JP2017012991A - Water treatment apparatus for boiler, and operation method of boiler - Google Patents

Water treatment apparatus for boiler, and operation method of boiler Download PDF

Info

Publication number
JP2017012991A
JP2017012991A JP2015131573A JP2015131573A JP2017012991A JP 2017012991 A JP2017012991 A JP 2017012991A JP 2015131573 A JP2015131573 A JP 2015131573A JP 2015131573 A JP2015131573 A JP 2015131573A JP 2017012991 A JP2017012991 A JP 2017012991A
Authority
JP
Japan
Prior art keywords
boiler
water
membrane
acid
water treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015131573A
Other languages
Japanese (ja)
Other versions
JP6065066B2 (en
Inventor
邦洋 早川
Kunihiro Hayakawa
邦洋 早川
和義 内田
Kazuyoshi Uchida
和義 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=57608793&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2017012991(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2015131573A priority Critical patent/JP6065066B2/en
Priority to PCT/JP2016/068958 priority patent/WO2017002744A1/en
Priority to CN201680037835.1A priority patent/CN107709247A/en
Priority to TW105120785A priority patent/TW201708120A/en
Publication of JP2017012991A publication Critical patent/JP2017012991A/en
Application granted granted Critical
Publication of JP6065066B2 publication Critical patent/JP6065066B2/en
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • C02F5/10Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • C02F5/10Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances
    • C02F5/14Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances containing phosphorus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D11/00Feed-water supply not provided for in other main groups

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water treatment apparatus for a boiler and an operation method of a boiler using the water treatment apparatus in which a concentration rate of a boiler can be increased while a trouble of scales or corrosion in a boiler can is prevented.SOLUTION: In a water treatment apparatus for a boiler that treats raw water by a reverse osmosis membrane, removal ratio of NaCl of the reverse osmosis membrane is 93% or more and less than 99.4% in the case where evaluation pressure of 0.3 to 1.5 MPa and NaCl solution of 500 to 2000 mg/L are used, and pure water flux is 1.3 m/d or more in the case of evaluation pressure of 0.75 MPa. The treated water is supplied to a boiler after scale dispersant is added to the treated water.SELECTED DRAWING: None

Description

本発明は、ボイラに供給される水を処理するための水処理装置と、この水処理装置を用いたボイラの運転方法に関するものである。   The present invention relates to a water treatment device for treating water supplied to a boiler, and a boiler operating method using the water treatment device.

通常のボイラシステムでは、市水、地下水、工業用水などの原水から、水処理装置によって硬度成分、酸素などを除去してボイラ給水を製造し、このボイラ給水に、脱酸素剤、スケール防止剤、清缶剤などのボイラ処理剤を注入した後、ボイラに供給する。   In a normal boiler system, boiler water is manufactured from raw water such as city water, groundwater, industrial water, etc. by removing hardness components, oxygen, etc. using a water treatment device. After injecting boiler treatment agent such as cleansing agent, it is supplied to the boiler.

硬度成分を除去するための水処理装置としては、カチオン交換樹脂を備えた軟水器や、ナノ濾過膜又は逆浸透膜(RO膜)のような濾過膜を備えた脱塩装置が用いられている。脱酸素処理を行う装置としては、真空式、膜式又は窒素式の脱酸素装置等が用いられている(特許文献1〜3)。   As a water treatment apparatus for removing hardness components, a water softener equipped with a cation exchange resin or a desalting apparatus equipped with a filtration membrane such as a nanofiltration membrane or a reverse osmosis membrane (RO membrane) is used. . As a device for performing the deoxidation treatment, a vacuum type, a membrane type or a nitrogen type deoxygenation device or the like is used (Patent Documents 1 to 3).

特開2005−288219号公報JP 2005-288219 A 特許第3593723号公報Japanese Patent No. 3593723 特公平7−90220号公報Japanese Patent Publication No. 7-90220

軟水器は、原水中の硬度成分以外の不純物を除去することができず、ボイラ給水の導電率や塩化物イオン濃度を十分に低くすることができない。ボイラ給水の水質が悪い場合、ボイラの濃縮倍率を低くして運転する必要があり、熱損失が大きくなる。   The water softener cannot remove impurities other than the hardness component in the raw water, and cannot sufficiently reduce the conductivity and chloride ion concentration of boiler feed water. When the quality of the boiler feed water is poor, it is necessary to operate the boiler at a low concentration rate, which increases heat loss.

RO膜を用いたボイラ用水処理装置は、硬度成分だけでなく、溶存有機物なども除去可能であるが、高圧で運転する必要があり、エネルギー消費量が多い。RO膜として、ルーズRO膜あるいはナノ濾過膜と称される、比較的低圧で処理水が得られる膜を使用した場合、硬度成分及び塩化物イオンの除去率が低く、ボイラでスケールが生成する恐れがあったり、濃縮倍率を高くすることができないという問題がある。   A boiler water treatment apparatus using an RO membrane can remove not only hardness components but also dissolved organic matter, etc., but it needs to be operated at a high pressure and consumes a large amount of energy. When RO membranes, which are called loose RO membranes or nanofiltration membranes, are used to obtain treated water at a relatively low pressure, the removal rate of hardness components and chloride ions is low, and scale may be generated in the boiler. And there is a problem that the concentration ratio cannot be increased.

本発明は、ボイラ缶内でのスケールや腐食のトラブルを防止しつつ、ボイラの濃縮倍率を高めることができるボイラ用水処理装置と、この水処理装置を用いたボイラの運転方法を提供することを目的とする。   The present invention provides a boiler water treatment device capable of increasing the boiler concentration rate while preventing scale and corrosion problems in the boiler can, and a boiler operating method using the water treatment device. Objective.

本発明のボイラ用水処理装置は、逆浸透膜によって原水を処理するボイラ用水処理装置において、該逆浸透膜は、0.3〜1.5MPaの評価圧力、500〜2000mg/LのNaCl溶液を用いた場合のNaClの除去率が93%以上、99.4%未満であり、0.75MPaの評価圧力の場合に、純水フラックスが1.3m/d以上の逆浸透膜(以下、RO膜ということがある。)であることを特徴とするものである。   The boiler water treatment apparatus of the present invention is a boiler water treatment apparatus that treats raw water with a reverse osmosis membrane. The reverse osmosis membrane uses an evaluation pressure of 0.3 to 1.5 MPa and a NaCl solution of 500 to 2000 mg / L. The reverse osmosis membrane (hereinafter referred to as RO membrane) having a pure water flux of 1.3 m / d or more when the NaCl removal rate is 93% or more and less than 99.4% and the evaluation pressure is 0.75 MPa. It is characterized by the above.

前記RO膜のカルシウムイオンの除去率は98%以上であることが好ましい。   The calcium membrane removal rate of the RO membrane is preferably 98% or more.

本発明のボイラの運転方法は、原水を本発明のボイラ用水処理装置で処理して処理水を製造する工程と、該処理水をボイラに供給する工程とを有するものである。   The operation method of the boiler of this invention has the process of processing raw | natural water with the water treatment apparatus for boilers of this invention, and manufacturing a treated water, and the process of supplying this treated water to a boiler.

本発明のボイラの運転方法においては、前記処理水にスケール分散剤を添加することが好ましい。   In the boiler operating method of the present invention, it is preferable to add a scale dispersant to the treated water.

スケール分散剤としては、重合もしくは共重合成分としてアクリル酸、メタクリル酸及びマレイン酸の少なくとも1種を含む重合体もしくは共重合体又は該重合体もしくは共重合体の塩であり、重量平均分子量が1,000〜100,000であるものが好ましい。   The scale dispersant is a polymer or copolymer containing at least one of acrylic acid, methacrylic acid and maleic acid as a polymerization or copolymerization component or a salt of the polymer or copolymer, and has a weight average molecular weight of 1 , 100,000 to 100,000 are preferred.

本発明のボイラ用水処理装置では、0.3〜1.5MPaの評価圧力、500〜2000mg/LのNaCl溶液を用いた場合のNaClの除去率が93%以上、99.4%未満であり、0.75MPaの評価圧力の場合に、純水フラックスが1.3m/d以上のRO膜で原水をRO処理する。このRO膜は、ルーズRO膜やナノ濾過膜と標準的なRO膜の中間的な性能を有しており、比較的低圧でもフラックス(透過流束)が大きく、しかも硬度成分や塩化物イオンの除去率が高い。標準的なRO膜では清浄な処理水が得られるため、場合によっては電極式のレベルセンサが反応しなくなる等のトラブルが発生するおそれがある。また、ルーズRO膜(NF膜)は、特公平7−90220号公報に示されるような性能を持っているが、塩化物イオンやシリカの除去率が悪く、ボイラの濃縮倍率を高くとることができない。   In the boiler water treatment apparatus of the present invention, the removal rate of NaCl when using an evaluation pressure of 0.3 to 1.5 MPa and a NaCl solution of 500 to 2000 mg / L is 93% or more and less than 99.4%, When the evaluation pressure is 0.75 MPa, the raw water is subjected to RO treatment with an RO membrane having a pure water flux of 1.3 m / d or more. This RO membrane has intermediate performance between a loose RO membrane, a nanofiltration membrane and a standard RO membrane, and has a large flux (permeation flux) even at a relatively low pressure. High removal rate. Since the standard RO membrane provides clean treated water, there is a possibility that troubles such as the electrode type level sensor not responding may occur in some cases. Moreover, although the loose RO membrane (NF membrane) has the performance shown in Japanese Patent Publication No. 7-90220, the removal rate of chloride ions and silica is poor, and the boiler concentration rate can be increased. Can not.

このRO膜の処理水にスケール分散剤を添加してからボイラに供給することにより、ボイラ缶内でのスケールや腐食のトラブルを防止しつつ、ボイラの濃縮倍率を高め、効率のよい運転を行うことができる。   By adding a scale dispersant to the treated water of this RO membrane and then supplying it to the boiler, the trouble of scale and corrosion in the boiler can is prevented, and the boiler concentration rate is increased and efficient operation is performed. be able to.

本発明のボイラ給水用水処理装置が処理対象とする原水としては、市水、地下水、工業用水などが例示される。原水は、MF膜などによって除濁された後、水処理装置に供給されることが好ましい。   Examples of raw water to be treated by the boiler feed water treatment apparatus of the present invention include city water, ground water, and industrial water. The raw water is preferably supplied to the water treatment apparatus after being turbidized by an MF membrane or the like.

本発明の水処理装置のRO膜は、0.3〜1.5MPaの評価圧力、500〜2000mg/LのNaCl溶液を用いた場合のNaClの除去率が93%以上、99.4%未満であり、0.75MPaの評価圧力の場合に、純水フラックスが1.3m/d以上のRO膜である。   The RO membrane of the water treatment apparatus of the present invention has an NaCl removal rate of 93% or more and less than 99.4% when an evaluation pressure of 0.3 to 1.5 MPa and a NaCl solution of 500 to 2000 mg / L are used. In the case of an evaluation pressure of 0.75 MPa, the RO membrane has a pure water flux of 1.3 m / d or more.

この評価圧力とNaCl除去率は以下の式で定義される。なお、式中の濃度は、NaClの濃度を表わす。給水とはRO膜で処理される原水であり、処理水はRO膜透過水である。   This evaluation pressure and NaCl removal rate are defined by the following equations. In addition, the density | concentration in a formula represents the density | concentration of NaCl. The feed water is raw water to be treated with the RO membrane, and the treated water is the RO membrane permeate.

評価圧力(MPa)=(給水圧力+濃縮水圧力)/2−処理水圧力
除去率(%)=(1−処理水濃度/((給水濃度+濃縮水濃度)/2))×100
Evaluation pressure (MPa) = (feed water pressure + concentrated water pressure) / 2-treated water pressure removal rate (%) = (1-treated water concentration / (((feed water concentration + concentrated water concentration) / 2))) × 100

RO膜のNaClの除去率が93%未満であると、RO膜処理水であるボイラ給水中の塩化物イオン濃度が高くなり、濃縮倍率を高くすることができないとともに、ボイラ缶内に腐食が生じ易くなる。NaCl除去率が99.3%以上のRO膜は処理水を得るための圧力が高くなる。   If the NaCl removal rate of the RO membrane is less than 93%, the chloride ion concentration in the boiler feed water, which is the RO membrane treated water, becomes high, the concentration rate cannot be increased, and corrosion occurs in the boiler can. It becomes easy. An RO membrane having a NaCl removal rate of 99.3% or more has a high pressure for obtaining treated water.

評価圧力0.75MPaにおけるRO膜の純水フラックスは、1.3m/d以上、好ましくは1.3〜3.0m/d、特に好ましくは1.4〜2.0m/dである。純水フラックスが1.3m/dよりも小さいと、RO装置の運転コストが高くなり、好ましくない。3.0m/dより大きいと、除去率が悪くなり、ボイラブロー率を高くとることができない。   The pure water flux of the RO membrane at an evaluation pressure of 0.75 MPa is 1.3 m / d or more, preferably 1.3 to 3.0 m / d, particularly preferably 1.4 to 2.0 m / d. If the pure water flux is less than 1.3 m / d, the operating cost of the RO device increases, which is not preferable. When it is larger than 3.0 m / d, the removal rate is deteriorated and the boiler blow rate cannot be increased.

このRO膜によるカルシウムイオン(Ca2+)の除去率は、RO装置の状態、被処理液の性状にもよるが、98%以上であることが好ましい。 The removal rate of calcium ions (Ca 2+ ) by this RO membrane is preferably 98% or more, although it depends on the state of the RO device and the properties of the liquid to be treated.

このRO膜を有するRO膜モジュールは、0.75MPaの評価圧力の場合に、40m/d以上の処理水量となるものが好ましい。処理水量が40m/d以下であると、必要なRO膜モジュールの本数が多くなり、経済的でない。 The RO membrane module having this RO membrane preferably has a treated water amount of 40 m 3 / d or more when the evaluation pressure is 0.75 MPa. When the amount of treated water is 40 m 3 / d or less, the number of necessary RO membrane modules increases, which is not economical.

RO膜の材質、形状としては上記の性能を満たすものであれば特に制限はないが、芳香族ポリアミド製のRO膜が好適に用いられる。形状としては平膜、スパイラル、中空糸、チューブラーなどがあるが、スパイラル形状のRO膜が好適に用いられる。   The material and shape of the RO membrane are not particularly limited as long as they satisfy the above performance, but an RO membrane made of aromatic polyamide is preferably used. Examples of the shape include a flat membrane, a spiral, a hollow fiber, and a tubular, and a spiral RO membrane is preferably used.

本発明のボイラ用水処理装置で処理された処理水をボイラに供給するに際しては、スケール分散剤を添加することが好ましい。スケール分散剤としては、重合もしくは共重合成分としてアクリル酸、メタクリル酸及びマレイン酸の少なくとも1種を含む重合体(ホモポリマー)もしくは共重合体(コポリマー)又は該重合体もしくは共重合体の塩を用いることが好ましい。   When supplying the treated water treated by the boiler water treatment apparatus of the present invention to the boiler, it is preferable to add a scale dispersant. As the scale dispersant, a polymer (homopolymer) or copolymer (copolymer) containing at least one of acrylic acid, methacrylic acid and maleic acid as a polymerization or copolymerization component or a salt of the polymer or copolymer is used. It is preferable to use it.

具体的には、ホモポリマーとして、ポリアクリル酸、ポリメタクリル酸、ポリマレイン酸が挙げられる。   Specific examples of the homopolymer include polyacrylic acid, polymethacrylic acid, and polymaleic acid.

コポリマーとしては、アクリル酸、メタクリル酸及びマレイン酸の1種又は2種以上と、2−メチル−1,3−ブタジエン−1−スルホン酸などの共役ジエンスルホン酸、3−アリロキシ−2−ヒドロキシプロパンスルホン酸、3−メタアリロキシ−2−ヒドロキシプロパンスルホン酸等のスルホ基を有する不飽和(メタ)アリルエーテル系単量体や(メタ)アクリルアミド−2−メチルプロパンスルホン酸、2−ヒドロキシ−3−アクリルアミドプロパンスルホン酸、スチレンスルホン酸、メタリルスルホン酸、ビニルスルホン酸、アリルスルホン酸、イソアミレンスルホン酸、又はこれらの塩類などのスルホ基を有する化合物、イソブチレン、アミレン、アクリルアミド、N−ビニルホルムアルデヒドなどの非イオン性化合物や、クロトン酸、イソクロトン酸、ビニル酢酸、アトロパ酸、フマル酸、イタコン酸、ヒドロキシエチルアクリル酸又はこれらの塩などのカルボキシル基を有する化合物から選ばれる1種又は2種以上との共重合体が挙げられる。   Examples of the copolymer include one or more of acrylic acid, methacrylic acid, and maleic acid, conjugated diene sulfonic acid such as 2-methyl-1,3-butadiene-1-sulfonic acid, and 3-allyloxy-2-hydroxypropane. Unsaturated (meth) allyl ether monomers having a sulfo group such as sulfonic acid and 3-methallyloxy-2-hydroxypropanesulfonic acid, (meth) acrylamide-2-methylpropanesulfonic acid, 2-hydroxy-3-acrylamide Propane sulfonic acid, styrene sulfonic acid, methallyl sulfonic acid, vinyl sulfonic acid, allyl sulfonic acid, isoamylene sulfonic acid, or compounds having a sulfo group such as salts thereof, isobutylene, amylene, acrylamide, N-vinyl formaldehyde, etc. Non-ionic compounds and kuroto Acid, isocrotonic acid, vinyl acetate, atropic acid, fumaric acid, itaconic acid, a copolymer of one or more selected from a compound having a carboxyl group, such as hydroxyethyl acrylate or salts thereof.

これらのホモポリマー、コポリマーの塩としては、ナトリウム塩、カリウム塩、アンモニウム塩などが例示される。   Examples of salts of these homopolymers and copolymers include sodium salts, potassium salts and ammonium salts.

これらのポリマー、コポリマー、又はこれらの塩の重量平均分子量は1,000〜100,000特に20、000〜70,000が好ましい。重量平均分子量が1,000未満では十分なスケール防止効果を得ることができない場合があり、重量平均分子量が100,000を超えるとスケール防止効果が低下する。   These polymers, copolymers, or salts thereof preferably have a weight average molecular weight of 1,000 to 100,000, particularly 20,000 to 70,000. When the weight average molecular weight is less than 1,000, a sufficient scale preventing effect may not be obtained. When the weight average molecular weight exceeds 100,000, the scale preventing effect is lowered.

上記のスケール分散剤は1種のみ添加されてもよく、2種以上が併用して添加されてもよい。   One type of the above scale dispersant may be added, or two or more types may be added in combination.

これらのポリマー、コポリマー、又はこれらの塩よりなるスケール分散剤の添加量は、ボイラ水中での濃度が10〜500mg/Lとなるような量とすることが好ましく、ボイラ水中での濃度が20〜400mg/Lとすることがより好ましく、30〜300mg/Lとすることがさらに好ましく、50〜250mg/Lとすることがよりさらに好ましい。ボイラ水中での濃度を10mg/L以上とすることにより、十分なスケール分散効果が発揮され易くなり、500mg/L以下とすることにより、CODの上昇による排水処理の煩雑さを防止しつつ、費用対効果を良好にできる。   The amount of the scale dispersant comprising these polymers, copolymers, or salts thereof is preferably such that the concentration in the boiler water is 10 to 500 mg / L, and the concentration in the boiler water is 20 to It is more preferably 400 mg / L, further preferably 30 to 300 mg / L, and still more preferably 50 to 250 mg / L. By setting the concentration in the boiler water to 10 mg / L or more, a sufficient scale dispersion effect is easily exhibited. By setting the concentration to 500 mg / L or less, the cost of wastewater treatment due to the increase in COD is prevented, and the cost is reduced. The counter effect can be improved.

スケール分散剤は、補給水又は給水に添加されることが好ましい。なお、蒸気発生設備が循環式の場合、復水に添加してもよい。   The scale dispersant is preferably added to makeup water or water supply. In addition, when the steam generation facility is a circulation type, it may be added to the condensate.

本発明においては、本発明の目的が損なわれない範囲で、必要に応じて、蒸気発生設備の系内の何れかの箇所で、各種の添加成分、例えば、脱酸素剤、防食剤、スケール防止剤等を添加してもよい。スケール防止剤としては、例えば、各種リン酸塩、スケール分散剤として上記したもののうち、上述した条件を満たさない重量平均分子量が低いポリマー又はコポリマー、これらのナトリウム塩等の水溶性高分子化合物、ホスホン酸塩、キレート剤等が挙げられる。   In the present invention, as long as the object of the present invention is not impaired, various additive components such as oxygen scavengers, anticorrosives, and scale prevention are provided at any point in the system of the steam generation facility as necessary. An agent or the like may be added. Examples of the scale inhibitor include various phosphates and scale dispersants described above, polymers or copolymers having a low weight average molecular weight that do not satisfy the above-described conditions, water-soluble polymer compounds such as sodium salts thereof, phosphones, and the like. Examples thereof include acid salts and chelating agents.

本発明では、スケール分散剤として、次の(A)又は(B)を添加することも好ましく、(C)のように両者を併用してもよい。これらの(A)及び/又は(B)のスケール防止剤は、上述したスケール防止剤の中でも、RO膜処理水、特に本発明のRO膜で処理した水を給水とした場合のスケール防止効果が高く、また、以下に記載するような特徴も有する。   In the present invention, it is also preferable to add the following (A) or (B) as the scale dispersant, and both may be used together as in (C). These scale inhibitors of (A) and / or (B) are effective in preventing scale when the RO membrane treated water, particularly water treated with the RO membrane of the present invention is used as the feed water among the scale inhibitors described above. It is also expensive and has the characteristics described below.

(A)重量平均分子量1,000〜100,000のポリメタクリル酸及び/又はその塩と、2−ヒドロキシエチル−1,2−ジホスホン酸及び/又はその塩(以下、この組み合わせを「分散剤(A)」という。)。
分散剤(A)は、特に、ボイラ水系に亜鉛系スケールの析出のおそれがある場合に有効である。
(A) Polymethacrylic acid having a weight average molecular weight of 1,000 to 100,000 and / or a salt thereof, and 2-hydroxyethyl-1,2-diphosphonic acid and / or a salt thereof (hereinafter, this combination is referred to as “dispersant ( A) ").
The dispersant (A) is particularly effective when there is a risk of precipitation of zinc-based scale in the boiler water system.

2−ヒドロキシエチル−1,2−ジホスホン酸塩としては、2−ヒドロキシエチル−1,2−ジホスホン酸のナトリウム塩、カリウム塩、アンモニウム塩を用いることができる。ポリメタクリル酸塩としてはポリメタクリル酸のナトリウム塩、カリウム塩、アンモニウム塩を用いることができる。   As 2-hydroxyethyl-1,2-diphosphonate, sodium salt, potassium salt and ammonium salt of 2-hydroxyethyl-1,2-diphosphonic acid can be used. As polymethacrylate, sodium salt, potassium salt, and ammonium salt of polymethacrylic acid can be used.

水系への2−ヒドロキシエチル−1,2−ジホスホン酸及び/又はその塩の添加量は、処理対象水系の水質(亜鉛濃度)、亜鉛系スケールの析出傾向によっても異なるが、水系の2−ヒドロキシエチル−1,2−ジホスホン酸及び/又はその塩の濃度が、2−ヒドロキシエチル−1,2−ジホスホン酸として重量比で、水中の亜鉛濃度に対して4倍以上、好ましくは6倍以上、より好ましくは8倍以上の濃度となるように添加するのが良く、0.1〜1,000mg/L、特に1〜500mg/Lとなるような量とすることが好ましい。2−ヒドロキシエチル−1,2−ジホスホン酸及び/又はその塩の添加濃度が上記下限未満では十分な添加効果が得られず、上記上限を超えると、薬剤コストの面で不経済であると共に、水中のCODが上昇し、排水処理の面で好ましくない。   The amount of 2-hydroxyethyl-1,2-diphosphonic acid and / or its salt added to the aqueous system varies depending on the water quality (zinc concentration) of the aqueous system to be treated and the precipitation tendency of the zinc-based scale. The concentration of ethyl-1,2-diphosphonic acid and / or a salt thereof as a weight ratio of 2-hydroxyethyl-1,2-diphosphonic acid is not less than 4 times, preferably not less than 6 times the zinc concentration in water. More preferably, it should be added so that the concentration is 8 times or more, and it is preferably 0.1 to 1,000 mg / L, particularly 1 to 500 mg / L. If the addition concentration of 2-hydroxyethyl-1,2-diphosphonic acid and / or its salt is less than the above lower limit, a sufficient addition effect cannot be obtained, and if it exceeds the above upper limit, it is uneconomical in terms of drug cost, Underwater COD increases, which is not preferable in terms of wastewater treatment.

水系へのポリメタクリル酸及び/又はその塩の好ましい添加量は、前述の通りである。   The preferred amount of polymethacrylic acid and / or salt thereof added to the aqueous system is as described above.

2−ヒドロキシエチル−1,2−ジホスホン酸及び/又はその塩とポリメタクリル酸及び/又はその塩との添加量比には特に制限はないが、水系の2−ヒドロキシエチル−1,2−ジホスホン酸及び/又はその塩とポリメタクリル酸及び/又はその塩の濃度比が重量比で2−ヒドロキシエチル−1,2−ジホスホン酸及び/又はその塩:ポリメタクリル酸及び/又はその塩=1:0.01〜1:100、特に1:0.01〜1:10の範囲となるように添加することが、両者の併用による効果を得る上で好ましい。   There is no particular limitation on the ratio of the addition amount of 2-hydroxyethyl-1,2-diphosphonic acid and / or salt thereof to polymethacrylic acid and / or salt thereof, but aqueous 2-hydroxyethyl-1,2-diphosphone is not limited. The concentration ratio of acid and / or salt thereof to polymethacrylic acid and / or salt thereof is 2-hydroxyethyl-1,2-diphosphonic acid and / or salt thereof by weight ratio: polymethacrylic acid and / or salt thereof = 1. It is preferable to add so that it may become the range of 0.01-1: 100, especially 1: 0.01-1: 10, when obtaining the effect by combined use of both.

2−ヒドロキシエチル−1,2−ジホスホン酸及び/又はその塩とポリメタクリル酸及び/又はその塩とは予め混合して添加してもよく、各々別々に添加してもよい。予め混合して添加する場合、これらを水溶液として添加してもよい。   2-hydroxyethyl-1,2-diphosphonic acid and / or a salt thereof and polymethacrylic acid and / or a salt thereof may be mixed and added in advance, or may be added separately. When mixing and adding in advance, these may be added as an aqueous solution.

(B)ポリメタクリル酸及び/又はその塩と、アクリル酸/2−アクリルアミド−2−メチルプロパンスルホン酸共重合体及び/又はその塩(以下、この組み合わせを「分散剤(B)」という。)。
分散剤(B)は、ボイラ水系に鉄系スケールが析出するおそれがある場合に有効である。
(B) Polymethacrylic acid and / or salt thereof, acrylic acid / 2-acrylamido-2-methylpropanesulfonic acid copolymer and / or salt thereof (hereinafter, this combination is referred to as “dispersant (B)”). .
A dispersing agent (B) is effective when there exists a possibility that an iron-type scale may precipitate in a boiler water system.

ポリメタクリル酸(以下、「PMAA」と称する場合もある。)の重量平均分子量は前述の通りである。   The weight average molecular weight of polymethacrylic acid (hereinafter sometimes referred to as “PMAA”) is as described above.

アクリル酸/2−アクリルアミド−2−メチルプロパンスルホン酸共重合体(AA/AMPS)は、モノマー単位として、アクリル酸と、2−アクリルアミド−2−メチルプロパンスルホン酸とを有する共重合体である。   The acrylic acid / 2-acrylamido-2-methylpropanesulfonic acid copolymer (AA / AMPS) is a copolymer having acrylic acid and 2-acrylamido-2-methylpropanesulfonic acid as monomer units.

AA/AMPSの重量平均分子量は1,000〜200,000であることが好ましく、2,000〜80,000であることがより好ましく、5,000〜75,000であることがさらに好ましく、10,000〜50,000であることが最も好ましい。重量平均分子量を1,000以上200,000以下とすることにより良好な鉄分散効果が得られる。   The weight average molecular weight of AA / AMPS is preferably 1,000 to 200,000, more preferably 2,000 to 80,000, still more preferably 5,000 to 75,000. Most preferably, it is from 5,000 to 50,000. When the weight average molecular weight is 1,000 or more and 200,000 or less, a good iron dispersion effect can be obtained.

AA/AMPS中における、アクリル酸と2−アクリルアミド−2−メチルプロパンスルホン酸とのモノマーのモル比は、99:1〜5:95であることが好ましく、90:10〜50:50であることがより好ましい。アクリル酸99に対してAMPSを1以上かつ、アクリル酸5に対してAMPSを95以下とすることにより、良好な鉄分散効果が得られる。   The molar ratio of acrylic acid to 2-acrylamido-2-methylpropanesulfonic acid monomer in AA / AMPS is preferably 99: 1 to 5:95, and 90:10 to 50:50. Is more preferable. By setting AMPS to 1 or more with respect to acrylic acid 99 and AMPS to 95 or less with respect to acrylic acid 5, a good iron dispersion effect can be obtained.

AA/AMPSの塩は、上記AA/AMPSの構成単位の少なくとも一部にアクリル酸塩及び/又は2−アクリルアミド−2−メチルプロパンスルホン酸塩を含むものである。すなわち、本発明においてAA/AMPSの塩とは、AA/AMPSの完全中和物のみならず、AA/AMPSの部分中和物を含むものとする。   The salt of AA / AMPS contains acrylate and / or 2-acrylamido-2-methylpropanesulfonate in at least a part of the structural unit of AA / AMPS. That is, in the present invention, the salt of AA / AMPS includes not only a completely neutralized product of AA / AMPS but also a partially neutralized product of AA / AMPS.

AA/AMPSの塩は、上記AA/AMPSのナトリウム塩、カリウム塩等のアルカリ金属塩、アンモニウム塩、アミン塩等が挙げられる。AA/AMPSの塩は、そのベースとなるAA/AMPSが上記の重量平均分子量を満たすことが好ましい。   Examples of the AA / AMPS salt include alkali metal salts such as the sodium salt and potassium salt of the above AA / AMPS, ammonium salts, and amine salts. The AA / AMPS salt is preferably such that the base AA / AMPS satisfies the above weight average molecular weight.

AA/AMPSの塩は、例えば、AA/AMPSを中和することにより得ることができる。また、原料モノマーであるアクリル酸及び/又は2−アクリルアミド−2−メチルプロパンスルホン酸を中和して、アクリル酸塩及び/又は2−アクリルアミド−2−メチルプロパンスルホン酸塩として、これらを用いて共重合してAA/AMPSの塩としてもよい。   AA / AMPS salt can be obtained, for example, by neutralizing AA / AMPS. Moreover, the acrylic acid and / or 2-acrylamido-2-methylpropane sulfonic acid which are raw material monomers are neutralized, and these are used as acrylate and / or 2-acrylamido-2-methylpropane sulfonate. AA / AMPS salt may be copolymerized.

ポリメタクリル酸及び/又はその塩と、AA/AMPS及び/又はその塩とを、質量比で1:1〜10:1の割合で添加することが好ましく、1.5:1〜9:1の割合で添加することがより好ましい。AA/AMPS及び/又はその塩1に対してポリメタクリル酸及び/又はその塩を1以上、および、AA/AMPS及び/又はその塩1に対してポリメタクリル酸及び/又はその塩を10以下とすることにより、全ての形態の鉄に対して高い鉄分散効果を発揮できる。
なお、分散剤(B)の好ましい添加量は、前述のスケール分散剤としての好ましい添加量となる。
It is preferable to add polymethacrylic acid and / or a salt thereof and AA / AMPS and / or a salt thereof at a mass ratio of 1: 1 to 10: 1, and 1.5: 1 to 9: 1 It is more preferable to add at a ratio. 1 or more of polymethacrylic acid and / or its salt with respect to AA / AMPS and / or its salt 1, and 10 or less of polymethacrylic acid and / or its salt with respect to AA / AMPS and / or its salt 1 By doing, a high iron dispersion effect can be exhibited with respect to all forms of iron.
In addition, the preferable addition amount of a dispersing agent (B) becomes a preferable addition amount as the above-mentioned scale dispersing agent.

(C)前記の通り、分散剤(A)と分散剤(B)とを併用してもよい。
また、ポリアクリル酸のみの添加でも良好な効果が得られる場合もある。
本発明では、前述の特性の性能を有するRO膜に対して、ボイラ水系の水質に応じて適切なスケール分散剤を組み合わせて用いることが好ましい。
(C) As described above, the dispersant (A) and the dispersant (B) may be used in combination.
Moreover, even if only polyacrylic acid is added, a good effect may be obtained.
In the present invention, it is preferable to use an appropriate scale dispersant in combination with the RO membrane having the performance described above in accordance with the water quality of the boiler water system.

RO装置の前段処理は特に制限はないが、軟水処理や除濁処理、活性炭処理等を適宜選定できる。前段に軟水器がある場合、軟水器とRO装置との間にバイパス弁を設け、RO膜が閉塞した際に、RO装置をバイパスして軟水を供給してもよい。また。ボイラのブロー水、蒸気ドレンの回収水は熱を持っているため、RO装置の前段に戻し、RO装置給水の水温を上げるようにしてもよい。RO装置給水の水温は5〜40℃が好ましく、20〜30℃がさらに好ましい。   There are no particular restrictions on the pre-treatment of the RO device, but soft water treatment, turbidity treatment, activated carbon treatment, and the like can be selected as appropriate. When there is a water softener in the previous stage, a bypass valve may be provided between the water softener and the RO device, and when the RO membrane is blocked, the RO device may be bypassed to supply soft water. Also. Since the blow water of the boiler and the recovered water of the steam drain have heat, it may be returned to the previous stage of the RO device to raise the temperature of the RO device feed water. 5-40 degreeC is preferable and the water temperature of RO apparatus feed water has more preferable 20-30 degreeC.

以下、実施例、参考例及び比較例を説明する。   Examples, reference examples and comparative examples will be described below.

以下の実施例、参考例及び比較例で用いたRO膜を表1に示す。   Table 1 shows RO membranes used in the following Examples, Reference Examples and Comparative Examples.

Figure 2017012991
Figure 2017012991

[実施例1〜3]
Cl濃度130mg/L、Ca硬度50mg/Lの原水(電気伝導率:80mS/m、Mアルカリ度 50mg/L、シリカ:10mg/L)をMF膜によって除濁処理後、表1に示すRO膜を用いた水処理装置で処理を行った。RO膜装置の回収率は85%とした。その後、分散剤として、重量平均分子量50,000のポリアクリル酸からなるスケール分散剤を添加し、保有水量0.2mの低圧ボイラに導入した。スケール分散剤の添加量は、RO膜処理水のカルシウム硬度成分(Ca−H)濃度に対して、2重量倍とした。
[Examples 1 to 3]
RO membranes shown in Table 1 after clarification of raw water (electric conductivity: 80 mS / m, M alkalinity 50 mg / L, silica: 10 mg / L) with Cl concentration of 130 mg / L and Ca hardness of 50 mg / L using MF membrane It processed with the water treatment apparatus using. The recovery rate of the RO membrane device was 85%. Thereafter, as a dispersant, a scale dispersant made of polyacrylic acid having a weight average molecular weight of 50,000 was added and introduced into a low-pressure boiler having a retained water amount of 0.2 m 3 . The amount of the scale dispersant added was twice the weight of the calcium hardness component (Ca-H) concentration of the RO membrane treated water.

RO膜処理水中のCl濃度、カルシウム硬度の測定結果と、30日運転した後のボイラ濃縮倍率及びボイラ缶内のスケール発生の有無の観察結果を表2に示す。なお、実施例1の処理コストを100%とした場合の処理コストも表2に示す。   Table 2 shows the measurement results of Cl concentration and calcium hardness in the RO membrane treated water, the boiler concentration ratio after 30 days of operation, and the observation results of the presence or absence of scale generation in the boiler can. Table 2 also shows the processing cost when the processing cost of Example 1 is 100%.

[実施例4]
スケール分散剤を添加しなかったこと以外は実施例1と同様の処理及びボイラ運転を行った。結果を表2に示す。
[Example 4]
Except that the scale dispersant was not added, the same treatment and boiler operation as in Example 1 were performed. The results are shown in Table 2.

[比較例1,2]
RO膜として表1に示したNaCl除去率が85%のもの(比較例1)又は99.5%のもの(比較例2)を用いたこと以外は実施例1〜3と同様の処理及びボイラ運転を行った。結果を表2に示す。
[Comparative Examples 1 and 2]
The same treatment and boiler as in Examples 1 to 3 except that the RO removal rate shown in Table 1 was 85% (Comparative Example 1) or 99.5% (Comparative Example 2). Drove. The results are shown in Table 2.

Figure 2017012991
Figure 2017012991

[考察]
実施例1〜3によると、スケールを生じさせることなく、また低RO処理コストにてボイラを高濃縮倍率で運転することができる。
[Discussion]
According to the first to third embodiments, the boiler can be operated at a high concentration ratio without causing a scale and at a low RO processing cost.

比較例1は実施例1〜3と比較し、RO装置の処理コストは低いものの、ボイラの濃縮倍率が低く、燃料代がかかり、経済的ではない。また、比較例2は、RO装置を高圧運転する必要があり、RO処理コストが高く、経済的ではない。実施例4は分散剤を添加しなかったケースであるが、ボイラ缶内に微量のスケールが生じていることが認められた。運転上問題になる量ではなかったが、伝熱効率が悪くなるため、経済的に少し劣る結果となった。   Although the comparative example 1 is low in the processing cost of the RO device as compared with the first to third embodiments, the boiler concentration is low, the fuel cost is increased, and it is not economical. In Comparative Example 2, the RO device needs to be operated at a high pressure, and the RO processing cost is high, which is not economical. Example 4 was a case where no dispersant was added, but it was confirmed that a trace amount of scale was generated in the boiler can. Although it was not an amount that would cause problems in operation, the heat transfer efficiency deteriorated, resulting in a slightly inferior economic result.

本発明のボイラ用水処理装置は、逆浸透膜によって原水を処理するボイラ用水処理装置において、該逆浸透膜は、カルシウムイオンの除去率が98%以上であり、且つ、0.3〜1.5MPaの評価圧力、500〜2000mg/LのNaCl溶液を用いた場合のNaClの除去率が93%以上、99.4%未満であり、0.75MPaの評価圧力の場合に、純水フラックスが1.3m/d以上の逆浸透膜(以下、RO膜ということがある。)であることを特徴とするものである。 The boiler water treatment apparatus of the present invention is a boiler water treatment apparatus that treats raw water with a reverse osmosis membrane. The reverse osmosis membrane has a calcium ion removal rate of 98% or more and 0.3 to 1.5 MPa. The removal rate of NaCl when using a 500 to 2000 mg / L NaCl solution is 93% or more and less than 99.4%, and when the evaluation pressure is 0.75 MPa, the pure water flux is 1. It is a reverse osmosis membrane (hereinafter also referred to as RO membrane) of 3 m / d or more.

Claims (5)

逆浸透膜によって原水を処理するボイラ用水処理装置において、
該逆浸透膜は、0.3〜1.5MPaの評価圧力、500〜2000mg/LのNaCl溶液を用いた場合のNaClの除去率が93%以上、99.4%未満であり、0.75MPaの評価圧力の場合に、純水フラックスが1.3m/d以上の逆浸透膜であることを特徴とするボイラ用水処理装置。
In a boiler water treatment device that treats raw water with a reverse osmosis membrane,
The reverse osmosis membrane has an evaluation pressure of 0.3 to 1.5 MPa, a NaCl removal rate of 93% or more and less than 99.4% when a 500 to 2000 mg / L NaCl solution is used, and 0.75 MPa. In the case of the evaluation pressure, a boiler water treatment apparatus characterized by being a reverse osmosis membrane having a pure water flux of 1.3 m / d or more.
請求項1に記載のボイラ用水処理装置において、前記逆浸透膜のカルシウムイオンの除去率が98%以上であることを特徴とするボイラ用水処理装置。   The boiler water treatment apparatus according to claim 1, wherein a calcium ion removal rate of the reverse osmosis membrane is 98% or more. 原水を請求項1又は2に記載のボイラ用水処理装置で処理して処理水を製造する工程と、該処理水をボイラに供給する工程とを有するボイラの運転方法。   A method for operating a boiler, comprising: treating raw water with the boiler water treatment device according to claim 1 or 2 to produce treated water; and supplying the treated water to the boiler. 請求項3に記載のボイラの運転方法において、前記処理水にスケール分散剤を添加することを特徴とするボイラの運転方法。   4. The boiler operation method according to claim 3, wherein a scale dispersant is added to the treated water. 請求項4に記載のボイラの運転方法において、前記スケール分散剤は、重合もしくは共重合成分としてアクリル酸、メタクリル酸及びマレイン酸の少なくとも1種を含む重合体もしくは共重合体又は該重合体もしくは共重合体の塩であり、その重量平均分子量が1,000〜100,000であることを特徴とするボイラの運転方法。   5. The boiler operation method according to claim 4, wherein the scale dispersant is a polymer or copolymer containing at least one of acrylic acid, methacrylic acid and maleic acid as a polymerization or copolymerization component, or the polymer or copolymer. A method for operating a boiler, which is a salt of a polymer and has a weight average molecular weight of 1,000 to 100,000.
JP2015131573A 2015-06-30 2015-06-30 Boiler water treatment apparatus and boiler operation method Ceased JP6065066B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015131573A JP6065066B2 (en) 2015-06-30 2015-06-30 Boiler water treatment apparatus and boiler operation method
PCT/JP2016/068958 WO2017002744A1 (en) 2015-06-30 2016-06-27 Boiler water treatment apparatus and boiler operation method
CN201680037835.1A CN107709247A (en) 2015-06-30 2016-06-27 The method of operation of boiler feed water processing unit and boiler
TW105120785A TW201708120A (en) 2015-06-30 2016-06-30 Boiler water treatment apparatus and boiler operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015131573A JP6065066B2 (en) 2015-06-30 2015-06-30 Boiler water treatment apparatus and boiler operation method

Publications (2)

Publication Number Publication Date
JP2017012991A true JP2017012991A (en) 2017-01-19
JP6065066B2 JP6065066B2 (en) 2017-01-25

Family

ID=57608793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015131573A Ceased JP6065066B2 (en) 2015-06-30 2015-06-30 Boiler water treatment apparatus and boiler operation method

Country Status (4)

Country Link
JP (1) JP6065066B2 (en)
CN (1) CN107709247A (en)
TW (1) TW201708120A (en)
WO (1) WO2017002744A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6249123B1 (en) * 2017-04-12 2017-12-20 栗田工業株式会社 Scale inhibitor and scale prevention method
WO2021140824A1 (en) * 2020-01-08 2021-07-15 栗田工業株式会社 Water treatment method and device for boilers
KR20220148181A (en) 2020-03-12 2022-11-04 쿠리타 고교 가부시키가이샤 Method of suppressing corrosion fatigue of evaporation tube in boiler
KR20220150293A (en) 2020-03-12 2022-11-10 쿠리타 고교 가부시키가이샤 Method of suppressing corrosion fatigue of evaporation tube in boiler

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49126159A (en) * 1973-04-06 1974-12-03
JPH11309354A (en) * 1998-04-27 1999-11-09 Nitto Denko Corp Pure water producing system
JP2000117076A (en) * 1998-10-16 2000-04-25 Toray Ind Inc Composite semipermeable membrane and its production
JP2001314868A (en) * 2000-03-02 2001-11-13 Asahi Glass Co Ltd Method for preparing deionized water
JP2003080042A (en) * 2001-09-10 2003-03-18 Nitto Denko Corp Composite semipermeable membrane and method for manufacturing the same
JP2006110520A (en) * 2004-10-18 2006-04-27 Kurita Water Ind Ltd Agent and method for improving blocking rate of permeation membrane, permeation membrane and water treating method
JP2007125544A (en) * 2005-10-06 2007-05-24 Toray Ind Inc Composite semipermeable membrane and its manufacturing method
JP2008180492A (en) * 2006-12-26 2008-08-07 Miura Co Ltd Preparation method for boiler supply water
JP2010172816A (en) * 2009-01-29 2010-08-12 Kurita Water Ind Ltd Scale inhibitor and method of inhibiting scale
JP2014503352A (en) * 2010-12-22 2014-02-13 ナルコ カンパニー Prevention of silica scale formation and deposition in water systems

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6297336B1 (en) * 1998-07-02 2001-10-02 Nippon Shokubai Co., Ltd. Detergent builder, production process therefor, and poly(meth)acrylic acid (or salt) polymer and use thereof
CN104445722A (en) * 2014-11-19 2015-03-25 重庆中科过滤设备制造有限公司 Reverse osmosis treatment system for water for boiler
CN204342567U (en) * 2014-11-19 2015-05-20 重庆中科过滤设备制造有限公司 Boiler feed water reverse osmosis treatment system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49126159A (en) * 1973-04-06 1974-12-03
JPH11309354A (en) * 1998-04-27 1999-11-09 Nitto Denko Corp Pure water producing system
JP2000117076A (en) * 1998-10-16 2000-04-25 Toray Ind Inc Composite semipermeable membrane and its production
JP2001314868A (en) * 2000-03-02 2001-11-13 Asahi Glass Co Ltd Method for preparing deionized water
JP2003080042A (en) * 2001-09-10 2003-03-18 Nitto Denko Corp Composite semipermeable membrane and method for manufacturing the same
JP2006110520A (en) * 2004-10-18 2006-04-27 Kurita Water Ind Ltd Agent and method for improving blocking rate of permeation membrane, permeation membrane and water treating method
JP2007125544A (en) * 2005-10-06 2007-05-24 Toray Ind Inc Composite semipermeable membrane and its manufacturing method
JP2008180492A (en) * 2006-12-26 2008-08-07 Miura Co Ltd Preparation method for boiler supply water
JP2010172816A (en) * 2009-01-29 2010-08-12 Kurita Water Ind Ltd Scale inhibitor and method of inhibiting scale
JP2014503352A (en) * 2010-12-22 2014-02-13 ナルコ カンパニー Prevention of silica scale formation and deposition in water systems

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6249123B1 (en) * 2017-04-12 2017-12-20 栗田工業株式会社 Scale inhibitor and scale prevention method
JP2018176064A (en) * 2017-04-12 2018-11-15 栗田工業株式会社 Scale prevention agent and scale prevention method
WO2021140824A1 (en) * 2020-01-08 2021-07-15 栗田工業株式会社 Water treatment method and device for boilers
JP2021109128A (en) * 2020-01-08 2021-08-02 栗田工業株式会社 Boiler water treatment method and device
KR20220148181A (en) 2020-03-12 2022-11-04 쿠리타 고교 가부시키가이샤 Method of suppressing corrosion fatigue of evaporation tube in boiler
KR20220150293A (en) 2020-03-12 2022-11-10 쿠리타 고교 가부시키가이샤 Method of suppressing corrosion fatigue of evaporation tube in boiler
EP4119843A4 (en) * 2020-03-12 2023-10-11 Kurita Water Industries Ltd. Method for reducing corrosion fatigue of evaporating tube in boiler

Also Published As

Publication number Publication date
WO2017002744A1 (en) 2017-01-05
CN107709247A (en) 2018-02-16
TW201708120A (en) 2017-03-01
JP6065066B2 (en) 2017-01-25

Similar Documents

Publication Publication Date Title
JP6065066B2 (en) Boiler water treatment apparatus and boiler operation method
EP1346957B1 (en) Multifonctional calcium carbonate and calcium phospate scale inhibitor
KR102040143B1 (en) Method for preventing scale deposition and scale inhibitor
JP5773013B1 (en) Cooling discharge water recovery method and recovery device
JP6631147B2 (en) Boiler feed water treatment apparatus and boiler operating method
WO2015178161A1 (en) Method for adjusting concentration of cooling water treatment agent in circulating cooling water system, method for recovering discharged cooling water, and treatment device for discharged cooling water
JPWO2008090854A1 (en) Reverse osmosis membrane treatment method
WO2014157139A1 (en) Scale inhibiting method and magnesium hydroxide scale inhibitor for reverse osmosis membrane
MX2014001534A (en) Polymer blends as coating inhibitors in water-carrying systems.
RU2495833C2 (en) Method of inhibiting formation and scaling of silicon dioxide in water systems
JP2015174018A (en) Scale inhibition method and scale inhibitor
CN107735365B (en) Method and apparatus for recovering cooling drainage
TW201805057A (en) Scale inhibitor for reverse osmosis membranes and reverse osmosis membrane treatment method
JP6550851B2 (en) Water treatment method and water treatment apparatus using reverse osmosis membrane
JP6362676B2 (en) Rheology modifier for slurry
JP2014180649A (en) Scale prevention method and scale inhibitor for cooling water system
WO2018030109A1 (en) Membrane filtration method and membrane filtration system
WO2020184044A1 (en) Pure-water production device and pure-water production method
JP2008036562A (en) Silica-stain adhesion inhibitor and adhesion inhibiting method
WO2018096737A1 (en) Sodium salt scale-preventing agent, sodium salt scale-preventing method, aqueous system viscosity-reducing agent, aqueous system management method, and aqueous system viscosity-reducing method
JP7409573B2 (en) Silica pollution control method and silica pollution inhibitor for reverse osmosis membrane systems
JP2013180277A (en) Scale inhibitor for reverse osmosis membrane treatment and scaling preventing method in reverse osmosis membrane treatment
JP2023073688A (en) Water treatment method and silica-base scale inhibitor
JP2021109129A (en) Boiler water-supply system
CN115280068A (en) Method for suppressing corrosion fatigue of evaporation tube in boiler

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161205

R150 Certificate of patent or registration of utility model

Ref document number: 6065066

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

RVOP Cancellation by post-grant opposition