JP2007125544A - Composite semipermeable membrane and its manufacturing method - Google Patents

Composite semipermeable membrane and its manufacturing method Download PDF

Info

Publication number
JP2007125544A
JP2007125544A JP2006261933A JP2006261933A JP2007125544A JP 2007125544 A JP2007125544 A JP 2007125544A JP 2006261933 A JP2006261933 A JP 2006261933A JP 2006261933 A JP2006261933 A JP 2006261933A JP 2007125544 A JP2007125544 A JP 2007125544A
Authority
JP
Japan
Prior art keywords
polyamide
acid halide
functional layer
polyfunctional
composite semipermeable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006261933A
Other languages
Japanese (ja)
Other versions
JP2007125544A5 (en
JP4923913B2 (en
Inventor
Norihiro Yoshida
憲弘 吉田
Gakuji Inoue
岳治 井上
Hiroki Tomioka
洋樹 富岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2006261933A priority Critical patent/JP4923913B2/en
Publication of JP2007125544A publication Critical patent/JP2007125544A/en
Publication of JP2007125544A5 publication Critical patent/JP2007125544A5/ja
Application granted granted Critical
Publication of JP4923913B2 publication Critical patent/JP4923913B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Polyamides (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite semipermeable membrane having a high removal rate when salt is removed from brine water as well as a high permeation flux. <P>SOLUTION: The composite semipermeable membrane is characterized in that a polyamide separation-functional layer is formed on a microporous supporting membrane and low-molecular-weight acyl groups each having two substituted groups in the α position are bonded covalently to each other in a polyamide molecule constituting the polyamide separation-functional layer. It is preferable that the polyamide constituting the polyamide separation-functional layer is cross-linked polyamide obtained by bringing an aqueous solution of polyfunctional amine into contact with an organic solvent containing a polyfunctional acid halide and a predetermined acid halide on the microporous supporting membrane so that the polyfunctional amine and the polyfunctional acid halide/the predetermined acid halide are subjected to a polycondensation reaction on the interface between the aqueous solution and the organic solvent. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、液状混合物の選択分離に有用な複合半透膜およびその製造方法に関し、かん水に対して高い塩除去率を維持し、高い透過流束を併せ有する、微多孔性支持膜上にポリアミド分離機能層を形成した複合半透膜およびその製造方法に関する。   The present invention relates to a composite semipermeable membrane useful for selective separation of a liquid mixture and a method for producing the same, and a polyamide on a microporous support membrane that maintains a high salt removal rate against brine and has a high permeation flux. The present invention relates to a composite semipermeable membrane having a separation functional layer and a method for producing the same.

複合半透膜として、多官能芳香族アミンと多官能芳香族ハロゲン化物との界面重合によって得られるポリアミドからなるスキン層が、支持体状に形成されたものが多く知られている(特許文献1〜4)。   Many composite semipermeable membranes are known in which a skin layer made of polyamide obtained by interfacial polymerization of a polyfunctional aromatic amine and a polyfunctional aromatic halide is formed into a support (Patent Document 1). ~ 4).

また、さらなる脱塩性能複合半透膜の塩除去率向上の手段の一つとして、反応薬液中に新規な反応剤を添加することが挙げられる。この方法では、従来の製造方法に対して大きな変更点がないため、簡便な改善方法として有用である。   Further, as one of the means for improving the salt removal rate of the composite salt-permeable membrane, the addition of a novel reactant in the reactant solution can be mentioned. This method is useful as a simple improvement method because there is no significant change from the conventional manufacturing method.

例えば、複合半透膜において、分子中に2以上のアミノ基を有するポリアミン成分と、新規な反応剤として分子中に2以上のハロゲン化カルボニル基を有する線状脂肪族ポリ酸ハライドを含有する酸成分とから架橋ポリアミドを構成する旨が開示されている(特許文献5)。   For example, in a composite semipermeable membrane, an acid containing a polyamine component having two or more amino groups in the molecule and a linear aliphatic polyacid halide having two or more halogenated carbonyl groups in the molecule as a novel reactant. It is disclosed that a cross-linked polyamide is composed of components (Patent Document 5).

また、複合半透膜において、2つ以上の反応性アミノ基を有する化合物と、2つ以上の反応性の酸ハライド基を有する多官能性酸ハライド化合物との界面重縮合反応時に、アルコール類、ケトン類、エステル類、ハロゲン化炭化水素類を添加する例も開示されている(特許文献6)。
該方法によれば、高い塩除去率と高い透過流束を有する複合半透膜およびその製造方法を提供できると記されているが、性能は未だ不十分であり、さらに高い性能を有する複合半透膜が求められている。
Further, in the composite semipermeable membrane, during the interfacial polycondensation reaction between a compound having two or more reactive amino groups and a polyfunctional acid halide compound having two or more reactive acid halide groups, alcohols, An example of adding ketones, esters, and halogenated hydrocarbons is also disclosed (Patent Document 6).
According to the method, it is described that a composite semipermeable membrane having a high salt removal rate and a high permeation flux and a method for producing the composite semipermeable membrane can be provided. However, the performance is still insufficient, and a composite semipermeable membrane having higher performance is provided. There is a need for permeable membranes.

特開昭55−147106号公報JP-A-55-147106 特開昭62−121603号公報JP 62-121603 A 特開昭63−218208号公報JP-A-63-218208 特開平2−187135号公報JP-A-2-187135 特許第3031763号公報Japanese Patent No. 3031763 特開平9−19630号公報Japanese Patent Laid-Open No. 9-19630

本発明は、上記従来技術が有する課題を解決し、低い操作圧力においても、高い塩除去率を維持し、高い透過流束を併せ有する複合半透膜を提供することを目的とする。   The object of the present invention is to solve the above-mentioned problems of the prior art and to provide a composite semipermeable membrane that maintains a high salt removal rate and has a high permeation flux even at a low operating pressure.

上記目的を達成するための本発明は、以下の構成をとる。すなわち、
(I)微多孔性支持膜上にポリアミド分離機能層を形成してなり、該ポリアミド分離機能層に下記式(1)、(2)のいずれかのアシル基が結合していることを特徴とする複合半透膜。
To achieve the above object, the present invention has the following configuration. That is,
(I) A polyamide separation functional layer is formed on a microporous support membrane, and an acyl group of any one of the following formulas (1) and (2) is bonded to the polyamide separation functional layer. A composite semipermeable membrane.

