JP2001314868A - Method for preparing deionized water - Google Patents

Method for preparing deionized water

Info

Publication number
JP2001314868A
JP2001314868A JP2001058487A JP2001058487A JP2001314868A JP 2001314868 A JP2001314868 A JP 2001314868A JP 2001058487 A JP2001058487 A JP 2001058487A JP 2001058487 A JP2001058487 A JP 2001058487A JP 2001314868 A JP2001314868 A JP 2001314868A
Authority
JP
Japan
Prior art keywords
water
chamber
treated
deionized water
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001058487A
Other languages
Japanese (ja)
Other versions
JP3695338B2 (en
Inventor
Yoshio Sugaya
良雄 菅家
Yukio Matsumura
幸夫 松村
Hiroshi Toda
洋 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2001058487A priority Critical patent/JP3695338B2/en
Publication of JP2001314868A publication Critical patent/JP2001314868A/en
Application granted granted Critical
Publication of JP3695338B2 publication Critical patent/JP3695338B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for preparing deionized water stably over a long term, preventing the specific resistance of the deionized water and the removal ratio of silica from decreasing and also preventing the generation of scale. SOLUTION: In a method for preparing deionized water by an electric regeneration type deionizing method, an S value, which is a parameter comprising hydrogen ion concentration and electric conductance, of concentrated water at the outlet is adjusted to 7 or higher by adding a monovalent cation type electrolyte to water to be treated or supply water to a concentration chamber or by selectively removing Mg ions in the water to be treated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気再生式脱イオ
ン法(以下EDI法と称する)により、脱イオン水を製造
する方法に関する。詳しくは、医薬品製造工業、半導体
製造工業、食料品工業等の各種製造業、或いはボイラー
水や研究施設などで用いられる純水もしくは超純水等と
いわれる高度に脱イオン化した脱イオン水を効率的に製
造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing deionized water by an electric regeneration type deionization method (hereinafter referred to as EDI method). For more details, it is possible to efficiently use highly deionized deionized water called pure water or ultrapure water used in various manufacturing industries such as the pharmaceutical manufacturing industry, semiconductor manufacturing industry, foodstuff industry, or boiler water or research facilities. To a manufacturing method.

【0002】[0002]

【従来の技術】従来、脱イオン水の製造方法としてはイ
オン交換樹脂の充填床に被処理水を流し、不純物イオン
をイオン交換樹脂に吸着させて除去することにより脱イ
オン水を得る方法が一般的である。ところが、この方法
では、交換・吸着能力の低下したイオン交換樹脂は再生
することが必要であり、その再生は、通常酸やアルカリ
を用いて行われる。その結果、この方法では、面倒な再
生操作と共にそれら酸やアルカリに起因する廃液が排出
されるという問題がある。
2. Description of the Related Art Conventionally, as a method for producing deionized water, generally, a method of obtaining deionized water by flowing treated water through a packed bed of ion exchange resin and adsorbing and removing impurity ions on the ion exchange resin is generally used. It is a target. However, in this method, it is necessary to regenerate the ion-exchange resin having a reduced exchange / adsorption ability, and the regeneration is usually performed using an acid or an alkali. As a result, in this method, there is a problem that a waste liquid caused by the acid or alkali is discharged together with a troublesome regeneration operation.

【0003】このため再生の必要のない脱イオン水製造
方法が望まれており、近年、薬液による再生操作の必要
のないEDI法が開発され、実用化されてきている。こ
の方法は、陰イオン交換膜と陽イオン交換膜とを交互に
配置した電気透析槽の脱塩室に陰イオン交換樹脂と陽イ
オン交換樹脂の混合物を入れ、該脱塩室に被処理水を流
すとともに、脱塩室と交互に形成、配置された濃縮室に
濃縮水を流しながら電圧を印加して電気透析を行うもの
であり、それにより脱イオン水を製造すると共にイオン
交換樹脂の再生をも同時に行うものであって、別途イオ
ン交換樹脂の再生を行う必要のない方法である。
[0003] Therefore, a method of producing deionized water that does not require regeneration is desired. In recent years, an EDI method that does not require a regeneration operation using a chemical solution has been developed and put into practical use. In this method, a mixture of an anion exchange resin and a cation exchange resin is placed in a desalting chamber of an electrodialysis tank in which an anion exchange membrane and a cation exchange membrane are alternately arranged, and the water to be treated is placed in the desalting chamber. This is to perform electrodialysis by applying a voltage while flowing concentrated water into the concentrated room, which is formed and arranged alternately with the demineralization room while flowing, thereby producing deionized water and regenerating the ion exchange resin. This is a method which does not need to separately regenerate the ion exchange resin.

【0004】すなわち、従来のEDI法においては、陽
極を備える陽極室と陰極を備える陰極室との間に陽イオ
ン交換膜と陰イオン交換膜を交互に配列させ陽極側がア
ニオン交換膜で区画され陰極側がカチオン交換膜で区画
された脱塩室と陽極側がカチオン交換膜で区画され陰極
側がアニオン交換膜で区画された濃縮室とを形成させた
電気透析槽の脱塩室に陰イオン交換樹脂及び陽イオン交
換樹脂を収容してなる脱イオン水製造装置を使用し、電
圧を印加しながら脱塩室に被処理水を流入させると共
に、濃縮室に被処理水又は処理水の一部を濃縮水として
流入させることにより、被処理水中の不純物イオンを除
去するものである。
That is, in the conventional EDI method, a cation exchange membrane and an anion exchange membrane are alternately arranged between an anode chamber provided with an anode and a cathode chamber provided with a cathode, and the anode side is partitioned by an anion exchange membrane and the cathode is separated. An anion exchange resin and a positive electrode are placed in a desalination chamber of an electrodialysis tank in which a desalination chamber defined by a cation exchange membrane on the side and a concentration chamber defined on the anode side by a cation exchange membrane and the cathode side defined by an anion exchange membrane. Using a deionized water production apparatus containing an ion exchange resin, the treated water flows into the desalination chamber while applying a voltage, and the treated water or a part of the treated water is used as concentrated water in the concentration chamber. By flowing the impurities, impurity ions in the water to be treated are removed.

【0005】そして、この方法によれば、前記したとお
り同時にイオン交換樹脂が連続的に再生されるため、酸
やアルカリ等の薬液による再生工程とその再生に使用し
た廃液処理が不要であるという利点を有するものではあ
るが、その際、EDI装置は被処理水中のカルシウムイ
オンやマグネシウムイオン等の硬度成分により電気抵抗
が上昇し印加電圧の上昇または電流の低下を招き、更に
は脱塩性能の低下により生産される処理水の比抵抗が低
下する問題があった。
According to this method, since the ion-exchange resin is continuously and simultaneously regenerated as described above, there is no need for a regeneration step using a chemical such as an acid or an alkali and a waste liquid treatment used for the regeneration. However, at this time, the EDI device causes an increase in electrical resistance due to hardness components such as calcium ions and magnesium ions in the water to be treated, causing an increase in applied voltage or a decrease in current, and further a decrease in desalination performance. There is a problem that the specific resistance of the treated water produced by the process decreases.

【0006】そのため、かかる問題を克服する方法は、
既に数多く提案されており、それには、例えばEDI装
置に供給する被処理水を予め逆浸透膜処理を2段行い可
及的に硬度成分を除去した後EDI法の被処理水として
供給する方法(特開平2−40220号)や、別途用意
した酸性水生成電解槽で水を電気分解し陽極室で生成す
る酸性水をEDI法の濃縮室へ通水する方法(特開平1
0−128338号)がある。このような方法の採用に
よりEDI法の長期性能の安定は図れるが、投資コスト
の増大を招き、その結果、他の脱イオン方法との比較に
おいてEDIシステムの利点が少なくなるという別の問
題が生ずることになる。
Therefore, a method for overcoming such a problem is as follows.
There have already been many proposals, for example, a method in which water to be supplied to an EDI device is subjected to reverse osmosis membrane treatment in two stages in advance to remove as much hardness as possible, and then supplied as water to be treated by the EDI method ( JP-A-2-40220) or a method in which water is electrolyzed in a separately prepared acidic water-producing electrolytic cell and acidic water generated in the anode chamber is passed through a EDI-type concentrating chamber (Japanese Patent Laid-Open No.
0-128338). By adopting such a method, the long-term performance of the EDI method can be stabilized, but the investment cost is increased, and as a result, there is another problem that the advantage of the EDI system is reduced as compared with other deionization methods. Will be.

