された結晶型光センサーが知られている。
特開平7-142757号公報
Conventionally, as photosensors using silicon, amorphous silicon photosensors formed by plasma CVD on the electrode surface and crystal photosensors manufactured by diffusing impurities in a silicon crystal wafer are known.
Japanese Unexamined Patent Publication No. 7-22757

しかしながら、従来のアモルファスシリコン型光センサーでは、高価な真空装置を用いるため、製造コストが高くなるという欠点があった。また、シリコン結晶型光センサーでは、高純度なシリコン結晶やポリシリコン結晶を多量に用いるため、製造コストが高くなるという欠点があった。   However, the conventional amorphous silicon optical sensor has a drawback in that the manufacturing cost is high because an expensive vacuum apparatus is used. In addition, the silicon crystal type optical sensor has a drawback in that the manufacturing cost increases because a large amount of high-purity silicon crystal or polysilicon crystal is used.

本発明は、シリコンを用いながら、従来のアモルファスシリコン型光センサーやシリコン結晶型光センサーに比べ、大幅にコストダウンできる光センサーとその製造方法の提供を目的とする。   An object of the present invention is to provide an optical sensor and a method for manufacturing the same that can significantly reduce costs compared to conventional amorphous silicon optical sensors and silicon crystal optical sensors while using silicon.

第1の発明は、基板表面に電極を介してn型半導体微粒子膜とp型半導体微粒子膜と透明電極が積層形成されており、あらかじめ前記電極表面に選択的に形成された第1の有機被膜と前紀n型半導体微粒子膜表面に形成された第2の有機被膜、およびn型半導体微粒子膜表面に形成された第2の有機被膜とp型半導体微粒子膜表面に形成された第3の有機被膜がそれぞれ互いに共有結合していることを特徴とする光センサーである。 In the first invention, an n-type semiconductor fine particle film, a p-type semiconductor fine particle film, and a transparent electrode are laminated on the substrate surface via electrodes, and a first organic film selectively formed on the electrode surface in advance. And a second organic film formed on the surface of the n-type semiconductor fine particle film, and a second organic film formed on the surface of the n-type semiconductor fine particle film and a third organic film formed on the surface of the p-type semiconductor fine particle film. The photosensor is characterized in that the films are covalently bonded to each other.

ここで、半導体がシリコンであり、電極表面に選択的に形成された第1の有機被膜とn型シリコン微粒子表面に形成された第2の有機被膜、およびn型シリコン微粒子表面に形成された第2の有機被膜とp型シリコン微粒子膜表面に形成された第3の有機被膜が互いに異なると粒子膜を積層する上で都合がよい。   Here, the semiconductor is silicon, the first organic film selectively formed on the electrode surface, the second organic film formed on the n-type silicon fine particle surface, and the first organic film formed on the n-type silicon fine particle surface. When the organic film of 2 and the third organic film formed on the surface of the p-type silicon fine particle film are different from each other, it is convenient to stack the particle films.

また、共有結合が、エポキシ基とイミノ基の反応で形成された−N−C−の結合であると、膜間の結合力を高める上で都合がよい。
さらに、第1,第2,及び第3の有機被膜が単分子膜で構成されていると内部抵抗を小さくできて都合がよい。
Moreover, when the covalent bond is a —N—C— bond formed by a reaction between an epoxy group and an imino group, it is convenient to increase the bonding force between the films.
Furthermore, it is convenient that the first, second, and third organic coatings are formed of monomolecular films because the internal resistance can be reduced.

第2の発明は、電極表面を少なくとも第1のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に接触させてアルコキシシラン化合物と電極表面を反応させて電極表面に第1の反応性の有機被膜を形成する工程と、前記第1の反応性の有機膜を所定のパターンに加工する工程と、n型半導体微粒子を少なくとも第2のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に分散させてアルコキシシラン化合物とn型半導体微粒子表面を反応させて半導体微粒子表面に第2の反応性の有機被膜を形成する工程と、p型半導体微粒子を少なくとも第3のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に分散させてアルコキシシラン化合物とp型半導体微粒子表面を反応させて半導体微粒子表面に第3の反応性の有機被膜を形成する工程と、第1の反応性の有機被膜の形成された電極表面に第2の反応性の有機被膜で被覆されたn型半導体微粒子を接触させて反応させる工程と、余分な第2の反応性の有機被膜で被覆されたn型半導体微粒子を洗浄除去して単層のn型半導体微粒子膜を選択的に形成する工程と、第2の反応性の有機被膜の形成されたn型半導体微粒子膜表面に第3の反応性の有機被膜で被覆されたp型半導体微粒子を接触させて反応させる工程と、余分な第3の反応性の有機被膜で被覆されたp型半導体微粒子を洗浄除去して単層のn型半導体微粒子膜を選択的に形成する工程と、裏面電極を形成する工程を含むことを特徴とする光センサーの製造方法である。 In the second invention, the electrode surface is brought into contact with a chemical adsorption solution prepared by mixing at least a first alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent to react the alkoxysilane compound with the electrode surface. A step of forming a first reactive organic film on the electrode surface; a step of processing the first reactive organic film into a predetermined pattern; and n-type semiconductor fine particles at least a second alkoxysilane compound and a silanol. A second reactive organic film is formed on the surface of the semiconductor fine particles by dispersing in a chemisorbed liquid prepared by mixing a condensation catalyst and a non-aqueous organic solvent and reacting the alkoxysilane compound with the surface of the n-type semiconductor fine particles. And a chemical adsorption solution prepared by mixing a p-type semiconductor fine particle with at least a third alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent. And a step of reacting the alkoxysilane compound with the surface of the p-type semiconductor fine particle to form a third reactive organic film on the surface of the semiconductor fine particle, and an electrode surface on which the first reactive organic film is formed. A step of contacting and reacting n-type semiconductor fine particles coated with the second reactive organic coating, and washing and removing excess n-type semiconductor fine particles coated with the second reactive organic coating to form a single layer And selectively forming the n-type semiconductor fine particle film, and the p-type semiconductor fine particle coated with the third reactive organic film on the surface of the n-type semiconductor fine particle film on which the second reactive organic film is formed A step of allowing the p-type semiconductor fine particles coated with the extra third reactive organic coating to be washed away and selectively forming a single-layer n-type semiconductor fine particle film; Including a step of forming an electrode. It is a manufacturing method of an optical sensor to.

ここで、半導体がシリコンであり、第1の反応性の有機被膜を形成する工程、第2の反応性の有機被膜を形成する工程、および第3の反応性の有機被膜を形成する工程において、それぞれアルコキシシラン化合物の反応後、有機溶剤で洗浄して電極、n型シリコン微粒子、及びp型シリコン微粒子の表面に共有結合した第1〜第3の反応性の単分子膜を形成すると、内部抵抗を小さくする上で都合がよい。 Here, the semiconductor is silicon, and in the step of forming the first reactive organic film, the step of forming the second reactive organic film, and the step of forming the third reactive organic film, After the reaction of the alkoxysilane compound, each of the first and third reactive monomolecular films covalently bonded to the surface of the electrode, n-type silicon fine particles, and p-type silicon fine particles is washed with an organic solvent, Convenient for reducing the size.

また、第1、第3の反応性の有機被膜がエポキシ基を含み第2の反応性の有機被膜がイミノ基を含むか、第1、第3の反応性の有機被膜がイミノ基を含み第2の反応性の有機被膜がエポキシ基を含むと耐剥離性に高い光センサーを製造できて都合がよい。
さらに、第1、第3の反応性の単分子膜がエポキシ基を含み第2の反応性の単分子膜がイミノ基を含むか、第1、第3の反応性の単分子膜がイミノ基を含み第2の反応性の単分子膜がエポキシ基を含むと、内部抵抗が小さな光センサーを製造できて好都合である。
The first and third reactive organic coatings contain epoxy groups and the second reactive organic coating contains imino groups, or the first and third reactive organic coatings contain imino groups and If the reactive organic coating 2 contains an epoxy group, it is convenient to produce an optical sensor with high peel resistance.
Furthermore, the first and third reactive monomolecular films contain an epoxy group and the second reactive monomolecular film contains an imino group, or the first and third reactive monomolecular films contain an imino group. If the second reactive monomolecular film contains an epoxy group, an optical sensor having a low internal resistance can be advantageously manufactured.

第3の発明は、第1の発明に於いて、さらに、n型半導体微粒子膜とp型半導体微粒子膜がそれぞれ複数層有機被膜を介して積層製膜されていることを特徴とする半導体微粒子膜積層型光センサーである。 According to a third aspect of the present invention, there is provided the semiconductor fine particle film according to the first aspect, wherein the n-type semiconductor fine particle film and the p-type semiconductor fine particle film are each laminated and formed through a plurality of organic layers. It is a stacked optical sensor.

ここで、n型およびp型シリコン微粒子表面に形成された有機被膜がそれぞれ2種類有り、第1種類目の有機被膜が形成されたシリコン微粒子と第2種類目の有機被膜が形成されたシリコン微粒子とが交互に積層されていると、光吸収効率の高い光センサーを製作する上で都合がよい。
また、第1種類目の有機被膜と第2種類目の有機被膜が反応して共有結合を形成していると、耐久性を向上する上で都合がよい。
さらに、共有結合が、エポキシ基とイミノ基の反応で形成された−N−C−の結合であると耐剥離強度を向上できて都合がよい。
Here, there are two types of organic coatings formed on the surface of the n-type and p-type silicon fine particles, respectively, the silicon fine particles on which the first type organic coating is formed and the silicon fine particles on which the second type organic coating is formed. Are alternately stacked, which is convenient for manufacturing an optical sensor with high light absorption efficiency.
Moreover, it is convenient to improve the durability when the first type organic coating and the second type organic coating react to form a covalent bond.
Furthermore, it is advantageous that the covalent bond is a —N—C— bond formed by the reaction of an epoxy group and an imino group, because the peel strength can be improved.

第4の発明は、単層のn型半導体微粒子膜を形成する工程の後、第2の反応性の有機被膜の形成されたn型半導体微粒子膜表面に第4の反応性の有機被膜で被覆されたn型半導体微粒子を接触させて反応させる工程と、余分な第4の反応性の有機被膜で被覆されたn型半導体微粒子を洗浄除去して2層目のn型半導体微粒子膜を形成する工程、及び単層のp型半導体微粒子膜を形成する工程の後、第3の反応性の有機被膜の形成されたp型半導体微粒子膜表面に第5の反応性の有機被膜で被覆されたp型半導体微粒子を接触させて反応させる工程と、余分な第5の反応性の有機被膜で被覆されたp型半導体微粒子を洗浄除去して2層目のn型半導体微粒子膜を形成する工程を含むことを特徴とする半導体微粒子膜積層型光センサーの製造方法である。 In a fourth aspect of the present invention, after the step of forming a single-layer n-type semiconductor fine particle film, the surface of the n-type semiconductor fine particle film on which the second reactive organic film is formed is coated with the fourth reactive organic film. A step of bringing the n-type semiconductor fine particles into contact with each other and reacting, and the n-type semiconductor fine particles coated with the extra fourth reactive organic coating are washed and removed to form a second-layer n-type semiconductor fine particle film. After the step and the step of forming the single-layer p-type semiconductor fine particle film, the p-type semiconductor fine particle film surface on which the third reactive organic film is formed is coated with the fifth reactive organic film. A step of bringing the semiconductor particles into contact with each other, and a step of forming a second n-type semiconductor particle film by washing and removing the p-type semiconductor particles covered with the extra fifth reactive organic coating. Manufacturing method of semiconductor fine particle film laminated optical sensor A.

ここで、それぞれの層間で接触する有機被膜に、それぞれ互いに反応する官能基を組み合わせると結合させる上で都合がよい。
また、半導体がシリコンであり、n型及びp型シリコン微粒子膜として、任意の層数だけ累積したシリコン微粒子膜を形成する光吸収効率と感度との関係がベストな光センサーの製造方法を提供できて都合がよい。
Here, it is convenient to combine the organic coatings that are in contact with each other by combining functional groups that react with each other.
In addition, it is possible to provide a method of manufacturing an optical sensor having the best relationship between light absorption efficiency and sensitivity for forming a silicon fine particle film in which an arbitrary number of layers are accumulated as the n-type and p-type silicon fine particle films. Convenient.

さらに、第1〜5の反応性の有機被膜を形成する工程の後に、それぞれ電極あるいはシリコン微粒子表面を有機溶剤で洗浄して電極やシリコン微粒子表面に共有結合した第1〜5の反応性の単分子膜を形成すると、センサーの内部抵抗を小さくできて都合がよい。    Further, after the steps of forming the first to fifth reactive organic coatings, the electrodes or silicon fine particle surfaces are respectively washed with an organic solvent and covalently bonded to the electrode or silicon fine particle surfaces. Forming a molecular film is advantageous because it can reduce the internal resistance of the sensor.

さらにまた、それぞれ互いに反応する官能基の組み合わせがエポキシ基とイミノ基であると耐剥離強度を向上する上で都合がよい。
また、シラノール縮合触媒の代わりに、ケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を用いると製造能率を向上できて都合がよい。
また、シラノール縮合触媒に助触媒としてケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物から選ばれる少なくとも1つを混合して用いると、さらに製造能率を向上できて都合がよい。
Furthermore, when the combination of functional groups that react with each other is an epoxy group and an imino group, it is convenient to improve the peel resistance.
In addition, it is convenient to improve the production efficiency by using a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, or an aminoalkylalkoxysilane compound instead of the silanol condensation catalyst.
Further, when a ketimine compound or at least one selected from an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, and an aminoalkylalkoxysilane compound is used as a co-catalyst for the silanol condensation catalyst, the production efficiency can be further improved. convenient.

以上説明したとおり、本発明によれば、半導体性シリコン微粒子を用い、シリコン微粒子本来の機能を損なうことなく、任意の基板表面にn型およびp型シリコン微粒子を1層ずつ製膜した粒子サイズレベルで均一厚みのシリコン微粒子膜光センサーや、n型シリコン微粒子の膜を複数層累積したn型シリコン微粒子積層膜およびp型シリコン微粒子の膜を複数層累積したp型シリコン微粒子積層膜を用いた粒子サイズレベルで均一厚みの高性能な積層型光センサー及びそれらの製造方法を低コストで提供できる格別の効果がある。   As described above, according to the present invention, the particle size level in which the semiconductor silicon fine particles are used and the n-type and p-type silicon fine particles are formed on the surface of an arbitrary substrate without damaging the original function of the silicon fine particles. Particles using a uniform and uniform silicon fine particle film optical sensor, an n type silicon fine particle laminated film in which a plurality of n type silicon fine particle films are accumulated, and a p type silicon fine particle laminated film in which a plurality of p type silicon fine particle films are accumulated There is an extraordinary effect that can provide a high-performance laminated optical sensor having a uniform thickness at a size level and a method for manufacturing the same at low cost.

本発明は、電極表面を少なくとも第1のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に接触させてアルコキシシラン化合物と電極表面を反応させて電極表面に第1の反応性の有機被膜を形成する工程と、前記第1の反応性の有機膜を所定のパターンに加工する工程と、n型シリコン微粒子を少なくとも第2のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に分散させてアルコキシシラン化合物とn型シリコン微粒子表面を反応させてシリコン微粒子表面に第2の反応性の有機被膜を形成する工程と、p型シリコン微粒子を少なくとも第3のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に分散させてアルコキシシラン化合物とp型シリコン微粒子表面を反応させてシリコン微粒子表面に第3の反応性の有機被膜を形成する工程と、第1の反応性の有機被膜の形成された電極表面に第2の反応性の有機被膜で被覆されたn型シリコン微粒子を接触させて反応させる工程と、余分な第2の反応性の有機被膜で被覆されたn型シリコン微粒子を洗浄除去して単層のn型シリコン微粒子膜を選択的に形成する工程と、第2の反応性の有機被膜の形成されたn型シリコン微粒子膜表面に第3の反応性の有機被膜で被覆されたp型シリコン微粒子を接触させて反応させる工程と、余分な第3の反応性の有機被膜で被覆されたp型シリコン微粒子を洗浄除去して単層のn型シリコン微粒子膜を選択的に形成する工程と、裏面電極を形成する工程とにより、基板表面に電極を介してn型シリコン微粒子膜とp型シリコン微粒子膜と透明電極が積層形成されており、あらかじめ前記電極表面に選択的に形成された第1の有機被膜と前記n型シリコン微粒子膜表面に形成された第2の有機被膜、およびn型シリコン微粒子膜表面に形成された第2の有機被膜とp型シリコン微粒子膜表面に形成された第3の有機被膜がそれぞれ互いに共有結合している光センサーを製造提供する。 In the present invention, an electrode surface is brought into contact with a chemical adsorption solution prepared by mixing at least a first alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent, and the alkoxysilane compound and the electrode surface are reacted to react with each other. Forming a first reactive organic film, processing the first reactive organic film into a predetermined pattern, and converting n-type silicon fine particles into at least a second alkoxysilane compound and a silanol condensation catalyst. And a step of forming a second reactive organic film on the surface of the silicon fine particles by allowing the alkoxysilane compound and the surface of the n-type silicon fine particles to react with each other in a chemical adsorption solution prepared by mixing a non-aqueous organic solvent and Chemical absorption produced by mixing p-type silicon fine particles with at least a third alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent. A step of dispersing the alkoxysilane compound and the surface of the p-type silicon fine particles to form a third reactive organic coating on the surface of the silicon fine particles, and an electrode on which the first reactive organic coating is formed. A step of contacting and reacting n-type silicon fine particles coated with the second reactive organic coating on the surface; and washing and removing excess n-type silicon fine particles coated with the second reactive organic coating. A step of selectively forming a single-layer n-type silicon fine particle film, and a p-type in which the surface of the n-type silicon fine particle film on which the second reactive organic film is formed is coated with a third reactive organic film A step of bringing silicon fine particles into contact with each other and a step of selectively removing a p-type silicon fine particle coated with an extra third reactive organic coating to selectively form a single-layer n-type silicon fine particle film. , Forming the back electrode And a first organic film selectively formed on the electrode surface in advance by laminating an n-type silicon fine particle film, a p-type silicon fine particle film, and a transparent electrode on the surface of the substrate via the electrode. A second organic film formed on the surface of the n-type silicon fine particle film; a second organic film formed on the surface of the n-type silicon fine particle film; and a third organic film formed on the surface of the p-type silicon fine particle film. Produces and provides optical sensors that are each covalently bonded to each other.

また、単層のn型シリコン微粒子膜を形成する工程の後、第2の反応性の有機被膜の形成されたn型シリコン微粒子膜表面に第4の反応性の有機被膜で被覆されたn型シリコン微粒子を接触させて反応させる工程と、余分な第4の反応性の有機被膜で被覆されたn型シリコン微粒子を洗浄除去して2層目のn型シリコン微粒子膜を形成する工程、及び単層のp型シリコン微粒子膜を形成する工程の後、第3の反応性の有機被膜の形成されたp型シリコン微粒子膜表面に第5の反応性の有機被膜で被覆されたp型シリコン微粒子を接触させて反応させる工程と、余分な第5の反応性の有機被膜で被覆されたp型シリコン微粒子を洗浄除去して2層目のp型シリコン微粒子膜を形成する工程とにより、n型シリコン微粒子膜とp型シリコン微粒子膜がそれぞれ複数層有機被膜を介して製膜されているシリコン微粒子膜積層型光センサーを製造提供する。 In addition, after the step of forming the single-layer n-type silicon fine particle film, the n-type silicon fine particle film surface on which the second reactive organic film is formed is coated with the fourth reactive organic film. A step of bringing the silicon fine particles into contact with each other, a step of washing and removing the excess n-type silicon fine particles coated with the fourth reactive organic coating, and forming a second layer of the n-type silicon fine particle film; After the step of forming the p-type silicon fine particle film, p-type silicon fine particles coated with the fifth reactive organic film are formed on the surface of the p-type silicon fine particle film on which the third reactive organic film is formed. N-type silicon by a step of contacting and reacting and a step of forming a second-layer p-type silicon fine particle film by washing and removing p-type silicon fine particles coated with an extra fifth reactive organic film Fine particle film and p-type silicon fine particle There is provided production of silicon fine particle film layered photoelectric sensor that is a film through a plurality of layers the organic film, respectively.

したがって、本発明では、半導体性シリコン微粒子を用い、シリコン微粒子本来の機能を損なうことなく、任意の基板表面にn型およびp型シリコン微粒子を1層づつ製膜した粒子サイズレベルで均一厚みのシリコン微粒子膜光センサーや、n型およびp型シリコン微粒子を1層のみ並べた膜を複数層累積したシリコン微粒子膜積層型光センサー及びそれらの製造方法を提供できる作用がある。   Therefore, in the present invention, silicon having a uniform thickness at a particle size level obtained by forming semiconducting silicon fine particles and forming one layer of n-type and p-type silicon fine particles on an arbitrary substrate surface without impairing the original function of the silicon fine particles. There exists an effect | action which can provide the fine particle film | membrane optical sensor, the silicon fine particle film | membrane laminated | stacked optical sensor which accumulated multiple layers of the film | membrane which arranged only one layer of n-type and p-type silicon fine particles, and those manufacturing methods.

以下、本願発明の詳細を、代表例としてn型及びp型シリコン微粒子を用いた場合を取り上げて説明するが、本願発明は、これらn型及びp型シリコン微粒子に限定されるものではない。本発明の方法で表面に単分子膜を形成できる半導体微粒子なら全てに適用可能である。   Hereinafter, the details of the present invention will be described by taking the case of using n-type and p-type silicon fine particles as representative examples, but the present invention is not limited to these n-type and p-type silicon fine particles. Any semiconductor fine particle capable of forming a monomolecular film on the surface by the method of the present invention is applicable.

まず、電極1が形成されたガラス基板2を用意し、よく乾燥した。次に、化学吸着剤として機能部位に反応性の官能基、例えば、エポキシ基と他端にアルコキシシリル基を含む薬剤、例えば、下記式(化1)に示す薬剤を99重量%、シラノール縮合触媒として、例えば、ジブチル錫ジアセチルアセトナート、または有機酸である酢酸を1重量%となるようそれぞれ秤量し、シリコーン溶媒、例えば、ヘキサメチルジシロキサン溶媒に1重量%程度の濃度(好ましい化学吸着剤の濃度は、0.5〜3%程度)になるように溶かして化学吸着液を調製した。 First, a glass substrate 2 on which an electrode 1 was formed was prepared and dried well. Next, 99 wt% of a chemical containing a functional group reactive at the functional site as a chemical adsorbent, for example, an epoxy group and an alkoxysilyl group at the other end, for example, a chemical represented by the following formula (Chemical Formula 1), a silanol condensation catalyst For example, dibutyltin diacetylacetonate or acetic acid, which is an organic acid, is weighed to 1% by weight, and a concentration of about 1% by weight in a silicone solvent, for example, hexamethyldisiloxane solvent (a preferred chemical adsorbent). A chemical adsorption solution was prepared by dissolving so as to have a concentration of about 0.5 to 3%.

Figure 2007173518
Figure 2007173518

次に、この吸着液に、ガラス基板2を漬浸して普通の空気中(相対湿度45%)で2時間程度反応させた。このとき、電極1表面には水酸基3が多数含まれているの(図1(a))で、前記化学吸着剤の−Si(OCH)基と前記水酸基がシラノール縮合触媒、または有機酸である酢酸の存在下で脱アルコール(この場合は、脱CHOH)反応し、下記式(化2)に示したような結合を形成し、ガラス基材1表面全面に亘り表面と化学結合したエポキシ基を含む化学吸着単分子膜4が約1ナノメートル程度の膜厚で形成される。 Next, the glass substrate 2 was immersed in this adsorbing solution and reacted in ordinary air (relative humidity 45%) for about 2 hours. At this time, since the surface of the electrode 1 contains a large number of hydroxyl groups 3 (FIG. 1 (a)), the -Si (OCH 3 ) group of the chemical adsorbent and the hydroxyl group are silanol condensation catalysts or organic acids. In the presence of a certain acetic acid, dealcoholization (in this case, de-CH 3 OH) is reacted to form a bond as shown in the following formula (Chemical Formula 2) and chemically bonded to the surface over the entire surface of the glass substrate 1. A chemisorption monomolecular film 4 containing an epoxy group is formed with a film thickness of about 1 nanometer.

Figure 2007173518
Figure 2007173518

なお、ここで、アミノ基を含む吸着剤を使用する場合には、スズ系の触媒では沈殿が生成するので、酢酸等の有機酸を用いた方がよかった。また、アミノ基はイミノ基を含んでいるが、アミノ基以外にイミノ基を含む物質には、ピロール誘導体や、イミダゾール誘導体等がある。さらに、ケチミン誘導体を用いれば、被膜形成後、加水分解により容易にアミノ基を導入できた。
その後、塩素系溶媒であるクロロホルムを用いて洗浄すると、表面に反応性の官能基、例えばエポキシ基を有する化学吸着単分子膜で電極が被われたガラス基材がそれぞれ作製できた。(図1(b))
Here, when an adsorbent containing an amino group is used, since a precipitate is generated with a tin-based catalyst, it is better to use an organic acid such as acetic acid. The amino group contains an imino group, but substances containing an imino group in addition to the amino group include pyrrole derivatives and imidazole derivatives. Furthermore, when a ketimine derivative was used, an amino group could be easily introduced by hydrolysis after film formation.
Thereafter, when the substrate was washed with chloroform, which is a chlorinated solvent, glass substrates 5 each having an electrode covered with a chemisorption monomolecular film having a reactive functional group, for example, an epoxy group, on the surface could be produced. (Fig. 1 (b))

なお、この被膜はナノメートルレベルの膜厚で極めて薄いため、ガラス基材の透明性を損なうことはなかった。
一方、洗浄せずに空気中に取り出すと、反応性はほぼ変わらないが、溶媒が蒸発しガラス基材表面に残った化学吸着剤が表面で空気中の水分と反応して、表面に前記化学吸着剤よりなる極薄の反応性のポリマー膜が形成されたガラス基材が得られた。
In addition, since this film was extremely thin with a film thickness of nanometer level, the transparency of the glass substrate was not impaired.
On the other hand, when it is taken out into the air without washing, the reactivity is not substantially changed, but the chemical adsorbent remaining on the glass substrate surface reacts with the moisture in the air on the surface, and the chemical is adsorbed on the surface. A glass substrate on which an extremely thin reactive polymer film made of an adsorbent was formed was obtained.

次に、エキシマレーザーを用いて、前記基材表面の不要部を選択的に照射し、前記反応性の単分子膜をアブレーションで除去する(図1(c))か、あるいはエポキシ基を開環させて失活させた。(図1(d))すなわち、ガラス基板表面がエポキシ基を持ったパターン状の被膜6、6’で選択的に被われた基板7’を製作できた。 Next, using an excimer laser, the unnecessary portion of the substrate surface is selectively irradiated to remove the reactive monomolecular film by ablation (FIG. 1 (c)), or the epoxy group is opened. I was inactivated. That is, the substrates 7 and 7 ′ in which the glass substrate surface was selectively covered with the patterned coatings 6 and 6 ′ having an epoxy group could be manufactured.

他の方法として、前記被膜表面にカチオン系の重合開始剤、例えばチバ・スペシャルティ・ケミカルズ社製のイルガキュア250をメチルエチルケトン(MEK)で希釈して塗布し、遠紫外線で選択的に露光しても、選択的にエポキシ基を開環重合させてパターン状に失活できた。 As another method, a cationic polymerization initiator, for example, Irgacure 250 manufactured by Ciba Specialty Chemicals Co., Ltd. is diluted with methyl ethyl ketone (MEK) and applied to the surface of the coating, and selectively exposed with far ultraviolet rays. It could be deactivated in a pattern by selectively ring-opening polymerization of epoxy groups.

実施例1と同様に、まず、半導体微粒子である大きさが100nm程度のn型シリコン微粒子11(p型シリコン微粒子でも同様)を用意し、よく乾燥した。次に、化学吸着剤として機能部位に反応性の官能基、例えば、エポキシ基あるいはイミノ基と他端にアルコキシシリル基を含む薬剤、例えば、前記式(化1)あるいは下記式(化3)に示す薬剤を99重量%、シラノール縮合触媒として、例えば、ジブチル錫ジアセチルアセトナートを1重量%となるようそれぞれ秤量し、シリコーン溶媒、例えば、ヘキサメチルジシロキサンとジメチルホルムアミド(50:50)混合溶媒に1重量%程度の濃度(好ましい化学吸着剤の濃度は、0.5〜3%程度)になるように溶かして化学吸着液を調製した。 In the same manner as in Example 1, first, n-type silicon fine particles 11 (same as p-type silicon fine particles) having a size of about 100 nm as semiconductor fine particles were prepared and dried well. Next, as a chemical adsorbent, a functional functional group having a reactive functional group such as an epoxy group or imino group and an alkoxysilyl group at the other end, such as the above formula (Formula 1) or the following formula (Formula 3) 99% by weight of the drug to be used and a silanol condensation catalyst, for example, dibutyltin diacetylacetonate is weighed to 1% by weight, respectively, and a silicone solvent, for example, hexamethyldisiloxane and dimethylformamide (50:50) mixed solvent is used. A chemical adsorption solution was prepared by dissolving to a concentration of about 1% by weight (preferably the concentration of the chemical adsorbent is about 0.5 to 3%).

Figure 2007173518
Figure 2007173518

この吸着液に無水のシリコン微粒子11を混入撹拌して普通の空気中(相対湿度45%)で2時間程度反応させた。このとき、無水のシリコン微粒子表面には水酸基12が多数含まれているの(図2(a))で、前記化学吸着剤の−Si(OCH)基と前記水酸基がシラノール縮合触媒の存在下で脱アルコール(この場合は、脱CHOH)反応し、前記式(化2)あるいは下記式(化4)に示したような結合を形成し、シリコン微粒子表面全面に亘り表面と化学結合したエポキシ基を含む化学吸着単分子膜13あるいはアミノ基を含む化学吸着膜14が約1ナノメートル程度の膜厚で形成された(図2(b)、2(c))。なお、ここで、アミノ基はイミノ基を含んでいる。また、アミノ基以外にイミノ基を含む物質には、ピロール誘導体やイミダゾール誘導体等がある。さらに、アルコキシシランを含むケチミン誘導体を用いれば、被膜形成後、加水分解により容易にアミノ基を導入できた。 Anhydrous silicon fine particles 11 were mixed into the adsorbed liquid and stirred, and reacted in ordinary air (relative humidity 45%) for about 2 hours. At this time, since there are many hydroxyl groups 12 on the surface of the anhydrous silicon fine particles (FIG. 2A), the -Si (OCH 3 ) group of the chemical adsorbent and the hydroxyl group are present in the presence of a silanol condensation catalyst. dealcoholation in (in this case, de-CH 3 OH) react, the formula (2) or bond to form as shown in the following formula (formula 4), and a surface chemically bonded over the silicon particle surface entire A chemical adsorption monomolecular film 13 containing an epoxy group or a chemical adsorption film 14 containing an amino group was formed with a film thickness of about 1 nanometer (FIGS. 2B and 2C). Here, the amino group includes an imino group. Examples of the substance containing an imino group in addition to an amino group include a pyrrole derivative and an imidazole derivative. Furthermore, when a ketimine derivative containing alkoxysilane was used, an amino group could be easily introduced by hydrolysis after the film formation.

Figure 2007173518
Figure 2007173518

その後、塩素系溶媒であるクロロホルムを添加して撹拌洗浄すると、表面に反応性の官能基、例えばエポキシ基を有する化学吸着単分子膜で被われたシリコン微粒子1、あるいはアミノ基を有する化学吸着単分子膜で被われたシリコン微粒子1をそれぞれ作製できた。 Thereafter, when chloroform as a chlorinated solvent is added and washed with stirring, silicon fine particles 1 5 covered with a chemisorption monomolecular film having a reactive functional group, for example, an epoxy group on the surface, or chemisorption having an amino group Silicon fine particles 16 covered with a monomolecular film could be produced.

なお、この被膜はナノメートルレベルの膜厚で極めて薄いため、粒子径を損なうことはなかった。
一方、洗浄せずに空気中に取り出すと、反応性はほぼ変わらないが、溶媒が蒸発し粒子表面に残った化学吸着剤が表面で空気中の水分と反応して、表面に前記化学吸着剤よりなる極薄の反応性ポリマー膜が形成されたシリコン微粒子が得られた。
Note that this film was extremely thin with a nanometer-level film thickness, so the particle diameter was not impaired.
On the other hand, when taken out into the air without washing, the reactivity does not change substantially, but the chemical adsorbent remaining on the particle surface reacts with the moisture in the air by evaporation of the solvent, and the chemical adsorbent on the surface. Silicon fine particles on which an extremely thin reactive polymer film was formed were obtained.

次に、電極表面20が、前記エポキシ基を有する化学吸着単分子膜21で選択的に被われたガラス基板22表面に、アミノ基を有する化学吸着単分子膜で被われたn型シリコン微粒子23をアルコールに分散させて塗布し、100℃程度に加熱すると、ガラス基材表面のエポキシ基と接触しているシリコン微粒子表面のアミノ基が下記式(化5)に示したような反応で付加して絶縁性微粒子とガラス基板は二つの単分子膜を介して選択的に結合する。なお、このとき、超音波を当てながらアルコールを蒸発させると、被膜の膜厚均一性を向上できた。 Next, n-type silicon fine particles 23 covered with a chemisorption monomolecular film having an amino group on the surface of a glass substrate 22 with the electrode surface 20 selectively covered with the chemisorption monomolecular film 21 having an epoxy group. When dispersed in alcohol and heated to about 100 ° C., the amino group on the surface of the silicon fine particles in contact with the epoxy group on the surface of the glass substrate is added by the reaction shown in the following formula (Formula 5). Thus, the insulating fine particles and the glass substrate are selectively bonded through two monomolecular films. At this time, when the alcohol was evaporated while applying ultrasonic waves, the film thickness uniformity of the coating could be improved.

Figure 2007173518
そこで、再びアルコールで基材表面を洗浄し、余分で未反応のアミノ基を有する化学吸着単分子膜で被われたシリコン微粒子を洗浄除去すると、電極20表面のエポキシ基を有する化学吸着単分子膜に共有結合したアミノ基を有する化学吸着単分子膜で被われたn型シリコン微粒子23を選択的に1層のみ並べた状態で、且つ粒子サイズレベルで均一厚みのパターン状のn型シリコン微粒子膜24が形成できた。(図3(a))
Figure 2007173518
Therefore, the surface of the base material is again washed with alcohol, and the silicon fine particles covered with the extra unreacted amino group-containing chemical adsorption monomolecular film are removed by washing. N-type silicon fine particle film having a uniform thickness at a particle size level in a state in which only one layer of n-type silicon fine particles 23 covered with a chemisorption monomolecular film having an amino group covalently bonded to is selectively arranged 24 was formed. (Fig. 3 (a))

ここで、シリコン微粒子のパターン状の単層絶縁性微粒子膜の厚みは、100nm程度であった。 Here, the thickness of the patterned single-layer insulating fine particle film of silicon fine particles was about 100 nm.

さらに、n型シリコン微粒子膜の膜厚を厚くしたい場合、実施例3に引き続き、共有結合したアミノ基を有する化学吸着単分子膜で被われたn型シリコン微粒子がパターン状に1層のみ並べた状態で、且つ粒子サイズレベルで均一厚みのパターン状の単層絶縁性微粒子膜24が形成されたガラス基板表面22に、エポキシ基を有する化学吸着単分子膜で被われたn型シリコン微粒子25をアルコールに分散させて塗布し、100℃程度に加熱すると、アミノ基を有する化学吸着単分子膜で被われたシリコン微粒子がパターン状に単層形成された部分のアミノ基と接触しているn型シリコン微粒子表面のエポキシ基に前記式(化5)に示したような反応で付加して、ガラス基板表面でアミノ基を有する化学吸着単分子膜で被われたn型シリコン微粒子とエポキシ基を有する化学吸着単分子膜で被われたn型シリコン微粒子は、二つの単分子膜を介して選択的に結合固化した。 Further, when it is desired to increase the film thickness of the n-type silicon fine particle film, following Example 3, only one layer of n-type silicon fine particles covered with a chemically adsorbed monomolecular film having a covalently bonded amino group is arranged in a pattern. The n-type silicon fine particles 25 covered with the chemical adsorption monomolecular film having an epoxy group are applied to the glass substrate surface 22 on which the single-layer insulating fine particle film 24 having a uniform thickness at the particle size level is formed. When dispersed in alcohol and applied, and heated to about 100 ° C., the silicon fine particles covered with the chemically adsorbed monomolecular film having amino groups are in contact with the amino groups in the portion where the monolayer is formed in a pattern. N-type silicon which is added to the epoxy group on the surface of the silicon fine particle by the reaction shown in the above formula (Chemical Formula 5) and covered with a chemisorbed monomolecular film having an amino group on the glass substrate surface. n-type silicon microparticles covered with chemisorption monomolecular film having a particle and epoxy groups were selectively bound and solidified via the two monolayers.

そこで、再びアルコールで基板表面を洗浄し、余分で未反応のエポキシ基を有する化学吸着単分子膜で被われたn型シリコン微粒子を洗浄除去すると、電極20に共有結合した2層目のn型シリコン微粒子が1層のみ並んだ状態で、且つ粒子サイズレベルで均一厚みの2層構造のパターン状のn型シリコン微粒子膜26が形成できた。(図3(b)) Then, the surface of the substrate is washed again with alcohol, and the n-type silicon fine particles covered with the extraneous unreacted epoxy group chemically adsorbed monomolecular film are removed by washing to remove the second n-type layer covalently bonded to the electrode 20. A pattern-shaped n-type silicon fine particle film 26 having a two-layer structure with a uniform thickness at the particle size level was formed with only one layer of silicon fine particles aligned. (Fig. 3 (b))

以下同様に、アミノ基を有する化学吸着単分子膜で被われたp型シリコン微粒子27とエポキシ基を有する化学吸着単分子膜で被われたp型シリコン微粒子28を交互に必要回数積層すると、多層構造のp型シリコン微粒子膜29を選択的に累積製造できた。
そこで最後に、最表面に透明電極30を形成すると、基板表面の任意の場所に形成された電極表面に選択的に光センサー31を形成できた。
Similarly, when p-type silicon fine particles 27 covered with a chemically adsorbed monomolecular film having amino groups and p-type silicon fine particles 28 covered with a chemically adsorbed monomolecular film having an epoxy group are alternately stacked as many times as necessary, multilayers are obtained. A p-type silicon fine particle film 29 having a structure could be selectively accumulated.
Therefore, finally, when the transparent electrode 30 was formed on the outermost surface, the optical sensor 31 could be selectively formed on the electrode surface formed at an arbitrary location on the substrate surface.

なお、本実施例では、基板表面の光センサーは一個しか示さなかったが、複数個並んだ場合、例えば、光センサーがライン状に並んだラインセンサーやマトリックスセンサーアレイも容易に製造できた。
また、本実施例では、n型およびp型シリコン微粒子膜がそれぞれ複数層形成された場合を示したが、層数は、任意に決定できる。必要がなければ、nおよびp型シリコン微粒子膜がそれぞれ単層でも、センサーとしての機能を果たした。
In this example, only one photosensor on the substrate surface was shown. However, when a plurality of photosensors are arranged, for example, a line sensor or a matrix sensor array in which photosensors are arranged in a line can be easily manufactured.
In this embodiment, the case where a plurality of n-type and p-type silicon fine particle films are formed is shown, but the number of layers can be arbitrarily determined. If not necessary, even if each of the n-type and p-type silicon fine particle films was a single layer, it functioned as a sensor.

なお、上記実施例1および2では、反応性基を含む化学吸着剤として式(化1)あるいは(化3)に示した物質を用いたが、上記のもの以外にも、下記(1)〜(16)に示した物質が利用できた。   In Examples 1 and 2, the substance represented by the formula (Chemical Formula 1) or (Chemical Formula 3) was used as the chemical adsorbent containing a reactive group. The substance shown in (16) was available.

(1) (CHOCH)CH2O(CH2)Si(OCH)3
(2) (CHOCH)CH2O(CH2)11Si(OCH)3
(3) (CHCHOCH(CH)CH(CH2)Si(OCH)3
(4) (CHCHOCH(CH)CH(CH2)Si(OCH)3
(5) (CHCHOCH(CH)CH(CH2)Si(OCH)3
(6) (CH2OCH)CH2O(CH2)Si(OC)3
(7) (CHOCH)CH2O(CH2)11Si(OC)3
(8) (CHCHOCH(CH)CH(CH2)Si(OC)3
(9) (CHCHOCH(CH)CH(CH2)Si(OC)3
(10) (CHCHOCH(CH)CH(CH2)Si(OC)3
(11) H2N (CH2)Si(OCH)3
(12) H2N (CH2)Si(OCH)3
(13) H2N (CH2)Si(OCH)3
(14) H2N (CH2)Si(OC)3
(15) H2N (CH2)Si(OC)3
(16) H2N (CH2)Si(OC)3
(1) (CH 2 OCH) CH 2 O (CH 2 ) 7 Si (OCH 3 ) 3
(2) (CH 2 OCH) CH 2 O (CH 2 ) 11 Si (OCH 3 ) 3
(3) (CH 2 CHOCH (CH 2 ) 2 ) CH (CH 2 ) 2 Si (OCH 3 ) 3
(4) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 4 Si (OCH 3) 3
(5) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 6 Si (OCH 3) 3
(6) (CH2OCH) CH 2 O (CH 2) 7 Si (OC 2 H 5) 3
(7) (CH 2 OCH) CH 2 O (CH 2 ) 11 Si (OC 2 H 5 ) 3
(8) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 2 Si (OC 2 H 5) 3
(9) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 4 Si (OC 2 H 5) 3
(10) (CH 2 CHOCH (CH 2 ) 2 ) CH (CH 2 ) 6 Si (OC 2 H 5 ) 3
(11) H 2 N (CH 2 ) 5 Si (OCH 3 ) 3
(12) H 2 N (CH 2 ) 7 Si (OCH 3 ) 3
(13) H 2 N (CH 2 ) 9 Si (OCH 3 ) 3
(14) H 2 N (CH 2 ) 5 Si (OC 2 H 5 ) 3
(15) H 2 N (CH 2 ) 7 Si (OC 2 H 5 ) 3
(16) H 2 N (CH 2 ) 9 Si (OC 2 H 5 ) 3

ここで、(CHOCH)−基は、下記式(化6)で表される官能基を表し、(CHCHOCH(CH)CH−基は、下記式(化7)で表される官能基を表す。 Here, the (CH 2 OCH) — group represents a functional group represented by the following formula (Formula 6), and the (CH 2 CHOCH (CH 2 ) 2 ) CH— group is represented by the following formula (Formula 7). Represents a functional group.

Figure 2007173518
Figure 2007173518

Figure 2007173518
Figure 2007173518

なお、実施例1および2において、シラノール縮合触媒には、カルボン酸金属塩、カルボン酸エステル金属塩、カルボン酸金属塩ポリマー、カルボン酸金属塩キレート、チタン酸エステル及びチタン酸エステルキレート類が利用可能である。さらに具体的には、酢酸第1錫、ジブチル錫ジラウレート、ジブチル錫ジオクテート、ジブチル錫ジアセテート、ジオクチル錫ジラウレート、ジオクチル錫ジオクテート、ジオクチル錫ジアセテート、ジオクタン酸第1錫、ナフテン酸鉛、ナフテン酸コバルト、2−エチルヘキセン酸鉄、ジオクチル錫ビスオクチリチオグリコール酸エステル塩、ジオクチル錫マレイン酸エステル塩、ジブチル錫マレイン酸塩ポリマー、ジメチル錫メルカプトプロピオン酸塩ポリマー、ジブチル錫ビスアセチルアセテート、ジオクチル錫ビスアセチルラウレート、テトラブチルチタネート、テトラノニルチタネート及びビス(アセチルアセトニル)ジプロピルチタネートを用いることが可能であった。 In Examples 1 and 2, carboxylic acid metal salts, carboxylic acid ester metal salts, carboxylic acid metal salt polymers, carboxylic acid metal salt chelates, titanate esters, and titanate ester chelates can be used as silanol condensation catalysts. It is. More specifically, stannous acetate, dibutyltin dilaurate, dibutyltin dioctate, dibutyltin diacetate, dioctyltin dilaurate, dioctyltin dioctate, dioctyltin diacetate, stannous dioctanoate, lead naphthenate, cobalt naphthenate , Iron 2-ethylhexenoate, dioctyltin bisoctylthioglycolate, dioctyltin maleate, dibutyltin maleate polymer, dimethyltin mercaptopropionate polymer, dibutyltin bisacetylacetate, dioctyltin bisacetyl Laurate, tetrabutyl titanate, tetranonyl titanate and bis (acetylacetonyl) dipropyl titanate could be used.

また、膜形成溶液の溶媒としては、水を含まない有機塩素系溶媒、炭化水素系溶媒、あるいはフッ化炭素系溶媒やシリコーン系溶媒、あるいはそれら混合物を用いることが可能であった。なお、洗浄を行わず、溶媒を蒸発させて粒子濃度を上げようとする場合には、溶媒の沸点は50〜250℃程度がよい。さらに、吸着剤がアルコキシシラン系の場合で且つ溶媒を蒸発させて有機被膜を形成する場合には、前記溶媒に加え、メタノール、エタノール、プロパノール等のアルコール系溶媒、あるいはそれら混合物が使用できた。 Further, as a solvent for the film-forming solution, it is possible to use an organic chlorine-based solvent, a hydrocarbon-based solvent, a fluorinated carbon-based solvent, a silicone-based solvent, or a mixture thereof that does not contain water. In addition, when it is going to raise particle concentration by evaporating a solvent, without wash | cleaning, the boiling point of a solvent is good at about 50-250 degreeC. Further, when the adsorbent is an alkoxysilane type and the organic film is formed by evaporating the solvent, an alcohol type solvent such as methanol, ethanol, propanol, or a mixture thereof can be used in addition to the solvent.

具体的に使用可能なものは、クロロシラン系非水系の石油ナフサ、ソルベントナフサ、石油エーテル、石油ベンジン、イソパラフィン、ノルマルパラフィン、デカリン、工業ガソリン、ノナン、デカン、灯油、ジメチルシリコーン、フェニルシリコーン、アルキル変性シリコーン、ポリエーテルシリコーン、ジメチルホルムアミド等を挙げることができる。 Specifically usable are chlorosilane-based non-aqueous petroleum naphtha, solvent naphtha, petroleum ether, petroleum benzine, isoparaffin, normal paraffin, decalin, industrial gasoline, nonane, decane, kerosene, dimethyl silicone, phenyl silicone, alkyl modified Examples thereof include silicone, polyether silicone, and dimethylformamide.

また、フッ化炭素系溶媒には、フロン系溶媒や、フロリナート(3M社製品)、アフルード(旭ガラス社製品)等がある。なお、これらは1種パターン状の単層独で用いても良いし、良く混ざるものなら2種以上を組み合わせてもよい。さらに、クロロホルム等有機塩素系の溶媒を添加しても良い。 Fluorocarbon solvents include fluorocarbon solvents, Fluorinert (product of 3M), Afludo (product of Asahi Glass). These may be used alone in a single layer with a single pattern, or two or more may be combined as long as they are well mixed. Further, an organic chlorine solvent such as chloroform may be added.

一方、上述のシラノール縮合触媒の代わりに、ケチミン化合物又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を用いた場合、同じ濃度でも処理時間を半分〜2/3程度まで短縮できた。 On the other hand, when a ketimine compound or organic acid, aldimine compound, enamine compound, oxazolidine compound, aminoalkylalkoxysilane compound is used instead of the above-mentioned silanol condensation catalyst, the treatment time is reduced to about half to 2/3 even at the same concentration. did it.

さらに、シラノール縮合触媒とケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を混合(1:9〜9:1範囲で使用可能だが、通常1:1前後が好ましい。)して用いると、処理時間をさらに数倍早く(30分程度まで)でき、製膜時間を数分の一まで短縮できる。 Furthermore, a silanol condensation catalyst and a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, and an aminoalkylalkoxysilane compound can be used in a range of 1: 9 to 9: 1. )), The processing time can be increased several times faster (up to about 30 minutes), and the film forming time can be reduced to a fraction of a minute.

例えば、シラノール触媒であるジブチル錫オキサイドをケチミン化合物であるジャパンエポキシレジン社のH3に置き換え、その他の条件は同一にしてみたが、反応時間を1時間程度にまで短縮できた他は、ほぼ同様の結果が得られた。 For example, dibutyltin oxide, which is a silanol catalyst, was replaced with H3 from Japan Epoxy Resin, which is a ketimine compound, and the other conditions were the same, but the reaction time was reduced to about 1 hour. Results were obtained.

さらに、シラノール触媒を、ケチミン化合物であるジャパンエポキシレジン社のH3と、シラノール触媒であるジブチル錫ビスアセチルアセトネートの混合物(混合比は1:1)に置き換え、その他の条件は同一にしてみたが、反応時間を30分程度に短縮できた他は、ほぼ同様の結果が得られた。 Furthermore, the silanol catalyst was replaced with a mixture of ketimine compound Japan Epoxy Resin H3 and silanol catalyst dibutyltin bisacetylacetonate (mixing ratio is 1: 1), and other conditions were the same. The same results were obtained except that the reaction time could be shortened to about 30 minutes.

したがって、以上の結果から、ケチミン化合物や有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物がシラノール縮合触媒より活性が高いことが明らかとなった。 Therefore, the above results revealed that ketimine compounds, organic acids, aldimine compounds, enamine compounds, oxazolidine compounds, and aminoalkylalkoxysilane compounds are more active than silanol condensation catalysts.

さらにまた、ケチミン化合物や有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物の内の1つとシラノール縮合触媒を混合して用いると、さらに活性が高くなることが確認された。 Furthermore, it was confirmed that the activity is further increased when one of a ketimine compound, an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, and an aminoalkylalkoxysilane compound is mixed with a silanol condensation catalyst.

なお、ここで、利用できるケチミン化合物は特に限定されるものではないが、例えば、2,5,8−トリアザ−1,8−ノナジエン、3,11−ジメチル−4,7,10−トリアザ−3,10−トリデカジエン、2,10−ジメチル−3,6,9−トリアザ−2,9−ウンデカジエン、2,4,12,14−テトラメチル−5,8,11−トリアザ−4,11−ペンタデカジエン、2,4,15,17−テトラメチル−5,8,11,14−テトラアザ−4,14−オクタデカジエン、2,4,20,22−テトラメチル−5,12,19−トリアザ−4,19−トリエイコサジエン等がある。 Here, the ketimine compound that can be used is not particularly limited. For example, 2,5,8-triaza-1,8-nonadiene, 3,11-dimethyl-4,7,10-triaza-3 , 10-tridecadiene, 2,10-dimethyl-3,6,9-triaza-2,9-undecadiene, 2,4,12,14-tetramethyl-5,8,11-triaza-4,11-pentadeca Diene, 2,4,15,17-tetramethyl-5,8,11,14-tetraaza-4,14-octadecadiene, 2,4,20,22-tetramethyl-5,12,19-triaza- 4,19-trieicosadiene and the like.

また、利用できる有機酸としても特に限定されるものではないが、例えば、ギ酸、あるいは酢酸、プロピオン酸、ラク酸、マロン酸等があり、ほぼ同様の効果があった。 Further, the organic acid that can be used is not particularly limited, but there are, for example, formic acid, acetic acid, propionic acid, lactic acid, malonic acid, and the like, which have almost the same effects.

上記実施例1〜4では、ガラス基板表面に、nおよびp型シリコン微粒子を用いて形成した光センサーを例として説明したが、本発明は、電子回路が形成された半導体基板やプリント基板などの電子デバイスに直接積層形成することも可能である。 In Examples 1 to 4 described above, the optical sensor formed using n and p-type silicon fine particles on the glass substrate surface has been described as an example. However, the present invention is applicable to a semiconductor substrate or a printed circuit board on which an electronic circuit is formed. It is also possible to form a laminate directly on the electronic device.

本発明の第1の実施例における電極の形成されたガラス基板表面の反応を分子レベルまで拡大した概念図であり、(a)は反応前の表面の図、(b)は、エポキシ基を含む単分子膜が形成された後の図、(c)は、前記単分子膜がアブレーションにより加工される状態を示す概念図、(d)は、光照射によりエポキシ基が選択的に開環架橋される状態を示す概念図である。It is the conceptual diagram which expanded reaction of the glass substrate surface in which the electrode in Example 1 of this invention was formed to the molecular level, (a) is the figure of the surface before reaction, (b) contains an epoxy group The figure after the monomolecular film is formed, (c) is a conceptual diagram showing a state in which the monomolecular film is processed by ablation, and (d) is an epoxy group selectively ring-opened and cross-linked by light irradiation. FIG. 本発明の第2の実施例におけるシリコン微粒子表面の反応を分子レベルまで拡大した概念図であり、(a)は反応前のシリコン微粒子表面の図、(b)は、エポキシ基を含む単分子膜が形成された後の図、(c)は、アミノ基を含む単分子膜が形成された後の図を示す。It is the conceptual diagram which expanded the reaction of the silicon fine particle surface in the 2nd Example of this invention to the molecular level, (a) is the figure of the silicon fine particle surface before reaction, (b) is the monomolecular film containing an epoxy group (C) shows a view after a monomolecular film containing an amino group is formed. 本発明の第3および第4の実施例における電極の形成されたガラス基材表面の反応を分子レベルまで拡大した概念図であり、(a)はパターン状の単層シリコン微粒子膜が形成された基材表面の図、(b)は、パターン状の複数層のn型およびp型シリコン微粒子膜が積層形成され、さらに透明電極が形成された光センサーの断面概念図を示す。It is the conceptual diagram which expanded the reaction of the glass substrate surface in which the electrode was formed in the 3rd and 4th Example of this invention to the molecular level, (a) is the pattern-form single layer silicon fine particle film | membrane formed FIG. 5B is a schematic cross-sectional view of an optical sensor in which a plurality of patterned n-type and p-type silicon fine particle films are laminated and a transparent electrode is formed.

符号の説明Explanation of symbols

1 電極
2 ガラス基板
3 水酸基
4 エポキシ基を含む単分子膜
エポキシ基を含む単分子膜で被われたガラス基板
6、6’ エポキシ基を持ったパターン状の被膜
’ エポキシ基を持ったパターン状の被膜で選択的に被われた基板
11 シリコン微粒子
12 水酸基
13 エポキシ基を含む単分子膜
14 アミノ基を含む単分子膜
15 エポキシ基を含む単分子膜で被われたシリコン微粒子
16 アミノ基を含む単分子膜で被われたシリコン微粒子
20 電極
21 エポキシ基を有する化学吸着単分子膜
22 ガラス基板
23 アミノ基を有する化学吸着単分子膜で被われたn型シリコン微粒子
24 パターン状の単層n型シリコン微粒子膜
25 エポキシ基を有する化学吸着単分子膜で被われたn型シリコン微粒子
26 2層構造のパターン状のn型シリコン微粒子膜
27 アミノ基を有する化学吸着単分子膜で被われたp型シリコン微粒子
28 エポキシ基を有する化学吸着単分子膜で被われたp型シリコン微粒子
29 2層構造のパターン状のp型シリコン微粒子膜
30 透明電極
31 光センサー
1 Electrode 2 Glass substrate 3 Hydroxyl group
4 Monomolecular film containing epoxy group
5 Glass substrate covered with monomolecular film containing epoxy group 6, 6 'Patterned film with epoxy group
7 , 7 ′ Substrate selectively covered with a patterned film having an epoxy group 11 Silicon fine particles 12 Hydroxyl group 13 Monomolecular film containing an epoxy group 14 Monomolecular film containing an amino group
Silicon fine particles covered with monomolecular film containing 15 epoxy groups
Silicon fine particle covered with monomolecular film containing 16 amino group 20 Electrode 21 Chemical adsorption monomolecular film having epoxy group 22 Glass substrate 23 n-type silicon fine particle covered with chemical adsorption monomolecular film having amino group 24 Pattern shape Single-layer n-type silicon fine particle film 25 n-type silicon fine particles covered with a chemisorption monomolecular film having an epoxy group
26 n-type silicon fine particle film with two-layer structure 27 p-type silicon fine particle covered with chemisorption monomolecular film having amino group 28 p-type silicon fine particle covered with chemisorption monomolecular film having epoxy group
29 Patterned p-type silicon fine particle film 30 having a two-layer structure Transparent electrode
31 light sensor

Claims (18)

基板表面上の電極を介してn型半導体微粒子膜とp型半導体微粒子膜と透明電極が順次積層形成されており、あらかじめ前記電極表面に選択的に形成された第1の有機被膜と前記n型半導体微粒子膜表面に形成された第2の有機被膜、およびn型半導体微粒子膜表面に形成された第2の有機被膜とp型半導体微粒子膜表面に形成された第3の有機被膜がそれぞれ互いに共有結合していることを特徴とする光センサー。 An n-type semiconductor fine particle film, a p-type semiconductor fine particle film, and a transparent electrode are sequentially stacked via electrodes on the substrate surface, and a first organic film selectively formed on the electrode surface in advance and the n-type The second organic film formed on the surface of the semiconductor fine particle film, the second organic film formed on the surface of the n-type semiconductor fine particle film, and the third organic film formed on the surface of the p-type semiconductor fine particle film are mutually shared. An optical sensor characterized by being coupled. 半導体がシリコンであり、電極表面に選択的に形成された第1の有機被膜とn型シリコン微粒子表面に形成された第2の有機被膜、およびn型シリコン微粒子表面に形成された第2の有機被膜とp型シリコン微粒子膜表面に形成された第3の有機被膜が互いに異なることを特徴とする請求項1記載の光センサー。 The semiconductor is silicon, the first organic film selectively formed on the electrode surface, the second organic film formed on the n-type silicon fine particle surface, and the second organic film formed on the n-type silicon fine particle surface 2. The optical sensor according to claim 1, wherein the film and the third organic film formed on the surface of the p-type silicon fine particle film are different from each other. 共有結合が、エポキシ基とイミノ基の反応で形成された−N−C−の結合であることを特徴とする請求項1記載の光センサー。 The optical sensor according to claim 1, wherein the covalent bond is a —N—C— bond formed by a reaction between an epoxy group and an imino group. 第1,第2,及び第3の有機被膜が単分子膜で構成されていることを特徴とする請求項1および2記載の光センサー。 3. The optical sensor according to claim 1, wherein the first, second, and third organic coatings are monomolecular films. 電極表面を少なくとも第1のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に接触させてアルコキシシラン化合物と電極表面を反応させて電極表面に第1の反応性の有機被膜を形成する工程と、前記第1の反応性の有機膜を所定のパターンに加工する工程と、n型半導体微粒子を少なくとも第2のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に分散させてアルコキシシラン化合物とn型半導体微粒子表面を反応させて半導体微粒子表面に第2の反応性の有機被膜を形成する工程と、p型半導体微粒子を少なくとも第3のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に分散させてアルコキシシラン化合物とp型半導体微粒子表面を反応させて半導体微粒子表面に第3の反応性の有機被膜を形成する工程と、所定のパターンに加工された第1の反応性の有機被膜の形成された電極表面に第2の反応性の有機被膜で被覆されたn型半導体微粒子を接触させて反応させる工程と、余分な第2の反応性の有機被膜で被覆されたn型半導体微粒子を洗浄除去して単層のn型半導体微粒子膜を選択的に形成する工程と、第2の反応性の有機被膜の形成されたn型半導体微粒子膜表面に第3の反応性の有機被膜で被覆されたp型半導体微粒子を接触させて反応させる工程と、余分な第3の反応性の有機被膜で被覆されたp型半導体微粒子を洗浄除去して単層のn型半導体微粒子膜を選択的に形成する工程と、裏面電極を形成する工程を含むことを特徴とする光センサーの製造方法。 The electrode surface is brought into contact with a chemical adsorption solution prepared by mixing at least a first alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent to cause the alkoxysilane compound and the electrode surface to react with each other to cause the electrode surface to react with the first surface. A step of forming a reactive organic film; a step of processing the first reactive organic film into a predetermined pattern; and at least a second alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous n-type semiconductor fine particle. A step of forming a second reactive organic coating on the surface of the semiconductor fine particles by dispersing the mixture in a chemical adsorption solution prepared by mixing an organic solvent to react the alkoxysilane compound with the surface of the n-type semiconductor fine particles, and a p-type semiconductor. Fine particles are dispersed in a chemical adsorption solution prepared by mixing at least a third alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent. A step of forming a third reactive organic film on the surface of the semiconductor fine particles by reacting the alkoxysilane compound with the surface of the p-type semiconductor fine particles, and an electrode on which the first reactive organic film processed into a predetermined pattern is formed A step of contacting and reacting n-type semiconductor fine particles coated with the second reactive organic coating on the surface, and washing and removing the excess n-type semiconductor fine particles coated with the second reactive organic coating. A step of selectively forming a single-layer n-type semiconductor fine particle film, and a p-type in which the surface of the n-type semiconductor fine particle film on which the second reactive organic film is formed is coated with a third reactive organic film A step of bringing the semiconductor fine particles into contact with each other and a step of selectively forming a single-layer n-type semiconductor fine particle film by washing and removing the p-type semiconductor fine particles coated with the extra third reactive organic coating; , Forming the back electrode The method of manufacturing an optical sensor according to claim Mukoto. 第1の反応性の有機被膜を形成する工程、第2の反応性の有機被膜を形成する工程、および第3の反応性の有機被膜を形成する工程において、それぞれアルコキシシラン化合物の反応後、有機溶剤で洗浄して電極、n型半導体微粒子、及びp型半導体微粒子の表面に共有結合した第1〜第3の反応性の単分子膜を形成することを特徴とする請求項5記載の光センサーの製造方法。 In the step of forming the first reactive organic coating, the step of forming the second reactive organic coating, and the step of forming the third reactive organic coating, respectively, after the reaction of the alkoxysilane compound, the organic 6. The optical sensor according to claim 5, wherein the photosensor is cleaned with a solvent to form first to third reactive monomolecular films covalently bonded to surfaces of the electrode, the n-type semiconductor fine particles, and the p-type semiconductor fine particles. Manufacturing method. 第1、第3の反応性の有機被膜がエポキシ基を含み第2の反応性の有機被膜がイミノ基を含むか、第1、第3の反応性の有機被膜がイミノ基を含み第2の反応性の有機被膜がエポキシ基を含むことを特徴とする請求項5記載の光センサーの製造方法。 The first and third reactive organic films contain epoxy groups and the second reactive organic film contains imino groups, or the first and third reactive organic films contain imino groups and the second 6. The method for producing an optical sensor according to claim 5, wherein the reactive organic coating contains an epoxy group. 第1、第3の反応性の単分子膜がエポキシ基を含み第2の反応性の単分子膜がイミノ基を含むか、第1、第3の反応性の単分子膜がイミノ基を含み第2の反応性の単分子膜がエポキシ基を含むことを特徴とする請求項6記載の光センサーの製造方法。 The first and third reactive monomolecular films contain epoxy groups and the second reactive monomolecular film contains imino groups, or the first and third reactive monomolecular films contain imino groups The method for producing an optical sensor according to claim 6, wherein the second reactive monomolecular film contains an epoxy group. 半導体がシリコンであり、n型シリコン微粒子膜とp型シリコン微粒子膜がそれぞれ複数層有機被膜を介して製膜されていることを特徴とする請求項1記載のシリコン微粒子膜積層型光センサー。 2. The silicon fine particle film laminated optical sensor according to claim 1, wherein the semiconductor is silicon, and the n-type silicon fine particle film and the p-type silicon fine particle film are respectively formed through a plurality of organic film layers. n型およびp型シリコン微粒子表面に形成された有機被膜がそれぞれ2種類有り、第1種類目の有機被膜が形成されたシリコン微粒子と第2種類目の有機被膜が形成されたシリコン微粒子とが交互に積層されていることを特徴とする請求項9記載のシリコン微粒子膜積層型光センサー。 There are two types of organic coatings formed on the surface of n-type and p-type silicon microparticles, and silicon microparticles with the first type organic coating and silicon microparticles with the second type organic coating alternately The silicon fine particle film laminated optical sensor according to claim 9, wherein the optical sensor is laminated on the optical sensor. 第1類目の有機被膜と第2類目の有機被膜が反応して共有結合を形成していることを特徴とする請求項10記載のシリコン微粒子膜積層型光センサー。 11. The silicon fine particle film laminated photosensor according to claim 10, wherein the first organic film and the second organic film react to form a covalent bond. 共有結合が、エポキシ基とイミノ基の反応で形成された−N−C−の結合であることを特徴とする請求項11記載のシリコン微粒子膜積層型光センサー。
膜の形成されたn型半導体微粒子膜表面に第4の反応性の有機被膜で被覆されたn型半導体微粒子を接触させて反応させる工程と、余分な第4の反応性の有機被膜で被覆されたn型半導体微粒子を洗浄除去して2層目のn型半導体微粒子膜を形成する工程、及び単層のp型半導体微粒子膜を形成する工程の後、第3の反応性の有機被膜の形成されたp型半導体微粒子膜表面に第5の反応性の有機被膜で被覆されたp型半導体微粒子を接触させて反応させる工程と、余分な第5の反応性の有機被膜で被覆されたp型半導体微粒子を洗浄除去して2層目のp型半導体微粒子膜を形成する工程を含むことを特徴とする請求項5記載の半導体微粒子膜積層型光センサーの製造方法。
12. The silicon fine particle film laminated photosensor according to claim 11, wherein the covalent bond is a —N—C— bond formed by a reaction between an epoxy group and an imino group.
A step of bringing the n-type semiconductor fine particles coated with the fourth reactive organic film into contact with the surface of the n-type semiconductor fine particle film on which the film is formed and reacting with the surface, and an extra fourth reactive organic film covering the surface The third reactive organic film is formed after the step of forming the second layer of the n-type semiconductor fine particle film and the step of forming the single-layer p-type semiconductor fine particle film by washing and removing the obtained n-type semiconductor fine particles. A step of bringing the p-type semiconductor fine particles coated with the fifth reactive organic film into contact with the surface of the formed p-type semiconductor fine particle film and reacting them, and a p-type coated with the extra fifth reactive organic film 6. The method of manufacturing a semiconductor fine particle film laminated optical sensor according to claim 5, further comprising a step of forming a second p-type semiconductor fine particle film by washing and removing the semiconductor fine particles.
それぞれの層間で接触する有機被膜に、それぞれ互いに反応する官能基を組み合わせることを特徴とする請求項13記載の半導体微粒子膜積層型光センサーの製造方法。 14. The method of manufacturing a semiconductor fine particle film laminated photosensor according to claim 13, wherein the organic coating contacting each layer is combined with functional groups that react with each other. 半導体がシリコンであり、n型及びp型シリコン微粒子膜として、任意の層数だけ累積したシリコン微粒子膜を形成することを特徴とする請求項13記載のシリコン微粒子膜積層型光センサーの製造方法。 14. The method of manufacturing a silicon fine particle film laminated photosensor according to claim 13, wherein the semiconductor is silicon, and silicon fine particle films accumulated by an arbitrary number of layers are formed as n-type and p-type silicon fine particle films. 第1〜5の反応性の有機被膜を形成する工程の後に、それぞれ電極あるいはシリコン微粒子表面を有機溶剤で洗浄して電極やシリコン微粒子表面に共有結合した第1〜5の反応性の単分子膜を形成することを特徴とする請求項13記載のシリコン微粒子膜積層型光センサーの製造方法。 After the steps of forming the first to fifth reactive organic coatings, the first or fifth reactive monomolecular film in which the surface of the electrode or silicon fine particle is washed with an organic solvent and covalently bonded to the surface of the electrode or silicon fine particle, respectively. 14. The method of manufacturing a silicon fine particle film laminated photosensor according to claim 13, wherein それぞれ互いに反応する官能基の組み合わせがエポキシ基とイミノ基であることを特徴とする請求項14記載のシリコン微粒子膜積層型光センサーの製造方法。 15. The method for producing a silicon fine particle film laminated photosensor according to claim 14, wherein the combination of functional groups that react with each other is an epoxy group and an imino group. シラノール縮合触媒の代わりに、ケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を用いることを特徴とする請求項5および13に記載の光センサーの製造方法。 The method for producing an optical sensor according to claim 5 or 13, wherein a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, or an aminoalkylalkoxysilane compound is used instead of the silanol condensation catalyst. シラノール縮合触媒に助触媒としてケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物から選ばれる少なくとも1つを混合して用いることを特徴とする請求項5および13に記載の光センサーの製造方法。
14. The method according to claim 5, wherein at least one selected from a ketimine compound or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, and an aminoalkylalkoxysilane compound is used as a co-catalyst for the silanol condensation catalyst. The manufacturing method of the optical sensor of description.
JP2005369134A 2005-12-22 2005-12-22 Optical sensor and manufacturing method thereof Pending JP2007173518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005369134A JP2007173518A (en) 2005-12-22 2005-12-22 Optical sensor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005369134A JP2007173518A (en) 2005-12-22 2005-12-22 Optical sensor and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2007173518A true JP2007173518A (en) 2007-07-05

Family

ID=38299663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005369134A Pending JP2007173518A (en) 2005-12-22 2005-12-22 Optical sensor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2007173518A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123193A1 (en) * 2007-03-31 2008-10-16 Kazufumi Ogawa Solar cell and method for manufacturing the same
WO2008123194A1 (en) * 2007-03-31 2008-10-16 Kazufumi Ogawa Optical sensor and method for manufacturing the same
WO2008155862A1 (en) * 2007-06-20 2008-12-24 Kazufumi Ogawa Light sensor and method for manufacturing the same
WO2009022438A1 (en) * 2007-08-16 2009-02-19 Kazufumi Ogawa Electrode and method for manufacturing the same, lead wiring using the electrode and method for connecting the same, and related electronic components and electronic equipment
JP2012164898A (en) * 2011-02-08 2012-08-30 Kagawa Univ Semiconductor fine particle film, diode, photoelectric conversion element and manufacturing method therefor
JP2012164897A (en) * 2011-02-08 2012-08-30 Kagawa Univ Semiconductor fine particle film, diode, photoelectric conversion element and manufacturing method therefor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04239635A (en) * 1991-01-23 1992-08-27 Matsushita Electric Ind Co Ltd Monomolecular coating object and manufacture thereof
JPH0536997A (en) * 1991-07-26 1993-02-12 Sanyo Electric Co Ltd Photovoltaic device
JPH1045409A (en) * 1996-07-29 1998-02-17 Sharp Corp Production of silicon-base fine particles and formation of thin film using produced silicon-base fine particles
JP2002270923A (en) * 2001-03-14 2002-09-20 Kawamura Inst Of Chem Res Optical semiconductor element and its manufacturing method
JP2003168606A (en) * 2001-01-24 2003-06-13 Matsushita Electric Ind Co Ltd Fine particle array, its manufacturing method and device using the method
JP2003332599A (en) * 2002-05-16 2003-11-21 Idemitsu Kosan Co Ltd Photoelectric conversion element and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04239635A (en) * 1991-01-23 1992-08-27 Matsushita Electric Ind Co Ltd Monomolecular coating object and manufacture thereof
JPH0536997A (en) * 1991-07-26 1993-02-12 Sanyo Electric Co Ltd Photovoltaic device
JPH1045409A (en) * 1996-07-29 1998-02-17 Sharp Corp Production of silicon-base fine particles and formation of thin film using produced silicon-base fine particles
JP2003168606A (en) * 2001-01-24 2003-06-13 Matsushita Electric Ind Co Ltd Fine particle array, its manufacturing method and device using the method
JP2002270923A (en) * 2001-03-14 2002-09-20 Kawamura Inst Of Chem Res Optical semiconductor element and its manufacturing method
JP2003332599A (en) * 2002-05-16 2003-11-21 Idemitsu Kosan Co Ltd Photoelectric conversion element and its manufacturing method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123193A1 (en) * 2007-03-31 2008-10-16 Kazufumi Ogawa Solar cell and method for manufacturing the same
WO2008123194A1 (en) * 2007-03-31 2008-10-16 Kazufumi Ogawa Optical sensor and method for manufacturing the same
US20100117065A1 (en) * 2007-03-31 2010-05-13 Kazufumi Ogawa Optical sensor and method for making the same
US8409910B2 (en) 2007-03-31 2013-04-02 Empire Technology Development Llc Optical sensor and method for making the same
US20130193422A1 (en) * 2007-03-31 2013-08-01 Kazufumi Ogawa Optical sensor and method for making the same
US9373805B2 (en) * 2007-03-31 2016-06-21 Empire Technology Development Llc Optical sensor and method for making the same
WO2008155862A1 (en) * 2007-06-20 2008-12-24 Kazufumi Ogawa Light sensor and method for manufacturing the same
WO2009022438A1 (en) * 2007-08-16 2009-02-19 Kazufumi Ogawa Electrode and method for manufacturing the same, lead wiring using the electrode and method for connecting the same, and related electronic components and electronic equipment
JP2012164898A (en) * 2011-02-08 2012-08-30 Kagawa Univ Semiconductor fine particle film, diode, photoelectric conversion element and manufacturing method therefor
JP2012164897A (en) * 2011-02-08 2012-08-30 Kagawa Univ Semiconductor fine particle film, diode, photoelectric conversion element and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP5888329B2 (en) Gas barrier film, method for producing gas barrier film, and electronic device
JP5087764B2 (en) Silicon fine particles, production method thereof, solar cell using the same, and production method thereof
JP2007118276A (en) Single-layer fine particle film, cumulated fine particle film and manufacturing method of them
JP2007117827A (en) Pattern-like fine particle film and its production method
JP2007173518A (en) Optical sensor and manufacturing method thereof
WO2008068873A1 (en) Monolayer nanoparticle film, multilayer nanoparticle film, and manufacturing method thereof
JP4868496B2 (en) Solar cell and manufacturing method thereof
JP2010278370A (en) Polysilicon thin film, method of manufacturing the same, and solar cell and tft using the film, tft array and display device, and method of manufacturing them
JP2007119545A (en) Fine particle film and method for producing the same
JP5487460B2 (en) Silicon fine particles, production method thereof, solar cell using the same, and production method thereof
JP4848502B2 (en) WIRING, MANUFACTURING METHOD THEREOF, AND ELECTRONIC COMPONENT AND ELECTRONIC DEVICE USING THEM
JP2007220883A (en) Wiring and its manufacturing method, and electronic parts and electronic apparatus using the same
JP5640976B2 (en) Gas barrier film and method for producing the same, and photoelectric conversion element using the same
JP2007161912A (en) Adhesion method and biochemical chip produced by the method and optical part
JP5167528B2 (en) Chemisorption solution
US9373805B2 (en) Optical sensor and method for making the same
US8568862B2 (en) Patterned fine particle film structures
JP2010129619A (en) Solar cell using silicon particulate, optical sensor, and method of manufacturing them
JP5071955B2 (en) Electrode, manufacturing method thereof, lead wiring using the same, connecting method thereof, electronic component and electronic device using the same
JP2007127847A (en) Antireflection film, its manufacturing method and optical apparatus using same
JP2007161749A (en) Pattern-like phosphor microparticle film and method for producing the same
JP5750706B2 (en) TFT using Si fine particles, manufacturing method thereof, TFT array using the same, and display device
JP2007142006A (en) Insulator particulate film, its manufacturing method, and capacitor using it
JP2007128607A (en) Magnetic recording medium, its manufacturing method, and magnetic recording and reading device using the same
JP2007142004A (en) Arrangement-controlled patterned single-layer insulating particulate film, insulating particulate built up film, and forming method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081113

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091103

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110529

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120105