Figure 2007125544
Figure 2007125544

(式中、nは0または1を、XはO、S、NRを示す。R、Rはともにアルキル基である。R、Rは水素原子あるいはカルボキシ基以外の置換基を有していてもよい炭素数1〜12のアルキル基あるいは芳香族基である。Rはカルボキシ基以外の置換基を有していてもよい炭素数1〜12のアルキル基あるいは芳香族基である。Rは水素原子あるいは炭素数1〜3のアルキル基を示す。) (In the formula, n represents 0 or 1, X represents O, S, or NR 6. R 1 and R 2 are both alkyl groups. R 3 and R 4 represent a substituent other than a hydrogen atom or a carboxy group. An optionally substituted alkyl group or aromatic group having 1 to 12 carbon atoms, and R 5 is an optionally substituted alkyl group or aromatic group having 1 to 12 carbon atoms other than a carboxy group. R 6 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.)

Figure 2007125544
Figure 2007125544

(式中、R、Rは前記記載の定義に従う。Aは水酸基あるいはポリアミド分子中のアミノ基を示す)。 (Wherein R 1 and R 2 are as defined above. A represents a hydroxyl group or an amino group in a polyamide molecule).

(II)微多孔性支持膜上にポリアミド分離機能層を形成してなり、該ポリアミド分離機能層を構成するポリアミドが、多官能アミン水溶液と、多官能酸ハロゲン化物および下記式(3)、(4)のいずれかの酸ハロゲン化物を含有する有機溶媒溶液を微多孔性支持膜上で接触させ界面重縮合させることで得られた架橋ポリアミドであることを特徴とする(I)に記載の複合半透膜。   (II) A polyamide separation functional layer is formed on a microporous support membrane, and the polyamide constituting the polyamide separation functional layer comprises a polyfunctional amine aqueous solution, a polyfunctional acid halide, the following formula (3), ( 4. The composite according to (I), which is a crosslinked polyamide obtained by bringing an organic solvent solution containing any of the acid halides of 4) into contact with a microporous support membrane and subjecting it to interfacial polycondensation Semipermeable membrane.

Figure 2007125544
Figure 2007125544

Figure 2007125544
Figure 2007125544

(式中、n、X、R〜Rは前記記載の定義に従う。Zはハロゲン原子を示す。)。 (In the formula, n, X and R 1 to R 6 are as defined above. Z represents a halogen atom).

(III)上記式(3)、(4)の酸ハロゲン化物が、2−アセトキシイソ酪酸クロリド、ジメチルマロニルクロリドから選ばれる少なくとも1種であることを特徴とする上記(II)に記載の複合半透膜。   (III) The compound halide according to (II) above, wherein the acid halide of the above formulas (3) and (4) is at least one selected from 2-acetoxyisobutyric acid chloride and dimethylmalonyl chloride. Permeable membrane.

(IV)圧力0.75MPa、温度25℃、pH6.5、供給液500ppmのNaCl溶液の条件下で塩除去率が99.7%以上、透過流束が1.0m/m/d以上である請求項(I)〜(III)のいずれかに記載の複合半透膜。 (IV) A salt removal rate of 99.7% or more and a permeation flux of 1.0 m 3 / m 2 / d or more under the conditions of a NaCl solution with a pressure of 0.75 MPa, a temperature of 25 ° C., a pH of 6.5, and a feed solution of 500 ppm. The composite semipermeable membrane according to any one of claims (I) to (III).

(V)微多孔性支持膜上に、少なくとも2個の一級および/または二級アミノ基を有する多官能アミン水溶液を接触させた後、少なくとも2個の酸ハライド基を有する多官能酸ハロゲン化物および上記式(3)、(4)のいずれかの酸ハロゲン化物を含有し、前記多官能酸ハロゲン化物に対して5モル%以上含有する、水と非混和性の有機溶媒溶液を接触させ、界面重縮合によって多孔性支持膜上に架橋ポリアミドを含む分離機能層を形成することを特徴とする(I)〜(IV)のいずれかに記載の複合半透膜の製造方法。   (V) a polyfunctional acid halide having at least two acid halide groups after contacting an aqueous polyfunctional amine solution having at least two primary and / or secondary amino groups on the microporous support membrane; and A water-immiscible organic solvent solution containing the acid halide of any one of the above formulas (3) and (4) and containing 5 mol% or more with respect to the polyfunctional acid halide is brought into contact with the interface. The method for producing a composite semipermeable membrane according to any one of (I) to (IV), wherein a separation functional layer containing a crosslinked polyamide is formed on a porous support membrane by polycondensation.

本発明は、反応性の低いα位に置換基を有する酸ハロゲン化物が、好適にポリマー間隙を埋めることができるため、高い塩除去率を維持し、高い透過流束を併せ有する複合半透膜を提供することができる。   In the present invention, since the acid halide having a substituent at the α-position with low reactivity can preferably fill the gap between the polymers, the composite semipermeable membrane having a high salt removal rate and a high permeation flux is also provided. Can be provided.

本発明に係る複合半透膜は、微多孔性支持膜上にポリアミド分離機能層を形成してなり、該ポリアミド分離機能層に下記式(1)、(2)のいずれかのアシル基が結合していることを特徴とする複合半透膜である。   The composite semipermeable membrane according to the present invention comprises a polyamide separation functional layer formed on a microporous support membrane, and an acyl group of any one of the following formulas (1) and (2) is bonded to the polyamide separation functional layer. It is a composite semipermeable membrane characterized by the above.

Figure 2007125544
Figure 2007125544

Figure 2007125544
(式中、n、X、A、R〜Rは前記記載の定義に従う。)
Figure 2007125544
(In the formula, n, X, A, and R 1 to R 6 are as defined above.)

分離機能層のポリアミドは、多官能アミンと多官能酸ハロゲン化物およびカルボニル基のα位に二つの置換基を有する酸ハロゲン化物との界面重縮合により形成され、多官能アミンまたは多官能酸ハロゲン化物成分の少なくとも一方が3官能以上の化合物を含んでいることが好ましい。   The separation functional layer polyamide is formed by interfacial polycondensation of a polyfunctional amine, a polyfunctional acid halide, and an acid halide having two substituents at the α-position of the carbonyl group, to form a polyfunctional amine or polyfunctional acid halide. It is preferable that at least one of the components contains a trifunctional or higher functional compound.

分離機能層の厚みは、十分な分離性能および透過水量を得るために、通常0.01〜1μmの範囲内、好ましくは0.1〜0.5μmの範囲内である。   The thickness of the separation functional layer is usually in the range of 0.01 to 1 μm, preferably in the range of 0.1 to 0.5 μm, in order to obtain sufficient separation performance and permeated water amount.