【0007】また、アルカリ金属の塩酸塩あるいは硫酸
塩水溶液を添加し電導度を100〜800μS/cmと
した液をEDI装置の濃縮室へ供給することにより、流
れる電流を安定化し高純度の処理水を得る方法(特開平
9−24374号)も提案されているが、その性能の長
期安定性については明らかにされてない。
Further, an aqueous solution of an alkali metal hydrochloride or sulfate is added to supply a liquid having an electric conductivity of 100 to 800 μS / cm to a concentration chamber of an EDI apparatus, thereby stabilizing a flowing current to stabilize high-purity treated water. (Japanese Patent Laid-Open No. 9-24374) has also been proposed, but the long-term stability of its performance has not been clarified.

【0008】[0008]

【発明が解決しようとする課題】本発明は、従来のED
I法による脱イオン水製造システムの長期安定化方法及
びその後提案された前記改善脱イオン水製造方法等が有
する前記した問題を解決する方法に関し、特にはEDI
法において供給する被処理水の硬度成分等の不純物によ
る性能低下の防止及び解消する方法であり、しかも簡便
かつ安価な手法を提供することを発明の解決課題、すな
わち目的とする。
SUMMARY OF THE INVENTION The present invention relates to a conventional ED.
The present invention relates to a method for long-term stabilization of a deionized water production system by the method I, and a method for solving the above-mentioned problems of the proposed improved deionized water production method and the like.
SUMMARY OF THE INVENTION An object of the present invention is to provide a simple and inexpensive method for preventing and eliminating performance deterioration due to impurities such as hardness components of water to be treated supplied in the method.

【0009】[0009]

【課題を解決するための手段】本発明は、上記課題を解
決するための脱イオン水製造方法であり、それは陽極を
備える陽極室と陰極を備える陰極室との間に陽イオン交
換膜と陰イオン交換膜を交互に配列させ、陽極側がアニ
オン交換膜で区画され陰極側がカチオン交換膜で区画さ
れた脱塩室と陽極側がカチオン交換膜で区画され陰極側
がアニオン交換膜で区画された濃縮室とを形成させた電
気透析槽の脱塩室にイオン交換体を収容してなる脱イオ
ン水製造装置を使用し、電圧を印加しながら脱塩室に被
処理水を供給し、濃縮室には電解質溶液からなる濃縮液
を供給して、被処理水中の不純物イオンを濃縮水に移動
させて除去する電気再生式脱イオン水製造方法におい
て、濃縮室出口における濃縮水の下記式1で定義される
S値が7以上であり、かつ該濃縮水のpHが2.5以上
であることにより達成することができるものである。す
なわち、本発明では、濃縮室出口における濃縮水のS値
を7以上とすることにより、濃縮室側の陰イオン交換膜
の近傍でMgイオン等の硬度成分がOHイオンや炭酸イ
オンと結合して難溶性の塩を形成するのを抑制できる。
SUMMARY OF THE INVENTION The present invention is directed to a method for producing deionized water for solving the above-mentioned problems, comprising a cation exchange membrane and a cathode between an anode chamber having an anode and a cathode chamber having a cathode. An ion exchange membrane is arranged alternately, a desalting chamber where the anode side is partitioned by an anion exchange membrane and the cathode side is partitioned by a cation exchange membrane, and a concentration chamber where the anode side is partitioned by a cation exchange membrane and the cathode side is partitioned by an anion exchange membrane. Using a deionized water producing apparatus in which an ion exchanger is accommodated in the desalting chamber of the electrodialysis tank in which the water has been formed, the water to be treated is supplied to the desalting chamber while applying a voltage, and the electrolyte is supplied to the concentrating chamber. In the electric regeneration type deionized water production method of supplying a concentrated solution composed of a solution and removing impurity ions in the water to be treated by moving the concentrated water to the concentrated water, the concentrated water at the outlet of the concentrated chamber is defined by the following formula 1 Value is 7 or more And those which can be achieved by pH of the retentate is 2.5 or more. That is, in the present invention, by setting the S value of the concentrated water at the outlet of the concentration chamber to 7 or more, hardness components such as Mg ions are combined with OH ions and carbonate ions near the anion exchange membrane on the concentration chamber side. The formation of a hardly soluble salt can be suppressed.

【0010】[0010]

【化2】 Embedded image

【0011】本発明において、濃縮室出口における濃縮
水(以下「出口濃縮水」という)で前記したS値を7以
上とするには、大別して2つの手法がある。 第1の方
法は、前記したS値を7以上、好ましくは10以上とし
た被処理水を前記脱イオン水製造装置の脱塩室に供給す
る方法である。また、第2の方法は、被処理水のS値が
7未満の場合に、特に前処理することなく脱イオン水製
造装置にそのまま供給する手法であり、その場合には、
被処理水はそのまま供給し濃縮液に一価陽イオン型電解
質を添加せしめる、又は集まるMgイオンをキレート樹
脂等により選択的に除去することにより出口濃縮水にお
ける前記S値を7以上、好ましくは10以上とするもの
である。
In the present invention, there are roughly two methods for setting the S value to 7 or more in the concentrated water at the outlet of the concentration chamber (hereinafter referred to as "outlet concentrated water"). The first method is a method of supplying the water to be treated with the above-mentioned S value of 7 or more, preferably 10 or more, to the desalting chamber of the deionized water producing apparatus. Further, the second method is a method of directly supplying the deionized water to the deionized water production apparatus without performing pretreatment when the S value of the water to be treated is less than 7, and in this case,
The water to be treated is supplied as it is, and a monovalent cation-type electrolyte is added to the concentrated liquid, or the S value at the outlet concentrated water is 7 or more, preferably 10 The above is the description.

【0012】また、本発明では、上記2つの手法のいず
れかを採用又は併用することにより、予め被処理水の硬
度成分を可及的に除去しなくとも電気再生式脱イオン水
製造装置の性能を長期間安定化することができる。特に
シリカ、炭酸ガス等のイオン化しにくい不純物を含有す
る被処理水の場合にも該製造装置を電流密度を高めて運
転できるので、それら不純物を効率よく除去できる。ま
た高い濃縮室電導度により低い印加電圧で運転できるの
で、電力原単位を低減させることができる。
Further, in the present invention, by adopting or using one of the above two methods, the performance of the electric regeneration type deionized water producing apparatus can be reduced without removing the hardness component of the water to be treated as much as possible in advance. Can be stabilized for a long time. In particular, even in the case of water to be treated containing impurities which are difficult to ionize, such as silica and carbon dioxide, the production apparatus can be operated with an increased current density, so that the impurities can be efficiently removed. In addition, since the operation can be performed with a low applied voltage due to the high concentration chamber conductivity, the power consumption can be reduced.

【0013】そして、第1の方法をより具体的に説明す
ると、脱イオン水の原料水となる河川水、湖沼水、地下
水あるいは水道水等のS値は通常1以下であり、第1の
方法では、このS値を7以上とした後に脱イオン水製造
装置供給用の被処理水とすることになるが、そのために
は、Mgイオン以外の電解質を添加し電導度を高める方
法と、被処理水中のMgイオンを選択的に除去あるいは
Mgイオン以外のイオンとイオン交換する方法がある。
[0013] To explain the first method more specifically, the S value of river water, lake water, groundwater, tap water, or the like, which is the raw material water of deionized water, is usually 1 or less. Then, after the S value is set to 7 or more, the water to be treated is to be supplied to the deionized water producing apparatus. For this purpose, a method of adding an electrolyte other than Mg ions to increase the electric conductivity, There is a method of selectively removing Mg ions in water or performing ion exchange with ions other than Mg ions.

【0014】前者の方法では、被処理水中の電解質濃度
が高まる結果、EDI装置で除去しなければならないイ
オン量の増加を招き、処理速度が低下する等の問題があ
る。他方、後者の方法には、キレート樹脂等によりMg
イオンを選択的に除去あるいはMgイオン以外のイオ
ン、特には1価陽イオンとイオン交換する所謂ソフナー
をEDI装置の前処理に使用する方法があり、それら
は、本発明の好ましい実施形態の一つであるが、イオン
交換の貫流点を過ぎると急激に高濃度のMgイオンが漏
洩するため、メンテナンスが煩雑になりやすい。
In the former method, the concentration of the electrolyte in the water to be treated is increased, resulting in an increase in the amount of ions that must be removed by the EDI device, and a problem such as a reduction in the treatment speed. On the other hand, the latter method uses Mg
There is a method in which a so-called softener that selectively removes ions or exchanges ions other than Mg ions, particularly, monovalent cations, is used for pretreatment of an EDI apparatus. These methods are one of preferred embodiments of the present invention. However, since the high concentration of Mg ions leaks abruptly after passing through the point of ion exchange, maintenance tends to be complicated.

【0015】本発明者は、前記した問題点について、鋭
意検討した結果、EDI装置の前処理装置としては特定
の特性を有する逆浸透膜が好ましいことを見出した。す
なわち、脱イオン水製造装置の前処理装置として、逆浸
透膜の基礎物性値であるNaCl除去率とMgCl2
去率とを用いた下記式2で定義されるT値が10以上で
ある逆浸透膜を備える逆浸透装置を採用し、これで前処
理した被処理水を前記脱イオン水製造装置に供給するこ
とにより前記課題をも達成することができることを見出
したものである。 [式2] T値=(100−NaCl除去率)/(100−MgCl2除去率) [ここで、NaCl除去率およびMgCl2除去率は、そ
れぞれ濃度0.1質量%の水溶液を用いて圧力0.8M
Pa、温度25℃にて測定した値である。]
As a result of intensive studies on the above problems, the present inventor has found that a reverse osmosis membrane having specific characteristics is preferable as a pretreatment device for an EDI device. That is, as a pretreatment device of a deionized water production device, a reverse osmosis in which the T value defined by the following equation 2 using the NaCl removal rate and the MgCl 2 removal rate, which are the basic physical property values of the reverse osmosis membrane, is 10 or more. It has been found that the above problem can also be achieved by employing a reverse osmosis device having a membrane and supplying the water to be treated pretreated with the reverse osmosis device to the deionized water production device. [Equation 2] T value = (100-NaCl removal rate) / (100-MgCl 2 removal rate) [Here, the NaCl removal rate and the MgCl 2 removal rate are each determined by using an aqueous solution having a concentration of 0.1% by mass. 0.8M
It is a value measured at Pa and a temperature of 25 ° C. ]

【0016】[0016]

【発明の実施の形態】以下において、本発明の脱イオン
水製造方法に関し、図1に図示する電気再生式脱イオン
水製造装置を使用した1態様を説明するが、本発明は、
この態様に限定されるものではなく特許請求の範囲の記
載によって特定されるものであることはいうまでもな
い。
BEST MODE FOR CARRYING OUT THE INVENTION In the following, an embodiment of the method for producing deionized water of the present invention using the electric regeneration type deionized water producing apparatus shown in FIG. 1 will be described.
It is needless to say that the present invention is not limited to this embodiment and is specified by the description of the claims.

【0017】本発明の脱イオン水製造方法において使用
する脱イオン水製造装置は、アニオン交換膜A及びカチ
オン交換膜Kが電気透析槽1中に脱塩室枠D1、D2、D
3・・・Dn及び濃縮室枠C1、C2、C3・・・Cnを介し
て所定間隔を置いて配置され、これにより陽極室2、濃
縮室S1、S2・・・Sn、脱塩室R1、R2・・・Rn及び
陰極室3が構成される。また、脱塩室R1、R2・・・R
nには陰イオン交換体及び陽イオン交換体が収容・充填
され、濃縮室にはメッシュ状等の構造体すなわちスペー
サーN1、N2・・・Nnが挿入配置される。
In the apparatus for producing deionized water used in the method for producing deionized water of the present invention, the anion exchange membrane A and the cation exchange membrane K are provided in the electrodialysis tank 1 in the desalination chamber frames D1, D2, D
3... Dn and the enrichment chamber frames C1, C2, C3... Cn are arranged at predetermined intervals, whereby the anode chamber 2, the enrichment chambers S1, S2. R2 ... Rn and the cathode chamber 3 are constituted. In addition, desalination chambers R1, R2,.
An anion exchanger and a cation exchanger are accommodated and filled in n, and a structure such as a mesh, that is, spacers N1, N2,...

【0018】そして、陽極室2及び陰極室3には、それ
ぞれ陽極4及び陰極5が設置されており、脱イオン水製
造中は両極間に電圧がかけられる。これにより導管6か
ら脱塩室R1、R2・・・Rnへ導入される被処理水中の
陰イオン成分はアニオン交換膜Aを通して陽極側の濃縮
室へ透過移行し、被処理水中の陽イオン成分はカチオン
交換膜Kを通して陰極側の濃縮室へ透過移行する。その
結果被処理水自体は脱イオン化され、脱塩室通過後は導
管7を通して取り出される。
An anode 4 and a cathode 5 are provided in the anode chamber 2 and the cathode chamber 3, respectively, and a voltage is applied between both electrodes during the production of deionized water. Thereby, the anion component in the water to be treated, which is introduced from the conduit 6 into the desalting chambers R1, R2,... Rn, permeates and transfers to the concentration chamber on the anode side through the anion exchange membrane A, and the cation component in the water to be treated is The permeation shifts to the concentration chamber on the cathode side through the cation exchange membrane K. As a result, the water to be treated itself is deionized and taken out through the conduit 7 after passing through the desalting chamber.

【0019】他方、濃縮室へ供給する濃縮水は、一価陽
イオン型電解質を添加し、前記した[式1]のS値の出
口濃縮水における値が7以上にように制御した後、導入
管8を通して各濃縮室S1、S2・・・Snへ導入され、
ここに上記のように透過移行した陰イオンおよび陽イオ
ンが集められ濃縮水として導管9から排出される。な
お、図1には被処理水流の方向と濃縮水流の方向とが逆
方向(向流)の場合を示しているが、両者を並流として
もよいことは勿論である。
On the other hand, the concentrated water to be supplied to the concentration chamber is introduced by adding a monovalent cation-type electrolyte and controlling the S value of the above [Equation 1] at the outlet concentrated water to be 7 or more. Are introduced into each of the concentration chambers S1, S2,.
Here, the anions and cations permeated and transferred as described above are collected and discharged from the conduit 9 as concentrated water. Although FIG. 1 shows a case where the direction of the water stream to be treated and the direction of the concentrated water stream are opposite (countercurrent), it is a matter of course that both may be co-current.

【0020】その電気透析槽1において、各脱塩室R
1、R2・・・Rn内の陽イオン交換体に捕捉された被処
理水中の陽イオンは、電場により駆動力が与えられ、捕
捉した陽イオン交換体に接触している隣接する陽イオン
交換体を順次経由してカチオン交換膜に達し、さらに膜
を透過して各濃縮室S1、S2・・・Snに移動する。同
様に、陰イオン交換体に捕捉された被処理水中の陰イオ
ンは、隣接する陰イオン交換体を順次経由してアニオン
交換膜に達し、更に膜を透過して各濃縮室S1、S2・・
・Snに移動する。
In the electrodialysis tank 1, each desalting chamber R
1. The cations in the water to be treated captured by the cation exchanger in R2... Rn are given a driving force by an electric field, and are adjacent to the cation exchanger in contact with the captured cation exchanger. , Sequentially reach the cation exchange membrane, pass through the membrane, and move to each of the concentration chambers S1, S2,... Sn. Similarly, the anions in the water to be treated captured by the anion exchanger sequentially pass through adjacent anion exchangers, reach the anion exchange membrane, and further permeate through the membrane to each of the concentration chambers S1, S2,.
・ Move to Sn.

【0021】本発明で使用する図1に図示された電気再
生式脱イオン水製造装置においては、被処理水のS値が
7以下の場合を例示するものである。濃縮室に供給する
濃縮水は、別途設置されたタンク10との間でポンプP
1、P2及び濃縮水循環用導管11によって循環再利用さ
れるようになっていると共に被処理水又は処理水の一部
が循環系のタンク10内に添加され補給されるようにな
っている。
The electric regeneration type deionized water producing apparatus shown in FIG. 1 used in the present invention exemplifies a case where the S value of the water to be treated is 7 or less. Concentrated water supplied to the concentrating chamber is supplied to a pump P between the tank and the separately installed tank 10.
1, P2 and the concentrated water circulating conduit 11 are circulated and reused, and a part of the water to be treated or the treated water is added to the tank 10 of the circulation system to be replenished.

【0022】その補給は、導管6及び7からそれぞれ分
岐する弁15a及び16aを具備する分岐管15及び1
6によって行われるようになっている。また、その際の
被処理水又は処理水の補給量については、特に制限はな
いが実用的には全被処理水に対して好ましくは0.00
1〜10%(以下、特にことわらない限り質量%を意味
する)の範囲がよい。
The replenishment is effected by branching pipes 15 and 1 with valves 15a and 16a, respectively, branching off from conduits 6 and 7, respectively.
6 is performed. Further, the amount of the water to be treated or the replenishment amount of the treated water at that time is not particularly limited, but is practically preferably 0.00
The range is preferably from 1 to 10% (hereinafter, it means mass% unless otherwise specified).

【0023】そして、その循環系のタンク10内の濃縮
水には、式1で定義されるS値が7以上を維持するため
に1価陽イオン型電解質が添加されるものであり、この
ことが本発明の最大の特徴の一態様である。その際のS
値は、濃縮液として排出される導管9とタンク10の間
に設置した電導度計14により測定して調節されるが、
出口濃縮水のS値と濃縮室に供給されるS値が近似して
いる場合は、タンク10内の濃縮水の電導度を電導度計
14で測定することによって調節することもできる。そ
の調節は、図1の装置では、電導度を測定しそれを所定
の値に維持するように1価陽イオン型電解質添加装置1
3からの添加量を調節することで行うようになってい
る。
Then, a monovalent cation-type electrolyte is added to the concentrated water in the tank 10 of the circulation system in order to maintain the S value defined by the equation 1 at 7 or more. Is an aspect of the most significant feature of the present invention. S at that time
The value is adjusted by measuring with a conductivity meter 14 installed between the conduit 9 and the tank 10 which are discharged as a concentrate,
When the S value of the concentrated water at the outlet is similar to the S value supplied to the concentration chamber, the conductivity can be adjusted by measuring the conductivity of the concentrated water in the tank 10 with the conductivity meter 14. In the adjustment of the apparatus shown in FIG. 1, the electric conductivity is measured and the monovalent cation type electrolyte adding apparatus 1 is controlled so as to maintain the electric conductivity at a predetermined value.
The adjustment is performed by adjusting the addition amount from 3.

【0024】すなわち、pHが7で、濃縮水のMgイオ
ン濃度が200ppbでは1400μS/cm、Mgイ
オン濃度が2000ppbでは14000μS/cm以
上に維持するように1価陽イオン型電解質添加装置13
からの添加量を調節することで行うようになっている。
その際に添加する電解質については、添加量が微量にな
ることから水溶液にして使用することが好ましく、その
濃度は5〜36%がよく、好ましくは10〜20%がよ
い。
That is, the monovalent cation-type electrolyte adding device 13 is maintained so that the pH is 7 and the Mg ion concentration of the concentrated water is maintained at 1400 μS / cm at 200 ppb and 14000 μS / cm at 2000 ppb.
The amount is adjusted by adjusting the amount added.
The electrolyte added at this time is preferably used in the form of an aqueous solution because the amount of addition is very small. The concentration is preferably 5 to 36%, and more preferably 10 to 20%.

【0025】本発明の図1に図示した装置では、前記S
値が7未満の被処理水を使用する脱イオン水製造におい
て、濃縮水に1価陽イオン型電解質を添加しそのS値を
所定の範囲に維持するものであり、そのために同装置で
は、濃縮水を循環使用しており、それが好ましい態様で
はあるが、本発明はそれに限定されるわけではない。
In the apparatus of the present invention shown in FIG.
In the production of deionized water using water to be treated having a value of less than 7, a monovalent cation-type electrolyte is added to the concentrated water to maintain its S value within a predetermined range. Although water is recycled, which is a preferred embodiment, the present invention is not limited thereto.

【0026】したがって、濃縮水は循環使用しなくても
よく、その際には1価陽イオン型電解質の添加は濃縮室
に供給する濃縮水に直接添加すればよい。また、添加す
る1価陽イオン型電解質については、添加量が微量にな
り、微調整することが困難であることから、前記したと
おり水溶液にして使用することが必要であり、その濃度
は5〜36%がよく、好ましくは10〜20%がよい。
Therefore, the concentrated water does not need to be circulated, and in this case, the monovalent cation-type electrolyte may be added directly to the concentrated water supplied to the concentration chamber. In addition, the amount of the monovalent cation-type electrolyte to be added is small, and it is difficult to finely adjust the electrolyte. Therefore, it is necessary to use an aqueous solution as described above, and the concentration thereof is 5 to 5. 36% is good, preferably 10-20%.

【0027】本発明では、1価陽イオン型電解質を添加
した濃縮室について、濃縮室出口ではそのS値を7以上
とするものであり、そのS値の上限は、脱塩室に供給す
る被処理水の不純物組成や電気透析槽のイオン交換膜に
流れる電流密度により異なるが、30以下、好ましくは
13〜15とする。その理由はS値が増加することによ
り濃縮室への供給水電導度が過度に高くなると、濃縮室
と脱塩室を区画するイオン交換膜を通して電導度成分が
濃縮室から脱塩室へ拡散漏洩し処理水の品質を低下さ
せ、その対策に電気透析槽に流す電流を高めたり、更に
分離性能の良いイオン交換膜が必要となる等、不都合な
点が顕在する。また、その下限を7としたのは、7未満
では安定性が劣るためである。
In the present invention, the S value of the concentrating chamber to which the monovalent cation-type electrolyte has been added is set to 7 or more at the outlet of the concentrating chamber. Although it depends on the impurity composition of the treated water and the current density flowing through the ion exchange membrane of the electrodialysis tank, it is 30 or less, preferably 13 to 15. The reason is that when the S value increases and the conductivity of the supply water to the concentration chamber becomes excessively high, the conductivity component diffuses and leaks from the concentration chamber to the desalination chamber through the ion exchange membrane separating the concentration chamber and the desalination chamber. Inconveniences such as a decrease in the quality of the treated water, an increase in the current flowing through the electrodialysis tank as a countermeasure, and the necessity of an ion exchange membrane having a better separation performance become apparent. In addition, the reason why the lower limit is set to 7 is that if it is less than 7, the stability is inferior.

【0028】そして、その際のS値の調節は、濃縮水の
電導度を電導度計14により測定し、それを所定の値を
維持するように1価陽イオン型電解質添加装置13から
の添加量を調節することにより主として行うものである
が、濃縮水を循環使用する場合には循環水の循環量ある
いは循環水に添加される被処理水又は処理水の補給量を
調節することによって、副次的に行うこともできる。ま
た、濃縮水の循環を行う場合には、タンクを介在させる
ことが好ましいが、特に介在させることを不可欠とする
ものではなく、タンクなしに循環することも可能であ
り、その際には循環パイプの中途で1価陽イオン型電解
質の添加及び被処理水又は処理水の補給を行えばよい。
Then, the S value is adjusted by measuring the conductivity of the concentrated water with a conductivity meter 14 and adding the same from a monovalent cation type electrolyte adding device 13 so as to maintain a predetermined value. This is mainly performed by adjusting the amount of water, but when the concentrated water is circulated, the amount of circulating water or the amount of water to be treated or the amount of replenished water to be added to the circulating water is adjusted. It can be done next. When circulating concentrated water, it is preferable to interpose a tank, but it is not essential to intervene, and it is possible to circulate without a tank. The addition of the monovalent cation-type electrolyte and the replenishment of the water to be treated or the treated water may be performed halfway.

【0029】濃縮水に添加する1価陽イオン型電解質に
ついては、1価陽イオンと、1価又は多価の陰イオンと
が結合した電解質で、溶解して速やかに1価陽イオンを
提供することができるものであれば、特に制限されるこ
となく使用できる、その際の1価陽イオンとしては、水
素イオン、リチウムイオン、ナトリウムイオン、カリウ
ムイオン、アンモニウムイオン及び4級アルキルアンモ
ニウムイオン等が好ましい。
The monovalent cation-type electrolyte to be added to the concentrated water is an electrolyte in which a monovalent cation and a monovalent or polyvalent anion are combined, and dissolves to provide the monovalent cation quickly. Any monovalent cation can be used without particular limitation as long as it can be used. As the monovalent cation at that time, a hydrogen ion, a lithium ion, a sodium ion, a potassium ion, an ammonium ion, a quaternary alkylammonium ion and the like are preferable. .

【0030】また、陰イオンとしてはフッ素イオン、塩
素イオン及び硝酸イオン等の1価イオンと共に硫酸イオ
ン及び炭酸イオン等の多価イオンが好ましい。前記した
電解質は、これらのイオンから選ばれる陰陽両イオンが
結合した化合物であれば好ましいものであり、その中で
も、塩酸、塩化ナトリウム及び塩化カリウムが効果の点
や入手の容易さで特に好ましい。
The anion is preferably a monovalent ion such as a fluorine ion, a chloride ion or a nitrate ion, or a polyvalent ion such as a sulfate ion or a carbonate ion. The above-mentioned electrolyte is preferably a compound in which an anion and a cation selected from these ions are bonded, and among them, hydrochloric acid, sodium chloride, and potassium chloride are particularly preferable in terms of effect and availability.

【0031】それらの1価陽イオン型電解質は、1種単
独でも2種以上混合しても使用できるが、なかでもNa
Cl又はKClと、塩酸とを組合せ、かつ濃縮室出口に
おける濃縮水のpHを2.5〜6、好ましくは2.6〜
5とすることで、NaCl又はKClの添加量を少量に
抑制してもS値が達成できるので好ましい。その理由
は、このようにすることにより、特に脱塩室に供給する
被処理水の脱炭酸、すなわち含有炭酸ガスの分離除去が
不十分な場合でも、それに伴って発生する恐れのある炭
酸カルシウムの析出が防止できる利点があるからであ
る。
These monovalent cation-type electrolytes can be used alone or in combination of two or more.
Combine Cl or KCl with hydrochloric acid, and adjust the pH of the concentrated water at the outlet of the concentration chamber to 2.5 to 6, preferably 2.6 to 2.6.
By setting it to 5, the S value can be achieved even when the amount of addition of NaCl or KCl is suppressed to a small amount, which is preferable. The reason is that, in this way, in particular, the decarbonation of the water to be treated supplied to the desalination chamber, that is, even if the separation and removal of the contained carbon dioxide gas is insufficient, the calcium carbonate which may be generated therewith may be generated. This is because there is an advantage that precipitation can be prevented.

【0032】本発明のEDI法において、脱塩室に供給
する被処理水については、S値が7以上が望ましく、上
水、地下水あるいは河川水等の各種の原水は、本発明の
式2のT値が10以上、好ましくは25以上、特には5
0以上の特性を有する逆浸透膜を具備する逆浸透装置で
前処理し、S値が7以上で、かつ電導度が200μS/
cm以下にするのが好ましい。
In the EDI method of the present invention, the S value of the water to be supplied to the desalination chamber is desirably 7 or more, and various raw waters such as tap water, groundwater, and river water can be obtained by the following formula 2 of the present invention. T value is 10 or more, preferably 25 or more, especially 5
Pretreatment with a reverse osmosis device having a reverse osmosis membrane having characteristics of 0 or more, S value is 7 or more, and electric conductivity is 200 μS /
cm or less.

【0033】前記したとおりではあるが、被処理水のS
値が7未満の場合には、出口濃縮水のS値を7以上とす
ることにより対応できる。この場合は、本発明の目的お
よび効果の点からすると、被処理水は電導度が1〜20
0μS/cmで、Mgイオン濃度が1〜200ppbの
ものが好ましく使用できる。かかる被処理水を使用した
場合、後記する実施例に記載するように、本発明では長
期性能安定が達成される。
As described above, the water to be treated S
If the value is less than 7, it can be dealt with by setting the S value of the outlet concentrated water to 7 or more. In this case, in view of the objects and effects of the present invention, the water to be treated has an electric conductivity of 1 to 20.
Those having 0 μS / cm and Mg ion concentration of 1 to 200 ppb can be preferably used. When such water to be treated is used, long-term performance stability is achieved in the present invention, as described in Examples below.

【0034】本発明においては、このような被処理水を
使用して脱イオン水を製造すること、すなわち、脱塩室
には、電導度1〜200μS/cm、Mgイオン濃度が
1〜200ppbの被処理水を供給し、濃縮室には、1
価陽イオン型電解質を添加し、出口濃縮水のS値を7以
上となるように濃縮水を供給しつつ、電気透析槽に電圧
を印加し、脱イオンせしめことになるが、その際の電流
量、すなわちイオンが透過する膜面積当たりの電流量に
ついては、被処理水中のイオン量、即ち電導度と被処理
水の供給量の増加に従い適時増加するのが好ましく、
0.1〜2A/dm2、特には0.2〜1A/dm2の電
流密度が使用される。
In the present invention, deionized water is produced using such water to be treated, that is, in the desalting chamber, the conductivity is 1 to 200 μS / cm and the Mg ion concentration is 1 to 200 ppb. The water to be treated is supplied, and 1
While adding a cation-type electrolyte and supplying concentrated water so that the S value of the concentrated water at the outlet becomes 7 or more, a voltage is applied to the electrodialysis tank to cause deionization. The amount, that is, the amount of current per membrane area through which ions permeate, is preferably increased in a timely manner with an increase in the amount of ions in the water to be treated, that is, the conductivity and the supply amount of the water to be treated,
0.1~2A / dm 2, in particular a current density of 0.2~1A / dm 2 is used.

【0035】また、その際に被処理水にシリカや炭酸ガ
スが含まれる場合には、本発明では、電流量を増加し、
発生するOHイオンによりシリカや炭酸ガスをイオン化
せしめることで被処理水中から脱イオン化することがで
きるが、本発明を使用しない場合は、時間の経過に従い
アニオン交換膜面上にスケールが発生し、イオン選択透
過性が低下するために処理水の比抵抗が低下する。本発
明により性能の長期安定がはかれる利点がある。
In this case, if the water to be treated contains silica or carbon dioxide gas, the present invention increases the amount of current,
It is possible to deionize the water to be treated by ionizing silica or carbon dioxide gas with the generated OH ions, but when the present invention is not used, scale is generated on the anion exchange membrane surface with the passage of time, Since the permselectivity decreases, the specific resistance of the treated water decreases. The present invention has an advantage that long-term stability of performance is achieved.

【0036】本発明において使用する陽イオン交換膜、
陰イオン交換膜、電導度計、タンク及びポンプ等につい
ては、各種既知のものが特に制限されることなく使用で
き、また電気透析槽の構造についても各種既知のものが
特に制限されることなく使用できる。そして、イオン交
換体については、その形状は、粒状、繊維状、板状等の
各種のものが使用可能である。またイオン交換体の備え
る官能基の種類及び交換性能については、陰イオン交換
基及び陽イオン交換基を有するイオン交換体、すなわち
陰イオン交換樹脂及び陽イオン交換樹脂を混合使用する
のがよく、その交換能は強弱いずれでも使用可能である
が、好ましくは強酸性及び強塩基性ものがよい。
A cation exchange membrane used in the present invention,
As for the anion exchange membrane, the conductivity meter, the tank, the pump, etc., various known ones can be used without particular limitation, and the known structure of the electrodialysis tank can be used without particular limitation. it can. As for the ion exchanger, various shapes such as a granular shape, a fibrous shape, and a plate shape can be used. As for the type of functional group and the exchange performance of the ion exchanger, it is preferable to use a mixture of an ion exchanger having an anion exchange group and a cation exchange group, that is, an anion exchange resin and a cation exchange resin. The exchange capacity may be either strong or weak, but preferably strong acidity and strong basicity.

【0037】[0037]

【実施例】以下、実施例に基づき本発明をさらに詳しく
説明するが、本発明はこれら実施例に限定されるもので
はなく、特許請求の範囲によって特定されるものである
ことは勿論である。使用装置としては図1に示すような
電気再生式脱イオン水製造装置を使用したが、被処理水
と濃縮水については、図示する装置とは異なり上方向の
並流として使用した。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, but it should be understood that the present invention is not limited to these Examples and is specified by the appended claims. As the apparatus used, an electric regeneration type deionized water producing apparatus as shown in FIG. 1 was used. However, unlike the apparatus shown in the drawing, the water to be treated and the concentrated water were used in the upward cocurrent flow.

【0038】この実施例で使用した脱イオン水製造装置
における電気透析槽の具体的構造は以下のとおりであ
る。強酸性陽イオン交換膜(厚み600μm、イオン交
換容量2.7ミリ当量/グラム乾燥膜)及び強塩基性陰
イオン交換膜(厚み600μm、イオン交換容量2.1
ミリ当量/グラム乾燥膜)を脱塩室枠(ポリプロピレン
製)及び濃縮室枠(ポリプロピレン製)を介して配列し
て締め付けフィルタープレス型透析槽(濃縮室にはポリ
プロピレン製ネットを挿入)からなる有効面積507c
2〔横(=室枠幅)13cm、縦(=脱塩長)39c
m〕×3対の電気透析槽を構成した。
The specific structure of the electrodialysis tank in the deionized water producing apparatus used in this embodiment is as follows. Strongly acidic cation exchange membrane (thickness 600 μm, ion exchange capacity 2.7 meq / g dry membrane) and strong basic anion exchange membrane (thickness 600 μm, ion exchange capacity 2.1)
Milli-equivalents / gram dry membrane) are arranged via a desalting chamber frame (made of polypropylene) and a concentrating chamber frame (made of polypropylene) and tightened, and a filter press type dialysis tank (a polypropylene net is inserted in the concentrating chamber) is effective. Area 507c
m 2 [horizontal (= room frame width) 13cm, vertical (= desalting length) 39c
m] × 3 pairs of electrodialysis tanks.

【0039】そして、その脱塩室には、カチオン交換樹
脂、アニオン交換樹脂及びバインダーを混合して板状に
成型加工したものを乾燥状態で充填し、濃縮室には流路
を確保するための合成樹脂製のスペーサーを充填した。
その際上記両イオン交換樹脂には、粒径が400〜60
0μm、イオン交換容量が4.5ミリ当量/g乾燥樹脂
のスルホン酸酸型(H型)陽イオン交換樹脂(三菱化学
社製、商品名:ダイヤイオンSKー1B)及び粒径が4
00〜600μm、イオン交換容量が3.5ミリ当量/
g乾燥樹脂の4級アンモニウム塩型(OH型)陰イオン
交換樹脂(三菱化学社製、商品名:ダイヤイオンSAー
10A)を用い、イオン交換容量比は50/50となる
ようにした。
The desalting chamber is filled with a mixture formed by mixing a cation exchange resin, an anion exchange resin and a binder into a plate shape in a dry state. A spacer made of a synthetic resin was filled.
At this time, the particle size of both ion exchange resins is 400 to 60.
A sulfonic acid type (H type) cation exchange resin (manufactured by Mitsubishi Chemical Corporation, trade name: Diaion SK-1B) having a dry resin of 0 μm and an ion exchange capacity of 4.5 meq / g and a particle size of 4
00 to 600 μm, ion exchange capacity is 3.5 meq /
g An ion exchange capacity ratio of 50/50 was used using a quaternary ammonium salt type (OH type) anion exchange resin (manufactured by Mitsubishi Chemical Corporation, trade name: DIAION SA-10A).

【0040】[実施例1、2及び比較例1、2]前記した
EDI装置を用いて、工業用水を砂ろ過後、NaCIの
除去率が99%、MgCl2の除去率が99%のT値が
1である逆浸透膜を具備する逆浸透膜装置で1段処理し
た表1に示す被処理水を前記脱イオン水製造装置の脱塩
室へ供給し、実施例1、2及び比較例1、2の試験を行
った。
[Examples 1 and 2 and Comparative Examples 1 and 2] T value at which the removal rate of NaCl and the removal rate of MgCl 2 were 99% and 99%, respectively, after sand filtration of industrial water using the EDI apparatus described above. The water to be treated shown in Table 1 which had been treated in one stage with a reverse osmosis membrane device having a reverse osmosis membrane having a value of 1 was supplied to the desalination chamber of the deionized water production apparatus, and Examples 1 and 2 and Comparative Example 1 were obtained. 2 were tested.

【0041】[0041]

【表1】 [Table 1]

【0042】その際の濃縮室供給水としては、実施例
1、2及び比較例1では、被処理水に塩化ナトリウムを
添加し、出口濃縮水のS値及び電導度を表2に示すよう
に調整したものを供給し循環使用した。また、比較例2
は、濃縮室供給水に電解質を添加しないで、利用率90
%で循環使用する場合であり、その際のS値及び電導度
は表2に示すとおりである。
In this case, in Examples 1 and 2 and Comparative Example 1, sodium chloride was added to the water to be treated, and the S value and the conductivity of the outlet concentrated water were as shown in Table 2 in Examples 1 and 2 and Comparative Example 1. The adjusted product was supplied and recycled. Comparative Example 2
Has a 90% utilization rate without adding electrolyte to the water supplied to the enrichment chamber.
%, And the S value and conductivity at that time are as shown in Table 2.

【0043】[0043]

【表2】 [Table 2]

【0044】その際の脱塩室及び濃縮室への供給水量、
濃縮水の電導度、硬度及びMg濃度、並びにEDI装置
の電流密度は、表2に記載した。実施例1、2及び比較
例1、2においては、表2に示す条件で連続1000時
間運転し、電圧、処理水の比抵抗及び同シリカ除去率の
安定性をしらべた。また運転終了後、使用した電気透析
槽を解体し、濃縮室側のスケール発生状況を確認した。
表3にこれらの結果を示している。
At that time, the amount of water supplied to the desalting chamber and the concentrating chamber,
Table 2 shows the electrical conductivity, hardness and Mg concentration of the concentrated water, and the current density of the EDI device. In Examples 1 and 2 and Comparative Examples 1 and 2, operation was performed continuously for 1000 hours under the conditions shown in Table 2, and the voltage, the specific resistance of the treated water, and the stability of the silica removal rate were examined. After the operation was completed, the used electrodialysis tank was disassembled, and the scale generation status on the enrichment room side was confirmed.
Table 3 shows these results.

【0045】[0045]

【表3】 この表3の結果より、実施例では、比抵抗及びシリカ除
去率ともに運転初期と1000時間経過後とで差違がな
く、また解体調査でも濃縮室側にスケール発生がなく、
長期間安定していることがわかる。それに対し、比較例
では、比抵抗及びシリカ除去率ともに1000時間経過
後は運転初期より大分低下しており、特に比抵抗は1/
5〜1/8程度と極端に低下している。また解体調査で
は濃縮室側にスケールが発生していることがわかる。
[Table 3] From the results in Table 3, in the example, there was no difference between the initial operation and after 1000 hours in both the specific resistance and the silica removal rate, and there was no scale on the enrichment chamber side even in the dismantling inspection.
It turns out that it is stable for a long time. On the other hand, in the comparative example, both the specific resistance and the silica removal rate were significantly lower than the initial operation after 1000 hours, and the specific resistance was 1/100.
It is extremely reduced to about 51 /. In the dismantling survey, it can be seen that scale is generated on the enrichment room side.

【0046】これらの結果より濃縮室側に供給する濃縮
水に1価陽イオン型電解質を添加し所定のS値にするこ
とにより長期間安定していることが実証できた。さら
に、電流密度が高いほどシリカ除去率が高く、かつ1価
陽イオン型電解質の添加によりシリカ除去性能の低下が
防止できることもわかる。
From these results, it was proved that the monovalent cation-type electrolyte was added to the concentrated water to be supplied to the concentration chamber and the S value was adjusted to a predetermined value so that the water was stable for a long period of time. Further, it can be seen that the higher the current density, the higher the silica removal rate, and the addition of the monovalent cation-type electrolyte can prevent a decrease in the silica removal performance.

【0047】[実施例3]この実施例3では、脱塩室に電
導度13μS/cm、シリカ 600ppb、硬度成分
300ppb(as CaCO3)、Mg30ppb、CO2
ppmを含むpH6.0の被処理水を供給し、濃縮室に
は濃縮水循環タンクに塩化ナトリウムと塩酸を添加し出
口濃縮水の電導度1800μS/cm 、pH3.5に
なるように濃縮水を供給した以外、実施例1と同様の条
件で試験した。出口濃縮水のS値は7.4、Mgイオン
濃度は290ppb、1000時間後の処理水比抵抗は
16MΩ・cm以上であった。解体後の調査では、濃縮
室にスケール発生はなかった。
Embodiment 3 In this embodiment 3, the desalting chamber has an electric conductivity of 13 μS / cm, silica of 600 ppb, and a hardness component of
300 ppb (as CaCO 3 ), Mg 30 ppb, CO 2 1
Supply the water to be treated having a pH of 6.0 containing ppm and adding sodium chloride and hydrochloric acid to a concentration water circulating tank into the concentration chamber, and supply the concentrated water so that the conductivity of the concentrated water at the outlet becomes 1800 μS / cm 2 and pH 3.5. The test was performed under the same conditions as in Example 1 except that the test was performed. The outlet concentrated water had an S value of 7.4, a Mg ion concentration of 290 ppb, and a treated water specific resistance after 1000 hours of 16 MΩ · cm or more. Inspection after dismantling showed no scale development in the enrichment room.

【0048】[実施例4]この実施例4では、脱塩室に、
シリカ 600ppb、硬度成分 500ppb(as CaC
O3)、Mg50ppb、CO22ppmを含む電導度1
5μS/cm、pH6.0の被処理水を供給し、濃縮室
には濃縮水循環タンクに塩酸および塩化ナトリウムを添
加し、出口濃縮水の電導度が2500μS/cm 、p
H3になるように調整した濃縮水を供給した以外、実施
例1と同様の条件で試験した。その結果は、出口濃縮水
のS値が9.9、Mgイオン濃度が500ppb、10
00時間後の処理水比抵抗が16MΩ・cm以上であ
り、解体後の調査では、濃縮室にスケール発生はなかっ
た。
[Embodiment 4] In this embodiment 4, the desalting chamber is
600 ppb silica, 500 ppb hardness component (as CaC
O 3 ), Mg 50 ppb, conductivity 2 containing 2 ppm of CO 2
5 μS / cm, water to be treated having a pH of 6.0 is supplied, hydrochloric acid and sodium chloride are added to a concentrated water circulation tank in the concentration chamber, and the conductivity of the concentrated water at the outlet is 2500 μS / cm 2, p
The test was performed under the same conditions as in Example 1 except that concentrated water adjusted to H3 was supplied. The results show that the outlet concentrated water has an S value of 9.9, a Mg ion concentration of 500 ppb,
The treated water specific resistance after 00 hours was 16 MΩ · cm or more. In the investigation after dismantling, no scale was generated in the enrichment room.

【0049】[実施例5]実施例1の逆浸透装置の替わり
にNaCl除去率65%、MgCl2除去率99.4%
で、T値が58.8である逆浸透膜(東レ社製、SU2
00S)を具備する逆浸透膜装置により前処理した電気
電導度70μS/cm、Mgイオン濃度7ppb、pH
6.0の被処理水を処理水回収率90%、電流密度0.
8A/dm2で試験した。出口濃縮水のpHは6.0、
S値は10、Mgイオン濃度は70ppb、電導度は7
00μS/cmであり、初期比抵抗は12MΩ・cm、
1000時間後の比抵抗も12MΩ・cmであって変化
がなく、解体後の調査ではスケールの発生はなかった。
Example 5 Instead of the reverse osmosis device of Example 1, the NaCl removal rate was 65% and the MgCl 2 removal rate was 99.4%.
And a reverse osmosis membrane having a T value of 58.8 (manufactured by Toray, SU2
00S), electric conductivity of 70 μS / cm, Mg ion concentration of 7 ppb, pH pretreated by a reverse osmosis membrane device equipped with
The treated water of 6.0 was treated with a treated water recovery rate of 90% and a current density of 0.
Tested at 8 A / dm 2 . The pH of the outlet concentrated water is 6.0,
S value is 10, Mg ion concentration is 70 ppb, conductivity is 7
00 μS / cm, the initial specific resistance is 12 MΩ · cm,
The specific resistance after 1000 hours was 12 MΩ · cm, which was not changed. In the inspection after dismantling, no scale was generated.

【0050】[実施例6]この実施例6では、脱塩室に、
シリカ 1000ppb、硬度成分 1000ppb(as
CaCO3)、Mgイオン濃度が100ppb、CO22p
pmを含む電導度20μS/cm、pH6.0の被処理
水を供給し、濃縮室には濃縮水循環タンクに塩化ナトリ
ウムを添加し、出口濃縮水の電導度12000μS/c
m 、pH6.0となるように濃縮水を供給した以外、
実施例1と同様の条件で試験した。その結果は、出口濃
縮水のS値12、Mgイオン濃度は1000ppbで、
1000時間後の処理水比抵抗が16MΩ・cm以上で
った。電解槽解体後の調査では、濃縮室にスケール発生
はなかった。
[Embodiment 6] In this embodiment 6, the desalting chamber is
Silica 1000ppb, hardness component 1000ppb (as
CaCO 3 ), Mg ion concentration 100ppb, CO 2 2p
pm, water to be treated having a conductivity of 20 μS / cm and a pH of 6.0 is supplied, sodium chloride is added to the concentrated water circulation tank in the concentration chamber, and the conductivity of the concentrated water at the outlet is 12000 μS / c.
m, except that concentrated water was supplied so as to have a pH of 6.0.
The test was performed under the same conditions as in Example 1. As a result, the S value of the outlet concentrated water was 12, the Mg ion concentration was 1000 ppb,
The treated water resistivity after 1000 hours was 16 MΩ · cm or more. Investigation after dismantling of the electrolytic cell showed no scale generation in the enrichment room.

【0051】[0051]

【発明の効果】本発明では、濃縮室への供給水に1価陽
イオン型電解質を添加し電導度を特定範囲にコントロー
ルすることによって、予め被処理水の硬度成分を可及的
に除去しなくても電気再生式脱イオン水製造装置の性能
を長期間に安定化することができた。特にシリカ、炭酸
ガス等のイオン化しにくい不純物を含有する被処理水を
電流密度を高めて運転できるので、それら不純物を効率
よく除去できた。また、高い濃縮室電導度により低い印
加電圧で運転できるので、電力原単位を低減させること
ができた。
According to the present invention, the hardness of the water to be treated is removed as much as possible in advance by adding a monovalent cation-type electrolyte to the water supplied to the concentration chamber and controlling the conductivity to a specific range. Even without this, the performance of the electric regeneration type deionized water production apparatus could be stabilized for a long period of time. In particular, since water to be treated containing impurities that are difficult to ionize, such as silica and carbon dioxide, can be operated with an increased current density, the impurities could be removed efficiently. In addition, since the operation can be performed at a low applied voltage due to the high concentration chamber conductivity, the power consumption can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の脱イオン水製造方法に使用できる電気
再生式脱イオン製造装置の1例を模式的に示す図。
FIG. 1 is a diagram schematically showing one example of an electric regeneration type deionization production apparatus that can be used in the deionized water production method of the present invention.

【符号の説明】[Explanation of symbols]

A アニオン交換膜 K カチオン交換膜 1 電気透析槽 2 陽極室 3 陰極室 4 陽極 5 陰極 6 被処理水導入管 7 脱イオン水導管 8 濃縮水導入管 9 濃縮水導出管 S1、・・・Sn 濃縮室 R1、・・・Rn 脱塩室 D1、・・・Dn 脱塩室枠 C1、・・・Cn 濃縮室枠 10 タンク 11 濃縮水循環用導管 13 1価陽イオン型電解質添加装置 14 電導度計 P1、P2 ポンプ A Anion exchange membrane K Cation exchange membrane 1 Electrodialysis tank 2 Anode chamber 3 Cathode chamber 4 Anode 5 Cathode 6 Inlet pipe for treated water 7 Deionized water conduit 8 Concentrated water inlet pipe 9 Concentrated water outlet pipe S1, ... Sn concentration Room R1, ... Rn Deionization room D1, ... Dn Deionization room frame C1, ... Cn Concentration room frame 10 Tank 11 Concentrated water circulation conduit 13 Monovalent cation-type electrolyte addition device 14 Conductivity meter P1 , P2 pump

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/44 C02F 1/46 103 (72)発明者 戸田 洋 千葉県市原市五井海岸10番地 旭硝子株式 会社内 Fターム(参考) 4D006 GA03 GA17 HA42 HA47 JA30C KA33 KA57 KD12 KD30 KE13R KE15P KE15R KE18R KE19P KE19Q KE19R MA03 MA13 MA14 MB07 PA01 PB04 PB05 PB06 PB23 PB27 PB64 PC02 PC11 PC31 PC41 4D025 AA04 AB16 AB17 AB19 BA08 BA09 BA13 BA14 BA22 BA25 BA27 BA28 CA04 DA05 DA06 4D061 DA02 DA03 DB18 EA09 EB01 EB04 EB13 EB19 EB37 EB39 ED12 ED13 FA08 FA09 GA21 GA22 GC05 GC12 GC18 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) C02F 1/44 C02F 1/46 103 (72) Inventor Hiroshi Toda 10 Goi Kaigan, Ichihara-shi, Chiba Prefecture Asahi Glass Company F-term (Reference) 4D006 GA03 GA17 HA42 HA47 JA30C KA33 KA57 KD12 KD30 KE13R KE15P KE15R KE18R KE19P KE19Q KE19R MA03 MA13 MA14 MB07 PA01 PB04 PB05 PB06 PB23 PB27 PB64 PC02 PC11 BA31 BA04 ABA BA23 BA14 ABA ABA ABA23 DA06 4D061 DA02 DA03 DB18 EA09 EB01 EB04 EB13 EB19 EB37 EB39 ED12 ED13 FA08 FA09 GA21 GA22 GC05 GC12 GC18

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 陽極を備える陽極室と陰極を備える陰極
室との間にカチオン交換膜とアニオン交換膜を交互に配
列させ、陽極側がアニオン交換膜で区画され陰極側がカ
チオン交換膜で区画された脱塩室と陽極側がカチオン交
換膜で区画され陰極側がアニオン交換膜で区画された濃
縮室とを形成させた電気透析槽の脱塩室にイオン交換体
を収容してなる脱イオン水製造装置を使用し、電圧を印
加しながら脱塩室に被処理水を供給し、濃縮室には電解
質溶液からなる濃縮液を供給して、被処理水中の不純物
イオンを濃縮水に移動させて除去する電気再生式脱イオ
ン水製造方法において、濃縮室出口における濃縮水の下
記式1で定義されるS値が7以上であり、かつ該濃縮水
のpHが2.5以上であることを特徴とする電気再生式
脱イオン法による脱イオン水製造方法。 【化1】
1. A cation exchange membrane and an anion exchange membrane are alternately arranged between an anode chamber having an anode and a cathode chamber having a cathode, and the anode side is defined by an anion exchange membrane and the cathode side is defined by a cation exchange membrane. A deionized water production apparatus comprising an ion exchanger in a desalination chamber of an electrodialysis tank having a desalination chamber and a concentration chamber partitioned on the anode side by a cation exchange membrane and a cathode side partitioned by an anion exchange membrane. In this method, water to be treated is supplied to a desalting chamber while voltage is applied, and a concentrated liquid comprising an electrolyte solution is supplied to a concentrating chamber to remove impurity ions in the water to be treated by moving the concentrated water to the concentrated water. In the method for producing regenerated deionized water, the S value defined by the following formula 1 at the outlet of the concentration chamber is 7 or more, and the pH of the concentrated water is 2.5 or more. Deionization by regenerative deionization Ion water production method. Embedded image
【請求項2】 前記したS値を7以上とした被処理水を
前記脱イオン水製造装置の脱塩室に供給することを特徴
とする請求項1記載の電気再生式脱イオン法による脱イ
オン水製造方法。
2. The deionization by the electric regeneration type deionization method according to claim 1, wherein the water to be treated having the S value of 7 or more is supplied to a deionization chamber of the deionized water production apparatus. Water production method.
【請求項3】 逆浸透膜の基礎物性値であるNaCl除
去率とMgCl2除去率とを用いた下記式2で定義され
るT値が10以上である逆浸透膜を備える逆浸透装置で
前処理した被処理水を前記脱イオン水製造装置の脱塩室
に供給することを特徴とする請求項1又は2記載の電気
再生式脱イオン法による脱イオン水製造方法。 [式2] T値=(100−NaCl除去率)/(100−MgCl2除去率)
3. A reverse osmosis apparatus provided with a reverse osmosis membrane having a T value defined by the following equation 2, which is 10 or more, using a NaCl removal rate and a MgCl 2 removal rate, which are basic physical property values of the reverse osmosis membrane. The method for producing deionized water according to claim 1 or 2, wherein the treated water to be treated is supplied to a deionization chamber of the deionized water producing apparatus. [Equation 2] T value = (100-NaCl removal rate) / (100-MgCl 2 removal rate)
【請求項4】 前記したS値が7未満である被処理水を
前記脱イオン水製造装置の脱塩室に供給し、濃縮液に一
価陽イオン型電解質を添加せしめ、濃縮室出口における
濃縮液の前記S値を7以上とすることを特徴とする請求
項1又は3記載の電気再生式脱イオン法による脱イオン
水製造方法。
4. The water to be treated having an S value of less than 7 is supplied to a desalting chamber of the deionized water producing apparatus, and a monovalent cation-type electrolyte is added to the concentrated solution. 4. The method according to claim 1, wherein the S value of the liquid is 7 or more.
【請求項5】 濃縮液に添加する一価陽イオン型電解質
が、塩酸、塩化ナトリウム及び塩化カリウムからなる群
から選択されることを特徴とする請求項4記載の電気再
生式脱イオン法による脱イオン水製造方法。
5. The deionization method according to claim 4, wherein the monovalent cation-type electrolyte added to the concentrate is selected from the group consisting of hydrochloric acid, sodium chloride and potassium chloride. Ion water production method.
【請求項6】 脱イオン水製造装置に電圧を印加し流れ
る電流をイオン交換膜の有効面積当たり0.1〜2A/
dm2とせしめることを特徴とする請求項1ないし5の
いずれか1項に記載の電気再生式脱イオン法による脱イ
オン水製造方法。
6. A method for applying a voltage to a deionized water producing apparatus to apply a current of 0.1 to 2 A / effective area per effective area of the ion exchange membrane.
The method for producing deionized water by the electric regeneration type deionization method according to any one of claims 1 to 5, wherein dm 2 is used.
JP2001058487A 2000-03-02 2001-03-02 Method for producing deionized water Expired - Fee Related JP3695338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001058487A JP3695338B2 (en) 2000-03-02 2001-03-02 Method for producing deionized water

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000058035 2000-03-02
JP2000-58035 2000-03-02
JP2001058487A JP3695338B2 (en) 2000-03-02 2001-03-02 Method for producing deionized water

Publications (2)

Publication Number Publication Date
JP2001314868A true JP2001314868A (en) 2001-11-13
JP3695338B2 JP3695338B2 (en) 2005-09-14

Family

ID=26586679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001058487A Expired - Fee Related JP3695338B2 (en) 2000-03-02 2001-03-02 Method for producing deionized water

Country Status (1)

Country Link
JP (1) JP3695338B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003181459A (en) * 2001-12-18 2003-07-02 Asahi Glass Co Ltd Method for producing deionized water
JP2003326266A (en) * 2002-05-08 2003-11-18 Kurita Water Ind Ltd Method and apparatus for producing pure water, and scale monitor
WO2004005196A1 (en) * 2002-07-08 2004-01-15 Kurita Water Industries Ltd. Electrodeionization apparatus
KR100465579B1 (en) * 2001-01-05 2005-01-13 쿠리타 고교 가부시키가이샤 Method and apparatus for electrodeionization of water
JP2006502855A (en) * 2002-10-16 2006-01-26 アクアテック インターナショナル コーポレイション Method for producing ion exchange medium
US8557098B2 (en) 2009-12-21 2013-10-15 Samsung Electronics Co., Ltd. Capacitive deionization device
EP2809617A4 (en) * 2012-01-30 2015-09-09 Hydronovation Inc Performance enhancement of electrochemical deionization devices by pre-treatment with cation exchange resins
WO2017002744A1 (en) * 2015-06-30 2017-01-05 栗田工業株式会社 Boiler water treatment apparatus and boiler operation method
JPWO2018164143A1 (en) * 2017-03-10 2020-01-16 株式会社アストム Electrodialysis and reverse electrodialysis

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100465579B1 (en) * 2001-01-05 2005-01-13 쿠리타 고교 가부시키가이샤 Method and apparatus for electrodeionization of water
JP2003181459A (en) * 2001-12-18 2003-07-02 Asahi Glass Co Ltd Method for producing deionized water
JP2003326266A (en) * 2002-05-08 2003-11-18 Kurita Water Ind Ltd Method and apparatus for producing pure water, and scale monitor
WO2004005196A1 (en) * 2002-07-08 2004-01-15 Kurita Water Industries Ltd. Electrodeionization apparatus
US7666288B2 (en) 2002-07-08 2010-02-23 Kurita Water Industries Ltd. Apparatus for electrodeionization of water
JP2006502855A (en) * 2002-10-16 2006-01-26 アクアテック インターナショナル コーポレイション Method for producing ion exchange medium
US8557098B2 (en) 2009-12-21 2013-10-15 Samsung Electronics Co., Ltd. Capacitive deionization device
EP2809617A4 (en) * 2012-01-30 2015-09-09 Hydronovation Inc Performance enhancement of electrochemical deionization devices by pre-treatment with cation exchange resins
US9834458B2 (en) 2012-01-30 2017-12-05 Hydronovation, Inc. Performance enhancement of electrochemical deionization devices by pre-treatment with cation exchange resins
WO2017002744A1 (en) * 2015-06-30 2017-01-05 栗田工業株式会社 Boiler water treatment apparatus and boiler operation method
JP2017012991A (en) * 2015-06-30 2017-01-19 栗田工業株式会社 Water treatment apparatus for boiler, and operation method of boiler
JPWO2018164143A1 (en) * 2017-03-10 2020-01-16 株式会社アストム Electrodialysis and reverse electrodialysis

Also Published As

Publication number Publication date
JP3695338B2 (en) 2005-09-14

Similar Documents

Publication Publication Date Title
US10662085B2 (en) Low energy system and method of desalinating seawater
US9637400B2 (en) Systems and methods for water treatment
US6149788A (en) Method and apparatus for preventing scaling in electrodeionization units
US20110180477A1 (en) Low energy system and method of desalinating seawater
AU2014212394B2 (en) Rechargeable electrochemical cells
US6565725B2 (en) Method for producing deionized water
JP2001113281A (en) Electro-deionizing apparatus and pure water making apparatus
JP3969221B2 (en) Method and apparatus for producing deionized water
JP2001314868A (en) Method for preparing deionized water
WO1997046491A1 (en) Process for producing deionized water by electrical deionization technique
JPH10323673A (en) Deionized water-producing method
JP2001191080A (en) Electric deionizing device and electric deionizing treatment method using the same
JP2003181459A (en) Method for producing deionized water
JP4915843B2 (en) Electric softening device, softening device and soft water production method
JP4300828B2 (en) Electrodeionization apparatus and operation method thereof
JP3951816B2 (en) Electric regenerative deionized water production method
JPH11179369A (en) Electric deionized water producing apparatus
JPH09294988A (en) Pure water preparation device
WO2007132685A1 (en) Electric softening apparatus, softening apparatus, method of producing soft water and method of operating the softening apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050620

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080708

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130708

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees