JP2007128607A - Magnetic recording medium, its manufacturing method, and magnetic recording and reading device using the same - Google Patents

Magnetic recording medium, its manufacturing method, and magnetic recording and reading device using the same Download PDF

Info

Publication number
JP2007128607A
JP2007128607A JP2005320709A JP2005320709A JP2007128607A JP 2007128607 A JP2007128607 A JP 2007128607A JP 2005320709 A JP2005320709 A JP 2005320709A JP 2005320709 A JP2005320709 A JP 2005320709A JP 2007128607 A JP2007128607 A JP 2007128607A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic recording
organic film
fine particles
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005320709A
Other languages
Japanese (ja)
Inventor
Kazufumi Ogawa
小川  一文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kagawa University NUC
Original Assignee
Kagawa University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagawa University NUC filed Critical Kagawa University NUC
Priority to JP2005320709A priority Critical patent/JP2007128607A/en
Publication of JP2007128607A publication Critical patent/JP2007128607A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for forming a magnetic recording layer by using coating method, wherein high density recording equal to or higher than that of the vapor deposition type is made possible with a very thin and uniform thickness at a size level of magnetic fine particles, for solving the problem that the manufacturing cost is low but high density recording is difficult in the case of a coating type magnetic recording medium, and the high density recording is comparatively easily attained but the manufacturing cost is high in the case of a vapor deposition type magnetic recording medium. <P>SOLUTION: The high density magnetic recording medium with high reliability, wherein the magnetic fine particles selectively accumulated in layers on the surface of a medium base body are mutually covalently bonded between layers via an organic coating film formed on the surfaces of the magnetic fine particles, without using a binder resin, is provided. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、磁気記録媒体に関するものである。さらに詳しくは、表面に熱反応性または光反応性、あるいはラジカル反応性またはイオン反応性を付与した磁性金属や磁性金属酸化物よりなる単微粒子膜や単微粒子累積膜が記録層として選択的に形成されている磁気記録媒体及びそれを用いた磁気記録読取装置に関するものである。 The present invention relates to a magnetic recording medium. More specifically, a single fine particle film or a single fine particle accumulation film made of magnetic metal or magnetic metal oxide that has been given thermal reactivity or photoreactivity, radical reactivity or ion reactivity on the surface is selectively formed as a recording layer. The present invention relates to a magnetic recording medium and a magnetic recording reader using the same.

本発明において、「磁性微粒子」には、磁性金属微粒子や磁性合金微粒子、磁性金属酸化物微粒子が含まれている。また、本発明の磁気記録媒体には、光磁気記録媒体も含まれている。   In the present invention, “magnetic fine particles” include magnetic metal fine particles, magnetic alloy fine particles, and magnetic metal oxide fine particles. The magnetic recording medium of the present invention includes a magneto-optical recording medium.

従来から、媒体基体表面に磁気記録層としてバインダー中に分散した磁性金属微粒子や磁性金属酸化物微粒子を塗布硬化させた磁気記録媒体や媒体基体表面に磁性金属あるいは磁性金属酸化物を蒸着した磁気記録媒体が市販されている。   Conventionally, magnetic recording media in which magnetic metal fine particles or magnetic metal oxide fine particles dispersed in a binder as a magnetic recording layer are coated and cured on the surface of a medium substrate, and magnetic metal or magnetic metal oxide is deposited on the surface of the medium substrate. The medium is commercially available.

しかしながら、媒体基体表面に磁性微粒子を1層のみ選択的に並べた粒子サイズレベルで均一厚みの磁性被膜(以下、磁気記録層という。)や磁性微粒子を1層のみ並べた膜を複数層選択的に累積した磁性被膜を磁気記録層とする磁気記録媒体とその製造方法及びそれを用いた磁気記録読取装置は未だ開発、提供されていなかった。   However, a magnetic film having a uniform thickness at a particle size level (hereinafter referred to as a magnetic recording layer) in which only one layer of magnetic fine particles is selectively arranged on the surface of the medium substrate or a film in which only one layer of magnetic fine particles is arranged is selectively selected. A magnetic recording medium having a magnetic recording layer accumulated as a magnetic recording layer, a manufacturing method thereof, and a magnetic recording reader using the same have not yet been developed or provided.

塗布型の磁気記録媒体では、製造コストは低いが高密度記録が難しい。一方、蒸着型の磁気記録媒体では、高密度記録は比較的簡単に達成されるが、製造コストが高いという欠点があった。
また、塗布法を用いて、極薄で、且つ磁性微粒子のサイズレベルで均一厚みで、蒸着型に比肩できる磁気記録層を形成する方法は提案されていなかった。
With a coating-type magnetic recording medium, the manufacturing cost is low, but high-density recording is difficult. On the other hand, with a vapor deposition type magnetic recording medium, high-density recording can be achieved relatively easily, but has the disadvantage of high manufacturing costs.
Also, no method has been proposed for forming a magnetic recording layer that is ultra-thin and has a uniform thickness at the size level of magnetic fine particles and can be compared with a vapor deposition type by using a coating method.

本発明は、磁性微粒子(磁性ナノ粒子を含む)を用いて、蒸着磁性金属膜並みに極薄で、且つ磁性微粒子のサイズレベルで均一厚さ、さらにバインダーを用いずに蒸着型磁気記録媒体並かそれ以上の磁気記録特性を有し、さらに磁気記録媒体とその製造方法及びそれを用いた磁気記録読取装置を提供することを目的とする。   The present invention uses magnetic fine particles (including magnetic nanoparticles), is as thin as a vapor-deposited magnetic metal film, has a uniform thickness at the size level of the magnetic fine particles, and is equivalent to a vapor-deposited magnetic recording medium without using a binder. An object of the present invention is to provide a magnetic recording medium, a method for manufacturing the same, and a magnetic recording reader using the magnetic recording medium, which have magnetic recording characteristics higher than that.

前記課題を解決するための手段として提供される第1の発明は、磁気記録層として媒体基体表面に選択的に1層形成された磁性微粒子の膜が媒体基体表面に選択的に形成された第1の有機膜と磁性微粒子表面に形成された第2の有機膜を介して互いに共有結合している磁気記録媒体である。   A first invention provided as means for solving the above-mentioned problems is a first aspect in which a magnetic fine particle film selectively formed on the surface of the medium substrate as the magnetic recording layer is selectively formed on the surface of the medium substrate. The magnetic recording medium is covalently bonded to each other through one organic film and a second organic film formed on the surface of the magnetic fine particles.

ここで、媒体基体表面に形成された第1の有機被膜と磁性微粒子表面に形成された第2の有機膜が互いに異なるとを磁性微粒子の密着力を向上する上で都合がよい。
また、共有結合が、エポキシ基とイミノ基の反応で形成された−N−C−の結合であると耐久性を向上する上で都合がよい。
さらに、媒体基体表面に選択的に形成された第1の有機被膜と磁性微粒子表面に形成された第2の有機膜が単分子膜で構成されていると、磁気記録層の膜厚均一性を向上する上で好都合である。
Here, it is convenient for improving the adhesion of the magnetic fine particles that the first organic film formed on the surface of the medium substrate and the second organic film formed on the surface of the magnetic fine particles are different from each other.
In addition, it is convenient to improve durability when the covalent bond is a —N—C— bond formed by a reaction between an epoxy group and an imino group.
Further, when the first organic film selectively formed on the surface of the medium substrate and the second organic film formed on the surface of the magnetic fine particle are formed of a monomolecular film, the film thickness uniformity of the magnetic recording layer can be improved. It is convenient for improvement.

第2の発明は、媒体基体表面を少なくとも第1のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に接触させてアルコキシシラン化合物と媒体基体表面を反応させて媒体基体表面に第1の反応性の有機膜を形成して選択的に加工するか、あるいは選択的に有機膜を形成する工程と、磁性微粒子を少なくとも第2のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に分散させてアルコキシシラン化合物と磁性微粒子表面を反応させて磁性微粒子表面に第2の反応性の有機膜を形成する工程と、第1の反応性の有機膜が選択的に形成された媒体基体表面に第2の反応性の有機膜で被覆された磁性微粒子を接触させて反応させる工程と、余分な第2の反応性の有機膜で被覆された磁性微粒子を洗浄除去する工程を含む磁気記録媒体の製造方法である。 In the second invention, the surface of the medium substrate is brought into contact with a chemical adsorption solution prepared by mixing at least the first alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent to react the alkoxysilane compound with the surface of the medium substrate. Forming a first reactive organic film on the surface of the medium substrate and selectively processing it, or selectively forming the organic film, and condensing the magnetic fine particles with at least a second alkoxysilane compound and silanol Forming a second reactive organic film on the surface of the magnetic fine particles by dispersing in a chemical adsorption solution prepared by mixing a catalyst and a non-aqueous organic solvent and reacting the alkoxysilane compound with the surface of the magnetic fine particles; A step of bringing the fine magnetic particles coated with the second reactive organic film into contact with the surface of the medium substrate on which the first reactive organic film is selectively formed and reacting, and an extra second The reactive organic film coated with magnetic particles is a method of manufacturing a magnetic recording medium comprising a step of washing off.

このとき、媒体基体表面を少なくとも第1のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に接触させてアルコキシシラン化合物と媒体基体表面を反応させて媒体基体表面に第1の反応性の有機膜を形成する工程、および磁性微粒子を少なくとも第2のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に分散させてアルコキシシラン化合物と磁性微粒子表面を反応させて磁性微粒子表面に第2の反応性の有機膜を形成する工程において、それぞれ媒体基体および磁性微粒子表面を有機溶剤で洗浄して媒体基体及び磁性微粒子表面に共有結合した第1及び第2の反応性の単分子膜を形成すると膜厚均一性を向上できて都合がよい。   At this time, the surface of the medium substrate is brought into contact with a chemical adsorption solution prepared by mixing at least a first alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent, and the alkoxysilane compound and the surface of the medium substrate are allowed to react with each other. A step of forming a first reactive organic film on the surface of the substrate, and dispersing magnetic fine particles in a chemical adsorption solution prepared by mixing at least a second alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent. In the step of reacting the alkoxysilane compound and the surface of the magnetic fine particles to form the second reactive organic film on the surface of the magnetic fine particles, the medium substrate and the surface of the magnetic fine particles are washed with an organic solvent, respectively. It is convenient to form the first and second reactive monomolecular films covalently bonded to the film because the film thickness uniformity can be improved.

また、第1の反応性の有機膜がエポキシ基を含み第2の反応性の有機膜がイミノ基を含むか、第1の反応性の有機膜がイミノ基を含み第2の反応性の有機膜がエポキシ基を含むと磁性微粒子の密着性を向上できて都合がよい。
さらに、第1の反応性の単分子膜がエポキシ基を含み第2の反応性の単分子膜がイミノ基を含むか、第1の反応性の単分子膜がイミノ基を含み第2の反応性の単分子膜がエポキシ基を含むと、簡単に共有結合を生成できて都合がよい。
Further, the first reactive organic film contains an epoxy group and the second reactive organic film contains an imino group, or the first reactive organic film contains an imino group and the second reactive organic film When the film contains an epoxy group, the adhesion of the magnetic fine particles can be improved, which is convenient.
Furthermore, the first reactive monomolecular film contains an epoxy group and the second reactive monomolecular film contains an imino group, or the first reactive monomolecular film contains an imino group and the second reaction It is advantageous that the functional monomolecular film contains an epoxy group because a covalent bond can be easily generated.

第3の発明は、磁気記録層として媒体基体表面に選択的に層状に累積された磁性微粒子が磁性微粒子表面に形成された有機被膜を介して層間で互いに共有結合している磁気記録媒体である。
ここで、磁性微粒子表面に形成された有機被膜が2種類有り、第1の有機膜が形成された磁性微粒子と第2の有機膜が形成された磁性微粒子とが交互に積層されていると、製造工程を単純化できて都合がよいを。
また、第1の有機膜と第2の有機膜が反応して共有結合を形成していると耐剥離性を向上できて都合がよい。
さらに、共有結合が、エポキシ基とイミノ基の反応で形成された−N−C−の結合であるとより一層耐剥離性を向上できて都合がよい。
According to a third aspect of the present invention, there is provided a magnetic recording medium in which magnetic fine particles selectively accumulated in the form of a layer as a magnetic recording layer are covalently bonded to each other through an organic coating formed on the surface of the magnetic fine particles. .
Here, there are two types of organic coatings formed on the surface of the magnetic fine particles, and the magnetic fine particles on which the first organic film is formed and the magnetic fine particles on which the second organic film is formed are alternately stacked. It is convenient because the manufacturing process can be simplified.
Moreover, when the first organic film and the second organic film react to form a covalent bond, it is convenient because the peel resistance can be improved.
Furthermore, when the covalent bond is a —N—C— bond formed by the reaction of an epoxy group and an imino group, it is advantageous that the peel resistance can be further improved.

第4の発明は、少なくとも媒体基体表面を第1のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に接触させてアルコキシシラン化合物と媒体基体表面を反応させて媒体基体表面に第1の反応性の有機膜を形成して選択的に加工するか、あるいは選択的に有機膜を形成する工程と、第1の磁性微粒子を少なくとも第2のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に分散させてアルコキシシラン化合物と磁性微粒子表面を反応させて第1の磁性微粒子表面に第2の反応性の有機膜を形成する工程と、第1の反応性の有機膜の形成された媒体基体表面に第2の反応性の有機膜で被覆された第1の磁性微粒子を接触させて反応させる工程と、余分な第2の反応性の有機膜で被覆された第1の磁性微粒子を洗浄除去して第1の磁気記録層を形成する工程と、第2の磁性微粒子を少なくとも第3のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に分散させてアルコキシシラン化合物と磁性微粒子表面を反応させて第2の磁性微粒子表面に第3の反応性の有機膜を形成する工程と、第2の反応性の有機膜で被覆された第1の磁気記録媒体が形成された媒体基体表面に第3の反応性の有機膜で被覆された第2の磁性微粒子を接触させて反応させる工程と、余分な第3の反応性の有機膜で被覆された第2の磁性微粒子を洗浄除去して選択的に第2の磁気記録層を形成する工程とを含む磁気記録媒体の製造方法である。   In the fourth invention, at least the surface of the medium substrate is brought into contact with a chemical adsorption solution prepared by mixing a first alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent to react the alkoxysilane compound with the surface of the medium substrate. Forming a first reactive organic film on the surface of the medium substrate and selectively processing it, or selectively forming the organic film, and at least a second alkoxysilane compound comprising the first magnetic fine particles And a silanol condensation catalyst and a non-aqueous organic solvent are mixed and dispersed in a chemical adsorption solution, and the alkoxysilane compound and the surface of the magnetic fine particles are reacted to form a second reactive organic film on the surface of the first magnetic fine particles. And a step of bringing the first magnetic fine particles coated with the second reactive organic film into contact with the surface of the medium substrate on which the first reactive organic film is formed and reacting Cleaning and removing the first magnetic fine particles coated with an extra second reactive organic film to form a first magnetic recording layer; and removing the second magnetic fine particles from at least a third alkoxysilane compound; A third reactive organic film is formed on the surface of the second magnetic fine particle by dispersing it in a chemical adsorption solution prepared by mixing a silanol condensation catalyst and a non-aqueous organic solvent, and reacting the alkoxysilane compound with the surface of the magnetic fine particle. The step of forming and contacting the second magnetic fine particles coated with the third reactive organic film on the surface of the medium substrate on which the first magnetic recording medium coated with the second reactive organic film is formed And a step of selectively forming a second magnetic recording layer by washing away and removing the second magnetic fine particles coated with an extra third reactive organic film. It is a manufacturing method.

このとき、第1の反応性の有機膜と第3の反応性の有機膜が同じものであると、工程を単純化できて都合がよい。
また、第2の磁気記録層を形成する工程の後、同様に第1の磁気記録層を形成する工程と第2の磁気記録媒体を形成する工程を繰り返し行うと、記録層の膜厚を制御する上で好都合である。
さらに、第1〜3の反応性の有機膜を形成する工程の後に、それぞれ媒体基体あるいは磁性微粒子表面を有機溶剤で洗浄して媒体基体や磁性微粒子表面に共有結合した第1〜3の反応性の単分子膜を形成すると膜厚の均一性を講中する上で好都合である。
さらにまた、第1および3の反応性の有機膜がエポキシ基を含み第2の反応性の有機膜がイミノ基を含むか、第1および3の反応性の有機膜がイミノ基を含み第2の反応性の有機膜がエポキシ基を含むと、被膜密着力を向上する上で好都合である。
At this time, if the first reactive organic film and the third reactive organic film are the same, it is convenient because the process can be simplified.
Further, after the step of forming the second magnetic recording layer, similarly, the step of forming the first magnetic recording layer and the step of forming the second magnetic recording medium are repeated, thereby controlling the film thickness of the recording layer. This is convenient.
Further, after the steps of forming the first to third reactive organic films, the medium substrate or the magnetic fine particle surface is washed with an organic solvent to be covalently bonded to the medium substrate or the magnetic fine particle surface, respectively. The formation of the monomolecular film is convenient for ensuring uniformity of the film thickness.
Furthermore, the first and third reactive organic films contain an epoxy group and the second reactive organic film contains an imino group, or the first and third reactive organic films contain an imino group and the second reactive organic film contains an imino group. When the reactive organic film contains an epoxy group, it is advantageous in improving the film adhesion.

また、シラノール縮合触媒の代わりに、ケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を用いると、製造時間を短縮する上で都合がよい。
また、シラノール縮合触媒に助触媒としてケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物から選ばれる少なくとも1つを混合して用いると、製造時間をさらに短縮する上で都合がよい。
さらにまた、磁性微粒子を接触させて反応させる工程を磁場中で行うと、磁気方向を揃える上で都合がよい。
In addition, when a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, or an aminoalkylalkoxysilane compound is used in place of the silanol condensation catalyst, it is convenient to shorten the production time.
In addition, when a ketimine compound or at least one selected from an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, and an aminoalkylalkoxysilane compound is used as a co-catalyst for the silanol condensation catalyst, the production time can be further shortened. Convenient.
Furthermore, it is convenient to align the magnetic direction when the step of bringing the magnetic fine particles into contact with each other and performing the reaction in a magnetic field.

第5の発明は、磁気記録層として媒体基体表面に選択的に1層形成された磁性微粒子の膜が媒体基体表面に形成された第1の有機膜と磁性微粒子表面に形成された第2の有機膜を介して互いに共有結合していることを特徴とする磁気記録媒体を用いた磁気記録読取装置である。   According to a fifth aspect of the present invention, there is provided a first organic film formed on the surface of the medium substrate, and a second layer formed on the surface of the magnetic particles, wherein the magnetic particle layer is selectively formed on the surface of the medium substrate as a magnetic recording layer. A magnetic recording reader using a magnetic recording medium, wherein the magnetic recording medium is covalently bonded to each other via an organic film.

第6の発明は、磁気記録層として媒体基体表面に選択的に層状に累積され磁性微粒子が磁性微粒子表面に形成された有機被膜を介して層間で互いに共有結合していることを特徴とする磁気記録媒体を用いた磁気記録読取装置である。   According to a sixth aspect of the present invention, the magnetic recording layer is selectively accumulated on the surface of the medium substrate as a magnetic recording layer, and the magnetic fine particles are covalently bonded to each other through an organic film formed on the surface of the magnetic fine particles. A magnetic recording reader using a recording medium.

本発明によれば、湿式法を用いて、磁気記録特性が蒸着型磁気記録媒体並みかそれ以上の高性能な磁気記録媒体及びその製造方法を低コストで提供できる格別の効果がある。   According to the present invention, a high-performance magnetic recording medium having a magnetic recording characteristic equal to or higher than that of a vapor deposition type magnetic recording medium and a manufacturing method thereof can be provided at a low cost by using a wet method.

本発明は、少なくとも媒体基体表面を第1のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に接触させてアルコキシシラン化合物と媒体基体表面を反応させて媒体基体表面に第1の反応性の有機膜を形成して選択的に加工するか、あるいは選択的に有機膜を形成する工程と、第1の磁性微粒子を少なくとも第2のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に分散させてアルコキシシラン化合物と磁性微粒子表面を反応させて第1の磁性微粒子表面に第2の反応性の有機膜を形成する工程と、第1の反応性の有機膜の形成された媒体基体表面に第2の反応性の有機膜で被覆された第1の磁性微粒子を接触させて反応させる工程と、余分な第2の反応性の有機膜で被覆された第1の磁性微粒子を洗浄除去して第1の磁気記録層を選択的に形成する工程と、第2の磁性微粒子を少なくとも第3のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に分散させてアルコキシシラン化合物と磁性微粒子表面を反応させて第2の磁性微粒子表面に第3の反応性の有機膜を形成する工程と、第2の反応性の有機膜で被覆された第1の磁気記録媒体が形成された媒体基体表面に第3の反応性の有機膜で被覆された第2の磁性微粒子を接触させて反応させる工程と、余分な第3の反応性の有機膜で被覆された第2の磁性微粒子を洗浄除去して第2の磁気記録層を選択的に形成する工程とにより、媒体基体表面に選択的に層状に累積され磁性微粒子が磁性微粒子表面に形成された有機被膜を介してバインダー樹脂無しで層間で互いに共有結合している磁気記録媒体を提供するものである。   In the present invention, at least the surface of the medium substrate is brought into contact with a chemical adsorption solution prepared by mixing a first alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent to react the alkoxysilane compound with the surface of the medium substrate. Forming a first reactive organic film on the surface of the medium substrate and selectively processing it, or selectively forming the organic film; and at least a second alkoxysilane compound and a silanol A second reactive organic film is formed on the surface of the first magnetic fine particle by dispersing it in a chemisorbed liquid prepared by mixing a condensation catalyst and a non-aqueous organic solvent and reacting the alkoxysilane compound with the surface of the magnetic fine particle. A step of bringing the first magnetic fine particles coated with the second reactive organic film into contact with the surface of the medium substrate on which the first reactive organic film is formed, and reacting with the medium. Cleaning and removing the first magnetic fine particles coated with the second reactive organic film to selectively form the first magnetic recording layer; and removing the second magnetic fine particles from at least a third alkoxysilane. Disperse in a chemical adsorption solution prepared by mixing a compound, a silanol condensation catalyst, and a non-aqueous organic solvent, and react the alkoxysilane compound with the surface of the magnetic fine particles to form a third reactive organic on the surface of the second magnetic fine particles. A step of forming a film, and a second magnetic fine particle coated with a third reactive organic film on the surface of the medium substrate on which the first magnetic recording medium coated with the second reactive organic film is formed And a step of selectively forming the second magnetic recording layer by washing and removing the second magnetic fine particles coated with the extra third reactive organic film. Magnetic fine particles are selectively accumulated in layers on the substrate surface. Child is to provide a magnetic recording medium which is covalently bonded to each other with an interlayer without binder resin through an organic film formed on the magnetic particle surface.

したがって、本発明によれば、湿式法を用いて、磁気記録特性が蒸着型磁気記録媒体並みかそれ以上の高性能な磁気記録媒体及びそれを用いた磁気記録読取装置を簡便で且つ低コストで製造できる作用がある。   Therefore, according to the present invention, a high-performance magnetic recording medium having a magnetic recording characteristic equal to or higher than that of a vapor deposition type magnetic recording medium and a magnetic recording reader using the same can be obtained easily and at low cost by using a wet method. There is an action that can be manufactured.

以下、本願発明の詳細を実施例を用いて説明するが、本願発明は、これら実施例によって何ら限定されるものではない。   Hereinafter, although the detail of this invention is demonstrated using an Example, this invention is not limited at all by these Examples.

また、本発明の磁気記録媒体における磁気記録層の磁性微粒子には、鉄、クロム、ニッケルやそれらの合金等よりなる磁性金属微粒子やフェライトやマグネタイト、酸化クロム、鉄白金(FePt)系合金等よりなる磁性金属酸化物微粒子があるが、まず、代表例としてマグネタイト微粒子を取り上げて説明する。   Further, the magnetic fine particles of the magnetic recording layer in the magnetic recording medium of the present invention include magnetic metal fine particles made of iron, chromium, nickel, and alloys thereof, ferrite, magnetite, chromium oxide, iron platinum (FePt) alloys, and the like. First, magnetite fine particles will be described as a representative example.

まず、円板状のアルミニウム合金製の媒体基体1を用意し、よく乾燥した。次に、化学吸着剤として機能部位に反応性の官能基、例えば、エポキシ基と他端にアルコキシシリル基を含む薬剤、例えば、下記式(化1)に示す薬剤を99重量%、シラノール縮合触媒として、例えば、ジブチル錫ジアセチルアセトナート、または有機酸である酢酸を1重量%となるようそれぞれ秤量し、マグネタイト溶媒、例えば、ヘキサメチルジシロキサン溶媒に1重量%程度の濃度(好ましくい化学吸着剤の濃度は、0.5〜3%程度)になるように溶かして化学吸着液を調製した。   First, a disk-shaped aluminum alloy medium substrate 1 was prepared and thoroughly dried. Next, 99 wt% of a chemical containing a functional group reactive at the functional site as a chemical adsorbent, for example, an epoxy group and an alkoxysilyl group at the other end, for example, a chemical represented by the following formula (Chemical Formula 1), a silanol condensation catalyst For example, dibutyltin diacetylacetonate or acetic acid, which is an organic acid, is weighed to 1% by weight, and a concentration of about 1% by weight in a magnetite solvent such as hexamethyldisiloxane solvent (preferably a chemical adsorbent) The chemical adsorption solution was prepared by dissolving so that the concentration of the solution was about 0.5 to 3%.

Figure 2007128607
Figure 2007128607

次に、この吸着液に、媒体基体1を漬浸して普通の空気中で(相対湿度45%)で2時間程度反応させた。このとき、媒体基体1表面には水酸基2が多数含まれているの(図1(a))で、前記化学吸着剤の−Si(OCH)基と前記水酸基がシラノール縮合触媒、または有機酸である酢酸の存在下で脱アルコール(この場合は、脱CHOH)反応し、下記式(化2)に示したような結合を形成し、媒体基体1表面全面に亘り表面と化学結合したエポキシ基を含む化学吸着単分子膜3が約1ナノメートル程度の膜厚で形成される。 Next, the medium substrate 1 was immersed in this adsorbent and reacted in ordinary air (relative humidity 45%) for about 2 hours. At this time, in the the media substrate 1 surface has a great many hydroxyl groups 2 (FIG. 1 (a)), the chemical -Si adsorbent (OCH 3) wherein the hydroxy group is a silanol condensation catalyst or an organic acid, Is reacted in the presence of acetic acid (in this case, de-CH 3 OH) to form a bond represented by the following formula (Chemical Formula 2) and chemically bond to the surface over the entire surface of the medium substrate 1. A chemisorption monomolecular film 3 containing an epoxy group is formed with a film thickness of about 1 nanometer.

Figure 2007128607
Figure 2007128607

なお、ここで、アミノ基を含む吸着剤を使用する場合には、スズ系の触媒では沈殿が生成するので、酢酸等の有機酸を用いた方がよかった。また、アミノ基はイミノ基を含んでいるが、アミノ基以外にイミノ基を含む物質には、ピロール誘導体や、イミダゾール誘導体等がある。さらに、ケチミン誘導体を用いれば、被膜形成後、加水分解により容易にアミノ基を導入できた。
その後、塩素系溶媒であるクロロホルムを用いて洗浄すると、表面に反応性の官能基、例えばエポキシ基を有する化学吸着単分子膜で電極が被われた媒体基体が作製できた。(図1(b))
Here, when an adsorbent containing an amino group is used, since a precipitate is generated with a tin-based catalyst, it is better to use an organic acid such as acetic acid. The amino group contains an imino group, but substances containing an imino group in addition to the amino group include pyrrole derivatives and imidazole derivatives. Furthermore, when a ketimine derivative was used, an amino group could be easily introduced by hydrolysis after film formation.
Thereafter, when the substrate was washed with chloroform, which is a chlorinated solvent, the medium substrate 4 in which the electrode was covered with a chemically adsorbed monomolecular film having a reactive functional group, such as an epoxy group, on the surface could be produced. (Fig. 1 (b))

なお、洗浄せずに空気中に取り出すと、反応性はほぼ変わらないが、溶媒が蒸発し媒体基体表面に残った化学吸着剤が表面で空気中の水分と反応して、表面に前記化学吸着剤よりなる極薄の反応性のポリマー膜が形成された媒体基体が得られた。   Note that the reactivity is almost the same when taken out into the air without washing, but the chemical adsorbent remaining on the surface of the medium substrate reacts with the moisture in the air on the surface, and the chemical adsorption takes place on the surface. A medium substrate on which an extremely thin reactive polymer film made of an agent was formed was obtained.

次に、エキシマレーザーを用いて、同心円状に前記基材表面の不要部を選択的に照射し、前記反応性の単分子膜をアブレーションで除去する(図1(c))か、あるいはエポキシ基を開環させて失活させた。(図1(d))すなわち、ガラス基板表面がエポキシ基を持った同心円状で且つ線状の被膜5、5’で選択的にパターン状に被われた基材6’を製作できた。 Next, an excimer laser is used to selectively irradiate unnecessary portions of the substrate surface concentrically and remove the reactive monomolecular film by ablation (FIG. 1 (c)), or an epoxy group. Was opened and deactivated. (FIG. 1 (d)) That is, it was possible to manufacture the base materials 6 and 6 'on which the glass substrate surface was selectively covered in a pattern with concentric and linear coatings 5 and 5' having an epoxy group. .

他の方法として、前記被膜表面にカチオン系の重合開始剤、例えばチバ・スペシャルティ・ケミカルズ社製のイルガキュア250をメチルエチルケトン(MEK)で希釈して塗布し、遠紫外線で選択的に露光しても、選択的にエポキシ基を開環重合させてパターン状に失活できた。また、あらかじめ水溶性のレジストパターン、例えばノボラック系のポジ型レジストを塗布し、露光現像後、開口部にイミノ基を含む単分子膜を形成し、さらに全面露光した後でレジストを除去すれば、イミノ基を含む単分子膜を選択的に形成できた。   As another method, a cationic polymerization initiator, for example, Irgacure 250 manufactured by Ciba Specialty Chemicals Co., Ltd. is diluted with methyl ethyl ketone (MEK) and applied to the surface of the coating, and selectively exposed with far ultraviolet rays. It could be deactivated in a pattern by selectively ring-opening polymerization of epoxy groups. In addition, if a water-soluble resist pattern, for example, a novolak positive resist is applied in advance, and after exposure and development, a monomolecular film containing an imino group is formed in the opening, and the resist is removed after further exposing the entire surface. A monomolecular film containing an imino group could be selectively formed.

実施例1と同様に、まず、磁性微粒子である大きさが100nm程度のマグネタイト微粒子11を用意し、よく乾燥した。次に、化学吸着剤として機能部位に反応性の官能基、例えば、エポキシ基あるいはイミノ基と他端にアルコキシシリル基を含む薬剤、例えば、前記式(化1)あるいは下記式(化3)に示す薬剤を99重量%、シラノール縮合触媒として、例えば、ジブチル錫ジアセチルアセトナートを1重量%となるようそれぞれ秤量し、マグネタイト溶媒、例えば、ヘキサメチルジシロキサンとジメチルホルムアミド(50:50)混合溶媒に1重量%程度の濃度(好ましくい化学吸着剤の濃度は、0.5〜3%程度)になるように溶かして化学吸着液を調製した。   In the same manner as in Example 1, first, magnetite fine particles 11 having a size of about 100 nm as magnetic fine particles were prepared and well dried. Next, as a chemical adsorbent, a functional functional group having a reactive functional group such as an epoxy group or imino group and an alkoxysilyl group at the other end, such as the above formula (Formula 1) or the following formula (Formula 3) 99% by weight of the drug shown and a silanol condensation catalyst, for example, dibutyltin diacetylacetonate is weighed to 1% by weight, and magnetite solvent such as hexamethyldisiloxane and dimethylformamide (50:50) mixed solvent is used. A chemical adsorption solution was prepared by dissolving to a concentration of about 1% by weight (preferably the concentration of the chemical adsorbent is about 0.5 to 3%).

Figure 2007128607
Figure 2007128607

この吸着液に無水のマグネタイト微粒子11を混入撹拌して普通の空気中で(相対湿度45%)で2時間程度反応させた。このとき、無水のマグネタイト微粒子表面には水酸基12が多数含まれているの(図2(a))で、前記化学吸着剤の−Si(OCH)基と前記水酸基がシラノール縮合触媒の存在下で脱アルコール(この場合は、脱CHOH)反応し、前記式(化2)あるいは下記式(化4)に示したような結合を形成し、絶縁性微粒子表面全面に亘り表面と化学結合したエポキシ基を含む化学吸着単分子膜13あるいはアミノ基を含む化学吸着膜14が約1ナノメートル程度の膜厚で形成された(図2(b)、2(c))。なお、ここで、アミノ基はイミノ基を含んでいる。また、アミノ基以外にイミノ基を含む物質には、ピロール誘導体やイミダゾール誘導体等がある。さらに、アルコキシシランを含むケチミン誘導体を用いれば、被膜形成後、加水分解により容易にアミノ基を導入できた。 Anhydrous magnetite fine particles 11 were mixed and stirred in the adsorbed liquid and reacted in ordinary air (relative humidity 45%) for about 2 hours. At this time, since there are many hydroxyl groups 12 on the surface of the anhydrous magnetite fine particles (FIG. 2A), the -Si (OCH 3 ) group of the chemical adsorbent and the hydroxyl group are present in the presence of a silanol condensation catalyst. To deal with alcohol (in this case, de-CH 3 OH) to form bonds as shown in the above formula (Chemical formula 2) or the following formula (Chemical formula 4), and chemically bond with the surface over the entire surface of the insulating fine particles. The chemisorption monomolecular film 13 containing the epoxy group or the chemisorption film 14 containing the amino group was formed with a film thickness of about 1 nanometer (FIGS. 2B and 2C). Here, the amino group includes an imino group. Examples of the substance containing an imino group in addition to an amino group include a pyrrole derivative and an imidazole derivative. Furthermore, when a ketimine derivative containing alkoxysilane was used, an amino group could be easily introduced by hydrolysis after the film formation.

Figure 2007128607
Figure 2007128607

その後、塩素系溶媒であるクロロホルムを添加して撹拌洗浄すると、表面に反応性の官能基、例えば、エポキシ基を有する化学吸着単分子膜で被われたマグネタイト微粒子15、あるいは、アミノ基を有する化学吸着単分子膜で被われたマグネタイト微粒子16をそれぞれ作製できた。 Thereafter, chloroform, which is a chlorinated solvent, is added and washed with stirring. Then, magnetite fine particles 15 covered with a chemically-adsorbed monomolecular film having a reactive functional group, for example, an epoxy group on the surface, or a chemical having an amino group. The magnetite fine particles 16 covered with the adsorption monomolecular film could be respectively produced.

なお、この被膜はナノメートルレベルの膜厚で極めて薄いため、粒子径を損なうことはなかった。
一方、洗浄せずに空気中に取り出すと、反応性はほぼ変わらないが、溶媒が蒸発し粒子表面に残った化学吸着剤が表面で空気中の水分と反応して、表面に前記化学吸着剤よりなる極薄の反応性ポリマー膜が形成されたマグネタイト微粒子が得られた。
Note that this film was extremely thin with a nanometer-level film thickness, so the particle diameter was not impaired.
On the other hand, when taken out into the air without washing, the reactivity does not change substantially, but the chemical adsorbent remaining on the particle surface reacts with the moisture in the air by evaporation of the solvent, and the chemical adsorbent on the surface. Magnetite fine particles on which an extremely thin reactive polymer film was formed were obtained.

次に、前記エポキシ基を有する化学吸着単分子膜21で選択的に被われたアルミニウム合金製媒体基体22表面に、アミノ基を有する化学吸着単分子膜で被われたマグネタイト微粒子23をアルコールに分散させて塗布し、100℃程度に加熱すると、媒体基体表面のエポキシ基と接触しているマグネタイト微粒子表面のアミノ基が下記式(化5)に示したような反応で付加して絶縁性微粒子と媒体基体は二つの単分子膜を介して選択的に結合する。なお、このとき、超音波を当てながらアルコールを蒸発させると、被膜の膜厚均一性を向上できた。 Next, magnetite fine particles 23 covered with the chemical adsorption monomolecular film having amino groups are dispersed in alcohol on the surface of the aluminum alloy medium substrate 22 selectively covered with the chemical adsorption monomolecular film 21 having the epoxy group. When heated to about 100 ° C., the amino groups on the surface of the magnetite fine particles that are in contact with the epoxy groups on the surface of the medium substrate are added by the reaction shown in the following formula (Chemical Formula 5) to form insulating fine particles. The media substrate is selectively bonded through two monolayers. At this time, when the alcohol was evaporated while applying ultrasonic waves, the film thickness uniformity of the coating could be improved.

Figure 2007128607
そこで、再びアルコールで基材表面を洗浄し、余分で未反応のアミノ基を有する化学吸着単分子膜で被われたマグネタイト微粒子を洗浄除去すると、媒体基体表面でエポキシ基を有する化学吸着単分子膜に共有結合したアミノ基を有する化学吸着単分子膜で被われたマグネタイト微粒子23を選択的に1層のみ並べた状態で、且つ粒子サイズレベルで均一厚みのパターン状のマグネタイト微粒子膜24が形成できた。(図3(a))
Figure 2007128607
Therefore, the substrate surface is again washed with alcohol, and the magnetite fine particles covered with the extra unreacted amino group chemically adsorbed monomolecular film are washed and removed. A magnetite fine particle film 24 having a uniform thickness at the particle size level can be formed in a state where only one layer of magnetite fine particles 23 covered with a chemisorbed monomolecular film having an amino group covalently bonded to is selectively arranged. It was. (Fig. 3 (a))

なお、このとき、磁場中で超音波を当てながらアルコールを蒸発させると、被膜の均一性を向上できた。
また、ここで、マグネタイト微粒子のパターン状の単層絶縁性微粒子膜の厚みは、100nm程度であった。
At this time, when the alcohol was evaporated while applying ultrasonic waves in a magnetic field, the uniformity of the coating could be improved.
Here, the thickness of the patterned single-layer insulating fine particle film of magnetite fine particles was about 100 nm.

一方、アミノ基を有する化学吸着単分子膜で被われたアルミニウム媒体基体表面に、エポキシ基を有する化学吸着単分子膜で被われたマグネタイト微粒子の被膜を形成した場合には、エポキシ基を有する化学吸着単分子膜で被われたマグネタイト微粒子がアルミニウム媒体基体表面に1層のみ並べた状態で共有結合し、且つ粒子サイズレベルで均一厚みの磁気記録層を形成できた。
なおここで、マグネタイト微粒子が針状あるいは棒状であり溶液を塗布する際、磁場中で塗布して乾燥させると、磁気記録層を構成するマグネタイト微粒子の磁気モーメントの方向が揃った磁気記録媒体を製造できた。
また、ここで、磁気記録層の厚みの制御は、粒径で制御できることは言うまでもない。
On the other hand, when a film of magnetite fine particles covered with a chemisorption monomolecular film having an epoxy group is formed on the surface of an aluminum medium substrate covered with a chemisorption monomolecular film having an amino group, the chemical having an epoxy group Magnetite fine particles covered with the adsorption monomolecular film were covalently bonded in a state where only one layer was arranged on the surface of the aluminum medium substrate, and a magnetic recording layer having a uniform thickness at the particle size level could be formed.
Here, when the magnetite fine particles are needle-shaped or rod-shaped, when a solution is applied, a magnetic recording medium in which the direction of the magnetic moment of the magnetite fine particles constituting the magnetic recording layer is aligned is produced by applying and drying in a magnetic field. did it.
Needless to say, the thickness of the magnetic recording layer can be controlled by the particle size.

さらに、マグネタイト微粒子膜の膜厚を厚くしたい場合、実施例3に引き続き、共有結合したアミノ基を有する化学吸着単分子膜で被われたマグネタイト微粒子がパターン状に1層のみ並べた状態で、且つ粒子サイズレベルで均一厚みのパターン状の単層絶縁性微粒子膜24が形成された媒体基体表面22に、エポキシ基を有する化学吸着単分子膜で被われたマグネタイト微粒子25をアルコールに分散させて塗布し、100℃程度に加熱すると、アミノ基を有する化学吸着単分子膜で被われたマグネタイト微粒子がパターン状に単層形成された部分のアミノ基と接触しているマグネタイト微粒子表面のエポキシ基が前記式(化5)に示したような反応で付加して、媒体基体表面でアミノ基を有する化学吸着単分子膜で被われたマグネタイト微粒子とエポキシ基を有する化学吸着単分子膜で被われたマグネタイト微粒子は、二つの単分子膜を介して選択的に結合固化した。 Further, when it is desired to increase the film thickness of the magnetite fine particle film, the magnetite fine particles covered with the chemically adsorbed monomolecular film having a covalently bonded amino group are arranged in a pattern in a single layer following Example 3, and Magnetite fine particles 25 covered with a chemisorbed monomolecular film having an epoxy group are dispersed in alcohol and applied to the surface of a medium substrate 22 on which a single-layer insulating fine particle film 24 having a uniform thickness at the particle size level is formed. Then, when heated to about 100 ° C., the epoxy groups on the surface of the magnetite fine particles in which the magnetite fine particles covered with the chemisorption monomolecular film having amino groups are in contact with the amino groups in the pattern-formed single layer are Magnetite added by the reaction shown in the formula (Chemical Formula 5) and covered with a chemisorbed monomolecular film having an amino group on the surface of the medium substrate Magnetite fine particles covered by the chemical adsorption monomolecular film having a particle and epoxy groups were selectively bound and solidified via the two monolayers.

そこで、再びアルコールで基材表面を洗浄し、余分で未反応のエポキシ基を有する化学吸着単分子膜で被われたマグネタイト微粒子を洗浄除去すると、電極20に共有結合した2層目のマグネタイト微粒子が1層のみ並んだ状態で、且つ粒子サイズレベルで均一厚みの2層構造のパターン状のマグネタイト微粒子膜26が形成できた。(図3(b)) Then, the surface of the base material is washed again with alcohol, and the magnetite fine particles covered with the extra unreacted epoxy group chemically adsorbed monomolecular film are removed by washing, whereby the second layer of magnetite fine particles covalently bonded to the electrode 20 is obtained. A patterned magnetite fine particle film 26 having a two-layer structure having a uniform thickness at a particle size level in a state where only one layer is arranged can be formed. (Fig. 3 (b))

以下同様に、アミノ基を有する化学吸着単分子膜で被われたマグネタイト微粒子27とエポキシ基を有する化学吸着単分子膜で被われたマグネタイト微粒子28を交互に必要回数積層すると、多層構造のマグネタイト微粒子膜29を選択的に累積でき、任意の厚みの磁気記録媒体を形成できた。 Similarly, when magnetite fine particles 27 covered with a chemisorption monomolecular film having an amino group and magnetite fine particles 28 covered with a chemisorption monomolecular film having an epoxy group are alternately laminated as many times as necessary, magnetite fine particles having a multilayer structure are formed. The film 29 could be selectively accumulated, and a magnetic recording medium having an arbitrary thickness could be formed.

なお、本実施例では、マグネタイト微粒子膜が複数層形成された場合を示したが、層数は、任意に決定できる。最薄膜の単層のマグネタイト微粒子膜でも、磁気記録媒体としての機能を確認できた。
また、この磁気記録媒体を用いて磁気記録読取装置を製作すると、蒸着型磁気記録媒体と同程度あるいはそれ以上の記録密度を達成できた。
In the present embodiment, the case where a plurality of magnetite fine particle films are formed is shown, but the number of layers can be arbitrarily determined. Even the thinnest single-layered magnetite fine particle film was confirmed to function as a magnetic recording medium.
Further, when a magnetic recording reader was manufactured using this magnetic recording medium, a recording density equivalent to or higher than that of the vapor deposition type magnetic recording medium could be achieved.

なお、上記実施例1および2では、反応性基を含む化学吸着剤として式(化1)あるいは(化3)に示した物質を用いたが、上記のもの以外にも、下記(1)〜(16)に示した物質が利用できた。   In Examples 1 and 2, the substance represented by the formula (Chemical Formula 1) or (Chemical Formula 3) was used as the chemical adsorbent containing a reactive group. The substance shown in (16) was available.

(1) (CHOCH)CH2O(CH2)Si(OCH)3
(2) (CHOCH)CH2O(CH2)11Si(OCH)3
(3) (CHCHOCH(CH)CH(CH2)Si(OCH)3
(4) (CHCHOCH(CH)CH(CH2)Si(OCH)3
(5) (CHCHOCH(CH)CH(CH2)Si(OCH)3
(6) (CH2OCH)CH2O(CH2)Si(OC)3
(7) (CHOCH)CH2O(CH2)11Si(OC)3
(8) (CHCHOCH(CH)CH(CH2)Si(OC)3
(9) (CHCHOCH(CH)CH(CH2)Si(OC)3
(10) (CHCHOCH(CH)CH(CH2)Si(OC)3
(11) H2N (CH2)Si(OCH)3
(12) H2N (CH2)Si(OCH)3
(13) H2N (CH2)Si(OCH)3
(14) H2N (CH2)Si(OC)3
(15) H2N (CH2)Si(OC)3
(16) H2N (CH2)Si(OC)3
(1) (CH 2 OCH) CH 2 O (CH 2 ) 7 Si (OCH 3 ) 3
(2) (CH 2 OCH) CH 2 O (CH 2 ) 11 Si (OCH 3 ) 3
(3) (CH 2 CHOCH (CH 2 ) 2 ) CH (CH 2 ) 2 Si (OCH 3 ) 3
(4) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 4 Si (OCH 3) 3
(5) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 6 Si (OCH 3) 3
(6) (CH2OCH) CH 2 O (CH 2) 7 Si (OC 2 H 5) 3
(7) (CH 2 OCH) CH 2 O (CH 2 ) 11 Si (OC 2 H 5 ) 3
(8) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 2 Si (OC 2 H 5) 3
(9) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 4 Si (OC 2 H 5) 3
(10) (CH 2 CHOCH (CH 2 ) 2 ) CH (CH 2 ) 6 Si (OC 2 H 5 ) 3
(11) H 2 N (CH 2 ) 5 Si (OCH 3 ) 3
(12) H 2 N (CH 2 ) 7 Si (OCH 3 ) 3
(13) H 2 N (CH 2 ) 9 Si (OCH 3 ) 3
(14) H 2 N (CH 2 ) 5 Si (OC 2 H 5 ) 3
(15) H 2 N (CH 2 ) 7 Si (OC 2 H 5 ) 3
(16) H 2 N (CH 2 ) 9 Si (OC 2 H 5 ) 3

ここで、(CHOCH)−基は、下記式(化6)で表される官能基を表し、(CHCHOCH(CH)CH−基は、下記式(化7)で表される官能基を表す。 Here, the (CH 2 OCH) — group represents a functional group represented by the following formula (Formula 6), and the (CH 2 CHOCH (CH 2 ) 2 ) CH— group is represented by the following formula (Formula 7). Represents a functional group.

Figure 2007128607
Figure 2007128607

Figure 2007128607
Figure 2007128607

なお、実施例1および2に置いて、シラノール縮合触媒には、カルボン酸金属塩、カルボン酸エステル金属塩、カルボン酸金属塩ポリマー、カルボン酸金属塩キレート、チタン酸エステル及びチタン酸エステルキレート類が利用可能である。さらに具体的には、酢酸第1錫、ジブチル錫ジラウレート、ジブチル錫ジオクテート、ジブチル錫ジアセテート、ジオクチル錫ジラウレート、ジオクチル錫ジオクテート、ジオクチル錫ジアセテート、ジオクタン酸第1錫、ナフテン酸鉛、ナフテン酸コバルト、2−エチルヘキセン酸鉄、ジオクチル錫ビスオクチリチオグリコール酸エステル塩、ジオクチル錫マレイン酸エステル塩、ジブチル錫マレイン酸塩ポリマー、ジメチル錫メルカプトプロピオン酸塩ポリマー、ジブチル錫ビスアセチルアセテート、ジオクチル錫ビスアセチルラウレート、テトラブチルチタネート、テトラノニルチタネート及びビス(アセチルアセトニル)ジプロピルチタネートを用いることが可能であった。   In Examples 1 and 2, silanol condensation catalysts include carboxylic acid metal salts, carboxylic acid ester metal salts, carboxylic acid metal salt polymers, carboxylic acid metal salt chelates, titanate esters, and titanate ester chelates. Is available. More specifically, stannous acetate, dibutyltin dilaurate, dibutyltin dioctate, dibutyltin diacetate, dioctyltin dilaurate, dioctyltin dioctate, dioctyltin diacetate, stannous dioctanoate, lead naphthenate, cobalt naphthenate , Iron 2-ethylhexenoate, dioctyltin bisoctylthioglycolate, dioctyltin maleate, dibutyltin maleate polymer, dimethyltin mercaptopropionate polymer, dibutyltin bisacetylacetate, dioctyltin bisacetyl Laurate, tetrabutyl titanate, tetranonyl titanate and bis (acetylacetonyl) dipropyl titanate could be used.

また、膜形成溶液の溶媒としては、水を含まない有機塩素系溶媒、炭化水素系溶媒、あるいはフッ化炭素系溶媒やマグネタイト系溶媒、あるいは、それら混合物を用いることが可能であった。なお、洗浄を行わず、溶媒を蒸発させて粒子濃度を上げようとする場合には、溶媒の沸点は50〜250℃程度がよい。さらに、吸着剤がアルコキシシラン系の場合で且つ溶媒を蒸発させて有機被膜を形成する場合には、前記溶媒に加え、メタノール、エタノール、プロパノール等のアルコール系溶媒、あるいはそれら混合物が使用できた。   As the solvent for the film forming solution, it is possible to use an organic chlorine-based solvent, a hydrocarbon-based solvent, a fluorinated carbon-based solvent, a magnetite-based solvent, or a mixture thereof that does not contain water. In addition, when it is going to raise particle concentration by evaporating a solvent, without wash | cleaning, the boiling point of a solvent is good at about 50-250 degreeC. Further, when the adsorbent is an alkoxysilane type and the organic film is formed by evaporating the solvent, an alcohol type solvent such as methanol, ethanol, propanol, or a mixture thereof can be used in addition to the solvent.

具体的に使用可能なものは、クロロシラン系非水系の石油ナフサ、ソルベントナフサ、石油エーテル、石油ベンジン、イソパラフィン、ノルマルパラフィン、デカリン、工業ガソリン、ノナン、デカン、灯油、ジメチルマグネタイト、フェニルマグネタイト、アルキル変性マグネタイト、ポリエーテルマグネタイト、ジメチルホルムアミド等を挙げることができる。   Specifically usable are chlorosilane-based non-aqueous petroleum naphtha, solvent naphtha, petroleum ether, petroleum benzine, isoparaffin, normal paraffin, decalin, industrial gasoline, nonane, decane, kerosene, dimethyl magnetite, phenyl magnetite, alkyl modified Examples thereof include magnetite, polyether magnetite, and dimethylformamide.

また、フッ化炭素系溶媒には、フロン系溶媒や、フロリナート(3M社製品)、アフルード(旭ガラス社製品)等がある。なお、これらは1種パターン状の単層独で用いても良いし、良く混ざるものなら2種以上を組み合わせてもよい。さらに、クロロホルム等有機塩素系の溶媒を添加しても良い。   Fluorocarbon solvents include fluorocarbon solvents, Fluorinert (product of 3M), Afludo (product of Asahi Glass). These may be used alone in a single layer with a single pattern, or two or more may be combined as long as they are well mixed. Further, an organic chlorine solvent such as chloroform may be added.

一方、上述のシラノール縮合触媒の代わりに、ケチミン化合物又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を用いた場合、同じ濃度でも処理時間を半分〜2/3程度まで短縮できた。   On the other hand, when a ketimine compound or organic acid, aldimine compound, enamine compound, oxazolidine compound, aminoalkylalkoxysilane compound is used instead of the above-mentioned silanol condensation catalyst, the treatment time is reduced to about half to 2/3 even at the same concentration. did it.

さらに、シラノール縮合触媒とケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を混合(1:9〜9:1範囲で使用可能だが、通常1:1前後が好ましい。)して用いると、処理時間をさらに数倍早く(30分程度まで)でき、製膜時間を数分の一まで短縮できる。   Furthermore, a silanol condensation catalyst and a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, and an aminoalkylalkoxysilane compound can be used in a range of 1: 9 to 9: 1. )), The processing time can be increased several times faster (up to about 30 minutes), and the film forming time can be reduced to a fraction of a minute.

例えば、シラノール触媒であるジブチル錫オキサイドをケチミン化合物であるジャパンエポキシレジン社のH3に置き換え、その他の条件は同一にしてみたが、反応時間を1時間程度にまで短縮できた他は、ほぼ同様の結果が得られた。   For example, dibutyltin oxide, which is a silanol catalyst, was replaced with H3 from Japan Epoxy Resin, which is a ketimine compound, and the other conditions were the same, but the reaction time was reduced to about 1 hour. Results were obtained.

さらに、シラノール触媒を、ケチミン化合物であるジャパンエポキシレジン社のH3と、シラノール触媒であるジブチル錫ビスアセチルアセトネートの混合物(混合比は1:1)に置き換え、その他の条件は同一にしてみたが、反応時間を30分程度に短縮できた他は、ほぼ同様の結果が得られた。   Furthermore, the silanol catalyst was replaced with a mixture of ketimine compound Japan Epoxy Resin H3 and silanol catalyst dibutyltin bisacetylacetonate (mixing ratio is 1: 1), and other conditions were the same. The same results were obtained except that the reaction time could be shortened to about 30 minutes.

したがって、以上の結果から、ケチミン化合物や有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物がシラノール縮合触媒より活性が高いことが明らかとなった。   Therefore, the above results revealed that ketimine compounds, organic acids, aldimine compounds, enamine compounds, oxazolidine compounds, and aminoalkylalkoxysilane compounds are more active than silanol condensation catalysts.

さらにまた、ケチミン化合物や有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物の内の1つとシラノール縮合触媒を混合して用いると、さらに活性が高くなることが確認された。   Furthermore, it was confirmed that the activity is further increased when one of a ketimine compound, an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, and an aminoalkylalkoxysilane compound is mixed with a silanol condensation catalyst.

なお、ここで、利用できるケチミン化合物は特に限定されるものではないが、例えば、2,5,8−トリアザ−1,8−ノナジエン、3,11−ジメチル−4,7,10−トリアザ−3,10−トリデカジエン、2,10−ジメチル−3,6,9−トリアザ−2,9−ウンデカジエン、2,4,12,14−テトラメチル−5,8,11−トリアザ−4,11−ペンタデカジエン、2,4,15,17−テトラメチル−5,8,11,14−テトラアザ−4,14−オクタデカジエン、2,4,20,22−テトラメチル−5,12,19−トリアザ−4,19−トリエイコサジエン等がある。   Here, the ketimine compound that can be used is not particularly limited. For example, 2,5,8-triaza-1,8-nonadiene, 3,11-dimethyl-4,7,10-triaza-3 , 10-tridecadiene, 2,10-dimethyl-3,6,9-triaza-2,9-undecadiene, 2,4,12,14-tetramethyl-5,8,11-triaza-4,11-pentadeca Diene, 2,4,15,17-tetramethyl-5,8,11,14-tetraaza-4,14-octadecadiene, 2,4,20,22-tetramethyl-5,12,19-triaza- 4,19-trieicosadiene and the like.

また、利用できる有機酸としても特に限定されるものではないが、例えば、ギ酸、あるいは酢酸、プロピオン酸、ラク酸、マロン酸等があり、ほぼ同様の効果があった。   Further, the organic acid that can be used is not particularly limited, but there are, for example, formic acid, acetic acid, propionic acid, lactic acid, malonic acid, and the like, which have almost the same effects.

上記実施例1〜4では、マグネタイト微粒子を用いて磁気記録層を形成した例を示したが、本発明は、鉄白金系の磁気微粒子を除き、表面が酸化される磁気微粒子であればどのような微粒子にも適用可能である。また、媒体基体として、円形の磁気ディスクを例にして説明したが、テープ状の媒体基体でも同様であることはいうまでもない。また、上記実施例1〜4では、マグネタイト微粒子と円形アルミニウム合金製媒体基体を例として説明したが、本発明は、表面に活性水素、すなわち水酸基の水素やアミノ基あるいはイミノ基の水素などを含んだ磁性微粒子や媒体基体で有れば、どのような磁性微粒子や媒体基体にでも適用可能である。   In Examples 1 to 4 described above, an example in which a magnetic recording layer is formed using magnetite fine particles has been described. However, the present invention can be any magnetic fine particles whose surface is oxidized except for iron platinum-based magnetic fine particles. Applicable to fine particles. Although a circular magnetic disk has been described as an example of the medium substrate, it goes without saying that the same applies to a tape-shaped medium substrate. Further, in Examples 1 to 4 described above, magnetite fine particles and a circular aluminum alloy medium substrate have been described as examples. However, the present invention includes active hydrogen on the surface, that is, hydrogen of a hydroxyl group, hydrogen of an amino group or imino group, and the like. However, any magnetic fine particle or medium substrate can be used as long as it is a magnetic fine particle or medium substrate.

具体的には、磁気記録層の磁性微粒子として、鉄、クロム、ニッケルやそれらの合金等よりなる磁性金属微粒子やフェライトやマグネタイト、酸化クロム等よりなる磁性金属酸化物微粒子がある。また、媒体基体には、ガラスやアルミニウムがある。なお、表面に活性水素を含まないアクリル板、ポリカーボネート板等の合成樹脂の場合、表面をコロナ処理して酸化しておけば本発明の方法を適用できた。
Specifically, the magnetic fine particles of the magnetic recording layer include magnetic metal fine particles made of iron, chromium, nickel, and alloys thereof, and magnetic metal oxide fine particles made of ferrite, magnetite, chromium oxide, or the like. The medium substrate includes glass and aluminum. In the case of a synthetic resin such as an acrylic plate or a polycarbonate plate that does not contain active hydrogen on the surface, the method of the present invention can be applied if the surface is oxidized by corona treatment.

本発明の第1の実施例における媒体基体表面の反応を分子レベルまで拡大した概念図であり、(a)は反応前の表面の図、(b)は、エポキシ基を含む単分子膜が形成された後の図、(c)は、前記単分子膜がアブレーションにより加工される状態を示す概念図、(d)は、光照射によりエポキシ基が選択的に開環架橋される状態を示す概念図である。FIG. 2 is a conceptual diagram in which the reaction on the surface of the medium substrate in the first embodiment of the present invention is expanded to a molecular level, (a) is a diagram of the surface before the reaction, and (b) is a monomolecular film containing an epoxy group formed. (C) is a conceptual diagram showing a state in which the monomolecular film is processed by ablation, and (d) is a concept showing a state in which an epoxy group is selectively ring-opened and cross-linked by light irradiation. FIG. 本発明の第2の実施例におけるマグネタイト微粒子表面の反応を分子レベルまで拡大した概念図であり、(a)は反応前のマグネタイト微粒子表面の図、(b)は、エポキシ基を含む単分子膜が形成された後の図、(c)は、アミノ基を含む単分子膜が形成された後の図を示す。It is the conceptual diagram which expanded reaction of the magnetite fine particle surface in the 2nd Example of this invention to the molecular level, (a) is a figure of the magnetite fine particle surface before reaction, (b) is a monomolecular film containing an epoxy group (C) shows a view after a monomolecular film containing an amino group is formed. 本発明の第3および第4の実施例における媒体基体表面の反応を分子レベルまで拡大した概念図であり、(a)は単層マグネタイト微粒子膜が選択的に形成された基材表面の図、(b)は、複数層のおよびマグネタイト微粒子膜が選択的に積層形成された断面概念図を示す。It is the conceptual diagram which expanded the reaction of the medium substrate surface in the 3rd and 4th Example of this invention to the molecular level, (a) is the figure of the base-material surface in which the single layer magnetite fine particle film | membrane was formed selectively, (B) shows a schematic cross-sectional view in which a plurality of layers and magnetite fine particle films are selectively laminated.

符号の説明Explanation of symbols

1 ガラス基板
2 水酸基
3 エポキシ基を含む単分子膜
エポキシ基を含む単分子膜で被われたガラス基板
5、5’ エポキシ基を持ったパターン状の被膜
’ エポキシ基を持ったパターン状の被膜で選択的に被われた基板
11 マグネタイト微粒子
12 水酸基
13 エポキシ基を含む単分子膜
14 アミノ基を含む単分子膜
15 エポキシ基を含む単分子膜で被われたマグネタイト微粒子
16 アミノ基を含む単分子膜で被われたマグネタイト微粒子
21 エポキシ基を有する化学吸着単分子膜
22 ガラス基板
23 アミノ基を有する化学吸着単分子膜で被われたマグネタイト微粒子
24 パターン状の単層マグネタイト微粒子膜
25 エポキシ基を有する化学吸着単分子膜で被われたマグネタイト微粒子
26 2層構造のパターン状のマグネタイト微粒子膜
27 アミノ基を有する化学吸着単分子膜で被われたマグネタイト微粒子
28 エポキシ基を有する化学吸着単分子膜で被われたマグネタイト微粒子
29 2層構造のパターン状のマグネタイト微粒子膜

1 Glass substrate 2 Hydroxyl group
3 Monomolecular film containing epoxy group
Patterned film having a glass substrate 5,5 'epoxy groups covered with a monomolecular film containing 4 epoxy groups
6 , 6 ′ Substrate selectively covered with a patterned film having an epoxy group 11 Magnetite fine particles 12 Hydroxyl group 13 Monomolecular film containing epoxy group 14 Monomolecular film containing amino group
Magnetite fine particles covered with a monomolecular film containing 15 epoxy groups
Magnetite fine particles covered with monomolecular film containing 16 amino groups 21 Chemical adsorption monomolecular film having epoxy groups 22 Glass substrate 23 Magnetite fine particles covered with chemical adsorption monomolecular films having amino groups 24 Patterned single layer magnetite Fine particle film 25 Magnetite fine particle covered with chemisorption monomolecular film having epoxy group
26 Two-layered patterned magnetite fine particle film 27 Magnetite fine particle covered with chemisorption monomolecular film having amino group 28 Magnetite fine particle covered with chemisorption monomolecular film having epoxy group
29 Patterned magnetite fine particle film of two-layer structure

Claims (22)

磁気記録層として媒体基体表面に選択的に1層形成された磁性微粒子の膜が媒体基体表面に選択的に形成された第1の有機膜と磁性微粒子表面に形成された第2の有機膜を介して互いに共有結合していることを特徴とする磁気記録媒体。 A first magnetic film selectively formed on the surface of the medium substrate and a second organic film formed on the surface of the magnetic particles are selectively formed on the surface of the medium substrate as a magnetic recording layer. A magnetic recording medium that is covalently coupled to each other. 媒体基体表面に形成された第1の有機被膜と磁性微粒子表面に形成された第2の有機膜が互いに異なることを特徴とする請求項1記載の磁気記録媒体。 2. The magnetic recording medium according to claim 1, wherein the first organic film formed on the surface of the medium substrate and the second organic film formed on the surface of the magnetic fine particle are different from each other. 共有結合が、エポキシ基とイミノ基の反応で形成された−N−C−の結合であることを特徴とする請求項1記載の磁気記録媒体。 The magnetic recording medium according to claim 1, wherein the covalent bond is a —N—C— bond formed by a reaction between an epoxy group and an imino group. 媒体基体表面に選択的に形成された第1の有機被膜と磁性微粒子表面に形成された第2の有機膜が単分子膜で構成されていることを特徴とする請求項1および2記載の磁気記録媒体。 3. The magnetism according to claim 1, wherein the first organic film selectively formed on the surface of the medium substrate and the second organic film formed on the surface of the magnetic fine particle are composed of a monomolecular film. recoding media. 媒体基体表面を少なくとも第1のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に接触させてアルコキシシラン化合物と媒体基体表面を反応させて媒体基体表面に第1の反応性の有機膜を形成して選択的に加工するか、あるいは選択的に有機膜を形成する工程と、磁性微粒子を少なくとも第2のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に分散させてアルコキシシラン化合物と磁性微粒子表面を反応させて磁性微粒子表面に第2の反応性の有機膜を形成する工程と、第1の反応性の有機膜が選択的に形成された媒体基体表面に第2の反応性の有機膜で被覆された磁性微粒子を接触させて反応させる工程と、余分な第2の反応性の有機膜で被覆された磁性微粒子を洗浄除去する工程を含むことを特徴とする磁気記録媒体の製造方法。 The surface of the medium substrate is brought into contact with a chemical adsorption solution prepared by mixing at least a first alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent, and the alkoxysilane compound and the medium substrate surface are reacted to form a surface on the medium substrate. Forming a first reactive organic film and selectively processing it, or selectively forming the organic film; and forming the magnetic fine particles into at least a second alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic material. A step of forming a second reactive organic film on the surface of the magnetic fine particle by reacting the alkoxysilane compound with the surface of the magnetic fine particle by dispersing in a chemical adsorption solution prepared by mixing a solvent; A step of bringing the fine magnetic particles coated with the second reactive organic film into contact with the surface of the medium substrate on which the organic film is selectively formed, and reacting, and an extra second reactive property. Method of manufacturing a magnetic recording medium which comprises a step of washing and removing the magnetic fine particles coated with a film. 媒体基体表面を少なくとも第1のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に接触させてアルコキシシラン化合物と媒体基体表面を反応させて媒体基体表面に第1の反応性の有機膜を形成する工程、および磁性微粒子を少なくとも第2のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に分散させてアルコキシシラン化合物と磁性微粒子表面を反応させて磁性微粒子表面に第2の反応性の有機膜を形成する工程において、それぞれ媒体基体および磁性微粒子表面を有機溶剤で洗浄して媒体基体及び磁性微粒子表面に共有結合した第1及び第2の反応性の単分子膜を形成することを特徴とする請求項5記載の磁気記録媒体の製造方法。 The surface of the medium substrate is brought into contact with a chemical adsorption solution prepared by mixing at least a first alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent, and the alkoxysilane compound and the medium substrate surface are reacted to form a surface on the medium substrate. A step of forming a first reactive organic film, and a magnetic fine particle is dispersed in a chemical adsorption solution prepared by mixing at least a second alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent, and alkoxysilane In the step of forming a second reactive organic film on the surface of the magnetic fine particle by reacting the compound with the surface of the magnetic fine particle, the medium substrate and the surface of the magnetic fine particle are respectively washed with an organic solvent and covalently bonded to the surface of the medium substrate and the magnetic fine particle surface. 6. The method of manufacturing a magnetic recording medium according to claim 5, wherein the first and second reactive monomolecular films are formed. 第1の反応性の有機膜がエポキシ基を含み第2の反応性の有機膜がイミノ基を含むか、第1の反応性の有機膜がイミノ基を含み第2の反応性の有機膜がエポキシ基を含むことを特徴とする請求項5記載の磁気記録媒体の製造方法。 The first reactive organic film contains an epoxy group and the second reactive organic film contains an imino group, or the first reactive organic film contains an imino group and the second reactive organic film is 6. The method of manufacturing a magnetic recording medium according to claim 5, further comprising an epoxy group. 第1の反応性の単分子膜がエポキシ基を含み第2の反応性の単分子膜がイミノ基を含むか、第1の反応性の単分子膜がイミノ基を含み第2の反応性の単分子膜がエポキシ基を含むことを特徴とする請求項6記載の磁気記録媒体の製造方法。 The first reactive monolayer contains an epoxy group and the second reactive monolayer contains an imino group, or the first reactive monolayer contains an imino group and the second reactive monolayer The method for producing a magnetic recording medium according to claim 6, wherein the monomolecular film contains an epoxy group. 磁気記録層として媒体基体表面に選択的に層状に累積された磁性微粒子が磁性微粒子表面に形成された有機被膜を介して層間で互いに共有結合していることを特徴とする磁気記録媒体。 A magnetic recording medium, wherein magnetic fine particles selectively accumulated in the form of a layer as a magnetic recording layer are covalently bonded to each other through an organic film formed on the surface of the magnetic fine particles. 磁性微粒子表面に形成された有機被膜が2種類有り、第1の有機膜が形成された磁性微粒子と第2の有機膜が形成された磁性微粒子とが交互に積層されていることを特徴とする請求項9記載の磁気記録媒体。 There are two types of organic coatings formed on the surface of the magnetic fine particles, and the magnetic fine particles on which the first organic film is formed and the magnetic fine particles on which the second organic film is formed are alternately laminated. The magnetic recording medium according to claim 9. 第1の有機膜と第2の有機膜が反応して共有結合を形成していることを特徴とする請求項10記載の磁気記録媒体。 The magnetic recording medium according to claim 10, wherein the first organic film and the second organic film react to form a covalent bond. 共有結合が、エポキシ基とイミノ基の反応で形成された−N−C−の結合であることを特徴とする請求項9記載の磁気記録媒体。 The magnetic recording medium according to claim 9, wherein the covalent bond is a —N—C— bond formed by a reaction between an epoxy group and an imino group. 少なくとも媒体基体表面を第1のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に接触させてアルコキシシラン化合物と媒体基体表面を反応させて媒体基体表面に第1の反応性の有機膜を形成して選択的に加工するか、あるいは選択的に有機膜を形成する工程と、第1の磁性微粒子を少なくとも第2のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に分散させてアルコキシシラン化合物と磁性微粒子表面を反応させて第1の磁性微粒子表面に第2の反応性の有機膜を形成する工程と、第1の反応性の有機膜の形成された媒体基体表面に第2の反応性の有機膜で被覆された第1の磁性微粒子を接触させて反応させる工程と、余分な第2の反応性の有機膜で被覆された第1の磁性微粒子を洗浄除去して第1の磁気記録層を形成する工程と、第2の磁性微粒子を少なくとも第3のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に分散させてアルコキシシラン化合物と磁性微粒子表面を反応させて第2の磁性微粒子表面に第3の反応性の有機膜を形成する工程と、第2の反応性の有機膜で被覆された第1の磁気記録媒体が形成された媒体基体表面に第3の反応性の有機膜で被覆された第2の磁性微粒子を接触させて反応させる工程と、余分な第3の反応性の有機膜で被覆された第2の磁性微粒子を洗浄除去して選択的に第2の磁気記録層を形成する工程とを含むことを特徴とする磁気記録媒体の製造方法。 At least the surface of the medium substrate is brought into contact with a chemical adsorption solution prepared by mixing the first alkoxysilane compound, the silanol condensation catalyst, and the non-aqueous organic solvent, and the alkoxysilane compound and the surface of the medium substrate are reacted to form the surface of the medium substrate. Forming a first reactive organic film and selectively processing it, or selectively forming an organic film; and forming the first magnetic fine particles into at least a second alkoxysilane compound, a silanol condensation catalyst, A step of forming a second reactive organic film on the surface of the first magnetic fine particle by dispersing it in a chemical adsorption solution prepared by mixing an aqueous organic solvent and reacting the alkoxysilane compound with the surface of the magnetic fine particle; A step of bringing the first magnetic fine particles coated with the second reactive organic film into contact with the surface of the medium substrate on which the first reactive organic film is formed and reacting, and an extra second Washing and removing the first magnetic fine particles coated with the responsive organic film to form a first magnetic recording layer; and removing the second magnetic fine particles from at least a third alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous system. A step of forming a third reactive organic film on the surface of the second magnetic fine particle by dispersing it in a chemical adsorption solution prepared by mixing the organic solvent and reacting the alkoxysilane compound with the magnetic fine particle surface; A step of bringing the second magnetic fine particles coated with the third reactive organic film into contact with the surface of the medium substrate on which the first magnetic recording medium coated with the second reactive organic film is formed, and reacting the medium base surface. And a step of selectively forming a second magnetic recording layer by cleaning and removing the second magnetic fine particles coated with an extra third reactive organic film. Production method. 第1の反応性の有機膜と第3の反応性の有機膜が同じものであることを特徴とする請求項13記載の磁気記録媒体の製造方法。 14. The method of manufacturing a magnetic recording medium according to claim 13, wherein the first reactive organic film and the third reactive organic film are the same. 第2の磁気記録層を形成する工程の後、同様に第1の磁気記録層を形成する工程と第2の磁気記録媒体を形成する工程を繰り返し行うことを特徴とする請求項13記載の多層構造の磁気記録媒体の製造方法。 14. The multilayer according to claim 13, wherein after the step of forming the second magnetic recording layer, the step of forming the first magnetic recording layer and the step of forming the second magnetic recording medium are repeated in the same manner. Method of manufacturing a magnetic recording medium having a structure. 第1〜3の反応性の有機膜を形成する工程の後に、それぞれ媒体基体あるいは磁性微粒子表面を有機溶剤で洗浄して媒体基体や磁性微粒子表面に共有結合した第1〜3の反応性の単分子膜を形成することを特徴とする請求項13記載の磁気記録媒体の製造方法。 After the steps of forming the first to third reactive organic films, the surface of the medium substrate or the magnetic fine particles is washed with an organic solvent, and the first to third reactive units that are covalently bonded to the surface of the medium substrate or the magnetic fine particles, respectively. 14. The method of manufacturing a magnetic recording medium according to claim 13, wherein a molecular film is formed. 第1および3の反応性の有機膜がエポキシ基を含み第2の反応性の有機膜がイミノ基を含むか、第1および3の反応性の有機膜がイミノ基を含み第2の反応性の有機膜がエポキシ基を含むことを特徴とする請求項13記載の磁気記録媒体の製造方法。 The first and third reactive organic films contain an epoxy group and the second reactive organic film contains an imino group, or the first and third reactive organic films contain an imino group and the second reactivity 14. The method of manufacturing a magnetic recording medium according to claim 13, wherein the organic film includes an epoxy group. シラノール縮合触媒の代わりに、ケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を用いることを特徴とする請求項5および13に記載の磁気記録媒体の製造方法。 14. The method for producing a magnetic recording medium according to claim 5, wherein a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, or an aminoalkylalkoxysilane compound is used instead of the silanol condensation catalyst. シラノール縮合触媒に助触媒としてケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物から選ばれる少なくとも1つを混合して用いることを特徴とする請求項5および13に記載の磁気記録媒体の製造方法。 14. The method according to claim 5, wherein at least one selected from a ketimine compound or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, and an aminoalkylalkoxysilane compound is used as a co-catalyst for the silanol condensation catalyst. A method for producing the magnetic recording medium according to claim. 磁性微粒子を接触させて反応させる工程を磁場中で行うことを特徴とする請求項5および13に記載の磁気記録媒体の製造方法。 14. The method of manufacturing a magnetic recording medium according to claim 5, wherein the step of causing the magnetic fine particles to contact and react is performed in a magnetic field. 磁気記録層として媒体基体表面に選択的に1層形成された磁性微粒子の膜が媒体基体表面に形成された第1の有機膜と磁性微粒子表面に形成された第2の有機膜を介して互いに共有結合していることを特徴とする磁気記録媒体を用いた磁気記録読取装置。 A magnetic fine particle film selectively formed as a magnetic recording layer on the surface of the medium substrate is mutually connected via a first organic film formed on the surface of the medium substrate and a second organic film formed on the surface of the magnetic fine particles. A magnetic recording reader using a magnetic recording medium, wherein the magnetic recording medium is covalently coupled. 磁気記録層として媒体基体表面に選択的に層状に累積され磁性微粒子が磁性微粒子表面に形成された有機被膜を介して層間で互いに共有結合していることを特徴とする磁気記録媒体を用いた磁気記録読取装置。
Magnetic recording using a magnetic recording medium characterized in that the magnetic fine particles are selectively accumulated on the surface of the medium substrate as a magnetic recording layer, and the magnetic fine particles are covalently bonded to each other through an organic film formed on the surface of the magnetic fine particles. Record reader.
JP2005320709A 2005-11-04 2005-11-04 Magnetic recording medium, its manufacturing method, and magnetic recording and reading device using the same Pending JP2007128607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005320709A JP2007128607A (en) 2005-11-04 2005-11-04 Magnetic recording medium, its manufacturing method, and magnetic recording and reading device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005320709A JP2007128607A (en) 2005-11-04 2005-11-04 Magnetic recording medium, its manufacturing method, and magnetic recording and reading device using the same

Publications (1)

Publication Number Publication Date
JP2007128607A true JP2007128607A (en) 2007-05-24

Family

ID=38151123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005320709A Pending JP2007128607A (en) 2005-11-04 2005-11-04 Magnetic recording medium, its manufacturing method, and magnetic recording and reading device using the same

Country Status (1)

Country Link
JP (1) JP2007128607A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008136483A1 (en) * 2007-05-02 2008-11-13 Kazufumi Ogawa Magnetic recording medium, process for producing the same, and magnetic recording reader employing the medium
JP7436483B2 (en) 2018-12-14 2024-02-21 アンスティテュート ナショナル デ サイエンス アプリーク ド トゥールーズ(アイエヌエスエーティー) Method of manufacturing permanent or soft magnets

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000048340A (en) * 1998-07-31 2000-02-18 Internatl Business Mach Corp <Ibm> Magnetic memory medium comprising nano particle
JP2001184620A (en) * 1999-12-27 2001-07-06 Toshiba Corp Recording medium and method of manufacturing it
JP2003168606A (en) * 2001-01-24 2003-06-13 Matsushita Electric Ind Co Ltd Fine particle array, its manufacturing method and device using the method
JP2007117827A (en) * 2005-10-26 2007-05-17 Kagawa Univ Pattern-like fine particle film and its production method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000048340A (en) * 1998-07-31 2000-02-18 Internatl Business Mach Corp <Ibm> Magnetic memory medium comprising nano particle
JP2001184620A (en) * 1999-12-27 2001-07-06 Toshiba Corp Recording medium and method of manufacturing it
JP2003168606A (en) * 2001-01-24 2003-06-13 Matsushita Electric Ind Co Ltd Fine particle array, its manufacturing method and device using the method
JP2007117827A (en) * 2005-10-26 2007-05-17 Kagawa Univ Pattern-like fine particle film and its production method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008136483A1 (en) * 2007-05-02 2008-11-13 Kazufumi Ogawa Magnetic recording medium, process for producing the same, and magnetic recording reader employing the medium
JP2008276889A (en) * 2007-05-02 2008-11-13 Kagawa Univ Magnetic recording medium, manufacturing method of magnetic recording medium and magnetic recording and reading device using the same
JP7436483B2 (en) 2018-12-14 2024-02-21 アンスティテュート ナショナル デ サイエンス アプリーク ド トゥールーズ(アイエヌエスエーティー) Method of manufacturing permanent or soft magnets

Similar Documents

Publication Publication Date Title
JP2007117827A (en) Pattern-like fine particle film and its production method
JP2007118276A (en) Single-layer fine particle film, cumulated fine particle film and manufacturing method of them
US20040203256A1 (en) Irradiation-assisted immobilization and patterning of nanostructured materials on substrates for device fabrication
JP2007240981A (en) Method for forming microparticle pattern and method for producing device
JP2013086294A (en) Reproduction mold for nano imprint
WO2008068873A1 (en) Monolayer nanoparticle film, multilayer nanoparticle film, and manufacturing method thereof
US6822833B2 (en) Disc drive magnetic component with self assembled features
JP5050190B2 (en) Fine particles and production method thereof
JP2007033167A (en) Biochemical chip and its manufacturing method
JP2007119545A (en) Fine particle film and method for producing the same
JP2007173518A (en) Optical sensor and manufacturing method thereof
JP2007128607A (en) Magnetic recording medium, its manufacturing method, and magnetic recording and reading device using the same
JP4848502B2 (en) WIRING, MANUFACTURING METHOD THEREOF, AND ELECTRONIC COMPONENT AND ELECTRONIC DEVICE USING THEM
Saavedra et al. Reversible lability by in situ reaction of self-assembled monolayers
US9200012B2 (en) Patterned fine particle film structures
JP2007220883A (en) Wiring and its manufacturing method, and electronic parts and electronic apparatus using the same
JP2007161912A (en) Adhesion method and biochemical chip produced by the method and optical part
JP2007128605A (en) Magnetic recording medium, its manufacturing method and magnetic recording and reading device using the same
JP5167528B2 (en) Chemisorption solution
Brandow et al. Formation of aromatic siloxane self-assembled monolayers
JP4521569B2 (en) Magnetic recording medium, method of manufacturing the same, and magnetic recording reader using the same
JP5071955B2 (en) Electrode, manufacturing method thereof, lead wiring using the same, connecting method thereof, electronic component and electronic device using the same
JP2007161748A (en) Phosphor microparticle, method for producing the same and phosphor film using the same
JP2007161913A (en) Adhesion method and biochemical chip produced by the method and optical part
JP2007142006A (en) Insulator particulate film, its manufacturing method, and capacitor using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080930

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD01 Notification of change of attorney

Effective date: 20080929

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A131 Notification of reasons for refusal

Effective date: 20091124

Free format text: JAPANESE INTERMEDIATE CODE: A131

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100125

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100223

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100427