ここで、多官能アミンとは、一分子中に少なくとも2個の一級および/または二級アミノ基を有するアミンをいい、例えば、2個のアミノ基がオルト位やメタ位、パラ位のいずれかの位置関係でベンゼンに結合したフェニレンジアミン、キシリレンジアミン、1,3,5−トリアミノベンゼン、1,2,4−トリアミノベンゼン、3,5−ジアミノ安息香酸などの芳香族多官能アミン、エチレンジアミン、プロピレンジアミンなどの脂肪族アミン、1,2−ジアミノシクロヘキサン、1,4−ジアミノシクロヘキサン、ピペラジン、1,3−ビスピペリジルプロパン、4−アミノメチルピペラジンなどの脂環式多官能アミン等を挙げることができる。中でも、膜の選択分離性や透過性、耐熱性を考慮すると一分子中に2〜4個の一級および/または二級アミノ基を有する芳香族多官能アミンであることが好ましく、このような多官能芳香族アミンとしては、m−フェニレンジアミン、p−フェニレンジアミン、1,3,5−トリアミノベンゼンが好適に用いられる。中でも、入手の容易性や取り扱いのしやすさから、m−フェニレンジアミン(以下、m−PDAと記す)を用いることがより好ましい。これらの多官能アミンは、単独で用いたり、混合して用いてもよい。   Here, the polyfunctional amine refers to an amine having at least two primary and / or secondary amino groups in one molecule. For example, two amino groups are any of ortho, meta, and para positions. Aromatic polyfunctional amines such as phenylenediamine, xylylenediamine, 1,3,5-triaminobenzene, 1,2,4-triaminobenzene and 3,5-diaminobenzoic acid bonded to benzene in the positional relationship of Aliphatic amines such as ethylenediamine and propylenediamine, alicyclic polyfunctional amines such as 1,2-diaminocyclohexane, 1,4-diaminocyclohexane, piperazine, 1,3-bispiperidylpropane and 4-aminomethylpiperazine be able to. Of these, aromatic polyfunctional amines having 2 to 4 primary and / or secondary amino groups in one molecule are preferred in consideration of selective separation, permeability, and heat resistance of the membrane. As the functional aromatic amine, m-phenylenediamine, p-phenylenediamine, and 1,3,5-triaminobenzene are preferably used. Among these, it is more preferable to use m-phenylenediamine (hereinafter referred to as m-PDA) from the standpoint of availability and ease of handling. These polyfunctional amines may be used alone or in combination.

多官能酸ハロゲン化物とは、一分子中に少なくとも2個のハロゲン化カルボニル基を有する酸ハロゲン化物をいう。例えば、3官能酸ハロゲン化物では、トリメシン酸クロリド、1,3,5−シクロヘキサントリカルボン酸トリクロリド、1,2,4−シクロブタントリカルボン酸トリクロリドなどを挙げることができ、2官能酸ハロゲン化物では、オキサリルクロリド、ビフェニルジカルボン酸ジクロリド、アゾベンゼンジカルボン酸ジクロリド、テレフタル酸クロリド、イソフタル酸クロリド、ナフタレンジカルボン酸クロリドなどの芳香族2官能酸ハロゲン化物、アジポイルクロリド、セバコイルクロリドなどの脂肪族2官能酸ハロゲン化物、シクロペンタンジカルボン酸ジクロリド、シクロヘキサンジカルボン酸ジクロリド、テトラヒドロフランジカルボン酸ジクロリドなどの脂環式2官能酸ハロゲン化物を挙げることができる。多官能アミンとの反応性を考慮すると、多官能酸ハロゲン化物は多官能酸塩化物であることが好ましく、また、膜の選択分離性、耐熱性を考慮すると、一分子中に2〜4個の塩化カルボニル基を有する多官能芳香族酸塩化物であることが好ましい。中でも、入手の容易性や取り扱いのしやすさの観点から、トリメシン酸クロリドを用いるとより好ましい。これらの多官能酸ハロゲン化物は、単独で用いたり、混合して用いてもよい。   The polyfunctional acid halide refers to an acid halide having at least two carbonyl halide groups in one molecule. Examples of trifunctional acid halides include trimesic acid chloride, 1,3,5-cyclohexanetricarboxylic acid trichloride, 1,2,4-cyclobutanetricarboxylic acid trichloride, and bifunctional acid halides include oxalyl chloride. , Aromatic difunctional acid halides such as biphenyl dicarboxylic acid dichloride, azobenzene dicarboxylic acid dichloride, terephthalic acid chloride, isophthalic acid chloride, naphthalene dicarboxylic acid chloride, aliphatic difunctional acid halides such as adipoyl chloride, sebacoyl chloride And cycloaliphatic difunctional acid halides such as cyclopentanedicarboxylic acid dichloride, cyclohexanedicarboxylic acid dichloride, and tetrahydrofurandicarboxylic acid dichloride. Considering the reactivity with the polyfunctional amine, the polyfunctional acid halide is preferably a polyfunctional acid chloride, and considering the selective separation property and heat resistance of the membrane, 2 to 4 per molecule. The polyfunctional aromatic acid chloride having a carbonyl chloride group is preferred. Among them, it is more preferable to use trimesic acid chloride from the viewpoint of easy availability and easy handling. These polyfunctional acid halides may be used alone or in combination.

すなわち、微多孔性支持膜上にポリアミド分離機能層を形成するにあたり、そのポリアミド分離機能層を、多官能アミン水溶液と、多官能酸ハロゲン化物および下記式(3)、(4)の酸ハロゲン化物を含有する有機溶媒溶液とを微多孔性支持膜上で接触させ界面重縮合させればよい。特にポリアミド分離機能層を、多官能アミン水溶液と、多官能酸ハロゲン化物および下記式(3)、(4)の酸ハロゲン化物を含有する有機溶媒溶液とを微多孔性支持膜上で接触させ界面重縮合させてなる複合半透膜は、圧力0.75MPa、温度25℃、pH6.5、供給液500ppmのNaCl溶液の条件下で塩除去率が99.7%以上、透過流束が1.0m/m/d以上を満たすことができ、高塩排除性能を示すことから好ましい。 That is, when forming the polyamide separation functional layer on the microporous support membrane, the polyamide separation functional layer is composed of a polyfunctional amine aqueous solution, a polyfunctional acid halide, and an acid halide of the following formulas (3) and (4). An organic solvent solution containing sulfur may be brought into contact with the microporous support membrane and subjected to interfacial polycondensation. Particularly, the polyamide separation functional layer is brought into contact with a polyfunctional amine aqueous solution and an organic solvent solution containing the polyfunctional acid halide and the acid halide of the following formulas (3) and (4) on the microporous support membrane. The composite semipermeable membrane formed by polycondensation has a salt removal rate of 99.7% or more and a permeation flux of 1. under a pressure of 0.75 MPa, a temperature of 25 ° C., a pH of 6.5, and a feed solution of 500 ppm NaCl solution. It is preferable because it can satisfy 0 m 3 / m 2 / d or more and exhibits high salt exclusion performance.

Figure 2007125544
Figure 2007125544

Figure 2007125544
(式中n、X、A、R〜Rは前記記載の定義に従う。Zはハロゲン原子を示す。)
Figure 2007125544
(In the formula, n, X, A, and R 1 to R 6 are as defined above. Z represents a halogen atom.)

かかる上記式(3)、(4)の酸ハロゲン化物としては、2−アセトキシイソ酪酸クロリド、ジメチルマロニルクロリド、3−メトキシ−2,2,3−トリメチルブチリルクロリド、3−メトキシ−2,2−ジメチルブチリルクロリド、2,2,3−トリメチル−3−メチルスルファニルブチリルクロリド、3−ジメチルアミノ−2,2,3−トリメチルブチリルクロリドなどが挙げられ、これらは単独でも2種以上を同時に使用しても良い。これらの中で、透過流束を低下させず、塩除去率を向上できる点から、特に2−アセトキシイソ酪酸クロリド、ジメチルマロニルクロリドが好ましく使用される。   Examples of the acid halides of the above formulas (3) and (4) include 2-acetoxyisobutyric acid chloride, dimethylmalonyl chloride, 3-methoxy-2,2,3-trimethylbutyryl chloride, 3-methoxy-2,2 -Dimethylbutyryl chloride, 2,2,3-trimethyl-3-methylsulfanylbutyryl chloride, 3-dimethylamino-2,2,3-trimethylbutyryl chloride, and the like. You may use it simultaneously. Among these, 2-acetoxyisobutyric acid chloride and dimethylmalonyl chloride are particularly preferably used because the salt removal rate can be improved without reducing the permeation flux.

本発明において微多孔性支持膜は、実質的にイオン等の分離性能を有さず、実質的に分離性能を有する分離機能層に強度を与えるためのものである。孔のサイズや分布は特に限定されないが、例えば、均一で微細な孔、あるいは分離機能層が形成される側の表面からもう一方の面まで徐々に大きな微細孔をもち、かつ、分離機能層が形成される側の表面で微細孔の大きさが0.1nm以上100nm以下であるような支持膜が好ましい。   In the present invention, the microporous support membrane is intended to give strength to a separation functional layer that substantially does not have separation performance of ions or the like and has substantial separation performance. The size and distribution of the pores are not particularly limited. For example, the pores have uniform and fine pores or gradually have large pores from the surface on the side where the separation functional layer is formed to the other surface, and the separation functional layer has A support film having a micropore size of 0.1 nm or more and 100 nm or less on the surface to be formed is preferable.

微多孔性支持膜に使用する材料やその形状は特に限定されないが、例えばポリエステルまたは芳香族ポリアミドから選ばれる少なくとも一種を主成分とする布帛により強化されたポリスルホンや酢酸セルロースやポリ塩化ビニル、あるいはそれらを混合したものが好ましく使用される。使用される素材としては、化学的、機械的、熱的に安定性の高いポリスルホンを使用するのが特に好ましい。   The material used for the microporous support membrane and the shape thereof are not particularly limited. For example, polysulfone, cellulose acetate, polyvinyl chloride reinforced with a fabric mainly composed of at least one selected from polyester or aromatic polyamide, or those A mixture of these is preferably used. As a material to be used, it is particularly preferable to use polysulfone having high chemical, mechanical and thermal stability.

具体的には、次の化学式に示す繰り返し単位からなるポリスルホンを用いると、孔径が制御しやすく、寸法安定性が高いため好ましい。   Specifically, it is preferable to use polysulfone composed of repeating units represented by the following chemical formula because the pore diameter is easy to control and the dimensional stability is high.

Figure 2007125544
Figure 2007125544

例えば、上記ポリスルホンのN,N−ジメチルホルムアミド(DMF)溶液を、密に織ったポリエステル布あるいは不織布の上に一定の厚さに注型し、それを水中で湿式凝固させることによって、表面の大部分が直径数10nm以下の微細な孔を有した微多孔性支持膜を得ることができる。   For example, an N, N-dimethylformamide (DMF) solution of the above polysulfone is cast on a densely woven polyester cloth or non-woven fabric to a certain thickness, and wet coagulated in water, thereby increasing the size of the surface. A microporous support membrane having fine pores with a diameter of several tens of nm or less can be obtained.

上記の多孔質支持体および基材の厚みは、複合半透膜の強度に影響を与える。十分な機械的強度を得るためには、50〜300μmの範囲内にあることが好ましく、より好ましくは100〜250μmの範囲内である。また、多孔質支持体の厚みは、10〜200μmの範囲内にあることが好ましく、より好ましくは30〜100μmの範囲内である。   The thickness of the porous support and the substrate affects the strength of the composite semipermeable membrane. In order to obtain sufficient mechanical strength, the thickness is preferably in the range of 50 to 300 μm, more preferably in the range of 100 to 250 μm. Moreover, it is preferable that the thickness of a porous support body exists in the range of 10-200 micrometers, More preferably, it exists in the range of 30-100 micrometers.

次に、本発明の複合半透膜の製造方法について説明する。   Next, the manufacturing method of the composite semipermeable membrane of this invention is demonstrated.

複合半透膜を構成する分離機能層は、例えば、前述の多官能アミンを含有する水溶液と、多官能酸ハロゲン化物を含有する、水と非混和性の有機溶媒溶液とを用い、微多孔性支持膜の表面で界面重縮合を行うことによりその骨格を形成できる。   The separation functional layer constituting the composite semipermeable membrane is, for example, microporous using an aqueous solution containing the aforementioned polyfunctional amine and an organic solvent solution immiscible with water containing the polyfunctional acid halide. The skeleton can be formed by interfacial polycondensation on the surface of the support membrane.

ここで、多官能アミン水溶液における多官能アミンの濃度は0.1〜20重量%の範囲内であることが好ましく、さらに好ましくは1〜3重量%の範囲内である。この範囲であると十分な塩除去性能および透水性を得ることができる。多官能アミン水溶液には、多官能アミンと多官能酸ハロゲン化物との反応を妨害しないものであれば、界面活性剤や有機溶媒、アルカリ性化合物、酸化防止剤などが含まれていてもよい。界面活性剤は、多孔性支持膜表面の濡れ性を向上させ、アミン水溶液と非極性溶媒との間の界面張力を減少させる効果があり、有機溶媒は界面重縮合反応の触媒として働くことがあり、添加することにより界面重宿合反応を効率よく行える場合がある。   Here, the concentration of the polyfunctional amine in the polyfunctional amine aqueous solution is preferably in the range of 0.1 to 20% by weight, and more preferably in the range of 1 to 3% by weight. In this range, sufficient salt removal performance and water permeability can be obtained. As long as the polyfunctional amine aqueous solution does not interfere with the reaction between the polyfunctional amine and the polyfunctional acid halide, a surfactant, an organic solvent, an alkaline compound, an antioxidant, or the like may be contained. The surfactant has the effect of improving the wettability of the porous support membrane surface and reducing the interfacial tension between the aqueous amine solution and the nonpolar solvent, and the organic solvent may act as a catalyst for the interfacial polycondensation reaction. In some cases, the interfacial double reaction can be efficiently performed by adding them.

界面重縮合を多孔性支持膜上で行うために、まず、上述の多官能アミン水溶液を多孔性支持膜に接触させる。接触は、多孔性支持膜面上に均一にかつ連続的に行うことが好ましい。具体的には、例えば、多官能アミン水溶液を多孔性支持膜にコーティングする方法や多孔性支持膜を多官能アミン水溶液に浸漬する方法を挙げることができる。多孔性支持膜と多官能アミン水溶液との接触時間は、1〜10分間の範囲内であることが好ましく、1〜3分間の範囲内であるとさらに好ましい。   In order to perform interfacial polycondensation on the porous support membrane, first, the above-mentioned polyfunctional amine aqueous solution is brought into contact with the porous support membrane. The contact is preferably performed uniformly and continuously on the porous support membrane surface. Specific examples include a method of coating a porous support membrane with a polyfunctional amine aqueous solution and a method of immersing the porous support membrane in a polyfunctional amine aqueous solution. The contact time between the porous support membrane and the polyfunctional amine aqueous solution is preferably in the range of 1 to 10 minutes, and more preferably in the range of 1 to 3 minutes.

多官能アミン水溶液を多孔性支持膜に接触させたあとは、膜上に液滴が残らないように十分に液切りする。十分に液切りすることで、膜形成後に液滴残存部分が膜欠点となって膜性能が低下することを防ぐことができる。液切りの方法としては、多官能アミン水溶液接触後の多孔性支持膜を垂直方向に把持して過剰の水溶液を自然流下させる方法や、エアーノズルから窒素などの風を吹き付け、強制的に液切りする方法などを用いることができる。また、液切り後、膜面を乾燥させ、水溶液の水の一部を除去することもできる。   After the polyfunctional amine aqueous solution is brought into contact with the porous support membrane, the solution is sufficiently drained so that no droplets remain on the membrane. By sufficiently draining the liquid, it is possible to prevent the remaining portion of the liquid droplet from becoming a film defect after the film is formed and deteriorating the film performance. The liquid draining method includes a method in which the porous support membrane after the polyfunctional amine aqueous solution contact is vertically gripped to allow the excessive aqueous solution to flow down naturally, or a wind such as nitrogen is blown from an air nozzle to forcibly drain the liquid. Or the like can be used. In addition, after draining, the membrane surface can be dried to remove part of the water in the aqueous solution.

次いで、多官能アミン水溶液接触後の支持膜に、多官能酸ハロゲン化物を含む有機溶媒溶液を接触させ、界面重縮合により架橋ポリアミド分離機能層の骨格を形成させる。   Next, an organic solvent solution containing a polyfunctional acid halide is brought into contact with the support film after contact with the polyfunctional amine aqueous solution, and a skeleton of a crosslinked polyamide separation functional layer is formed by interfacial polycondensation.

有機溶媒溶液中の多官能酸ハロゲン化物の濃度は、0.01〜10重量%の範囲内であると好ましく、0.02〜2.0重量%の範囲内であるとさらに好ましい。この範囲であると、十分な反応速度が得られ、また副反応の発生を抑制することができる。   The concentration of the polyfunctional acid halide in the organic solvent solution is preferably in the range of 0.01 to 10% by weight, and more preferably in the range of 0.02 to 2.0% by weight. Within this range, a sufficient reaction rate can be obtained, and the occurrence of side reactions can be suppressed.

有機溶媒は、水と非混和性であり、かつ酸ハロゲン化物を溶解し微多孔性支持膜を破壊しないことが望ましく、アミノ化合物および酸ハロゲン化物に対して不活性であるものであればよい。好ましい例としては、例えば、n−ヘキサン、n−オクタン、n−デカンなどの炭化水素化合物が挙げられる。   The organic solvent is desirably immiscible with water, dissolves the acid halide and does not break the microporous support membrane, and may be inert to the amino compound and the acid halide. Preferable examples include hydrocarbon compounds such as n-hexane, n-octane, and n-decane.

多官能酸ハロゲン化物の有機溶媒溶液のアミノ化合物水溶液相への接触の方法は、多官能アミン水溶液の微多孔性支持膜への被覆方法と同様に行えばよい。   The method for contacting the organic solvent solution of the polyfunctional acid halide with the amino compound aqueous solution phase may be performed in the same manner as the method for coating the microporous support membrane with the polyfunctional amine aqueous solution.

上述したように、酸ハロゲン化物の有機溶媒溶液を接触させて界面重縮合を行い、多孔性支持膜上に架橋ポリアミドを含む分離機能層を形成したあとは、余剰の溶媒を液切りするとよい。液切りの方法は、例えば、膜を垂直方向に把持して過剰の有機溶媒を自然流下して除去する方法を用いることができる。この場合、垂直方向に把持する時間としては、1〜5分間の間にあることが好ましく、1〜3分間であるとより好ましい。短すぎると分離機能層が完全に形成せず、長すぎると有機溶媒が過乾燥となり欠点が発生しやすく、性能低下を起こしやすい。   As described above, after the interface polycondensation is performed by bringing the acid halide organic solvent solution into contact with each other and the separation functional layer containing the crosslinked polyamide is formed on the porous support membrane, the excess solvent may be drained. As a method for draining, for example, a method in which a film is held in a vertical direction and excess organic solvent is allowed to flow down and removed can be used. In this case, the time for gripping in the vertical direction is preferably 1 to 5 minutes, more preferably 1 to 3 minutes. If it is too short, the separation functional layer will not be completely formed, and if it is too long, the organic solvent will be overdried and defects will easily occur and performance will be deteriorated.

そして、本発明の複合半透膜の製造方法においては、例えば上述の多官能酸ハロゲン化物および上記式(3)、(4)の酸ハロゲン化物を含有する有機溶媒溶液を接触せしめる。   And in the manufacturing method of the composite semipermeable membrane of this invention, the organic solvent solution containing the above-mentioned polyfunctional acid halide and the acid halide of said Formula (3) and (4) is made to contact, for example.

そして、この際の有機溶媒溶液中の多官能酸ハロゲン化物の濃度も、0.01〜0.2重量%の範囲内であると好ましく、0.04〜0.06重量%の範囲内であるとさらに好ましい。0.01重量%を下回ると、活性層である分離機能層の形成が不十分となりやすい傾向にある。   And the density | concentration of the polyfunctional acid halide in the organic solvent solution in this case is also preferably in the range of 0.01 to 0.2% by weight, and in the range of 0.04 to 0.06% by weight. And more preferred. If it is less than 0.01% by weight, the formation of the separation functional layer as the active layer tends to be insufficient.

上記式(3)、(4)の酸ハロゲン化物と多官能酸ハロゲン化物とを単一の有機溶媒溶液に混合させて分離機能層を形成する場合は、多官能酸ハロゲン化物に対して5モル%以上であることが好ましい。5モル%を下回ると塩排除率が低下する。そして、100モル%を超えて用いても塩排除率の向上は見られず、多量の未反応試薬による環境悪化や処理のための経済的負担が増大するので、100モル%以下であることが好ましい。この中でも、塩除去率、透過流束ともに高い複合半透膜とするためには、7.5〜15モル%とすることがより好ましい。   When the acid halide of the above formulas (3) and (4) and the polyfunctional acid halide are mixed in a single organic solvent solution to form a separation functional layer, 5 mol with respect to the polyfunctional acid halide. % Or more is preferable. When it is less than 5 mol%, the salt rejection rate decreases. And even if it uses exceeding 100 mol%, the improvement of a salt exclusion rate is not seen, but since the environmental burden by a large amount of unreacted reagents and the economic burden for a process increase, it is 100 mol% or less. preferable. Among these, in order to obtain a composite semipermeable membrane having both a high salt removal rate and a high permeation flux, the content is more preferably 7.5 to 15 mol%.

このようにして得られた複合半透膜は、このままでも使用できるが、使用する前に水洗などによって未反応残存物を取り除くことが好ましい。30〜100℃の範囲内にある水で膜を洗浄し、残存するアミノ化合物などを除去することが好ましい。また洗浄は、上記温度範囲内にある水中に支持膜を浸漬したり、水を吹き付けたりして行うことができる。用いる水の温度が30℃を下回ると、複合半透膜中にアミノ化合物が残存し透過流束が低くなる傾向にある。またオートクレーブやスチームなどで100℃を超える温度で洗浄を行うと、膜が熱収縮を起こすことがあり、やはり透過流束が低くなる傾向にある。   The composite semipermeable membrane thus obtained can be used as it is, but it is preferable to remove unreacted residues by washing before use. It is preferable to wash the membrane with water in the range of 30 to 100 ° C. to remove the remaining amino compound and the like. In addition, the washing can be performed by immersing the support film in water within the above temperature range or spraying water. When the temperature of the water used is less than 30 ° C., the amino compound remains in the composite semipermeable membrane and the permeation flux tends to be low. Further, when washing is performed at a temperature exceeding 100 ° C. with an autoclave or steam, the membrane may cause thermal shrinkage, and the permeation flux tends to be low.

またこのあと、たとえばpH6〜13の範囲内の塩素含有水溶液に常圧で接触させる方法や、亜硝酸含有水溶液に常圧で接触させる方法により、塩排除率、透過流束を高めることも好ましい。   It is also preferable to increase the salt rejection rate and the permeation flux by, for example, a method of contacting a chlorine-containing aqueous solution within the range of pH 6 to 13 at normal pressure or a method of contacting a nitrous acid-containing aqueous solution at normal pressure.

このようにして得られた複合半透膜は、温度25℃、pH6.5に調整した500ppmのNaCl水溶液を操作圧力0.75MPaで評価したとき塩排除率が99.7%以上、透過流束が1.0m/m・日)以上であることが好ましい。 The composite semipermeable membrane thus obtained had a salt rejection rate of 99.7% or more when a 500 ppm NaCl aqueous solution adjusted to a temperature of 25 ° C. and a pH of 6.5 was evaluated at an operating pressure of 0.75 MPa. Is preferably 1.0 m 3 / m 2 · day) or more.

実施例および比較例における測定は次のとおり行った。   Measurements in Examples and Comparative Examples were performed as follows.

(塩除去率)
複合半透膜に、温度25℃、pH6.5に調整した500ppmのNaCl水溶液を操作圧力0.75MPaで供給するときの透過水塩濃度を測定することにより、次の式から求めた。
塩除去率=100×{1−(透過水中の塩濃度/供給水中の塩濃度)}
(Salt removal rate)
The composite semipermeable membrane was determined from the following equation by measuring the permeate concentration when a 500 ppm NaCl aqueous solution adjusted to a temperature of 25 ° C. and pH 6.5 was supplied at an operating pressure of 0.75 MPa.
Salt removal rate = 100 × {1− (salt concentration in permeated water / salt concentration in feed water)}

(透過流束)
供給水として500ppmのNaCl水溶液を使用し、膜面1平方メートル当たり、1日の透水量(立方メートル)から透過流束(m/m・日)を求めた。
(Permeation flux)
A 500 ppm NaCl aqueous solution was used as the feed water, and permeation flux (m 3 / m 2 · day) was determined from the amount of water per day (cubic meter) per square meter of membrane surface.

(実施例1〜5、比較例1、2)
ポリエステル不織布(通気度0.5〜1cc/cm・sec)上にポリスルホンの15.7重量%ジメチルホルムアミド(DMF)溶液を200μmの厚みで、室温(25℃)でキャストし、ただちに純水中に浸漬して5分間放置することによって微多孔性支持膜を作製した。このようにして得られた微多孔性支持膜(厚さ210〜215μm)を、メタフェニレンジアミン(以下mPDAという)1.5重量%、イプシロンカプロラクタム(以下εCLという)1.5重量%水溶液中に2分間浸漬し、該支持膜を垂直方向にゆっくりと引き上げ、エアーノズルから窒素を吹き付け支持膜表面から余分な水溶液を取り除いた後、トリメシン酸クロリド(以下TMCという)0.06重量%、および表2記載の酸ハロゲン化物(化合物1、2、3の構造式は表1に記載)をTMCに対して7.5モル%含むn−デカン溶液を表面が完全に濡れるように塗布して1分間静置した。次に膜から余分な溶液を除去するために、膜を1分間垂直に把持して液切りした。
(Examples 1 to 5, Comparative Examples 1 and 2)
A 15.7 wt% dimethylformamide (DMF) solution of polysulfone was cast on a polyester nonwoven fabric (air permeability 0.5 to 1 cc / cm 2 · sec) at a thickness of 200 μm at room temperature (25 ° C.) A microporous support membrane was prepared by immersing the substrate in the substrate and leaving it for 5 minutes. The microporous support membrane (thickness 210 to 215 μm) thus obtained was placed in an aqueous solution of 1.5% by weight of metaphenylenediamine (hereinafter referred to as mPDA) and 1.5% by weight of epsilon caprolactam (hereinafter referred to as εCL). After dipping for 2 minutes, the support membrane was slowly pulled up in the vertical direction, nitrogen was blown from the air nozzle to remove excess aqueous solution from the surface of the support membrane, 0.06% by weight of trimesic acid chloride (hereinafter referred to as TMC), and a table An n-decane solution containing 7.5 mol% of the acid halide described in 2 (the structural formulas of compounds 1, 2, and 3 are described in Table 1) with respect to TMC was applied so that the surface was completely wetted for 1 minute. Left to stand. Next, in order to remove excess solution from the membrane, the membrane was held vertically for 1 minute to drain the solution.

その後、90℃の熱水で2分間洗浄した後、pH7、塩素濃度500mg/lに調整した次亜塩素酸ナトリウム水溶液に2分間浸漬し、亜硫酸水素ナトリウム濃度が1,000mg/lの水溶液中に浸漬することで、余分な次亜塩素酸ナトリウムを還元除去した。得られた複合半透膜を評価したところ、透過流束、塩除去率、はそれぞれ表2に示す値であった。   Then, after washing with hot water at 90 ° C. for 2 minutes, it was immersed in an aqueous solution of sodium hypochlorite adjusted to pH 7 and a chlorine concentration of 500 mg / l for 2 minutes, and in an aqueous solution having a sodium bisulfite concentration of 1,000 mg / l. By dipping, excess sodium hypochlorite was reduced and removed. When the obtained composite semipermeable membrane was evaluated, the permeation flux and the salt removal rate were values shown in Table 2, respectively.

Figure 2007125544
Figure 2007125544

Figure 2007125544
Figure 2007125544

Claims (5)

微多孔性支持膜上にポリアミド分離機能層を形成してなり、該ポリアミド分離機能層を構成するポリアミド分子中に下記式(1)、(2)のいずれかのアシル基が共有結合していることを特徴とする複合半透膜。
Figure 2007125544
(式中、nは0または1を、XはO、S、NRを示す。R、Rはともにアルキル基である。R、Rは水素原子あるいはカルボキシ基以外の置換基を有していてもよい炭素数1〜12のアルキル基あるいは芳香族基である。Rはカルボキシ基以外の置換基を有していてもよい炭素数1〜12のアルキル基あるいは芳香族基である。Rは水素原子あるいは炭素数1〜3のアルキル基を示す。)
Figure 2007125544
(式中、R、Rは前記記載の定義に従う。Aは水酸基あるいはポリアミド分子中のアミノ基を示す。)
A polyamide separation functional layer is formed on a microporous support membrane, and an acyl group of any one of the following formulas (1) and (2) is covalently bonded to a polyamide molecule constituting the polyamide separation functional layer. A composite semipermeable membrane characterized by that.
Figure 2007125544
(In the formula, n represents 0 or 1, X represents O, S, or NR 6. R 1 and R 2 are both alkyl groups. R 3 and R 4 represent a substituent other than a hydrogen atom or a carboxy group. An optionally substituted alkyl group or aromatic group having 1 to 12 carbon atoms, and R 5 is an optionally substituted alkyl group or aromatic group having 1 to 12 carbon atoms other than a carboxy group. R 6 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.)
Figure 2007125544
(In the formula, R 1 and R 2 are as defined above. A represents a hydroxyl group or an amino group in a polyamide molecule.)
微多孔性支持膜上にポリアミド分離機能層を形成してなり、該ポリアミド分離機能層を構成するポリアミドが、多官能アミン水溶液と、多官能酸ハロゲン化物および下記式(3)、(4)のいずれかの酸ハロゲン化物を含有する有機溶媒溶液を微多孔性支持膜上で接触させ界面重縮合させることで得られた架橋ポリアミドであることを特徴とする請求項1に記載の複合半透膜。
Figure 2007125544
Figure 2007125544
(式中、n、X、R〜Rは前記記載の定義に従う。Zはハロゲン原子を示す。)
A polyamide separation functional layer is formed on a microporous support membrane, and the polyamide constituting the polyamide separation functional layer comprises a polyfunctional amine aqueous solution, a polyfunctional acid halide, and the following formulas (3) and (4): 2. The composite semipermeable membrane according to claim 1, which is a crosslinked polyamide obtained by bringing an organic solvent solution containing any of the acid halides into contact with the microporous support membrane and interfacial polycondensation. .
Figure 2007125544
Figure 2007125544
(In the formula, n, X and R 1 to R 6 are as defined above. Z represents a halogen atom.)
上記式(3)、(4)の酸ハロゲン化物が、2−アセトキシイソ酪酸クロリド、ジメチルマロニルクロリドから選ばれる少なくとも1種であることを特徴とする請求項2に記載の複合半透膜。 The composite semipermeable membrane according to claim 2, wherein the acid halide of the formulas (3) and (4) is at least one selected from 2-acetoxyisobutyric acid chloride and dimethylmalonyl chloride. 圧力0.75MPa、温度25℃、pH6.5、供給液500ppmのNaCl溶液の条件下で塩排除率が99.7%以上、透過流束が1.0m/m/d以上である請求項1〜3のいずれかに記載の複合半透膜。 The salt rejection is 99.7% or more and the permeation flux is 1.0 m 3 / m 2 / d or more under the conditions of a NaCl solution with a pressure of 0.75 MPa, a temperature of 25 ° C., a pH of 6.5, and a feed solution of 500 ppm. Item 4. The composite semipermeable membrane according to any one of Items 1 to 3. 微多孔性支持膜上に、少なくとも2個の一級および/または二級アミノ基を有する多官能アミン水溶液を接触させた後、少なくとも2個の酸ハライド基を有する多官能酸ハロゲン化物および上記式(3)または(4)の酸ハロゲン化物を含有し、前記多官能酸ハロゲン化物に対して5モル%以上含有する、水と非混和性の有機溶媒溶液を接触させ、界面重縮合によって多孔性支持膜上に架橋ポリアミドを含む分離機能層を形成することを特徴とする請求項1〜4のいずれかに記載の複合半透膜の製造方法。 After contacting the polyfunctional amine aqueous solution having at least two primary and / or secondary amino groups on the microporous support membrane, the polyfunctional acid halide having at least two acid halide groups and the above formula ( Porous support by interfacial polycondensation, containing an acid halide of 3) or (4), containing 5 mol% or more of the polyfunctional acid halide in contact with water and an immiscible organic solvent solution The method for producing a composite semipermeable membrane according to any one of claims 1 to 4, wherein a separation functional layer containing a crosslinked polyamide is formed on the membrane.
JP2006261933A 2005-10-06 2006-09-27 Composite semipermeable membrane and method for producing the same Expired - Fee Related JP4923913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006261933A JP4923913B2 (en) 2005-10-06 2006-09-27 Composite semipermeable membrane and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005293260 2005-10-06
JP2005293260 2005-10-06
JP2006261933A JP4923913B2 (en) 2005-10-06 2006-09-27 Composite semipermeable membrane and method for producing the same

Publications (3)

Publication Number Publication Date
JP2007125544A true JP2007125544A (en) 2007-05-24
JP2007125544A5 JP2007125544A5 (en) 2009-11-12
JP4923913B2 JP4923913B2 (en) 2012-04-25

Family

ID=38148647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006261933A Expired - Fee Related JP4923913B2 (en) 2005-10-06 2006-09-27 Composite semipermeable membrane and method for producing the same

Country Status (1)

Country Link
JP (1) JP4923913B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017002744A1 (en) * 2015-06-30 2017-01-05 栗田工業株式会社 Boiler water treatment apparatus and boiler operation method
JP2017513703A (en) * 2014-04-28 2017-06-01 ダウ グローバル テクノロジーズ エルエルシー Composite polyamide membrane post-treated with nitrous acid
JP2019501006A (en) * 2016-03-03 2019-01-17 エルジー・ケム・リミテッド Method for improving flow rate of TFC membrane using oxidizing agent and reducing agent

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05230216A (en) * 1992-02-24 1993-09-07 Tomoegawa Paper Co Ltd Block copolymer and its production
JPH05287078A (en) * 1992-04-10 1993-11-02 Tomoegawa Paper Co Ltd Block copolymer and its production
JP2000117076A (en) * 1998-10-16 2000-04-25 Toray Ind Inc Composite semipermeable membrane and its production
JP2005095856A (en) * 2003-06-18 2005-04-14 Toray Ind Inc Compound semi-permeable membrane and production method therefor
JP2005169332A (en) * 2003-12-15 2005-06-30 Toray Ind Inc Composite semi-permeable membrane, liquid-separating device and production method of water

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05230216A (en) * 1992-02-24 1993-09-07 Tomoegawa Paper Co Ltd Block copolymer and its production
JPH05287078A (en) * 1992-04-10 1993-11-02 Tomoegawa Paper Co Ltd Block copolymer and its production
JP2000117076A (en) * 1998-10-16 2000-04-25 Toray Ind Inc Composite semipermeable membrane and its production
JP2005095856A (en) * 2003-06-18 2005-04-14 Toray Ind Inc Compound semi-permeable membrane and production method therefor
JP2005169332A (en) * 2003-12-15 2005-06-30 Toray Ind Inc Composite semi-permeable membrane, liquid-separating device and production method of water

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017513703A (en) * 2014-04-28 2017-06-01 ダウ グローバル テクノロジーズ エルエルシー Composite polyamide membrane post-treated with nitrous acid
WO2017002744A1 (en) * 2015-06-30 2017-01-05 栗田工業株式会社 Boiler water treatment apparatus and boiler operation method
JP2017012991A (en) * 2015-06-30 2017-01-19 栗田工業株式会社 Water treatment apparatus for boiler, and operation method of boiler
JP2019501006A (en) * 2016-03-03 2019-01-17 エルジー・ケム・リミテッド Method for improving flow rate of TFC membrane using oxidizing agent and reducing agent

Also Published As

Publication number Publication date
JP4923913B2 (en) 2012-04-25

Similar Documents

Publication Publication Date Title
JP5696361B2 (en) Composite semipermeable membrane and method for producing the same
JP5978998B2 (en) Composite semipermeable membrane, composite semipermeable membrane element, and method for producing composite semipermeable membrane
JP2011078980A (en) Composite semipermeable membrane and manufacturing method of the same
JP2010094641A (en) Method of treating composite semipermeable film
JP4500002B2 (en) Composite semipermeable membrane and method for producing the same
WO2014133133A1 (en) Composite semipermeable membrane
JP6642860B2 (en) Water treatment separation membrane and method for producing the same
JP2008080187A (en) Composite semipermeable membrane and use thereof
JP4923913B2 (en) Composite semipermeable membrane and method for producing the same
JP2005169332A (en) Composite semi-permeable membrane, liquid-separating device and production method of water
JP2005095856A (en) Compound semi-permeable membrane and production method therefor
JP5030192B2 (en) Manufacturing method of composite semipermeable membrane
JP2014000533A (en) Resin composition for fine porous support membrane, fine porous support membrane using the same, and composite semipermeable membrane
JP2009262089A (en) Manufacturing method of composite semi-permeable membrane
WO2021085600A1 (en) Composite semipermeable membrane and manufacturing method therefor
JP3985387B2 (en) Method for producing composite semipermeable membrane
JP2007125544A5 (en)
JP5120006B2 (en) Manufacturing method of composite semipermeable membrane
JP5062136B2 (en) Manufacturing method of composite semipermeable membrane
JP5050335B2 (en) Manufacturing method of composite semipermeable membrane
JP2007253109A (en) Method for manufacturing dry composite semipermeable membrane
JP3849263B2 (en) Composite semipermeable membrane and method for producing the same
JP2000117076A (en) Composite semipermeable membrane and its production
JP2017012987A (en) Composite semipermeable membrane and production method of the same
JP2008259983A (en) Manufacturing method of dry composite semi-permeable membrane

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090924

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4923913

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees