JP2007142005A - Protective film and forming method thereof - Google Patents

Protective film and forming method thereof Download PDF

Info

Publication number
JP2007142005A
JP2007142005A JP2005331241A JP2005331241A JP2007142005A JP 2007142005 A JP2007142005 A JP 2007142005A JP 2005331241 A JP2005331241 A JP 2005331241A JP 2005331241 A JP2005331241 A JP 2005331241A JP 2007142005 A JP2007142005 A JP 2007142005A
Authority
JP
Japan
Prior art keywords
fine particles
protective film
functional group
organic thin
reactivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005331241A
Other languages
Japanese (ja)
Inventor
Kazufumi Ogawa
小川  一文
Yoshiaki Watanabe
好章 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kagawa University NUC
Doshisha Co Ltd
Original Assignee
Kagawa University NUC
Doshisha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagawa University NUC, Doshisha Co Ltd filed Critical Kagawa University NUC
Priority to JP2005331241A priority Critical patent/JP2007142005A/en
Publication of JP2007142005A publication Critical patent/JP2007142005A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an insulator particulate in which an organic thin film having a reactive functional group is formed on the surface, and to provide a forming method of the protective film using the insulator particulate as the protective film where a base material is not limited and no vacuum chamber is required and as the forming method of the protective film. <P>SOLUTION: In the protective film, the insulator particulate having first reactivity and that having second reactivity are mixed, coated on the surface of the base material and cured. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、漏電防止や防水、防湿、防傷機能を有する保護膜(いわゆるパシベーション膜)に関するものである。さらに詳しくは、表面に熱反応性または光反応性、あるいはラジカル反応性またはイオン反応性を付与した絶縁体微粒子を用いた保護膜に関するものである。 The present invention relates to a protective film (so-called passivation film) having a function of preventing leakage, waterproofing, moisture-proofing and scratch-proofing. More specifically, the present invention relates to a protective film using insulating fine particles having a surface provided with thermal reactivity or photoreactivity, radical reactivity or ionic reactivity.

本発明において、「絶縁体微粒子」には、主として、シリカ、アルミナ、ジルコニアが含まれる。   In the present invention, “insulator fine particles” mainly include silica, alumina, and zirconia.

従来から、無機物質による耐久性の高い保護膜形成には、スパッタ法やCVD法、ゾルゲル法が用いられている。   Conventionally, a sputtering method, a CVD method, or a sol-gel method has been used to form a highly durable protective film using an inorganic substance.

しかしながら、スパッタ法やCVD法では、特殊な真空チャンバーが必要であり、製造コストが高くなるという欠点があった。また、ゾルゲル法では、反応に高温を必要とするため、基材が耐熱性のものに限定されるという欠点があった。 However, the sputtering method and the CVD method have a disadvantage that a special vacuum chamber is required and the manufacturing cost is increased. In addition, the sol-gel method has a disadvantage that the base material is limited to a heat-resistant one because a high temperature is required for the reaction.

本発明は、基材が制限されることなく、真空チャンバーも必要としない保護膜やその製造方法として、表面に反応性の官能基を有する有機薄膜を形成した絶縁体微粒子やそれを用いた保護膜とその製造方法を提供することを目的とする。   The present invention provides a protective film that does not require a vacuum chamber without limiting the base material, and a method for producing the same, and insulating fine particles formed with an organic thin film having a reactive functional group on the surface, and protection using the same It aims at providing a film | membrane and its manufacturing method.

前記課題を解決するための手段として提供される第1の発明は、第1の反応性の官能基を含む有機薄膜で被われた絶縁体微粒子と第2の反応性の官能基を含む有機薄膜で被われた絶縁体微粒子が基材表面に混合されて塗布硬化されていることを特徴とする保護膜である。   A first invention provided as means for solving the above-described problems is that an organic thin film containing insulating fine particles covered with an organic thin film containing a first reactive functional group and a second reactive functional group The protective film is characterized in that the insulating fine particles covered with (1) are mixed and coated on the surface of the substrate.

第2の発明は、表面に反応性の官能基を含む有機薄膜で被われた基材表面と前記反応性の官能基と反応する官能基を含む有機薄膜で被われた絶縁体微粒子が前記それぞれの有機薄膜を介して共有結合し、硬化製膜されている保護膜である。
ここで、反応性の官能基としてエポキシ基やイミノ基、またはカルコニル基を含むと耐久性の高い保護膜を提供できて都合がよい。
In the second invention, the surface of the substrate covered with an organic thin film containing a reactive functional group on the surface and the insulating fine particles covered with an organic thin film containing a functional group that reacts with the reactive functional group are respectively described above. The protective film is covalently bonded through an organic thin film and cured.
Here, when an epoxy group, an imino group, or a chalconyl group is included as a reactive functional group, a highly durable protective film can be advantageously provided.

第3の発明は、第1の反応性を備えた絶縁体微粒子と第2の反応性を備えた絶縁体微粒子を有機溶媒中で混合してペースト化する工程と、基材表面に塗布する工程と、硬化させる工程を含むことを特徴とする保護膜の製造方法である。   According to a third aspect of the present invention, there are provided a step of mixing the insulating fine particles having the first reactivity and the insulating fine particles having the second reactivity in an organic solvent to form a paste, and a step of applying to the substrate surface And a step of curing the protective film.

このとき、あらかじめ、塗布前の基材表面に、第1の反応性を備えた絶縁体微粒子または第2の反応性を備えた絶縁体微粒子と反応する官能基を備えた有機薄膜を形成しておくと、耐剥離性の高い微粒子を用いた保護膜を提供できて都合がよい。   At this time, an organic thin film having a functional group that reacts with the insulating fine particles having the first reactivity or the insulating fine particles having the second reactivity is formed in advance on the surface of the base material before coating. This is convenient because it can provide a protective film using fine particles having high peel resistance.

以上説明したとおり、本発明によれば、微粒子表面を反応性の有機薄膜や単分子膜で覆うことにより、バインダー成分をほとんど含まず、被膜強度の高い保護膜を製作提供できる効果がある。また、あらかじめ基材表面を反応性の有機薄膜や単分子膜で被っておくことにより、耐剥離性能に優れた絶縁微粒子よりなる保護膜を製作提供できる効果がある。   As described above, according to the present invention, by covering the surface of the fine particles with a reactive organic thin film or monomolecular film, there is an effect that a protective film containing almost no binder component and having high film strength can be produced and provided. Further, by covering the substrate surface with a reactive organic thin film or a monomolecular film in advance, there is an effect that a protective film made of insulating fine particles having excellent peeling resistance can be produced and provided.

本発明は、第1の反応性を備えた絶縁体微粒子と第2の反応性を備えた絶縁体微粒子を有機溶媒中で混合してペースト化する工程と、基材表面に塗布する工程と、硬化させる工程とにより、第1の反応性を備えた絶縁体微粒子と第2の反応性を備えた絶縁体微粒子が基材表面に混合して塗布硬化されている保護膜を提供するものである。 The present invention includes a step of mixing the insulating fine particles having the first reactivity and the insulating fine particles having the second reactivity in an organic solvent to form a paste, a step of applying to the substrate surface, And a step of curing to provide a protective film in which the insulating fine particles having the first reactivity and the insulating fine particles having the second reactivity are mixed and coated on the surface of the substrate. .

さらに、あらかじめ、塗布前の基材表面に、第1の反応性を備えた絶縁体微粒子あるいは第2の反応性を備えた絶縁体微粒子と反応する官能基を備えた有機薄膜を形成しておくことにより、表面に反応性の官能基を含む有機薄膜で被われた基材表面と前記反応性の官能基と反応する官能基を含む有機薄膜で被われた絶縁体微粒子が前記それぞれの有機薄膜を介して共有結合し、硬化製膜されている保護膜を提供するものである。 Further, an organic thin film having a functional group that reacts with the insulating fine particles having the first reactivity or the insulating fine particles having the second reactivity is formed in advance on the surface of the substrate before coating. Thus, the surface of the base material covered with an organic thin film containing a reactive functional group on the surface and the insulating fine particles covered with the organic thin film containing a functional group that reacts with the reactive functional group are formed into the respective organic thin films. A protective film that is covalently bonded through a film and cured and formed is provided.

したがって、本発明には、バインダー成分をほとんど含まず、被膜強度の高い保護膜を製作提供できる作用がある。また、耐剥離性能に優れた絶縁微粒子よりなる保護膜を製作提供できる作用がある。 Therefore, the present invention has the effect of providing and providing a protective film having almost no binder component and high coating strength. In addition, there is an effect that a protective film made of insulating fine particles having excellent peeling resistance can be produced and provided.

以下、本願発明の詳細を実施例に基づいて説明するが、本願発明は、これら実施例によって何ら限定されるものではない。   Hereinafter, although the detail of this invention is demonstrated based on an Example, this invention is not limited at all by these Examples.

なお、本発明に関する絶縁体微粒子には、アルミナやシリカ、ジルコニア等があるが、まず、代表例としてシリカ微粒子を取り上げて説明する。   Insulator fine particles related to the present invention include alumina, silica, zirconia, and the like. First, silica fine particles will be described as a representative example.

まず、無水のシリカ微粒子1を用意し、よく乾燥した。次に、化学吸着剤として機能部位に反応性の官能基、例えば、エポキシ基あるいはイミノ基と他端にアルコキシシリル基を含む薬剤、例えば、下記式(化1)あるいは(化2)に示す薬剤を99重量%、シラノール縮合触媒として、例えば、ジブチル錫ジアセチルアセトナート、あるいは有機酸である酢酸を1重量%となるようそれぞれ秤量し、シリコーンとジメチルホルムアミドを同量混合した溶媒、例えば、ヘキサメチルジシロキサン50%とジメチルホルムアミド50%の溶液に1重量%程度の濃度(好ましくい化学吸着剤の濃度は、0.5〜3%程度)になるように溶かして化学吸着液を調製した。 First, anhydrous silica fine particles 1 were prepared and well dried. Next, as a chemical adsorbent, a functional group having a reactive functional group such as an epoxy group or imino group and an alkoxysilyl group at the other end, such as a chemical represented by the following formula (Chemical Formula 1) or (Chemical Formula 2) 99% by weight of a silanol condensation catalyst, for example, dibutyltin diacetylacetonate or acetic acid as an organic acid is weighed to 1% by weight, and a solvent in which the same amount of silicone and dimethylformamide are mixed, for example, hexamethyl A chemical adsorption solution was prepared by dissolving in a solution of 50% disiloxane and 50% dimethylformamide to a concentration of about 1% by weight (preferably the concentration of the chemical adsorbent is about 0.5 to 3%).

Figure 2007142005
Figure 2007142005

Figure 2007142005
Figure 2007142005

この吸着液に無水のシリカ微粒子を混入撹拌して普通の空気中で(相対湿度45%)で2時間程度反応させた。このとき、無水のシリカ微粒子表面のダングリングボンドには水酸基2が多数結合している(図1a)ので、前記化学吸着剤の−Si(OCH)基と前記水酸基がシラノール縮合触媒あるいは有機酸存在下で脱アルコール(この場合は、脱CHOH)反応し、下記式(化3)あるいは(化4)に示したような結合を形成し、シリカ微粒子表面全面に亘り表面と化学結合したエポキシ基を含む化学吸着単分子膜3、または、アミノ基を含む化学吸着膜4が約1ナノメートル程度の膜厚で形成された(図1b、2c)。 The adsorbed liquid was mixed with anhydrous silica fine particles and stirred, and reacted in ordinary air (relative humidity 45%) for about 2 hours. At this time, since many hydroxyl groups 2 are bonded to the dangling bonds on the surface of the anhydrous silica fine particles (FIG. 1a), the -Si (OCH 3 ) group of the chemical adsorbent and the hydroxyl group are a silanol condensation catalyst or an organic acid. In the presence, dealcoholization (in this case, de-CH 3 OH) was reacted to form a bond as shown in the following formula (Chemical Formula 3) or (Chemical Formula 4), and chemically bonded to the surface over the entire surface of the silica fine particles. A chemisorption monomolecular film 3 containing an epoxy group or a chemisorption film 4 containing an amino group was formed with a film thickness of about 1 nanometer (FIGS. 1b and 2c).

なお、ここで、アミノ基を含む吸着剤を使用する場合には、スズ系の触媒では沈殿が生成するので、酢酸等の有機酸を用いた方がよかった。また、アミノ基はイミノ基を含んでいるが、アミノ基以外にイミノ基を含む物質には、ピロール誘導体や、イミダゾール誘導体等がある。さらに、ケチミン誘導体を用いれば、被膜形成後、加水分解により容易にアミノ基を導入できた。
その後、塩素系溶媒であるクロロホルムを添加して撹拌洗浄すると、表面に反応性の官能基、例えば、エポキシ基、または、アミノ基を有する化学吸着単分子膜で被われたシリカ微粒子を作製できた。
Here, when an adsorbent containing an amino group is used, since a precipitate is generated with a tin-based catalyst, it is better to use an organic acid such as acetic acid. The amino group contains an imino group, but substances containing an imino group in addition to the amino group include pyrrole derivatives and imidazole derivatives. Furthermore, when a ketimine derivative was used, an amino group could be easily introduced by hydrolysis after film formation.
After that, chloroform, which is a chlorinated solvent, was added and washed with stirring. Silica fine particles covered with a chemisorbed monomolecular film having a reactive functional group such as an epoxy group or an amino group on the surface could be produced. .

Figure 2007142005
Figure 2007142005

Figure 2007142005
Figure 2007142005

処理部は、被膜がナノメートルレベルの膜厚で極めて薄いため、粒子径を損なうことはなかった。
なお、洗浄せずに空気中に取り出すと、反応性はほぼ変わらないが、溶媒が蒸発し粒子表面に残った化学吸着剤が粒子表面で空気中の水分と反応して、粒子表面に前記化学吸着剤よりなる極薄のポリマー膜が形成されたシリカ微粒子が得られた。
Since the coating film was extremely thin with a film thickness of nanometer level, the particle diameter was not impaired.
Note that the reactivity does not substantially change when it is taken out into the air without washing, but the chemical adsorbent remaining on the particle surface reacts with the moisture in the air on the particle surface, and the chemical is adsorbed on the particle surface. Silica fine particles on which an extremely thin polymer film made of an adsorbent was formed were obtained.

この方法の特徴は、脱アルコール反応であるため、適用範囲が広いことである。   Since this method is a dealcoholization reaction, it is widely applicable.

次に、前記エポキシ基、あるいは、アミノ基を有する化学吸着単分子膜で被われたシリカ微粒子をそれぞれ同量取りイソプロピルアルコール中で十分混合してペースト化し、ガラス基板7に塗布し50〜100度程度に加熱すると、下記式(化5)に示したような反応でエポキシ基とアミノ基が付加してシリカ微粒子は結合固化し、バインダーを含まなくても強固な保護膜を形成できた。 Next, the same amount of silica fine particles 5 and 6 covered with the chemisorption monomolecular film having the epoxy group or amino group is taken out and mixed in isopropyl alcohol to form a paste, which is applied to the glass substrate 7 and applied. When heated to about -100 degrees, epoxy groups and amino groups are added by the reaction shown in the following formula (Chemical Formula 5), the silica fine particles are bonded and solidified, and a strong protective film 8 is formed without containing a binder. did it.

Figure 2007142005
Figure 2007142005

実施例1に於いて、あらかじめ、同様の方法でガラス基材7表面にも反応性の官能基としてエポキシあるいはアミノ基を持つ有機薄膜を形成しておき、以下同様の塗膜形成を行えば、シリカ微粒子の表面の有機薄膜は、基材表面の有機薄膜とも反応して、耐剥離強度の高いシリカ微粒子よりなる保護膜10を製造できた。(図2) In Example 1, an organic thin film 9 having an epoxy or amino group as a reactive functional group is also formed on the surface of the glass substrate 7 in the same manner in advance, and then the same coating film is formed. The organic thin film on the surface of the silica fine particles reacted with the organic thin film on the surface of the substrate to produce a protective film 10 made of silica fine particles having high peel resistance. (Figure 2)

なお、上記実施例1では、反応性基を含む化学吸着剤として式(化1)あるいは式(化2)に示した物質を用いたが、上記のもの以外にも、下記(1)〜(16)に示した物質が利用できた。
(1) (CHOCH)CH2O(CH2)Si(OCH)3
(2) (CHOCH)CH2O(CH2)11Si(OCH)3
(3) (CHCHOCH(CH)CH(CH2)Si(OCH)3
(4) (CHCHOCH(CH)CH(CH2)Si(OCH)3
(5) (CHCHOCH(CH)CH(CH2)Si(OCH)3
(6) (CH2OCH)CH2O(CH2)Si(OC)3
(7) (CHOCH)CH2O(CH2)11Si(OC)3
(8) (CHCHOCH(CH)CH(CH2)Si(OC)3
(9) (CHCHOCH(CH)CH(CH2)Si(OC)3
(10) (CHCHOCH(CH)CH(CH2)Si(OC)3
(11) H2N (CH2)Si(OCH)3
(12) H2N (CH2)Si(OCH)3
(13) H2N (CH2)Si(OCH)3
(14) H2N (CH2)Si(OC)3
(15) H2N (CH2)Si(OC)3
(16) H2N (CH2)Si(OC)3
In addition, in the said Example 1, although the substance shown to Formula (Formula 1) or Formula (Formula 2) was used as a chemical adsorbent containing a reactive group, in addition to the above, the following (1) to ( The substances shown in 16) were available.
(1) (CH 2 OCH) CH 2 O (CH 2 ) 7 Si (OCH 3 ) 3
(2) (CH 2 OCH) CH 2 O (CH 2 ) 11 Si (OCH 3 ) 3
(3) (CH 2 CHOCH (CH 2 ) 2 ) CH (CH 2 ) 2 Si (OCH 3 ) 3
(4) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 4 Si (OCH 3) 3
(5) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 6 Si (OCH 3) 3
(6) (CH2OCH) CH 2 O (CH 2) 7 Si (OC 2 H 5) 3
(7) (CH 2 OCH) CH 2 O (CH 2 ) 11 Si (OC 2 H 5 ) 3
(8) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 2 Si (OC 2 H 5) 3
(9) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 4 Si (OC 2 H 5) 3
(10) (CH 2 CHOCH (CH 2 ) 2 ) CH (CH 2 ) 6 Si (OC 2 H 5 ) 3
(11) H 2 N (CH 2 ) 5 Si (OCH 3 ) 3
(12) H 2 N (CH 2 ) 7 Si (OCH 3 ) 3
(13) H 2 N (CH 2 ) 9 Si (OCH 3 ) 3
(14) H 2 N (CH 2 ) 5 Si (OC 2 H 5 ) 3
(15) H 2 N (CH 2 ) 7 Si (OC 2 H 5 ) 3
(16) H 2 N (CH 2 ) 9 Si (OC 2 H 5 ) 3

ここで、(CHOCH)−基は、下記式(化6)で表される官能基を表し、(CHCHOCH(CH)CH−基は、下記式(化7)で表される官能基を表す。 Here, the (CH 2 OCH) — group represents a functional group represented by the following formula (Formula 6), and the (CH 2 CHOCH (CH 2 ) 2 ) CH— group is represented by the following formula (Formula 7). Represents a functional group.

Figure 2007142005
Figure 2007142005

Figure 2007142005
Figure 2007142005

さらに、光または電子線等のエネルギービーム反応性官能基を含む化学吸着剤として、下記(21)〜(26)に示した物質が利用できた。この場合は、2種類の反応性の微粒子を混合する必要はなく、単に1種類を塗布し、光や電子線等のエネルギービームを照射して硬化すればよい。 Furthermore, the substances shown in the following (21) to (26) can be used as chemical adsorbents containing energy beam reactive functional groups such as light or electron beams. In this case, it is not necessary to mix the two types of reactive fine particles, but only one type may be applied and cured by irradiation with an energy beam such as light or an electron beam.

(21) CH≡C−C≡C−(CH2)15SiCl3
(22) CH≡C−C≡C−(CH2)2Si(CH3)2(CH2)15SiCl3
(23) CH≡C−C≡C−(CH2)2Si(CH3)2(CH2)9SiCl3
(24) (C) (CH)2CO(C)O(CH2)OSi(OCH)3
(25) (C) (CH)2CO(C)O(CH2)OSi(OC)3
(26) (C) CO(CH)2 (C)O(CH2)OSi(OCH)3
ここで、(C) CO(CH)2 (C)はカルコニル基を表す。
(21) CH≡C—C≡C— (CH 2 ) 15 SiCl 3
(22) CH≡C—C≡C— (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 15 SiCl 3
(23) CH≡C—C≡C— (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 SiCl 3
(24) (C 6 H 5 ) (CH) 2 CO (C 6 H 4) O (CH 2) 6 OSi (OCH 3) 3
(25) (C 6 H 5 ) (CH) 2 CO (C 6 H 4) O (CH 2) 6 OSi (OC 2 H 5) 3
(26) (C 6 H 5 ) CO (CH) 2 (C 6 H 4) O (CH 2) 6 OSi (OCH 3) 3
Here, (C 6 H 5 ) CO (CH) 2 (C 6 H 4 ) represents a chalconyl group.

なお、実施例1に置いて、シラノール縮合触媒には、カルボン酸金属塩、カルボン酸エステル金属塩、カルボン酸金属塩ポリマー、カルボン酸金属塩キレート、チタン酸エステル及びチタン酸エステルキレート類が利用可能である。さらに具体的には、酢酸第1錫、ジブチル錫ジラウレート、ジブチル錫ジオクテート、ジブチル錫ジアセテート、ジオクチル錫ジラウレート、ジオクチル錫ジオクテート、ジオクチル錫ジアセテート、ジオクタン酸第1錫、ナフテン酸鉛、ナフテン酸コバルト、2−エチルヘキセン酸鉄、ジオクチル錫ビスオクチリチオグリコール酸エステル塩、ジオクチル錫マレイン酸エステル塩、ジブチル錫マレイン酸塩ポリマー、ジメチル錫メルカプトプロピオン酸塩ポリマー、ジブチル錫ビスアセチルアセテート、ジオクチル錫ビスアセチルラウレート、テトラブチルチタネート、テトラノニルチタネート及びビス(アセチルアセトニル)ジプロピルチタネートを用いることが可能であった。 In Example 1, as the silanol condensation catalyst, carboxylic acid metal salt, carboxylic acid ester metal salt, carboxylic acid metal salt polymer, carboxylic acid metal salt chelate, titanate ester and titanate ester chelate can be used. It is. More specifically, stannous acetate, dibutyltin dilaurate, dibutyltin dioctate, dibutyltin diacetate, dioctyltin dilaurate, dioctyltin dioctate, dioctyltin diacetate, stannous dioctanoate, lead naphthenate, cobalt naphthenate , Iron 2-ethylhexenoate, dioctyltin bisoctylthioglycolate, dioctyltin maleate, dibutyltin maleate polymer, dimethyltin mercaptopropionate polymer, dibutyltin bisacetylacetate, dioctyltin bisacetyl Laurate, tetrabutyl titanate, tetranonyl titanate and bis (acetylacetonyl) dipropyl titanate could be used.

また、膜形成溶液の溶媒としては、化学吸着剤がアルコキシシラン系、クロロシラン系、何れの場合も水を含まない有機塩素系溶媒、炭化水素系溶媒、あるいはフッ化炭素系溶媒やシリコーン系溶媒、あるいはそれら混合物を用いることが可能であった。なお、洗浄を行わず、溶媒を蒸発させて粒子濃度を上げようとする場合には、溶媒の沸点は50〜250℃程度がよい。 In addition, as a solvent for the film forming solution, the chemical adsorbent is an alkoxysilane-based solvent, a chlorosilane-based solvent, an organic chlorine-based solvent that does not contain water, a hydrocarbon-based solvent, a fluorocarbon-based solvent, a silicone-based solvent, Alternatively, it was possible to use a mixture thereof. In addition, when it is going to raise particle concentration by evaporating a solvent, without wash | cleaning, the boiling point of a solvent is good at about 50-250 degreeC.

具体的に使用可能なものは、有機塩素系溶媒、非水系の石油ナフサ、ソルベントナフサ、石油エーテル、石油ベンジン、イソパラフィン、ノルマルパラフィン、デカリン、工業ガソリン、ノナン、デカン、灯油、ジメチルシリコーン、フェニルシリコーン、アルキル変性シリコーン、ポリエーテルシリコーン、ジメチルホルムアミド等を挙げることができる。さらに、吸着剤がアルコキシシラン系の場合で且つ溶媒を蒸発させて有機被膜を形成する場合には、前記溶媒に加え、メタノール、エタノール、プロパノール等のアルコール系溶媒、あるいはそれら混合物が使用できた。 Specifically usable are organic chlorinated solvents, non-aqueous petroleum naphtha, solvent naphtha, petroleum ether, petroleum benzine, isoparaffin, normal paraffin, decalin, industrial gasoline, nonane, decane, kerosene, dimethyl silicone, phenyl silicone , Alkyl-modified silicone, polyether silicone, dimethylformamide and the like. Further, when the adsorbent is an alkoxysilane type and the organic film is formed by evaporating the solvent, an alcohol type solvent such as methanol, ethanol, propanol, or a mixture thereof can be used in addition to the solvent.

また、フッ化炭素系溶媒には、フロン系溶媒や、フロリナート(3M社製品)、アフルード(旭ガラス社製品)等がある。なお、これらは1種単独で用いても良いし、良く混ざるものなら2種以上を組み合わせてもよい。さらに、クロロホルム等有機塩素系の溶媒を添加しても良い。 Fluorocarbon solvents include fluorocarbon solvents, Fluorinert (product of 3M), Afludo (product of Asahi Glass). In addition, these may be used individually by 1 type and may mix 2 or more types as long as it mixes well. Further, an organic chlorine solvent such as chloroform may be added.

一方、上述のシラノール縮合触媒の代わりに、ケチミン化合物又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を用いた場合、同じ濃度でも処理時間を半分〜2/3程度まで短縮できた。 On the other hand, when a ketimine compound or organic acid, aldimine compound, enamine compound, oxazolidine compound, aminoalkylalkoxysilane compound is used instead of the above-mentioned silanol condensation catalyst, the treatment time is reduced to about half to 2/3 even at the same concentration. did it.

さらに、シラノール縮合触媒とケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を混合(1:9〜9:1範囲で使用可能だが、通常1:1前後が好ましい。)して用いると、処理時間をさらに数倍早く(30分程度まで)でき、製膜時間を数分の一まで短縮できる。 Furthermore, a silanol condensation catalyst and a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, and an aminoalkylalkoxysilane compound can be used in a range of 1: 9 to 9: 1. )), The processing time can be increased several times faster (up to about 30 minutes), and the film forming time can be reduced to a fraction of a minute.

例えば、シラノール触媒であるジブチル錫オキサイドをケチミン化合物であるジャパンエポキシレジン社のH3に置き換え、その他の条件は同一にしてみたが、反応時間を1時間程度にまで短縮できた他は、ほぼ同様の結果が得られた。 For example, dibutyltin oxide, which is a silanol catalyst, was replaced with H3 from Japan Epoxy Resin, which is a ketimine compound, and the other conditions were the same, but the reaction time was reduced to about 1 hour. Results were obtained.

さらに、シラノール触媒を、ケチミン化合物であるジャパンエポキシレジン社のH3と、シラノール触媒であるジブチル錫ビスアセチルアセトネートの混合物(混合比は1:1)に置き換え、その他の条件は同一にしてみたが、反応時間を30分程度に短縮できた他は、ほぼ同様の結果が得られた。 Furthermore, the silanol catalyst was replaced with a mixture of ketimine compound Japan Epoxy Resin H3 and silanol catalyst dibutyltin bisacetylacetonate (mixing ratio is 1: 1), and other conditions were the same. The same results were obtained except that the reaction time could be shortened to about 30 minutes.

したがって、以上の結果から、ケチミン化合物や有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物がシラノール縮合触媒より活性が高いことが明らかとなった。 Therefore, the above results revealed that ketimine compounds, organic acids, aldimine compounds, enamine compounds, oxazolidine compounds, and aminoalkylalkoxysilane compounds are more active than silanol condensation catalysts.

さらにまた、ケチミン化合物や有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物の内の1つとシラノール縮合触媒を混合して用いると、さらに活性が高くなることが確認された。 Furthermore, it was confirmed that the activity is further increased when one of a ketimine compound, an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, and an aminoalkylalkoxysilane compound is mixed with a silanol condensation catalyst.

なお、ここで、利用できるケチミン化合物は特に限定されるものではないが、例えば、2,5,8−トリアザ−1,8−ノナジエン、3,11−ジメチル−4,7,10−トリアザ−3,10−トリデカジエン、2,10−ジメチル−3,6,9−トリアザ−2,9−ウンデカジエン、2,4,12,14−テトラメチル−5,8,11−トリアザ−4,11−ペンタデカジエン、2,4,15,17−テトラメチル−5,8,11,14−テトラアザ−4,14−オクタデカジエン、2,4,20,22−テトラメチル−5,12,19−トリアザ−4,19−トリエイコサジエン等がある。 Here, the ketimine compound that can be used is not particularly limited. For example, 2,5,8-triaza-1,8-nonadiene, 3,11-dimethyl-4,7,10-triaza-3 , 10-tridecadiene, 2,10-dimethyl-3,6,9-triaza-2,9-undecadiene, 2,4,12,14-tetramethyl-5,8,11-triaza-4,11-pentadeca Diene, 2,4,15,17-tetramethyl-5,8,11,14-tetraaza-4,14-octadecadiene, 2,4,20,22-tetramethyl-5,12,19-triaza- 4,19-trieicosadiene and the like.

また、利用できる有機酸としても特に限定されるものではないが、例えば、ギ酸、あるいは酢酸、プロピオン酸、ラク酸、マロン酸等があり、ほぼ同様の効果があった。 Further, the organic acid that can be used is not particularly limited, but there are, for example, formic acid, acetic acid, propionic acid, lactic acid, malonic acid, and the like, which have almost the same effects.

上記2つの実施例では、シリカ微粒子を例として説明したが、本発明は、表面に水酸基の水素のような活性水素を含んだ絶縁体微粒子で有れば、どのような微粒子にでも適用可能である。また、表面に水酸基の様な活性水素を含む有機絶縁体微粒子にも適用可能である。
さらに、従来スパッタ法やCVD法、ゾルゲル法を用いて作成されていた無機保護膜を用いる用途には全て利用可能である。
In the above two embodiments, silica fine particles have been described as an example. However, the present invention can be applied to any fine particles as long as they are insulator fine particles containing active hydrogen such as hydrogen of a hydroxyl group on the surface. is there. It can also be applied to organic insulator fine particles containing active hydrogen such as hydroxyl groups on the surface.
Furthermore, the present invention can be used for all applications using an inorganic protective film that has been conventionally produced using a sputtering method, a CVD method, or a sol-gel method.

具体的には、半導体基板表面の保護膜や、配線基板表面の保護膜、各種金属製品表面の保護膜、めがねレンズ表面の保護膜、建材表面の保護膜、塗膜表面の保護膜などがある。 Specific examples include a protective film on the surface of a semiconductor substrate, a protective film on the surface of a wiring board, a protective film on the surface of various metal products, a protective film on the surface of an eyeglass lens, a protective film on the surface of a building material, and a protective film on the surface of a coating film. .

本発明の第1の実施例における絶縁体シリカ微粒子の反応を分子レベルまで拡大した概念図であり、(a)は反応前のシリカ微粒子表面の図、(b)は、エポキシ基を含む単分子膜が形成された後の図、(c)は、アミノ基を含む単分子膜が形成された後の図を示す。また、(d)は、微粒子が保護膜として基材表面に形成された状態の断面概念図を示す。It is the conceptual diagram which expanded the reaction of the insulator silica fine particle in the 1st Example of this invention to the molecular level, (a) is a figure of the silica fine particle surface before reaction, (b) is a single molecule containing an epoxy group. The figure after a film | membrane is formed, (c) shows the figure after the monomolecular film | membrane containing an amino group was formed. Moreover, (d) shows a cross-sectional conceptual diagram in a state in which fine particles are formed on the substrate surface as a protective film. 本発明の第2の実施例におけるシリカ微粒子が保護膜として基材表面に結合形成された状態の断面概念図を示す。FIG. 4 is a conceptual cross-sectional view of a state in which silica fine particles in a second embodiment of the present invention are bonded and formed on a substrate surface as a protective film.

符号の説明Explanation of symbols

1 シリカ微粒子
2 水酸基
3 エポキシ基を含む単分子膜
4 アミノ基を含む単分子膜
エポキシ基を含む単分子膜で被われたシリカ微粒子
アミノ基を含む単分子膜で被われたシリカ微粒子
7 ガラス基材
8 保護膜
9 基材表面に形成されたエポキシ基を含む単分子膜
10 基材表面と結合した保護膜
DESCRIPTION OF SYMBOLS 1 Silica fine particle 2 Hydroxyl group 3 Monomolecular film containing an epoxy group 4 Monomolecular film containing an amino group
Silica fine particles covered with monomolecular film containing 5 epoxy groups
Silica fine particles covered with monomolecular film containing 6 amino group 7 Glass substrate 8 Protective film 9 Monomolecular film containing epoxy group formed on substrate surface
10 Protective film bonded to substrate surface

Claims (5)

第1の反応性の官能基を含む有機薄膜で被われた絶縁体微粒子と第2の反応性の官能基を含む有機薄膜で被われた絶縁体微粒子が基材表面に混合されて塗布硬化されていることを特徴とする保護膜。 The insulating fine particles covered with the organic thin film containing the first reactive functional group and the insulating fine particles covered with the organic thin film containing the second reactive functional group are mixed on the surface of the substrate and coated and cured. A protective film characterized by 表面に反応性の官能基を含む有機薄膜で被われた基材表面と前記反応性の官能基と反応する官能基を含む有機薄膜で被われた絶縁体微粒子が前記それぞれの有機薄膜を介して共有結合し、硬化製膜されていることを特徴とする保護膜。 The substrate surface covered with an organic thin film containing a reactive functional group on the surface and the insulating fine particles covered with the organic thin film containing a functional group that reacts with the reactive functional group are passed through the respective organic thin films. A protective film characterized by being covalently bonded and cured. 反応性の官能基としてエポキシ基やイミノ基、またはカルコニル基を含むことを特徴とする請求項1および2記載の保護膜。 The protective film according to claim 1 or 2, wherein the reactive functional group contains an epoxy group, an imino group, or a chalconyl group. 第1の反応性を備えた絶縁体微粒子と第2の反応性を備えた絶縁体微粒子を有機溶媒中で混合してペースト化する工程と、基材表面に塗布する工程と、硬化させる工程を含むことを特徴とする保護膜の製造方法。 A step of mixing the fine particles of the insulator having the first reactivity and the fine particles of the insulator having the second reactivity in an organic solvent to form a paste, a step of applying to the substrate surface, and a step of curing A manufacturing method of a protective film characterized by including. あらかじめ、塗布前の基材表面に、第1の反応性を備えた絶縁体微粒子、または、第2の反応性を備えた絶縁体微粒子と反応する官能基を備えた有機薄膜を形成しておくことを特徴とする請求項4記載の保護膜の製造方法。
An organic thin film having a functional group that reacts with the insulating fine particles having the first reactivity or the insulating fine particles having the second reactivity is formed in advance on the surface of the base material before coating. The method for producing a protective film according to claim 4.
JP2005331241A 2005-11-16 2005-11-16 Protective film and forming method thereof Pending JP2007142005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005331241A JP2007142005A (en) 2005-11-16 2005-11-16 Protective film and forming method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005331241A JP2007142005A (en) 2005-11-16 2005-11-16 Protective film and forming method thereof

Publications (1)

Publication Number Publication Date
JP2007142005A true JP2007142005A (en) 2007-06-07

Family

ID=38204548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005331241A Pending JP2007142005A (en) 2005-11-16 2005-11-16 Protective film and forming method thereof

Country Status (1)

Country Link
JP (1) JP2007142005A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08337654A (en) * 1995-06-14 1996-12-24 Matsushita Electric Ind Co Ltd Production of chemisorption film, and chemisorption fluid used therefor
JP2002341161A (en) * 2001-05-21 2002-11-27 Kunihito Kawamoto Photonic crystal and method for producing the same
JP2002357882A (en) * 2001-02-28 2002-12-13 Matsushita Electric Ind Co Ltd Optical recording film, method for producing the same, optical recording medium, method for producing the same, optical recording method, information recording and reproducing apparatus, information recording and reproducing method, computer system and video signal recording and reproducing system
JP2003145042A (en) * 2001-11-08 2003-05-20 Matsushita Electric Ind Co Ltd Production method of coating film
JP2003168606A (en) * 2001-01-24 2003-06-13 Matsushita Electric Ind Co Ltd Fine particle array, its manufacturing method and device using the method
JP2003287756A (en) * 1998-09-16 2003-10-10 Matsushita Electric Ind Co Ltd Functional film and liquid crystal display element using the same
JP2003298151A (en) * 2002-03-29 2003-10-17 Communication Research Laboratory Method for manufacturing molecular device
WO2004096698A1 (en) * 2003-04-25 2004-11-11 National Institute Of Information And Communications Technology Method of bonding molecule and molecule bonding apparatus
JP2005280020A (en) * 2004-03-29 2005-10-13 Kazufumi Ogawa Mold, its production method, and molding produced by using it

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08337654A (en) * 1995-06-14 1996-12-24 Matsushita Electric Ind Co Ltd Production of chemisorption film, and chemisorption fluid used therefor
JP2003287756A (en) * 1998-09-16 2003-10-10 Matsushita Electric Ind Co Ltd Functional film and liquid crystal display element using the same
JP2003168606A (en) * 2001-01-24 2003-06-13 Matsushita Electric Ind Co Ltd Fine particle array, its manufacturing method and device using the method
JP2002357882A (en) * 2001-02-28 2002-12-13 Matsushita Electric Ind Co Ltd Optical recording film, method for producing the same, optical recording medium, method for producing the same, optical recording method, information recording and reproducing apparatus, information recording and reproducing method, computer system and video signal recording and reproducing system
JP2002341161A (en) * 2001-05-21 2002-11-27 Kunihito Kawamoto Photonic crystal and method for producing the same
JP2003145042A (en) * 2001-11-08 2003-05-20 Matsushita Electric Ind Co Ltd Production method of coating film
JP2003298151A (en) * 2002-03-29 2003-10-17 Communication Research Laboratory Method for manufacturing molecular device
WO2004096698A1 (en) * 2003-04-25 2004-11-11 National Institute Of Information And Communications Technology Method of bonding molecule and molecule bonding apparatus
JP2005280020A (en) * 2004-03-29 2005-10-13 Kazufumi Ogawa Mold, its production method, and molding produced by using it

Similar Documents

Publication Publication Date Title
JP5087764B2 (en) Silicon fine particles, production method thereof, solar cell using the same, and production method thereof
JP2007118276A (en) Single-layer fine particle film, cumulated fine particle film and manufacturing method of them
JP2007119545A (en) Fine particle film and method for producing the same
WO2008068873A1 (en) Monolayer nanoparticle film, multilayer nanoparticle film, and manufacturing method thereof
JP5050190B2 (en) Fine particles and production method thereof
JP5487460B2 (en) Silicon fine particles, production method thereof, solar cell using the same, and production method thereof
JP2007117827A (en) Pattern-like fine particle film and its production method
JP4868496B2 (en) Solar cell and manufacturing method thereof
JP4848502B2 (en) WIRING, MANUFACTURING METHOD THEREOF, AND ELECTRONIC COMPONENT AND ELECTRONIC DEVICE USING THEM
JP2007161912A (en) Adhesion method and biochemical chip produced by the method and optical part
JP2007173518A (en) Optical sensor and manufacturing method thereof
JP5167528B2 (en) Chemisorption solution
JP5326086B2 (en) Solar energy utilization apparatus and manufacturing method thereof
JP4993700B2 (en) Protective film and method for producing the same
JP2007161748A (en) Phosphor microparticle, method for producing the same and phosphor film using the same
JP2010129619A (en) Solar cell using silicon particulate, optical sensor, and method of manufacturing them
JP2008303277A (en) Phosphor paste, its production method, phosphor film using the phosphor paste and its production method
JP2007142005A (en) Protective film and forming method thereof
JP5526331B2 (en) Antireflection film and method for producing the same.
JP2007161913A (en) Adhesion method and biochemical chip produced by the method and optical part
JP2007127847A (en) Antireflection film, its manufacturing method and optical apparatus using same
JP2008221369A (en) Particulate membrane and method of manufacturing the same
JP5200244B2 (en) Fine particle film and manufacturing method thereof
JP5750706B2 (en) TFT using Si fine particles, manufacturing method thereof, TFT array using the same, and display device
JP2007290406A (en) Single-layer fine particle film, cumulated fine particle film and manufacturing method of them

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090109

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091103

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100825

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101215