WO2021085600A1 - Composite semipermeable membrane and manufacturing method therefor - Google Patents
Composite semipermeable membrane and manufacturing method therefor Download PDFInfo
- Publication number
- WO2021085600A1 WO2021085600A1 PCT/JP2020/040810 JP2020040810W WO2021085600A1 WO 2021085600 A1 WO2021085600 A1 WO 2021085600A1 JP 2020040810 W JP2020040810 W JP 2020040810W WO 2021085600 A1 WO2021085600 A1 WO 2021085600A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyfunctional
- semipermeable membrane
- composite semipermeable
- functional layer
- membrane
- Prior art date
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 211
- 239000002131 composite material Substances 0.000 title claims abstract description 122
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 238000000926 separation method Methods 0.000 claims abstract description 150
- 239000002346 layers by function Substances 0.000 claims abstract description 100
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 claims abstract description 82
- -1 aromatic acid halide Chemical class 0.000 claims abstract description 76
- 239000004952 Polyamide Substances 0.000 claims abstract description 47
- 229920002647 polyamide Polymers 0.000 claims abstract description 47
- 238000005259 measurement Methods 0.000 claims abstract description 23
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 11
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 claims abstract description 10
- 125000004430 oxygen atom Chemical group O* 0.000 claims abstract description 6
- 125000004433 nitrogen atom Chemical group N* 0.000 claims abstract description 5
- 239000010410 layer Substances 0.000 claims description 88
- 239000010408 film Substances 0.000 claims description 85
- 239000002253 acid Substances 0.000 claims description 84
- 239000007864 aqueous solution Substances 0.000 claims description 66
- 238000000034 method Methods 0.000 claims description 47
- 239000000243 solution Substances 0.000 claims description 44
- 125000003368 amide group Chemical group 0.000 claims description 37
- GLUUGHFHXGJENI-UHFFFAOYSA-N diethylenediamine Natural products C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 claims description 28
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 26
- 150000004820 halides Chemical class 0.000 claims description 25
- 238000010521 absorption reaction Methods 0.000 claims description 24
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 claims description 22
- 150000004885 piperazines Chemical class 0.000 claims description 18
- 239000010409 thin film Substances 0.000 claims description 16
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 claims description 14
- 125000004193 piperazinyl group Chemical group 0.000 claims description 13
- 229920006012 semi-aromatic polyamide Polymers 0.000 claims description 12
- 229910052943 magnesium sulfate Inorganic materials 0.000 claims description 11
- 235000019341 magnesium sulphate Nutrition 0.000 claims description 11
- 238000002844 melting Methods 0.000 claims description 10
- 230000008018 melting Effects 0.000 claims description 10
- 238000007654 immersion Methods 0.000 claims description 9
- 238000004566 IR spectroscopy Methods 0.000 claims description 8
- 229910001629 magnesium chloride Inorganic materials 0.000 claims description 8
- 125000000217 alkyl group Chemical group 0.000 claims description 7
- 238000012696 Interfacial polycondensation Methods 0.000 claims description 6
- 125000003118 aryl group Chemical group 0.000 claims description 6
- 125000003709 fluoroalkyl group Chemical group 0.000 claims description 6
- 125000000101 thioether group Chemical group 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 5
- 238000000862 absorption spectrum Methods 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 84
- 150000002500 ions Chemical class 0.000 description 39
- 229920000642 polymer Polymers 0.000 description 39
- 239000000463 material Substances 0.000 description 37
- 239000003513 alkali Substances 0.000 description 33
- 239000002585 base Substances 0.000 description 30
- 230000035699 permeability Effects 0.000 description 25
- 230000000052 comparative effect Effects 0.000 description 24
- 239000000835 fiber Substances 0.000 description 23
- 150000001412 amines Chemical class 0.000 description 22
- 239000003960 organic solvent Substances 0.000 description 20
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 19
- 238000006243 chemical reaction Methods 0.000 description 16
- 239000000126 substance Substances 0.000 description 15
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical compound CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 13
- 239000004372 Polyvinyl alcohol Substances 0.000 description 13
- 239000004745 nonwoven fabric Substances 0.000 description 13
- 229920002451 polyvinyl alcohol Polymers 0.000 description 13
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 12
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 12
- 239000011148 porous material Substances 0.000 description 12
- 238000012695 Interfacial polymerization Methods 0.000 description 11
- 150000007513 acids Chemical class 0.000 description 11
- 238000001728 nano-filtration Methods 0.000 description 11
- 239000011780 sodium chloride Substances 0.000 description 11
- 238000005345 coagulation Methods 0.000 description 10
- 230000015271 coagulation Effects 0.000 description 10
- 239000011241 protective layer Substances 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 8
- 238000000576 coating method Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 230000001965 increasing effect Effects 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 150000003839 salts Chemical class 0.000 description 8
- UWCPYKQBIPYOLX-UHFFFAOYSA-N benzene-1,3,5-tricarbonyl chloride Chemical compound ClC(=O)C1=CC(C(Cl)=O)=CC(C(Cl)=O)=C1 UWCPYKQBIPYOLX-UHFFFAOYSA-N 0.000 description 7
- 238000009792 diffusion process Methods 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 125000001424 substituent group Chemical group 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 238000004132 cross linking Methods 0.000 description 6
- 239000012530 fluid Substances 0.000 description 6
- 230000002829 reductive effect Effects 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- QMKYBPDZANOJGF-UHFFFAOYSA-N benzene-1,3,5-tricarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC(C(O)=O)=C1 QMKYBPDZANOJGF-UHFFFAOYSA-N 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 125000000524 functional group Chemical group 0.000 description 5
- 230000007062 hydrolysis Effects 0.000 description 5
- 238000006460 hydrolysis reaction Methods 0.000 description 5
- 230000002209 hydrophobic effect Effects 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 229920002492 poly(sulfone) Polymers 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 238000007127 saponification reaction Methods 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 5
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 4
- 125000001931 aliphatic group Chemical group 0.000 description 4
- HDPRVQJRZUJZPT-UHFFFAOYSA-N benzene-1,3,5-trisulfonyl chloride Chemical compound ClS(=O)(=O)C1=CC(S(Cl)(=O)=O)=CC(S(Cl)(=O)=O)=C1 HDPRVQJRZUJZPT-UHFFFAOYSA-N 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 150000001805 chlorine compounds Chemical class 0.000 description 4
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 239000003651 drinking water Substances 0.000 description 4
- 235000020188 drinking water Nutrition 0.000 description 4
- 238000010828 elution Methods 0.000 description 4
- 229910052500 inorganic mineral Inorganic materials 0.000 description 4
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 4
- 235000010755 mineral Nutrition 0.000 description 4
- 239000011707 mineral Substances 0.000 description 4
- 230000004899 motility Effects 0.000 description 4
- 230000009257 reactivity Effects 0.000 description 4
- 238000001223 reverse osmosis Methods 0.000 description 4
- 239000004094 surface-active agent Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- NSMWYRLQHIXVAP-OLQVQODUSA-N (2r,5s)-2,5-dimethylpiperazine Chemical compound C[C@H]1CN[C@H](C)CN1 NSMWYRLQHIXVAP-OLQVQODUSA-N 0.000 description 3
- 238000004922 13C solid-state nuclear magnetic resonance spectroscopy Methods 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 239000004695 Polyether sulfone Substances 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 239000011247 coating layer Substances 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- 238000005374 membrane filtration Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 238000005192 partition Methods 0.000 description 3
- 239000012466 permeate Substances 0.000 description 3
- 229920006393 polyether sulfone Polymers 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 3
- 239000013535 sea water Substances 0.000 description 3
- 238000000108 ultra-filtration Methods 0.000 description 3
- DYLIWHYUXAJDOJ-OWOJBTEDSA-N (e)-4-(6-aminopurin-9-yl)but-2-en-1-ol Chemical compound NC1=NC=NC2=C1N=CN2C\C=C\CO DYLIWHYUXAJDOJ-OWOJBTEDSA-N 0.000 description 2
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 description 2
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 2
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 2
- QLEIDMAURCRVCX-UHFFFAOYSA-N 1-propylpiperazine Chemical compound CCCN1CCNCC1 QLEIDMAURCRVCX-UHFFFAOYSA-N 0.000 description 2
- 238000005160 1H NMR spectroscopy Methods 0.000 description 2
- AOELXINWOXDWKY-UHFFFAOYSA-N 2,2-diethylpiperazine Chemical compound CCC1(CC)CNCCN1 AOELXINWOXDWKY-UHFFFAOYSA-N 0.000 description 2
- PIPWSBOFSUJCCO-UHFFFAOYSA-N 2,2-dimethylpiperazine Chemical compound CC1(C)CNCCN1 PIPWSBOFSUJCCO-UHFFFAOYSA-N 0.000 description 2
- ICGDKKACLISIAM-UHFFFAOYSA-N 2,3,5,6-tetramethylpiperazine Chemical compound CC1NC(C)C(C)NC1C ICGDKKACLISIAM-UHFFFAOYSA-N 0.000 description 2
- FOCWTZQPHKNTMZ-UHFFFAOYSA-N 2,3-diethylpiperazine Chemical compound CCC1NCCNC1CC FOCWTZQPHKNTMZ-UHFFFAOYSA-N 0.000 description 2
- COWPTMLRSANSMQ-UHFFFAOYSA-N 2,3-dimethylpiperazine Chemical compound CC1NCCNC1C COWPTMLRSANSMQ-UHFFFAOYSA-N 0.000 description 2
- JIAOVIBEPXQRNK-UHFFFAOYSA-N 2,5-diethylpiperazine Chemical compound CCC1CNC(CC)CN1 JIAOVIBEPXQRNK-UHFFFAOYSA-N 0.000 description 2
- NSMWYRLQHIXVAP-UHFFFAOYSA-N 2,5-dimethylpiperazine Chemical compound CC1CNC(C)CN1 NSMWYRLQHIXVAP-UHFFFAOYSA-N 0.000 description 2
- WOTDHTQZNQMLIS-UHFFFAOYSA-N 2,6-diethylpiperazine Chemical compound CCC1CNCC(CC)N1 WOTDHTQZNQMLIS-UHFFFAOYSA-N 0.000 description 2
- IFNWESYYDINUHV-UHFFFAOYSA-N 2,6-dimethylpiperazine Chemical compound CC1CNCC(C)N1 IFNWESYYDINUHV-UHFFFAOYSA-N 0.000 description 2
- CTEGAXWZJISNOR-UHFFFAOYSA-N 2-butylpiperazine Chemical compound CCCCC1CNCCN1 CTEGAXWZJISNOR-UHFFFAOYSA-N 0.000 description 2
- JOMNTHCQHJPVAZ-UHFFFAOYSA-N 2-methylpiperazine Chemical compound CC1CNCCN1 JOMNTHCQHJPVAZ-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 150000004982 aromatic amines Chemical class 0.000 description 2
- FDQSRULYDNDXQB-UHFFFAOYSA-N benzene-1,3-dicarbonyl chloride Chemical compound ClC(=O)C1=CC=CC(C(Cl)=O)=C1 FDQSRULYDNDXQB-UHFFFAOYSA-N 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 239000003431 cross linking reagent Substances 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- SNRUBQQJIBEYMU-UHFFFAOYSA-N dodecane Chemical compound CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- IIEWJVIFRVWJOD-UHFFFAOYSA-N ethylcyclohexane Chemical compound CCC1CCCCC1 IIEWJVIFRVWJOD-UHFFFAOYSA-N 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 238000000445 field-emission scanning electron microscopy Methods 0.000 description 2
- NDJKXXJCMXVBJW-UHFFFAOYSA-N heptadecane Chemical compound CCCCCCCCCCCCCCCCC NDJKXXJCMXVBJW-UHFFFAOYSA-N 0.000 description 2
- DCAYPVUWAIABOU-UHFFFAOYSA-N hexadecane Chemical compound CCCCCCCCCCCCCCCC DCAYPVUWAIABOU-UHFFFAOYSA-N 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 229940018564 m-phenylenediamine Drugs 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- ZPBSAMLXSQCSOX-UHFFFAOYSA-N naphthalene-1,3,6-trisulfonic acid Chemical compound OS(=O)(=O)C1=CC(S(O)(=O)=O)=CC2=CC(S(=O)(=O)O)=CC=C21 ZPBSAMLXSQCSOX-UHFFFAOYSA-N 0.000 description 2
- BKIMMITUMNQMOS-UHFFFAOYSA-N nonane Chemical compound CCCCCCCCC BKIMMITUMNQMOS-UHFFFAOYSA-N 0.000 description 2
- HGASFNYMVGEKTF-UHFFFAOYSA-N octan-1-ol;hydrate Chemical compound O.CCCCCCCCO HGASFNYMVGEKTF-UHFFFAOYSA-N 0.000 description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 239000012074 organic phase Substances 0.000 description 2
- 229910000489 osmium tetroxide Inorganic materials 0.000 description 2
- 239000012285 osmium tetroxide Substances 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- IREVRWRNACELSM-UHFFFAOYSA-J ruthenium(4+);tetrachloride Chemical compound Cl[Ru](Cl)(Cl)Cl IREVRWRNACELSM-UHFFFAOYSA-J 0.000 description 2
- ZIWRUEGECALFST-UHFFFAOYSA-M sodium 4-(4-dodecoxysulfonylphenoxy)benzenesulfonate Chemical compound [Na+].CCCCCCCCCCCCOS(=O)(=O)c1ccc(Oc2ccc(cc2)S([O-])(=O)=O)cc1 ZIWRUEGECALFST-UHFFFAOYSA-M 0.000 description 2
- 239000001488 sodium phosphate Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- LXEJRKJRKIFVNY-UHFFFAOYSA-N terephthaloyl chloride Chemical compound ClC(=O)C1=CC=C(C(Cl)=O)C=C1 LXEJRKJRKIFVNY-UHFFFAOYSA-N 0.000 description 2
- BGHCVCJVXZWKCC-UHFFFAOYSA-N tetradecane Chemical compound CCCCCCCCCCCCCC BGHCVCJVXZWKCC-UHFFFAOYSA-N 0.000 description 2
- IIYFAKIEWZDVMP-UHFFFAOYSA-N tridecane Chemical compound CCCCCCCCCCCCC IIYFAKIEWZDVMP-UHFFFAOYSA-N 0.000 description 2
- ARCGXLSVLAOJQL-UHFFFAOYSA-N trimellitic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 ARCGXLSVLAOJQL-UHFFFAOYSA-N 0.000 description 2
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 2
- 229910000406 trisodium phosphate Inorganic materials 0.000 description 2
- 235000019801 trisodium phosphate Nutrition 0.000 description 2
- RSJKGSCJYJTIGS-UHFFFAOYSA-N undecane Chemical compound CCCCCCCCCCC RSJKGSCJYJTIGS-UHFFFAOYSA-N 0.000 description 2
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 1
- DXOHZOPKNFZZAD-UHFFFAOYSA-N 2-ethylpiperazine Chemical compound CCC1CNCCN1 DXOHZOPKNFZZAD-UHFFFAOYSA-N 0.000 description 1
- HBCSNWKQNPKIHK-UHFFFAOYSA-N 2-propan-2-ylpiperazine Chemical compound CC(C)C1CNCCN1 HBCSNWKQNPKIHK-UHFFFAOYSA-N 0.000 description 1
- FNJWLOHHZVGUIX-UHFFFAOYSA-N 2-propylpiperazine Chemical compound CCCC1CNCCN1 FNJWLOHHZVGUIX-UHFFFAOYSA-N 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- QMMFVYPAHWMCMS-UHFFFAOYSA-N Dimethyl sulfide Chemical group CSC QMMFVYPAHWMCMS-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- FFXCHOVIZVRPIJ-UHFFFAOYSA-N FC(C1NC(CNC1)C(F)(F)F)(F)F Chemical compound FC(C1NC(CNC1)C(F)(F)F)(F)F FFXCHOVIZVRPIJ-UHFFFAOYSA-N 0.000 description 1
- FWSDYKWUBSXFNP-UHFFFAOYSA-N FC(C1NC(CNC1)C(F)F)F Chemical compound FC(C1NC(CNC1)C(F)F)F FWSDYKWUBSXFNP-UHFFFAOYSA-N 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 241000692870 Inachis io Species 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000005708 Sodium hypochlorite Substances 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 102000004357 Transferases Human genes 0.000 description 1
- 108090000992 Transferases Proteins 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000010933 acylation Effects 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- RBUBFLVZIXNHTE-UHFFFAOYSA-N benzene-1,3,5-trisulfonic acid Chemical compound OS(=O)(=O)C1=CC(S(O)(=O)=O)=CC(S(O)(=O)=O)=C1 RBUBFLVZIXNHTE-UHFFFAOYSA-N 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 150000001639 boron compounds Chemical class 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- AOGYCOYQMAVAFD-UHFFFAOYSA-N chlorocarbonic acid Chemical compound OC(Cl)=O AOGYCOYQMAVAFD-UHFFFAOYSA-N 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000005384 cross polarization magic-angle spinning Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- WJTCGQSWYFHTAC-UHFFFAOYSA-N cyclooctane Chemical compound C1CCCCCCC1 WJTCGQSWYFHTAC-UHFFFAOYSA-N 0.000 description 1
- 239000004914 cyclooctane Substances 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 239000012971 dimethylpiperazine Substances 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- GVGUFUZHNYFZLC-UHFFFAOYSA-N dodecyl benzenesulfonate;sodium Chemical compound [Na].CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 GVGUFUZHNYFZLC-UHFFFAOYSA-N 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000012527 feed solution Substances 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 150000002366 halogen compounds Chemical class 0.000 description 1
- 238000011086 high cleaning Methods 0.000 description 1
- 239000011796 hollow space material Substances 0.000 description 1
- 239000012433 hydrogen halide Substances 0.000 description 1
- 229910000039 hydrogen halide Inorganic materials 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000001471 micro-filtration Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- ZBJSGOMTEOPTBH-UHFFFAOYSA-N naphthalene-1,3,6-trisulfonyl chloride Chemical compound ClS(=O)(=O)C1=CC(S(Cl)(=O)=O)=CC2=CC(S(=O)(=O)Cl)=CC=C21 ZBJSGOMTEOPTBH-UHFFFAOYSA-N 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 125000001181 organosilyl group Chemical group [SiH3]* 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 229920006149 polyester-amide block copolymer Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000013558 reference substance Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229940080264 sodium dodecylbenzenesulfonate Drugs 0.000 description 1
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 1
- HIEHAIZHJZLEPQ-UHFFFAOYSA-M sodium;naphthalene-1-sulfonate Chemical compound [Na+].C1=CC=C2C(S(=O)(=O)[O-])=CC=CC2=C1 HIEHAIZHJZLEPQ-UHFFFAOYSA-M 0.000 description 1
- 238000000371 solid-state nuclear magnetic resonance spectroscopy Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 150000003609 titanium compounds Chemical class 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
- 150000003755 zirconium compounds Chemical class 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/02—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/10—Supported membranes; Membrane supports
- B01D69/107—Organic support material
- B01D69/1071—Woven, non-woven or net mesh
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/56—Polyamides, e.g. polyester-amides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G69/00—Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
- C08G69/02—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
- C08G69/26—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
Definitions
- the present invention is a composite semipermeable membrane which selectively removes polyvalent ions, pesticides, etc. and allows monovalent ions having a small ionic radius to permeate, and has high acid resistance and alkali resistance. Regarding the method. With this film, it is possible to remove salts and minerals from brackish water and seawater, remove salts and minerals in the food field, recover acids and alkalis from industrial applications such as plating and refining, and recover valuable metals of rare metals. It becomes.
- Membranes used in the membrane separation method include microfiltration membranes, ultrafiltration membranes, nanofiltration membranes, reverse osmosis membranes, etc., and these membranes are, for example, from seawater, drinking water, water containing harmful substances, etc. It is used for the production of drinking water, softening of drinking water, food use, production of industrial ultrapure water, wastewater treatment, recovery of valuable resources, etc.
- composite semipermeable membranes which have an active layer in which a gel layer and a polymer are crosslinked on a support membrane, and a monomer is polycondensed on the support membrane.
- an active layer there are two types, one having an active layer.
- the composite semipermeable membrane obtained by coating a separation functional layer made of a crosslinked polyamide obtained by a polycondensation reaction between a polyfunctional amine and a polyfunctional acid halide on a support membrane is permeable and selectively separable. Widely used as a high separation membrane.
- Nanofiltration membranes are widely used to separate specific substances from mixed solutions of monovalent ions, divalent ions, and organic substances, and nanofiltration membranes composed of aliphatic amines and acid halides have been proposed.
- Patent Document 1 a nanofiltration membrane made of polyamide obtained by reacting piperazine with a polyfunctional aromatic carboxyl chloride product is disclosed (Patent Document 1).
- Patent Document 1 one of the problems that occurs in membrane separation plants that use nanofiltration membranes is fouling due to inorganic or organic substances.
- the water permeability of the nanofiltration membrane is significantly reduced due to fouling.
- Patent Documents 2 and 3 a nanofiltration membrane having high chemical resistance
- the performance required for the nanofiltration membrane includes not only water permeability and selective separation performance but also chemical resistance, but the membrane described in Patent Document 1 has low chemical resistance, while the patent The films described in Document 2 and Patent Document 3 can have high chemical resistance, but have a problem of low selective separability.
- An object of the present invention is to provide a composite semipermeable membrane having high monovalent ion / divalent ion selective separation performance and high acid resistance and alkalinity.
- the specific surface area of the surface of the separation functional layer is 1.2 or more and 5.0 or less.
- Composite semipermeable membrane in which the ratio C / (N + O) of the sum of the number of nitrogen atoms and the number of oxygen atoms to the number of carbon atoms measured by X-ray photoelectron spectroscopy on the surface of the separation functional layer is 2.3 or more and 4.0 or less. film.
- R1 The composite semipermeable membrane before immersion in the sulfuric acid aqueous solution in the measurement of Rb below is derived from the amide group of the semi-aromatic polyamide measured by the total internal reflection infrared absorption spectroscopy on the surface on the separation function layer side.
- Amide group ratio (molar ratio) amide group amount / (polyfunctional aliphatic amine amount + polyfunctional aromatic acid halide amount) [8] Any of the above [1] to [7] in which the abundance ratio (molar ratio) of the polyfunctional aliphatic amine and the polyfunctional aromatic acid halide in the semiaromatic polyamide has the following relationship.
- the composite semipermeable membrane according to any one of the above [1] to [8], wherein the polyfunctional acid halide is an aromatic polyfunctional carboxylic acid halide or an aromatic polyfunctional sulfonic acid halide.
- the magnesium sulfate removal rate and magnesium chloride removal rate are lower when a 2000 ppm magnesium sulfate aqueous solution at 25 ° C and pH 6.5 and a 2000 ppm magnesium chloride aqueous solution at 25 ° C and pH 6.5 are permeated at an operating pressure of 0.5 MPa, respectively.
- the composite semipermeable membrane of the present invention has a separation functional layer containing a semi-aromatic cross-linked polyamide which is a condensate of a polyfunctional aliphatic amine and a polyfunctional aromatic acid halide as a main component, and has the separation function.
- the specific surface area of the layer surface is 1.2 or more and 5.0 or less, and in the X-ray photoelectron spectroscopy measurement, the ratio of the sum of nitrogen and oxygen atoms to the carbon atom in the measured element, C / (N + O) is 2.
- FIG. 1A is a cross-sectional view of a composite semipermeable membrane according to an embodiment of the present invention
- FIG. 1B is an enlarged view of a separation functional layer
- FIG. 2 is a diagram showing a cross section of the fold structure of the separation function layer.
- the composite semipermeable membrane of the present invention comprises a support membrane and a semi-aromatic cross-linked polyamide which is a condensate of a polyfunctional aliphatic amine formed on the support membrane and a polyfunctional aromatic acid halide. It has a separating functional layer containing it.
- factors that affect the acid resistance and alkali resistance of the separation membrane include the thickness of the separation functional layer and the chemical bond mode (ester bond, amide bond, etc.). We focused on the specific surface area and chemical composition of the layers.
- the "specific surface area” is the ratio of the surface area of the separating functional layer to the surface area of the porous support layer. The larger the specific surface area, the greater the water permeability.
- a separation membrane composed of a separation functional layer containing a polymer of a polyfunctional aliphatic amine and a polyfunctional acid halide has excellent divalent ion selective removal property, but it is difficult to increase the specific surface area. , Acid resistance and alkali resistance improvement could not be achieved.
- the separation functional layer having a specific surface area of 1.2 or more which contains a polymer of a polyfunctional aliphatic amine and a polyfunctional acid halide, has acid resistance, alkali resistance and It has been found that a separation membrane having excellent divalent ion selective removal property can be obtained.
- the "chemical composition" of the separation functional layer indicates the ratio of the elements present in the separation functional layer.
- the present inventors have calculated the ratio of the sum of the ratio of nitrogen atoms (N) and the ratio of oxygen atoms (O) to the ratio of carbon atoms (C) in the separation functional layer, C / (N + O). It was found that a separation membrane having excellent acid resistance, alkali resistance and divalent ion selective removal property can be obtained when the ratio is 2.3 or more and 4.0 or less.
- the support membrane is for giving strength to the composite semipermeable membrane by supporting the separation functional layer.
- the support membrane itself has substantially no separation performance for low molecular weight organic substances, ions and the like.
- the support film includes a base material and a porous support layer.
- the size and distribution of the pores in the support membrane are not particularly limited, but for example, uniform and fine pores, or fine pores gradually increasing from the surface on the side where the separation functional layer is formed to the other surface, that is, the surface on the base material side. It is preferable that the pores have a size of 0.1 nm or more and 100 nm or less on the surface on the side where the separation functional layer is formed.
- the support film includes a base material 2 and a porous support layer 3 arranged on the base material.
- Examples of the base material 2 include a cloth made of at least one selected from polyester and aromatic polyamide. It is particularly preferred to use polyester, which is mechanically and thermally stable.
- a long fiber non-woven fabric or a short fiber non-woven fabric can be preferably used.
- a solution of a polymer polymer is cast on a base material, it strikes through due to over-penetration, the base material and the porous support layer are peeled off, and the film is non-uniform due to fluffing of the base material.
- Long-fiber non-woven fabrics can be more preferably used because excellent film-forming properties are required so as not to cause defects such as formation and pinholes. Examples of the long-fiber non-woven fabric include long-fiber non-woven fabrics composed of thermoplastic continuous filaments.
- the base material is made of a long-fiber non-woven fabric, it is possible to suppress the non-uniformity at the time of spreading the polymer solution caused by fluffing and the film defects that occur when the short-fiber non-woven fabric is used. Further, in the step of continuously forming a composite semipermeable membrane, tension is applied in the film forming direction of the base material, so that it is preferable to use a long fiber non-woven fabric having excellent dimensional stability as the base material.
- the orientation of the fibers on the surface opposite to the surface in contact with the porous support layer 3 is longitudinally oriented with respect to the film forming direction, so that the strength of the base material is maintained, the film is torn, and the like. It is preferable because it can prevent.
- the longitudinal orientation means that the orientation direction of the fibers is parallel to the film forming direction.
- the orientation direction of the fibers is perpendicular to the film formation direction, it is called lateral orientation.
- the fiber orientation of the fiber is preferably in the range of 0 ° to 25 °.
- the fiber orientation is an index indicating the orientation of the fibers of the non-woven fabric, and the film-forming direction when continuous film-forming is performed is 0 °, and the direction perpendicular to the film-forming direction, that is, the width direction of the non-woven fabric is 90 °. It refers to the average angle of the fibers that make up the non-woven fabric. Therefore, the closer the fiber orientation is to 0 °, the longer the vertical orientation, and the closer the fiber orientation is to 90 °, the more the horizontal orientation.
- the manufacturing process of the composite semipermeable membrane and the manufacturing process of the element include a heating step, but a phenomenon occurs in which the support membrane or the composite semipermeable membrane shrinks due to heating. Especially in continuous film formation, since tension is not applied in the width direction, it tends to shrink in the width direction. Since the shrinkage of the support membrane or the composite semipermeable membrane causes problems in dimensional stability and the like, a base material having a small thermal dimensional change rate is desired.
- the difference in orientation between the fibers on the side opposite to the porous support layer and the fibers on the side of the porous support layer is 10 ° to 90 °, the change in the width direction due to heat can be suppressed. preferable.
- the air permeability of the base material is preferably 2.0 cc / cm 2 / sec or more. When the air permeability is in this range, the water permeability of the composite semipermeable membrane becomes high.
- This is a step of forming a support film, when a polymer polymer is cast on a base material and immersed in a coagulation bath, the non-solvent replacement rate from the base material side is increased, so that the porous support layer is formed. It is considered that this is because the internal structure of the polymer changes, which affects the amount of monomer retained and the diffusion rate in the subsequent step of forming the separation functional layer.
- the air permeability can be measured by a Frazier type tester based on JIS L1096 (2010). For example, a base material is cut out to a size of 200 mm ⁇ 200 mm and used as a sample. This sample was attached to the Frazier type tester, the suction fan and air holes were adjusted so that the inclined barometer had a pressure of 125 Pa, and the pressure indicated by the vertical barometer at this time and the type of air holes used were used as the basis. The amount of air passing through the material, that is, the air permeability, can be calculated. As the Frazier type testing machine, KES-F8-AP1 manufactured by Kato Tech Co., Ltd. can be used.
- the thickness of the base material is preferably in the range of 10 ⁇ m or more and 200 ⁇ m or less, and more preferably in the range of 30 ⁇ m or more and 120 ⁇ m or less.
- the porous support layer is, for example, polysulfone, polyethersulfone, cellulose acetate, polyvinyl chloride, or a mixture thereof.
- the thickness of the above-mentioned porous support layer affects the strength of the obtained composite semipermeable membrane and the packing density when it is used as an element.
- the thickness of the porous support layer is preferably in the range of 50 ⁇ m or more and 300 ⁇ m or less, and more preferably in the range of 100 ⁇ m or more and 250 ⁇ m or less in order to obtain sufficient mechanical strength and packing density.
- the morphology of the porous support layer can be observed with a scanning electron microscope, a transmission electron microscope, and an atomic force microscope.
- a scanning electron microscope the porous support layer is peeled off from the base material and then cut by a freeze-cutting method to prepare a sample for cross-sectional observation.
- This sample is lightly coated with platinum or platinum-palladium or ruthenium tetrachloride, preferably ruthenium tetrachloride, and observed with a high resolution field emission scanning electron microscope (UHR-FE-SEM) at an acceleration voltage of 3 to 15 kV.
- UHR-FE-SEM high resolution field emission scanning electron microscope
- a Hitachi S-900 type electron microscope or the like can be used.
- the support film can be selected from various commercially available materials such as "Millipore Filter VSWP” (trade name) manufactured by Millipore and “Ultra Filter UK10” (trade name) manufactured by Toyo Filter Paper Co., Ltd., or "Office of the Office of Saline Water Research and Development Progress Report "No. It can also be produced according to the method described in 359 (1968) and the like.
- the thickness of the base material 2 and the thickness of the composite semipermeable membrane 1 can be measured by a digital thickness gauge. Further, since the thickness of the separation functional layer is very thin as compared with the support membrane, the thickness of the composite semipermeable membrane can be regarded as the thickness of the support membrane. That is, the thickness of the composite semipermeable membrane can be measured with a digital thickness gauge, and this can be regarded as the thickness of the support membrane. Further, the thickness of the porous support layer can be easily calculated by subtracting the thickness of the base material from the thickness of the composite semipermeable membrane. As the digital thickness gauge, PEACOCK of Ozaki Seisakusho Co., Ltd. can be used. When using a digital thickness gauge, the thickness is measured at 20 points and the average value is calculated.
- the thickness of the base material 2 or the thickness of the composite semipermeable membrane 1 may be measured with a scanning electron microscope.
- the thickness of one sample is obtained by measuring the thickness from electron micrographs of cross-sectional observations at arbitrary five points and calculating the average value.
- the Separation Function Layer 4 is a layer that is arranged on the porous support layer 3 as shown in FIG. 1 (a) and has a solute separation function in the composite semipermeable membrane.
- the separation functional layer contains a polyamide which is a polymer of an aliphatic polyfunctional amine and a polyfunctional aromatic acid halide.
- the composite semipermeable membrane of the present invention is a membrane in a region having fractionation characteristics positioned between a reverse osmosis membrane and an ultrafiltration membrane, which is generally defined as a nanofiltration membrane.
- Membranes commonly known as reverse osmosis membranes actually tend to remove most of the organic matter, ions, while ultrafiltration membranes usually do not remove most of the ionic species, but high. Removes molecular weight organic matter.
- the separating functional layer in the composite semipermeable membrane of the present invention is a semi-aromatic cross-linked polyamide obtained by interfacial polymerization of a divalent or higher polyfunctional aliphatic amine compound and a divalent or higher polyfunctional aromatic acid halide. Contains% by weight or more.
- the separation functional layer contains 80% by weight or more, more preferably 90% by weight or more of the semi-aromatic crosslinked polyamide, and more preferably only the semi-aromatic crosslinked polyamide. Since the semi-aromatic crosslinked polyamide is the main component of the separation functional layer, excessive densification due to ⁇ - ⁇ interaction derived from the aromatic ring in the polyamide is suppressed, and excellent divalent ion selective removal property can be obtained. ..
- the polyfunctional aliphatic amine is preferably an alicyclic diamine, more preferably a piperazine derivative.
- the polyfunctional aliphatic amine preferably has a ClogP of -1.0 or more and 2.0 or less, and more preferably -0.5 or more and 1.5 or less.
- ClogP is a value obtained by calculating the octanol-water partition coefficient of a compound from the octanol-water partition coefficient of each functional group contained in the compound (Reference Environ. Sci. Pollute. Res., 2, 153-160 (Reference). 1995)), and can be calculated with structural formula drawing software such as ChemDraw.
- ClogP of -1.0 or more and 2.0 or less means that the polyfunctional aliphatic amine to the organic solvent at the time of interfacial polycondensation Distributing and diffusion are optimized, and pleated separation functional layers are easily formed.
- Examples of the piperazine derivative having a ClogP of -1.0 or more and 2.0 or less include substituted piperazines in which the piperazine ring is substituted with an alkyl group having 1 to 3 carbon atoms (for example, 2-methylpiperazine, 2-ethylpiperazine, etc.).
- 2-Normal propyl piperazine 2,2-dimethyl piperazine, 2,2-diethyl piperazine, 2,2-normal propyl piperazine, 2,3-dimethyl piperazine, 2,3-diethyl piperazine, 2,3-normal propyl piperazine, 2,5-Dimethylpiperazine, 2,5-diethylpiperazine, 2,5-normalpropylpiperazine, 2,6-dimethylpiperazine, 2,6-diethylpiperazine, 2,6-normalpropylpiperazine, 2,3,5 6-Tetramethylpiperazine, etc.).
- the piperazine derivative having a melting point of 100 ° C. or higher is contained in an amount of 80 mol% or more, more preferably 90 mol% or more, and the piperazine derivative is piperazine. It is preferably piperazine in which two or more carbons of the ring are substituted with any of an alkyl group, a fluoroalkyl group and a thioether group (hereinafter, also simply referred to as "substituted piperazine").
- the polyfunctional aliphatic amine constituting the separation functional layer is a piperazine derivative having a melting point of 100 ° C. or higher, and the piperazine derivative has an alkyl group having two or more carbons of the piperazine ring. It has been found that excellent acid resistance and alkali resistance can be obtained by using piperazine (substituted piperazine) substituted with either a fluoroalkyl group or a thioether group.
- Examples of the substituted piperazine having a melting point of 100 ° C. or higher and having an alkyl group, a fluoroalkyl group, and a thioether group on two or more carbons of the piperazine ring include 2,2-dimethylpiperazine and 2,2-diethylpiperazine.
- the melting point of the substituted piperazine is preferably 100 ° C. or higher, more preferably 110 ° C. or higher, and preferably 200 ° C. or lower.
- the melting point of the substituted piperazine is 100 ° C. or higher, the molecular motility around the amide group in the separation functional layer is lowered, and the conformational change of the polyamide at the time of contact with an acid or an alkali is less likely to occur. Is expected to improve. Further, since the melting point is 200 ° C. or lower, the molecular motility of the polyamide is not excessively lowered, so that the permeation of monovalent ions having a small hydrated ionic radius is not hindered, and excellent divalent ion selective removal property can be obtained. ..
- the substituent is any of a hydrophobic alkyl group, fluoroalkyl group, and thioether group, the substituent makes the periphery of the amide group hydrophobic, which is a main factor in the hydrolysis of polyamide when it comes into contact with an acid or an alkali. It is considered that the acid resistance and alkali resistance are remarkably improved by suppressing the addition of the water molecule to the amide group.
- the number of carbon atoms per substituent of the piperazine ring is preferably 1 to 3.
- steric hindrance near the amide group and the pore size distribution (molecular gap) of the polyamide crosslinked structure can be suitably controlled, and water permeability and selective separability are maintained.
- the number of carbon atoms of the substituent is larger than 4, the cross-linking reaction of the polyamide is difficult to proceed due to steric hindrance, and the selective separability and durability against acids and alkalis are lowered.
- the substituted piperazines in which substituents are provided on the two carbons of the piperazine ring there are two types of 2,3-substituted products, 2,5-substituted products, and 2,6-substituted products, cis and trans isomers.
- a steric isomer is present, the trans isomer is more preferable from the viewpoint of improving the acid resistance and alkali resistance of the polyamide. Since the trans isomer has a high steric symmetry of amine, the steric hindrance effect in the vicinity of the amide group when forming the polyamide is larger than that of the cis isomer, and the effect of improving the durability against acids and alkalis is also enhanced.
- the substituted piperazine may be used alone or in combination of two or more.
- the acid resistance and alkali resistance of the entire separation functional layer are improved by containing 80 mol% or more of the above substituted piperazine.
- the polyfunctional aromatic acid halide is an aromatic acid halide having two or more carbonyl halide groups in one molecule, and gives a semi-aromatic polyamide by reaction with the polyfunctional aliphatic amine. If there is, it is not particularly limited.
- the polyfunctional aromatic acid halide include 1,3,5-benzenetricarboxylic acid, 1,2,4-benzenetricarboxylic acid, 1,3-benzenedicarboxylic acid, 1,4-benzenedicarboxylic acid, 1, Halogen compounds such as 3,5-benzenetrisulfonic acid and 1,3,6-naphthalenetrisulfonic acid can be used.
- acid halides are preferable, and acid halides of 1,3,5-benzenetricarboxylic acid are particularly preferable from the viewpoints of economy, availability, handling, and reactivity.
- Trimesinic acid chloride isophthalic acid chloride which is an acid halide of 1,3-benzenedicarboxylic acid, terephthalic acid chloride which is an acid halide of 1,4-benzenedicarboxylic acid, 1,3,5-benzenetrisulfonic acid.
- 1,3,5-Benzene trisulfonic acid chloride which is an acid halide of
- 1,3,6-naphthalene trisulfonic acid chloride which is an acid halide of 1,3,6-naphthalene trisulfonic acid
- the polyfunctional aromatic acid halide may be used alone or in combination of two or more, but trifunctional trimesic acid chloride, 1,3,5-benzenetrisulfonic acid chloride, 1,3.
- the mixed molar ratio of the trifunctional acid chloride and the difunctional acid chloride is preferably 1:20 to 50: 1, more preferably 1: 1 to 20: 1.
- the specific surface area of the separation functional layer is 1.2 or more and 5.0 or less, preferably 1.3 or more and 4.0 or less, and more preferably 1.5 or more and 3.0 or less. is there.
- the specific surface area of the separation functional layer is 1.2 or more, a separation membrane having excellent divalent ion selective removal property can be obtained.
- the inventors have found that acid resistance and alkali resistance are improved when the specific surface area of the separation functional layer is 1.2 or more. It is considered that the increase in the specific surface area reduces the effective contact concentration of the acid or alkali per unit area and suppresses the hydrolysis of the polyamide. Since the specific surface area of the separation function layer is 5.0 or less, the following fold structure is not crushed even when the separation membrane is operated at high pressure, and the specific surface area of the separation function layer is 4.0 or less. Therefore, it is possible to obtain film performance with little variation. Further, when the specific surface area of the separation functional layer is 3.0 or less, stable film performance can be maintained for a long time.
- the “specific surface area of the separation function layer” is the ratio of the "surface area of the separation function layer” to the "surface area of the porous support membrane".
- the above-mentioned “surface area of the separation function layer” represents the surface area of the surface of the separation function layer on the side in contact with the feed liquid. Further, the above-mentioned “surface area of the porous support membrane” represents the surface area of the surface in contact with the separation functional layer.
- the method for obtaining the surface area and the specific surface area can be obtained according to a general method for obtaining the surface area and the specific surface area, and the method is not particularly limited.
- Examples of the measuring device that can be used include a surface area measuring device, a specific surface area measuring device (AFM), a scanning electron microscope (SEM, FE-SEM), a transmission electron microscope (TEM), and the like.
- An example of a specific measurement method is shown in the examples.
- C / (N + O) In the X-ray photoelectron spectroscopy (hereinafter referred to as XPS) measurement performed by irradiating the composite translucent film of the present invention with X-rays from the separation functional layer side, the nitrogen atom and the oxygen atom with respect to the carbon atom in the measured element
- the sum ratio, C / (N + O) is 2.3 or more, preferably 2.4 or more, and more preferably 2.5 or more.
- C / (N + O) is 4.0 or less, preferably 3.5 or less, and more preferably 3.0 or less.
- the inventors have determined that the C / (N + O) of the separation functional layer is 2.3 or more and 4.0 or less, thereby achieving both high acid resistance and alkali resistance and excellent divalent ion selective removal property. I found that I could do it.
- the C / (N + O) of the separation functional layer is 2.3 or more, it means that the chemical composition of the polyamide is hydrophobic. Therefore, water, which is a main factor in the hydrolysis of the polyamide when it comes into contact with an acid or an alkali. It is considered that the acid resistance and alkali resistance were greatly improved by suppressing the addition of the molecule to the amide group. Further, when the C / (N + O) of the separation functional layer is 4.0 or less, the polyamide is not excessively hydrophobic, and the hydrophobic interaction acting between the polyamides is appropriate, so that the pores are excessively dense. It is considered that the permeability of the monovalent ion does not decrease due to the conversion, and excellent divalent ion removal selectivity can be obtained.
- the separation function layer 4 has a fold-shaped thin film 41.
- the folds have a structure in which convex portions 42 and concave portions 43 are alternately arranged.
- Figure 2 shows an enlarged view of the fold structure.
- the “fold height H / thin film thickness T” is preferably 1.2 or more.
- the height H and the thickness T are average values as described later, but are simply referred to as "height” and "thickness” for convenience of explanation. If the H / T is in this range, it can be said that there is a gap in the convex portion 42 (between the thin film 41 and the porous support layer 3). That is, in this case, the separating functional layer has a hollow pleated structure.
- the H / T is preferably 2.0 or more, and more preferably 3.0 or more.
- the measurement method of height H and thickness T is as follows.
- the composite semipermeable membrane is cut into 3 cm ⁇ 3 cm squares and washed with distilled water.
- the washed composite semipermeable membrane is embedded with an epoxy resin and further stained with osmium tetroxide.
- an image of the cross section of the thin film 41 of the separation function layer 4 at a magnification of 1 million is obtained with a scanning transmission electron microscope.
- Ten convex portions 42 are randomly selected, and the shortest distance between the outer surface and the inner surface of the convex portions 42 is measured at five points for each convex portion 42.
- the average value of the 50 values thus obtained is calculated, and this average value is defined as the fold thickness T.
- the maximum distance from the outer surface of each convex portion 42 to the surface of the porous support layer is measured.
- the average value of the obtained 50 values is taken as the average value of the fold height H.
- the thin film thickness T of the separation functional layer is preferably 10 nm or more, more preferably 15 nm or more.
- the thin film thickness is 10 nm or more, a composite semipermeable membrane having sufficient water permeability can be easily obtained, and when the thin film thickness T is 15 nm or more, the removability due to the occurrence of defects is achieved.
- a composite semipermeable membrane having sufficient water permeability can be stably obtained without causing a decrease.
- the thin film thickness T of the separation functional layer is preferably 100 nm or less, more preferably 50 nm or less, and further preferably 30 nm or less.
- the thin film thickness is 100 nm or less, stable film performance can be obtained, and when the thin film thickness is 80 nm or less, sufficient water permeability and stable film performance can be obtained. Further, when the thin film thickness is 30 nm or less, more sufficient water permeability can be provided and stable film performance can be maintained.
- the fold height H is preferably 20 nm or more, more preferably 50 nm or more.
- the fold height is 20 nm or more, a composite semipermeable membrane having sufficient acid resistance and alkali resistance can be easily obtained.
- the fold height H is preferably 1000 nm or less, more preferably 800 nm or less, and further preferably 300 nm or less.
- the fold height of 1000 nm or less prevents the folds from collapsing even when the composite semipermeable membrane is operated at high pressure, and the fold height of 800 nm or less provides stable membrane performance. Obtainable. Further, when the fold height is 300 nm or less, stable film performance can be maintained for a long time.
- the semiaromatics measured by total reflection infrared absorption spectroscopy (hereinafter, ATR-IR) on the surface F1 on the separation function layer side.
- ATR-IR total reflection infrared absorption spectroscopy
- I S the absorption peak intensity derived from the absorption peak intensity derived from the amide group of the polyamide and the support film (I a) is defined as I S.
- the ratio of the respective peak intensities, I A / I S is 0.15 or more, preferably 0.20 or more, and more preferably 0.35 to 0.50.
- I A / I S is 0.15 or more, interaction such as hydrogen bonding between intramolecular or molecules of the amide groups in the separating functional layer is increased, the contact to the amide groups of the acid or alkali inhibition And performance stability is improved. Further, by I A / I S is 0.50 or less, it is possible to achieve both high acid, alkali resistance and high divalent ion selective removability.
- I A is specifically as follows, I S is the composite semipermeable membrane substrate, the porous support layer has a separation function layer, if the porous support layer is polysulfone or polyether sulfone Is defined as follows.
- the composite semipermeable membrane of 40 ° C. 1 mol
- the absorption peak intensity derived from the amide group of the semi-aromatic polyamide when measured by ATR-IR after being immersed in the / L sulfuric acid aqueous solution for 21 days is defined as after I A2, and the absorption peak derived from the porous support layer. Intensity is defined as IS2. Further, the ratios R1 and R2 are defined as follows.
- R1 Absorption derived from the amide group of the semi-aromatic polyamide measured by total internal reflection infrared absorption spectroscopy on the surface of the separation functional layer for the composite semipermeable membrane before immersion in the sulfuric acid aqueous solution in the measurement of Rb below.
- R2 Derived from the amide group of semi-aromatic polyamide measured by total internal reflection infrared absorption spectroscopy on the surface of the separation functional layer after immersing the composite semipermeable membrane in a 1 mol / L sulfuric acid aqueous solution at 40 ° C. for 21 days.
- Ratio of absorption peak intensity (I A2 ) to absorption peak intensity derived from the support membrane (I S2 ) (IA2 / IS2 ) R2 / R1 is 0.40 or more, preferably 0.60 or more, more preferably 0.80 or more, and preferably 1.0 or less.
- the peak intensity ratio R2 / R1 can be used as an index of the strength of the separation functional layer. It is the ratio of the absorption peak value to the porous support layer and the absorption peak value corresponding to the separation function layer. The closer the peak intensity ratio before and after acid immersion is to 1.0, the more the polyamide constituting the separation function layer is eluted. It shows that decomposition does not occur and the state before acid contact is maintained.
- the peak intensity ratios R1 and R2 can be measured as follows. First, the membrane to be measured is sufficiently dried. Next, the surface of the membrane (that is, the surface of the separation function layer) is irradiated with infrared rays, and the reflected light is detected to obtain a spectrum. More specific measurement methods are described in Examples. The peak intensity ratios R1 and R2 described in this document are specifically calculated from the values measured by the method described in the examples.
- the difference in contact angle with the surface of the separation functional layer before and after immersing the composite semipermeable membrane in a 1 mol / L sulfuric acid aqueous solution at 40 ° C. for 21 days is preferably 15 ° C. or less, more preferably 10 ° C. or less. ..
- the contact angle here refers to a static contact angle, and means a high degree of hydrophilicity on the surface of the separation functional layer.
- ⁇ S ⁇ L cos ⁇ + ⁇ SL (1)
- ⁇ S is the surface tension of the separation function layer
- ⁇ L is the surface tension of pure water
- ⁇ SL is the interfacial tension between the separation function layer and pure water.
- the angle ⁇ formed by the tangent of pure water and the surface of the separation function layer when this equation is satisfied is called the contact angle.
- the small difference in contact angle between the surfaces of the separation functional layer before and after being immersed in a sulfuric acid aqueous solution for a long period of time means that the change in hydrophilicity of the surface due to hydrolysis of polyamide or partial exposure of the support layer is small. Therefore, since decomposition and peeling of the separation functional layer are unlikely to occur, it is considered that a decrease in divalent selective removability due to contact with a strong acid can be suppressed.
- the separation functional layer in the present invention contains an amide group derived from a polymer of a polyfunctional aliphatic amine and a polyfunctional aromatic acid halide, and an amino group and a carboxy group derived from an unreacted functional group.
- 7 represented by the following formula has an amide group ratio of 0.80 or more and 1.20 or less, so that in addition to high water permeability and selective separability, it is resistant to acids and alkalis.
- the amide group ratio is more preferably 0.90 or more and 1.10 or less. If it is less than 0.80, the crosslinked structure of the polyamide is not sufficiently formed, so that the durability against acids and alkalis is low. On the contrary, if it is larger than 1.20, the durability against acids and alkalis is further increased, but the density is excessive. As the temperature increases, the water permeability and selective separability are greatly reduced.
- (Amid group ratio) (Amid group molar amount ratio) / ⁇ (Polyfunctional aliphatic amine molar amount ratio) + (Polyfunctional aromatic acid halide molar amount ratio) ⁇
- the molar ratio of amide groups, the molar ratio of polyfunctional aliphatic amines, and the ratio of polyfunctional aromatic acid halides in the formula can be obtained from the 13 C solid-state NMR measurement of the above-mentioned separation functional layer.
- the abundance ratio of the polyfunctional aliphatic amine and the polyfunctional aromatic acid halide in the separation functional layer is preferably 1.25 or more in terms of molar ratio, which is more preferable. Is 1.3 or more, more preferably 1.35 or more.
- the abundance ratio is preferably 1.65 or less, more preferably 1.60 or less, and further preferably 1.55 or less in terms of molar ratio.
- the abundance ratio is 1.25 or more and 1.65 or less, it is considered that the amounts of amino groups and carboxy groups in the polyamide are substantially equal, and the network structure of the polyamide is uniform. Therefore, it is considered that the pore size distribution is also controlled.
- the abundance ratio of the polyfunctional aliphatic amine and the polyfunctional aromatic acid halide in the separation functional layer can be determined by measuring 13 C-NMR of the separation functional layer peeled from the support film or by measuring the separation functional layer peeled from the support film at a high temperature.
- 13 C-NMR 13 C-NMR
- the components of the aliphatic polyfunctional amine and the polyfunctional aromatic acid halide are analyzed, and the components of the aliphatic polyfunctional amine are polymorphized. It can be obtained by dividing by the component of the functional aromatic acid halide.
- the ratio of the polyfunctional aliphatic amine concentration and the polyfunctional aromatic acid halide concentration at the time of intercondensation is used.
- the composite translucent film of the present invention has a magnesium sulfate removal rate when permeated with a 2000 ppm magnesium sulfate aqueous solution at 25 ° C and pH 6.5 and a 2000 ppm magnesium chloride aqueous solution at 25 ° C and pH 6.5 at an operating pressure of 0.5 MPa. 97% or more, preferably 98% or more, more preferably 99% or more, and the difference between the magnesium sulfate removal rate and the magnesium chloride removal rate is 20% or less, preferably 15% or less, still more preferably 10% or less. Therefore, in addition to high selective separation performance, high acid resistance and alkalinity can be achieved.
- a protective layer containing a polymer component provided directly or via another layer is provided on a separation functional layer composed of a polyfunctional aliphatic amine and a polyfunctional aromatic acid halide. May be good.
- the protective layer can improve the divalent ion (particularly sulfate ion) removing performance of the composite semipermeable membrane and can improve the selective separability between the monovalent ion and the divalent ion.
- the polymer component is not particularly limited as long as it is a polymer that does not dissolve the separation functional layer and the support film and does not elute during the water treatment operation.
- polyvinyl alcohol polyvinylpyrrolid, polyvinylpyrrolidone, hydroxypropyl cellulose, polyethylene glycol, chitosan. , And a saponified polyethylene-vinyl acetate copolymer and the like.
- polyvinyl alcohol is preferable from the viewpoint of economy, availability, and handling.
- the saponification degree of polyvinyl alcohol is preferably 85% or more, and more preferably 90% or more.
- the degree of polymerization of polyvinyl alcohol is preferably in the range of 50 to 50,000. When the degree of polymerization is 50 or more, the solubility in water is lowered, and the elution of polyvinyl alcohol during the water treatment operation can be prevented.
- the degree of polymerization is 50,000 or less
- the viscosity of the polyvinyl alcohol aqueous solution can be preferably maintained, and the coating thickness of the polyvinyl alcohol aqueous solution can be reduced.
- both the above-mentioned function as a protective layer and the water permeability of the film can be achieved.
- the removability of divalent ions can be enhanced as compared with the non-cross-linked layer, and the elution of the polymer in the protective layer during water treatment operation is highly advanced. Can be prevented.
- a hydrophilic polymer is preferable from the viewpoint of ease of handling and suppression of deterioration of water permeability, and polyvinyl alcohol is particularly preferable, and polyvinyl alcohol having a saponification degree of 85% or more is more preferable. Since the reactivity of polyvinyl alcohol changes depending on the degree of saponification, the effect of cross-linking is enhanced when the degree of saponification is 85% or more.
- an organic cross-linking agent such as polyvalent aldehyde, epoxy compound, polyvalent carboxylic acid, organic titanium compound, organic zirconium compound, and inorganic cross-linking agent such as boron compound, which is economical.
- polyvalent aldehyde is more preferable from the viewpoint of easy availability and handling, and glutaraldehyde is particularly preferable from the viewpoint of ease of reactivity.
- the thickness of the protective layer is not particularly limited, but is usually 0.01 ⁇ m or more, preferably 0.05 ⁇ m or more. If the thickness of the protective layer is too thin, the polymer component tends to elute during the water treatment operation, and the film performance tends to deteriorate.
- the thickness of the protective layer is usually 5 ⁇ m or less, preferably 3 ⁇ m or less, and more preferably 2 ⁇ m or less. On the other hand, if the protective layer is too thick, the permeation flux tends to decrease.
- the manufacturing method includes a step of forming a support film and a step of forming a separation functional layer.
- Support film forming step can be rephrased as the forming of the porous support layer.
- This step includes a step of applying a polymer solution to a base material and a step of immersing the base material to which the solution is applied in a coagulation bath to coagulate the polymer.
- the polymer solution is prepared by dissolving the polymer, which is a component of the porous support layer, in a good solvent of the polymer.
- the temperature of the polymer solution when the polymer solution is applied is preferably in the range of 10 ° C to 60 ° C.
- the temperature of the polymer solution is within this range, the polymer does not precipitate, and the polymer solution is sufficiently impregnated between the fibers of the base material and then solidified. As a result, a porous support layer firmly bonded to the base material can be obtained by the anchor effect.
- the preferable temperature range of the polymer solution can be appropriately adjusted depending on the type of polymer used, the desired solution viscosity, and the like.
- N, N-dimethylformamide (DMF) is preferable.
- the time from applying the polymer solution on the substrate to immersing it in the coagulation bath is preferably in the range of 0.1 to 5 seconds. If the time until immersion in the coagulation bath is within this range, the organic solvent solution containing the polymer is sufficiently impregnated between the fibers of the base material and then solidified.
- the preferable range of the time until immersion in the coagulation bath can be appropriately adjusted depending on the type of the polymer solution to be used, the desired solution viscosity, and the like.
- Water is usually used as the coagulation bath, but it may be any one that does not dissolve the polymer that is a component of the porous support layer.
- the temperature of the coagulation bath is preferably ⁇ 20 ° C. to 100 ° C.
- the temperature of the coagulation bath is more preferably 10 ° C to 50 ° C.
- vibration of the coagulation bath surface due to thermal motion can be suppressed, and the smoothness of the film surface after film formation can be maintained.
- the temperature is ⁇ 20 ° C. or higher, the solidification rate can be maintained, so that the film forming property can be improved.
- the support film thus obtained may be washed with hot water in order to remove the solvent remaining in the film.
- the temperature of the hot water at this time is preferably 40 ° C. to 100 ° C., more preferably 60 ° C. to 95 ° C.
- the cleaning temperature is not more than the upper limit, the shrinkage of the support membrane does not become too large, and the deterioration of the water permeability can be suppressed. Further, if the cleaning temperature is 40 ° C. or higher, a high cleaning effect can be obtained.
- the step of forming the separation functional layer is (A) A step of impregnating the support membrane with an aqueous solution of a polyfunctional aliphatic amine, (B) After the (a), there is a step of contacting the support membrane with a polyfunctional acid halide-containing solution at 10 to 38 ° C.
- a polyfunctional aliphatic amine to an organic solvent during interfacial polymerization is required. It is important to optimize the distribution and diffusion of For this optimization, it is preferable to bring the support membrane impregnated with the polyfunctional aliphatic amine into contact with the organic solvent solution containing the polyfunctional acid halide at 10 ° C. to 38 ° C. When this technique is carried out, a separation functional layer is formed in a pleated shape, and a film having both selective removal of divalent ions, acid resistance, and alkali resistance can be obtained.
- the film performance is further improved by applying a polyfunctional aliphatic amine aqueous solution having a temperature of 5 to 15 ° C. higher than the temperature of the support film surface to the support film surface.
- the solvent in the polyfunctional aromatic acid halide-containing solution is an organic solvent.
- the organic solvent is immiscible with water, does not destroy the support film, and does not inhibit the reaction of forming the crosslinked polyamide, and has a solubility parameter (SP value) of 15.2 (MPa).
- SP value solubility parameter
- octane, nonane, decane, undecane, dodecane, tridecane, tetradecane, heptadecane, hexadecane and the like, cyclooctane, ethylcyclohexane, 1-octene, 1-decene and the like alone or a mixture thereof are preferably used.
- the aqueous solution containing the polyfunctional aliphatic amine may contain a surfactant.
- a surfactant for example, sodium dodecylbenzene sulfonate, sodium dodecyl sulfate, sodium dodecyldiphenyl ether disulfonate, styrene bis (sodium naphthalene sulfonate), sodium polyoxyethylene alkyl ether sulfate and the like can be mentioned. Since the surface of the porous support layer can be uniformly coated with an aqueous solution of a piperazine compound by containing a surfactant, the separation functional layer is uniformly formed, the effect of stabilizing the membrane performance, and the porosity with the separation functional layer. The effect of enhancing the adhesiveness with the sex support layer can be obtained.
- the aqueous solution containing the polyfunctional aliphatic amine may contain alcohol.
- alcohol for example, ethanol, 1-propanol, 2-propanol, butanol and the like can be mentioned.
- alcohol By containing alcohol, the same effect as that of the above-mentioned surfactant can be obtained.
- the aqueous solution containing the polyfunctional aliphatic amine may contain an alkaline compound.
- an alkaline compound For example, sodium hydroxide, trisodium phosphate, triethylamine and the like can be mentioned.
- hydrogen halide generated in the intercondensation reaction can be removed, the decrease in the reactivity of the piperazine compound can be suppressed, the polyamide reaction can be promoted, and in addition to the selective separability, Durability against acids and alkalis can be improved.
- the aqueous solution containing a polyfunctional aliphatic amine and the organic solvent solution containing a polyfunctional acid halide each contain compounds such as an acylation catalyst, a polar solvent, an acid trapping agent, and an antioxidant, if necessary. May be.
- the surface of the porous support layer is coated with an aqueous solution containing a polyfunctional aliphatic amine.
- an aqueous solution containing a polyfunctional aliphatic amine As a method of coating the surface of the porous support layer with the aqueous solution containing the polyfunctional aliphatic amine, the surface of the porous support layer may be uniformly and continuously coated with this aqueous solution.
- the aqueous solution is porous.
- the method may be carried out by a method of applying to the surface of the sex support layer, a method of immersing the support film in an aqueous solution, or the like, but in the present invention, a method of applying the aqueous solution to the surface of the porous support layer is more preferable.
- a method of applying the aqueous solution to the surface of the porous support layer is more preferable.
- a polyfunctional aliphatic amine-containing aqueous solution having a temperature of 5 to 15 ° C. higher than the film surface temperature of the support film on the surface of the support film.
- a liquid draining step it is preferable to remove the excessively applied aqueous solution by a liquid draining step.
- a method of draining the liquid for example, there is a method of holding the film surface in the vertical direction and allowing it to flow naturally.
- the membrane surface may be dried to remove all or part of the aqueous solution of water.
- the concentration of the polyfunctional aliphatic amine is preferably 0.5% by weight or more and 8.0% by weight or less, more preferably 1.0% by weight or more and 6.0% by weight or less, and further preferably. Is 2.0% by weight or more and 4.0% by weight or less. If the concentration is lower than 0.5% by weight, a uniform separation functional layer is not formed, and a film having insufficient selective separability and durability against acids and alkalis can be obtained. Further, when the concentration is higher than 10.0% by weight, the thickness of the separation functional layer becomes too thick, and the water permeability is significantly deteriorated.
- the organic solvent solution containing the above-mentioned polyfunctional acid halide is applied to the porous support layer containing the aqueous solution containing the polyfunctional aliphatic amine.
- the coating temperature needs to be in the range of 10 ° C. to 38 ° C.
- the contact temperature of the organic solvent solution is more preferably in the temperature range of 20 ° C. to 35 ° C.
- the coating temperature is 10 ° C. or lower, the diffusion rate of amine in the organic solvent is not sufficient, and it becomes difficult to form a fold structure and a polyamide having a pore size required for divalent ion selective removal.
- trimesic acid chloride When trimesic acid chloride is contained as a polyfunctional aromatic acid halide, the concentration of trimesic acid chloride in the organic solvent solution is preferably about 0.05% by weight or more and 0.70% by weight or less, more preferably 0. It is .08% by weight or more and 0.3% by weight or less. Within this range, sufficient water permeability, selective separation performance, and durability against acids and alkalis can be obtained. When other trifunctional acid chlorides and difunctional acid chlorides are used, they are used after adjusting the molar concentration of the acid chlorides to be about the same according to the molecular weight ratio of the above-mentioned trimesic acid chlorides.
- the interfacial polymerization is preferably carried out under a temperature condition of 50 ° C. or higher, more preferably carried out under a temperature condition of 80 ° C. or higher, and preferably carried out at a melting point or higher of the polyfunctional aliphatic amine. Further, the interfacial polymerization is preferably carried out under a temperature condition of 120 ° C. or lower. By performing the interfacial polymerization at 50 ° C.
- the polyfunctional aliphatic amine can maintain high motility in the reaction system, an efficient cross-linking reaction proceeds, and excellent acid resistance and alkali resistance are obtained. Both valent ion selective removal properties can be achieved. Further, by performing the interfacial polymerization at 120 ° C. or lower, overdrying of the separation functional layer and the porous support layer can be prevented, and practical water permeability and divalent ion selective removal property can be ensured.
- the time for carrying out the interfacial polymerization is preferably 0.1 seconds or more and 3 minutes or less, and more preferably 0.1 seconds or more and 1 minute or less.
- the organic solvent can be removed by, for example, a method of grasping the membrane in the vertical direction and naturally flowing down the excess organic solvent to remove the organic solvent, a method of drying the organic solvent by blowing wind with a blower, or a mixed fluid of water and air.
- a method of removing excess organic solvent can be used.
- removal with a mixed fluid of water and air is preferable.
- the separation functional layer contains water, which causes swelling and high water permeability.
- the time for gripping in the vertical direction is preferably between 1 minute and 5 minutes, and more preferably between 1 minute and 3 minutes.
- the gripping time is 1 minute or more, it is easy to obtain a separation functional layer having a desired function, and when it is 3 minutes or less, the occurrence of defects due to overdrying of the organic solvent can be suppressed, so that the deterioration of performance can be suppressed. Can be done.
- the composite semipermeable membrane obtained by the above method is further subjected to a step of washing with hot water in the range of 25 ° C. to 90 ° C. for 1 minute to 60 minutes to prevent the solute of the composite semipermeable membrane. And water permeability can be further improved.
- the composite semipermeable membrane of the present invention can be suitably used as a nanofiltration membrane for separating monovalent ions and divalent ions.
- This composite translucent film can be used to remove acids and alkalis from industrial applications such as salt removal and mineral adjustment from brackish water and seawater, salt removal and mineral adjustment in the food field, plating, and refining, as well as acid and alkali solutions. It is possible to recover the metal inside.
- the composite semipermeable membrane of the present invention has a tubular shape in which a large number of holes are bored together with a raw water flow path material such as a plastic net, a permeation water flow path material such as a tricot, and a film for increasing pressure resistance as needed. It is wound around the water collecting pipe of the above and is suitably used as a spiral type composite semipermeable membrane element. Further, the elements can be connected in series or in parallel to form a composite semipermeable membrane module housed in a pressure vessel.
- the above-mentioned composite semipermeable membrane, its elements, and modules can be combined with a pump for supplying raw water to them, a device for pretreating the raw water, and the like to form a fluid separation device.
- a separation device By using this separation device, raw water can be separated into permeated water such as drinking water and concentrated water that has not permeated the membrane, and water suitable for the purpose can be obtained.
- Specific surface area of separation function layer (length of separation function layer) 2 / (length of porous support layer) 2 ⁇ Presence or absence of fold structure>
- the fold height H of the separation functional layer and “the thin film thickness T of the separation functional layer” were measured, and "H / T” was calculated. If the H / T is 1.2 or more, the separation function layer has a hollow pleated structure, and if it is less than 1.2, the separation function layer does not have a hollow fold structure. ..
- the measurement of the thickness T and the height H will be described with reference to FIG.
- the composite semipermeable membrane was cut into 3 cm ⁇ 3 cm squares and washed with distilled water at 25 ° C. for 24 hours.
- the washed composite semipermeable membrane was embedded with an epoxy resin and then stained with osmium tetroxide to prepare a measurement sample.
- an image of the cross section of the thin film 41 of the separation function layer 4 was obtained with a scanning transmission electron microscope (manufactured by Hitachi, Ltd .; HD2700) at a magnification of 1 million times.
- the maximum distance from the outer surface of each convex portion 42 to the surface of the porous support layer was measured.
- the average value of the obtained 50 values was taken as the average value of the fold height H.
- ⁇ X-ray photoelectron spectroscopy> the composite semipermeable membrane is immersed in a hydrochloric acid aqueous solution at 25 ° C. and pH 2 for 30 minutes, then immersed in pure water at 90 ° C. for 30 minutes to wash the membrane surface, and then dried at room temperature and vacuum. It was carried out about the thing.
- the composition of the elements detected in the range of 0 eV or more and 1400 eV or less was analyzed by wide scan analysis by XPS measurement.
- X-ray photoelectron spectroscopy measuring device SSX-100 manufactured by SSI of the United States aluminum K ⁇ 1 line and K ⁇ 2 line (1486.6 eV) are measured as excitation X-rays, X-ray output is 10 kV, 20 mV, and photoelectron escape angle is 90 °. Then, the measurement at different film positions was repeated 10 times, and the average value was taken as the measured value.
- the peak having the maximum value among 1600 cm -1 and 1650 cm -1 was determined as the peak derived from the amide group, and the peak 1242 cm -1 was determined as the peak derived from the support film, and the peak intensity ratio I seeking a / I S, to calculate the average value of an arbitrary 10-point measurement.
- the composite semipermeable membrane to be measured is immersed in a 1 mol / L sulfuric acid aqueous solution at 40 ° C. for 21 days, washed with a large amount of pure water, sufficiently dried, and again after the peak intensity ratio IA / under the above conditions. seek post I S, and calculates the ratio R2 / R1 of the peak intensity ratio to the peak intensity ratio before acid immersion (I a / I S).
- the base material was physically peeled off from the composite semipermeable membrane 5 m 2 , and the porous support layer and the separating functional layer were recovered.
- the recovered porous support layer and separation functional layer were washed with warm water at 95 ° C. for 2 hours. After drying by allowing to stand at 25 ° C. for 24 hours, it was added little by little to a beaker containing dichloromethane and stirred to dissolve the polymer constituting the porous support layer.
- the insoluble matter in the beaker was collected with filter paper. This insoluble matter was placed in a beaker containing dichloromethane and stirred to recover the insoluble matter in the beaker. This process was repeated until the elution of the polymer forming the porous support layer in the dichloromethane solution could not be detected.
- the recovered separation functional layer was dried in a vacuum dryer to remove residual dichloromethane.
- the obtained separation functional layer was made into a powder sample by freeze-grinding, sealed in a sample tube used for solid-state NMR measurement, and 13 C solid-state NMR measurement was performed by CP / MAS method and DD / MAS method.
- 13 C solid-state NMR measurement for example, CMX-300 manufactured by Chemagnetics can be used. An example of measurement conditions is shown below.
- (Amid group ratio) (Amid group molar amount ratio) / ⁇ (Aliphatic polyfunctional amine molar amount ratio) + (Polyfunctional acid halide molar amount ratio) ⁇ ⁇ Abundance ratio of polyfunctional aliphatic amines and polyfunctional acid chlorides constituting the separation functional layer>
- the lyophilized product of the separation functional layer prepared for the above-mentioned measurement of amide group ratio was hydrolyzed by heating with a strong alkaline heavy aqueous solution, and the hydrolyzed heavy aqueous solution was filtered and measured by 1 H-NMR. The data obtained by the measurement was analyzed, and the abundance ratio of the polyfunctional aliphatic amine and the polyfunctional acid chloride was calculated from the area value of the peak.
- MgSO 4 removal rate (%) ⁇ 1- / ( MgSO 4 concentration in the feed solution) (MgSO 4 concentration in the permeate) ⁇ ⁇ 100 ⁇ MgCl 2 removal rate>
- Evaluation water adjusted to a temperature of 25 ° C., a pH of 6.5, and a MgCl 2 concentration of 2000 ppm was supplied to the composite semipermeable membrane at an operating pressure of 0.5 MPa to perform a membrane filtration treatment.
- the electric conductivity of the supplied water and the permeated water was measured with an electric conductivity meter manufactured by Toa Denpa Kogyo Co., Ltd. to obtain the respective practical salt content, that is, the MgCl 2 concentration.
- the MgCl 2 removal rate was calculated based on the MgCl 2 concentration thus obtained and the following formula.
- MgCl 2 removal rate (%) 100 ⁇ ⁇ 1- (MgCl 2 concentration / MgCl 2 concentration in the feed water of the transmitted water) ⁇ ⁇ NaCl removal rate>
- Evaluation water adjusted to a temperature of 25 ° C., a pH of 6.5, and a NaCl concentration of 500 ppm was supplied to the composite semipermeable membrane at an operating pressure of 0.5 MPa to perform membrane filtration treatment.
- the electric conductivity of the supplied water and the permeated water was measured with an electric conductivity meter manufactured by Toa Denpa Kogyo Co., Ltd. to obtain the respective practical salt content, that is, the NaCl concentration.
- the NaCl removal rate was calculated based on the NaCl concentration thus obtained and the following formula.
- NaCl removal rate (%) 100 ⁇ ⁇ 1- (NaCl concentration in permeated water / NaCl concentration in feed water) ⁇ ⁇ Monovalent ion / divalent ion selectivity> The monovalent ion / divalent ion selectivity was calculated based on the calculated sulfonyl 4 removal rate, NaCl removal rate and the following formula.
- Monovalent ion / divalent ion selectivity (100-NaCl removal rate) / (100- Then 4 removal rate) ⁇ Membrane permeation flux>
- the amount of water permeated through the membrane of the supplied water (sulfonyl 4 aqueous solution) was measured, and the value converted to the amount of water permeated per day (cubic meter) per square meter of the membrane surface was converted into the membrane permeation flux (m 3 / m 2 / Day).
- Example 1 Preparation of composite semipermeable membrane> An 18 wt% dimethylformamide (DMF) solution of polysulfone was cast on a non-woven fabric (breathability 1.0 cc / cm 2 / sec) made of polyester fibers manufactured by the papermaking method at room temperature (25 ° C.) at a coating thickness of 180 ⁇ m. Immediately after that, the porous support layer was formed on the base material by immersing it in pure water for 5 minutes to prepare a support film.
- DMF dimethylformamide
- the film surface temperature of the support film was adjusted to 26 ° C while removing excess water by blowing air adjusted to 26 ° C.
- an aqueous solution at 30 ° C. in which 2.0% by weight of 2-normal butyl piperazine, 250 ppm by weight of sodium dodecyldiphenyl ether disulfonate, and 1.0% by weight of trisodium phosphate are dissolved for 15 seconds, nitrogen is blown from an air nozzle to make an excess aqueous solution.
- an n-decane solution at 38 ° C.
- trimesic acid chloride TMC containing 0.2% by weight of trimesic acid chloride (TMC) was uniformly applied to the entire surface of the porous support layer, and then allowed to stand at 50 ° C. for 1 minute, and two fluids (2 fluids) were applied to the film surface. Pure water and air) were sprayed to remove the surface solution. Then, it was washed with pure water of 80 degreeC, and a composite semipermeable membrane was obtained.
- TMC trimesic acid chloride
- Example 2 In Example 1, the composite semipermeable membrane was changed in the same manner as in Example 1 except that the polyfunctional aliphatic amine was changed to cis-2.3-dimethylpiperazine and the solution temperature of the polyfunctional acid chloride was changed to 30 ° C. Was produced.
- Example 3 In Example 2, the temperature at which air was blown onto the support membrane and the surface temperature of the support membrane were adjusted to 25 ° C., and the polyfunctional aliphatic amine was changed to trans-2,5-dimethylpiperazine. A composite semipermeable membrane was prepared in the same manner as in the above.
- Example 4 In Example 3, the method of forming the coating layer of the amine aqueous solution on the support film was changed to the method of applying the amine aqueous solution on the support film surface and allowing it to stand for 15 seconds, and a few polyfunctional aliphatic amines were added.
- a composite semipermeable membrane was prepared in the same manner as in Example 3 except that the mixture was changed to 5,6-tetramethylpiperazine.
- Example 5 In Example 4, the composite semi-compounded by the same method as in Example 4 except that the atmospheric temperature after applying the polyfunctional aliphatic amine trans-2,5-dinormalpropylpiperazine and the polyfunctional acid chloride solution was changed to 80 ° C. A permeable membrane was prepared.
- Example 6 In Example 5, the polyfunctional aliphatic amine was changed to trans-2,5-bis (difluoromethyl) piperazine, the amine aqueous solution temperature was changed to 40 ° C., and the TMC concentration was changed from 0.2% by weight to 0.1% by weight. A composite semipermeable membrane was prepared in the same manner as in Example 5 except that it was changed to%.
- Example 7 a composite semipermeable membrane was prepared in the same manner as in Example 5 except that the polyfunctional aliphatic amine was changed to trans-2,5-bis (dimethylthio) piperazine and the amine aqueous solution temperature was changed to 41 ° C. ..
- Example 8 In Example 5, a composite semipermeable membrane was prepared in the same manner as in Example 5 except that the polyfunctional aliphatic amine was changed to trans-2,5-dimethylpiperazine and the amine aqueous solution temperature was changed to 35 ° C.
- Example 8 the polyfunctional aliphatic amine was compounded in the same manner as in Example 8 except that the atmospheric temperature after applying the polyfunctional aliphatic amine 2,3,5,6-tetramethylpiperazine and the polyfunctional acid chloride solution was changed to 120 ° C. A semipermeable membrane was prepared.
- Example 10 In Example 9, the polyfunctional aliphatic amine was changed to trans-2,5-dinormalbutylpiperazine, the amine concentration was changed to 4.0% by weight, and the polyfunctional acid chloride was changed to 1,3,5-benzenetrisulfonic acid chloride.
- a composite semipermeable membrane was prepared in the same manner as in Example 9 except for the above.
- Example 11 In Example 9, a composite semipermeable membrane was prepared in the same manner as in Example 9 except that the polyfunctional aliphatic amine was changed to trans-2,5-diethylpiperazine.
- Example 12 In Example 9, a composite semipermeable membrane was prepared in the same manner as in Example 9 except that the polyfunctional aliphatic amine was changed to trans-2,5-dimethylpiperazine.
- Example 13 a composite semipermeable membrane was prepared in the same manner as in Example 9 except that the polyfunctional aliphatic amine was changed to trans-2,5-bis (difluoromethyl) piperazine.
- Example 3 a composite semipermeable membrane was prepared in the same manner as in Example 3 except that the polyfunctional aliphatic amine was piperazine and the amine aqueous solution temperature was changed to 25 ° C.
- Comparative Example 2 In Comparative Example 1, a composite semipermeable membrane was prepared by the same method as in Comparative Example 1 except that the concentration of the polyfunctional aliphatic amine was changed to 8.0% by weight and the atmospheric temperature after applying the polyfunctional acid chloride solution was changed to 120 ° C. did.
- Comparative Example 3 The membrane prepared in Comparative Example 2 was set in a cell for evaluation of a flat membrane, and an aqueous solution containing pH 7.5 and sodium hypochlorite 20 ppm was applied to the supply side and the permeation side of the composite semipermeable membrane with a differential pressure of 1.5 MPa. It was given and contacted for 30 minutes to prepare a composite semipermeable membrane in which the polyamide of the separation functional layer was chlorinated.
- Comparative Example 4 In Comparative Example 1, the polyfunctional acid chloride was combined in the same manner as in Comparative Example 1 except that the atmospheric temperature after applying the 1,3,5-benzenetrisulfonic acid chloride and the polyfunctional acid chloride solution was changed to 120 ° C. A semipermeable membrane was prepared.
- Comparative Example 5 In Comparative Example 1, a composite semipermeable membrane was prepared in the same manner as in Comparative Example 1 except that the polyfunctional aliphatic amine was changed to 2-methylpiperazine.
- Comparative Example 6 In Comparative Example 5, a composite semipermeable membrane was prepared in the same manner as in Comparative Example 5 except that the polyfunctional aliphatic amine concentration was 6.0% by weight and the atmospheric temperature after applying the polyfunctional acid chloride solution was changed to 120 ° C. did.
- Comparative Example 7 In Comparative Example 1, the aliphatic amine piperazine and the aromatic amine m-phenylenediamine are adjusted in a molar ratio of 9: 1 so that the polyfunctional amine concentration is 6.0% by weight. A composite semipermeable membrane was prepared in the same manner as in Comparative Example 1 except that it was changed.
- Comparative Example 7 In Comparative Example 1, the aliphatic amine piperazine and the aromatic amine m-phenylenediamine are adjusted in a molar ratio of 9: 1 so that the polyfunctional amine concentration is 6.0% by weight. A composite semipermeable membrane was prepared in the same manner as in Comparative Example 1 except that it was changed.
- Example 3 a composite semipermeable membrane was prepared in the same manner as in Example 3 except that the solution temperature of the polyfunctional aliphatic amine was 2-normal butylpiperazine and the polyfunctional acid chloride was changed to 10 ° C.
- Comparative Example 9 In Comparative Example 8, the method of forming the coating layer of the amine aqueous solution on the support film was changed to the method of applying the amine aqueous solution on the support film surface and allowing it to stand for 15 seconds, and the solution temperature of the polyfunctional acid chloride was changed to 40.
- a composite semipermeable membrane was prepared in the same manner as in Example 3 except that the temperature was changed to ° C.
- the specific surface area of the surface of the separation functional layer containing a semi-aromatic cross-linked polyamide, which is a condensate of a polyfunctional aliphatic amine and a polyfunctional aromatic acid halide, as a main component is 1.2 or more.
- a composite semipermeable membrane having a C / (N + O) of 2.3 or more and 4.0 or less of 5.0 or less has high acid resistance and alkalinity in addition to high monovalent ion / divalent ion selective separation performance. ..
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
A composite semipermeable membrane according to the present invention comprises a separation functional layer, wherein the separation functional layer contains, as a main component, a semi-aromatic crosslinked polyamide, which is a condensate of a polyfunctional aliphatic amine and a polyfunctional aromatic acid halide, has hollow pleats, has a surface of which the specific surface area is 1.2-5.0, and has a ratio (C/(N+O)) of carbon atoms to the sum of nitrogen atoms and oxygen atoms in an element, of 2.3-4.0, as measured through X-ray photoelectron spectroscopy measurement.
Description
本発明は、多価イオンや農薬などを選択的に除去し、イオン半径の小さな一価イオンを透過させる選択分離性を持ち、かつ、高い耐酸性、耐アルカリ性を持つ複合半透膜およびその製造方法に関する。この膜により、かん水や海水からの塩分除去やミネラル調整、食品分野での塩分除去やミネラル調整、メッキ、精錬など工業用途からの酸、アルカリの回収、更にはレアメタルの有価物回収、などが可能となる。
INDUSTRIAL APPLICABILITY The present invention is a composite semipermeable membrane which selectively removes polyvalent ions, pesticides, etc. and allows monovalent ions having a small ionic radius to permeate, and has high acid resistance and alkali resistance. Regarding the method. With this film, it is possible to remove salts and minerals from brackish water and seawater, remove salts and minerals in the food field, recover acids and alkalis from industrial applications such as plating and refining, and recover valuable metals of rare metals. It becomes.
混合物の分離に関して、溶媒(例えば水)に溶解した物質(例えば塩類)を除くための技術には様々なものがあるが、近年、省エネルギーおよび省資源のためのプロセスとして膜分離法の利用が拡大している。膜分離法に使用される膜には、精密ろ過膜、限外ろ過膜、ナノろ過膜、逆浸透膜などがあり、これらの膜は、例えば、海水、かん水、有害物を含んだ水などからの飲料水の製造や、飲料水の軟水化、食品用途、工業用超純水の製造、廃水処理、有価物の回収などに用いられている。
Regarding the separation of mixtures, there are various techniques for removing substances (for example, salts) dissolved in a solvent (for example, water), but in recent years, the use of the membrane separation method has expanded as a process for energy saving and resource saving. doing. Membranes used in the membrane separation method include microfiltration membranes, ultrafiltration membranes, nanofiltration membranes, reverse osmosis membranes, etc., and these membranes are, for example, from seawater, drinking water, water containing harmful substances, etc. It is used for the production of drinking water, softening of drinking water, food use, production of industrial ultrapure water, wastewater treatment, recovery of valuable resources, etc.
現在市販されている逆浸透膜およびナノろ過膜の大部分は複合半透膜であり、支持膜上にゲル層とポリマーを架橋した活性層を有するものと、支持膜上でモノマーを重縮合した活性層を有するものとの2種類がある。なかでも、多官能アミンと多官能酸ハロゲン化物との重縮合反応によって得られる架橋ポリアミドからなる分離機能層を支持膜上に被覆して得られる複合半透膜は、透過性や選択分離性の高い分離膜として広く用いられている。
Most of the reverse osmosis membranes and nanofiltration membranes currently on the market are composite semipermeable membranes, which have an active layer in which a gel layer and a polymer are crosslinked on a support membrane, and a monomer is polycondensed on the support membrane. There are two types, one having an active layer. Among them, the composite semipermeable membrane obtained by coating a separation functional layer made of a crosslinked polyamide obtained by a polycondensation reaction between a polyfunctional amine and a polyfunctional acid halide on a support membrane is permeable and selectively separable. Widely used as a high separation membrane.
一価イオンや、二価イオン、有機物の混合溶液から特定の物質を分離するためにナノろ過膜が広く使われており、脂肪族アミンと酸ハロゲン化物からなるナノろ過膜が提案されている。
Nanofiltration membranes are widely used to separate specific substances from mixed solutions of monovalent ions, divalent ions, and organic substances, and nanofiltration membranes composed of aliphatic amines and acid halides have been proposed.
例えば、ピペラジンに多官能芳香族カルボン酸塩化物を反応させて得られるポリアミドからなるナノろ過膜が開示されている(特許文献1)。一方、ナノろ過膜を用いる膜分離プラントで起こる問題の一つに、無機物や有機物によるファウリングがある。ナノろ過膜はファウリングによって透水性能が著しく低下する。これを改善する方法として、酸やアルカリといった薬品を用いて洗浄することで、透水性能を回復させる方法なども提案されており、耐薬品性の高いナノろ過膜(特許文献2,3)も知られている。
For example, a nanofiltration membrane made of polyamide obtained by reacting piperazine with a polyfunctional aromatic carboxyl chloride product is disclosed (Patent Document 1). On the other hand, one of the problems that occurs in membrane separation plants that use nanofiltration membranes is fouling due to inorganic or organic substances. The water permeability of the nanofiltration membrane is significantly reduced due to fouling. As a method for improving this, a method of recovering the water permeability by cleaning with a chemical such as an acid or an alkali has been proposed, and a nanofiltration membrane having high chemical resistance (Patent Documents 2 and 3) is also known. Has been done.
このように、ナノろ過膜に要求される性能には、透水性能や選択分離性能だけでなく、耐薬品性も存在するが、特許文献1に記載の膜は耐薬品性が低く、一方、特許文献2や特許文献3に記載の膜は耐薬品性を高くすることができるが、選択分離性が低いという問題があった。
As described above, the performance required for the nanofiltration membrane includes not only water permeability and selective separation performance but also chemical resistance, but the membrane described in Patent Document 1 has low chemical resistance, while the patent The films described in Document 2 and Patent Document 3 can have high chemical resistance, but have a problem of low selective separability.
本発明の目的は、高い1価イオン/2価イオン選択分離性能を持ち、かつ、高い耐酸およびアルカリ性を持つ複合半透膜を提供することである。
An object of the present invention is to provide a composite semipermeable membrane having high monovalent ion / divalent ion selective separation performance and high acid resistance and alkalinity.
上記目的を達成するために、本発明は以下の構成をとる。
[1]支持膜と、前記支持膜上に形成された多官能脂肪族アミンと多官能芳香族酸ハロゲン化物との縮合体である半芳香族架橋ポリアミドを含有する分離機能層と、を有する複合半透膜であって、
前記分離機能層表面の比表面積が1.2以上5.0以下であり、
前記分離機能層表面でのX線光電子分光により測定される炭素原子数に対する窒素原子数と酸素原子数の和の割合C/(N+O)が2.3以上、4.0以下である複合半透膜。
[2] 前記分離機能層が、(ひだ高さ/厚み)が1.2以上であるひだ状の薄膜を有する
上記[1]に記載の複合半透膜。
[3]前記複合半透膜における分離機能層側表面で、全反射赤外吸収スペクトル法により測定される、半芳香族ポリアミドのアミド基に由来する吸収ピーク強度(IA)と支持膜に由来する吸収ピーク強度(IS)との比(IA/IS)が0.15以上0.50以下である
上記[1]または[2]に記載の複合半透膜。
[4]Ra/Rbが0.40以上1.0以下である、
上記[1]~[3]のいずれかに記載の複合半透膜。
R1:下記Rbの測定における硫酸水溶液への浸漬を行う前の複合半透膜ついて、分離機能層側の表面で全反射赤外吸収スペクトル法により測定される、半芳香族ポリアミドのアミド基に由来する吸収ピーク強度(IA)と支持膜に由来する吸収ピーク強度(IS)との比(IA/IS)
R2:複合半透膜を40℃の1mol/L硫酸水溶液に21日間を浸漬させた後に、分離機能層側の表面で全反射赤外吸収スペクトル法により測定される、半芳香族ポリアミドのアミド基に由来する吸収ピーク強度(IA2)と支持膜に由来する吸収ピーク強度(IS2)との比(IA2/IS2)
[5]複合半透膜を40℃の1mol/L硫酸水溶液に21日間を浸漬させる前後での接触角の差が15°以下である
上記[1]~[4]のいずれかに記載の複合半透膜。
[6]前記分離機能層を構成する多官能脂肪族アミン成分のうち、融点が100℃以上であるピペラジン誘導体を80mol%以上含み、前記ピペラジン誘導体はピペラジン環の二つ以上の炭素がアルキル基、フルオロアルキル基、チオエーテル基のいずれかで置換されたピペラジンである
上記[1]~[5]のいずれかに記載の複合半透膜。
[7] 前記半芳香族架橋ポリアミド中の、多官能脂肪族アミンと多官能芳香族酸ハロゲン化物の合計物質量(mol)とアミド基の物質量(mol)とのモル比率(アミド基率)が0.80以上1.20以下である
上記[1]~[6]のいずれかに記載の複合半透膜。 In order to achieve the above object, the present invention has the following configuration.
[1] A composite having a support membrane and a separation functional layer containing a semi-aromatic crosslinked polyamide which is a condensate of a polyfunctional aliphatic amine formed on the support membrane and a polyfunctional aromatic acid halide. It is a semipermeable membrane
The specific surface area of the surface of the separation functional layer is 1.2 or more and 5.0 or less.
Composite semipermeable membrane in which the ratio C / (N + O) of the sum of the number of nitrogen atoms and the number of oxygen atoms to the number of carbon atoms measured by X-ray photoelectron spectroscopy on the surface of the separation functional layer is 2.3 or more and 4.0 or less. film.
[2] The composite semipermeable membrane according to the above [1], wherein the separation functional layer has a fold-shaped thin film having a (fold height / thickness) of 1.2 or more.
[3] derived by the composite semipermeable membrane in the separation functional layer surface is measured by the total reflection infrared absorption spectrum method, the support film to the absorption peak intensity derived from the amide group of semi-aromatic polyamide (I A) the composite semipermeable membrane according to [1] or [2] the ratio of the absorption peak intensity (I S) (I a / I S) is 0.15 to 0.50 to.
[4] Ra / Rb is 0.40 or more and 1.0 or less.
The composite semipermeable membrane according to any one of the above [1] to [3].
R1: The composite semipermeable membrane before immersion in the sulfuric acid aqueous solution in the measurement of Rb below is derived from the amide group of the semi-aromatic polyamide measured by the total internal reflection infrared absorption spectroscopy on the surface on the separation function layer side. absorption peak intensity (I a) and the absorption peak intensity derived from the support film (I S) and the ratio of (I a / I S)
R2: An amide group of a semi-aromatic polyamide measured by total internal reflection infrared absorption spectroscopy on the surface of the separation function layer side after immersing the composite semipermeable membrane in a 1 mol / L sulfuric acid aqueous solution at 40 ° C. for 21 days. from absorption peak intensity (I A2) and the absorption peak intensity derived from the support film the ratio between (I S2) (I A2 / I S2)
[5] The composite according to any one of the above [1] to [4], wherein the difference in contact angle before and after immersing the composite semipermeable membrane in a 1 mol / L sulfuric acid aqueous solution at 40 ° C. for 21 days is 15 ° or less. Semipermeable membrane.
[6] Among the polyfunctional aliphatic amine components constituting the separation functional layer, 80 mol% or more of a piperazine derivative having a melting point of 100 ° C. or higher is contained, and the piperazine derivative contains an alkyl group having two or more carbons of the piperazine ring. The composite translucent film according to any one of the above [1] to [5], which is a piperazine substituted with either a fluoroalkyl group or a thioether group.
[7] The molar ratio (amide group ratio) of the total amount of the polyfunctional aliphatic amine and the polyfunctional aromatic acid halide to the amount of the amide group (mol) in the semi-aromatic crosslinked polyamide. The composite translucent film according to any one of the above [1] to [6], wherein is 0.80 or more and 1.20 or less.
[1]支持膜と、前記支持膜上に形成された多官能脂肪族アミンと多官能芳香族酸ハロゲン化物との縮合体である半芳香族架橋ポリアミドを含有する分離機能層と、を有する複合半透膜であって、
前記分離機能層表面の比表面積が1.2以上5.0以下であり、
前記分離機能層表面でのX線光電子分光により測定される炭素原子数に対する窒素原子数と酸素原子数の和の割合C/(N+O)が2.3以上、4.0以下である複合半透膜。
[2] 前記分離機能層が、(ひだ高さ/厚み)が1.2以上であるひだ状の薄膜を有する
上記[1]に記載の複合半透膜。
[3]前記複合半透膜における分離機能層側表面で、全反射赤外吸収スペクトル法により測定される、半芳香族ポリアミドのアミド基に由来する吸収ピーク強度(IA)と支持膜に由来する吸収ピーク強度(IS)との比(IA/IS)が0.15以上0.50以下である
上記[1]または[2]に記載の複合半透膜。
[4]Ra/Rbが0.40以上1.0以下である、
上記[1]~[3]のいずれかに記載の複合半透膜。
R1:下記Rbの測定における硫酸水溶液への浸漬を行う前の複合半透膜ついて、分離機能層側の表面で全反射赤外吸収スペクトル法により測定される、半芳香族ポリアミドのアミド基に由来する吸収ピーク強度(IA)と支持膜に由来する吸収ピーク強度(IS)との比(IA/IS)
R2:複合半透膜を40℃の1mol/L硫酸水溶液に21日間を浸漬させた後に、分離機能層側の表面で全反射赤外吸収スペクトル法により測定される、半芳香族ポリアミドのアミド基に由来する吸収ピーク強度(IA2)と支持膜に由来する吸収ピーク強度(IS2)との比(IA2/IS2)
[5]複合半透膜を40℃の1mol/L硫酸水溶液に21日間を浸漬させる前後での接触角の差が15°以下である
上記[1]~[4]のいずれかに記載の複合半透膜。
[6]前記分離機能層を構成する多官能脂肪族アミン成分のうち、融点が100℃以上であるピペラジン誘導体を80mol%以上含み、前記ピペラジン誘導体はピペラジン環の二つ以上の炭素がアルキル基、フルオロアルキル基、チオエーテル基のいずれかで置換されたピペラジンである
上記[1]~[5]のいずれかに記載の複合半透膜。
[7] 前記半芳香族架橋ポリアミド中の、多官能脂肪族アミンと多官能芳香族酸ハロゲン化物の合計物質量(mol)とアミド基の物質量(mol)とのモル比率(アミド基率)が0.80以上1.20以下である
上記[1]~[6]のいずれかに記載の複合半透膜。 In order to achieve the above object, the present invention has the following configuration.
[1] A composite having a support membrane and a separation functional layer containing a semi-aromatic crosslinked polyamide which is a condensate of a polyfunctional aliphatic amine formed on the support membrane and a polyfunctional aromatic acid halide. It is a semipermeable membrane
The specific surface area of the surface of the separation functional layer is 1.2 or more and 5.0 or less.
Composite semipermeable membrane in which the ratio C / (N + O) of the sum of the number of nitrogen atoms and the number of oxygen atoms to the number of carbon atoms measured by X-ray photoelectron spectroscopy on the surface of the separation functional layer is 2.3 or more and 4.0 or less. film.
[2] The composite semipermeable membrane according to the above [1], wherein the separation functional layer has a fold-shaped thin film having a (fold height / thickness) of 1.2 or more.
[3] derived by the composite semipermeable membrane in the separation functional layer surface is measured by the total reflection infrared absorption spectrum method, the support film to the absorption peak intensity derived from the amide group of semi-aromatic polyamide (I A) the composite semipermeable membrane according to [1] or [2] the ratio of the absorption peak intensity (I S) (I a / I S) is 0.15 to 0.50 to.
[4] Ra / Rb is 0.40 or more and 1.0 or less.
The composite semipermeable membrane according to any one of the above [1] to [3].
R1: The composite semipermeable membrane before immersion in the sulfuric acid aqueous solution in the measurement of Rb below is derived from the amide group of the semi-aromatic polyamide measured by the total internal reflection infrared absorption spectroscopy on the surface on the separation function layer side. absorption peak intensity (I a) and the absorption peak intensity derived from the support film (I S) and the ratio of (I a / I S)
R2: An amide group of a semi-aromatic polyamide measured by total internal reflection infrared absorption spectroscopy on the surface of the separation function layer side after immersing the composite semipermeable membrane in a 1 mol / L sulfuric acid aqueous solution at 40 ° C. for 21 days. from absorption peak intensity (I A2) and the absorption peak intensity derived from the support film the ratio between (I S2) (I A2 / I S2)
[5] The composite according to any one of the above [1] to [4], wherein the difference in contact angle before and after immersing the composite semipermeable membrane in a 1 mol / L sulfuric acid aqueous solution at 40 ° C. for 21 days is 15 ° or less. Semipermeable membrane.
[6] Among the polyfunctional aliphatic amine components constituting the separation functional layer, 80 mol% or more of a piperazine derivative having a melting point of 100 ° C. or higher is contained, and the piperazine derivative contains an alkyl group having two or more carbons of the piperazine ring. The composite translucent film according to any one of the above [1] to [5], which is a piperazine substituted with either a fluoroalkyl group or a thioether group.
[7] The molar ratio (amide group ratio) of the total amount of the polyfunctional aliphatic amine and the polyfunctional aromatic acid halide to the amount of the amide group (mol) in the semi-aromatic crosslinked polyamide. The composite translucent film according to any one of the above [1] to [6], wherein is 0.80 or more and 1.20 or less.
アミド基率(モル比)=アミド基量/(多官能脂肪族アミン量+多官能芳香族酸ハロゲン化物量)
[8]前記半芳香族ポリアミド中の前記多官能脂肪族アミンと前記多官能芳香族酸ハロゲン化物の存在比(モル比)が下式の関係にある
上記[1]~[7]のいずれかに記載の複合半透膜。
1.25≦多官能脂肪族アミンのモル数/多官能酸芳香族ハロゲン化物のモル数≦1.65
[9]前記多官能酸ハロゲン化物が、芳香族多官能カルボン酸ハロゲン化物または芳香族多官能スルホン酸ハロゲン化物である
上記[1]~[8]のいずれかに記載の複合半透膜。
[10]0.5MPaの操作圧力で25℃、pH6.5の2000ppm硫酸マグネシウム水溶液および25℃、pH6.5の2000ppm塩化マグネシウム水溶液をそれぞれ透過させた時の硫酸マグネシウム除去率及び塩化マグネシウム除去率が下式(I)及び(II)を同時に満足する
上記[1]~[9]のいずれかに記載の複合半透膜。
硫酸マグネシウム除去率≧97%・・・(I)
硫酸マグネシウム除去率-塩化マグネシウム除去率≦20%・・・(II)
[11] 支持膜と、前記支持膜上に形成された多官能脂肪族アミンと多官能芳香族酸ハロゲン化物との縮合体である半芳香族架橋ポリアミドを含有する分離機能層と、を有する複合半透膜の製造方法であって、
前記支持膜上で多官能脂肪族アミン水溶液と多官能酸ハロゲン化物含有溶液との界面重縮合により分離機能層を形成する工程を有し、
前記工程が、
(a)多官能脂肪族アミン水溶液を前記支持膜に含浸させるステップと、
(b)前記支持膜に10~38℃の多官能酸ハロゲン化物含有溶液を接触させるステップと
を有する
複合半透膜の製造方法。
[12]前記ステップ(a)が、前記支持膜表面の温度より5~15℃高い多官能脂肪族アミン水溶液を前記支持膜表面に塗布するステップである
上記[11]に記載の複合半透膜の製造方法。 Amide group ratio (molar ratio) = amide group amount / (polyfunctional aliphatic amine amount + polyfunctional aromatic acid halide amount)
[8] Any of the above [1] to [7] in which the abundance ratio (molar ratio) of the polyfunctional aliphatic amine and the polyfunctional aromatic acid halide in the semiaromatic polyamide has the following relationship. The composite semipermeable membrane according to.
1.25 ≤ number of moles of polyfunctional aliphatic amine / number of moles of polyfunctional acid aromatic halide ≤ 1.65
[9] The composite semipermeable membrane according to any one of the above [1] to [8], wherein the polyfunctional acid halide is an aromatic polyfunctional carboxylic acid halide or an aromatic polyfunctional sulfonic acid halide.
[10] The magnesium sulfate removal rate and magnesium chloride removal rate are lower when a 2000 ppm magnesium sulfate aqueous solution at 25 ° C and pH 6.5 and a 2000 ppm magnesium chloride aqueous solution at 25 ° C and pH 6.5 are permeated at an operating pressure of 0.5 MPa, respectively. The composite translucent film according to any one of the above [1] to [9], which simultaneously satisfies the formulas (I) and (II).
Magnesium sulfate removal rate ≧ 97% ・ ・ ・ (I)
Magnesium Sulfate Removal Rate-Magnesium Chloride Removal Rate ≤ 20% ... (II)
[11] A composite having a support membrane and a separation functional layer containing a semi-aromatic crosslinked polyamide which is a condensate of a polyfunctional aliphatic amine formed on the support membrane and a polyfunctional aromatic acid halide. It is a method for manufacturing a semipermeable membrane.
It has a step of forming a separation functional layer on the support membrane by interfacial polycondensation of a polyfunctional aliphatic amine aqueous solution and a polyfunctional acid halide-containing solution.
The above process
(A) A step of impregnating the support membrane with an aqueous solution of a polyfunctional aliphatic amine,
(B) A method for producing a composite semipermeable membrane, which comprises a step of contacting the support membrane with a polyfunctional acid halide-containing solution at 10 to 38 ° C.
[12] The composite semipermeable membrane according to the above [11], wherein the step (a) is a step of applying a polyfunctional aliphatic amine aqueous solution 5 to 15 ° C. higher than the temperature of the support membrane surface to the support membrane surface. Manufacturing method.
[8]前記半芳香族ポリアミド中の前記多官能脂肪族アミンと前記多官能芳香族酸ハロゲン化物の存在比(モル比)が下式の関係にある
上記[1]~[7]のいずれかに記載の複合半透膜。
1.25≦多官能脂肪族アミンのモル数/多官能酸芳香族ハロゲン化物のモル数≦1.65
[9]前記多官能酸ハロゲン化物が、芳香族多官能カルボン酸ハロゲン化物または芳香族多官能スルホン酸ハロゲン化物である
上記[1]~[8]のいずれかに記載の複合半透膜。
[10]0.5MPaの操作圧力で25℃、pH6.5の2000ppm硫酸マグネシウム水溶液および25℃、pH6.5の2000ppm塩化マグネシウム水溶液をそれぞれ透過させた時の硫酸マグネシウム除去率及び塩化マグネシウム除去率が下式(I)及び(II)を同時に満足する
上記[1]~[9]のいずれかに記載の複合半透膜。
硫酸マグネシウム除去率≧97%・・・(I)
硫酸マグネシウム除去率-塩化マグネシウム除去率≦20%・・・(II)
[11] 支持膜と、前記支持膜上に形成された多官能脂肪族アミンと多官能芳香族酸ハロゲン化物との縮合体である半芳香族架橋ポリアミドを含有する分離機能層と、を有する複合半透膜の製造方法であって、
前記支持膜上で多官能脂肪族アミン水溶液と多官能酸ハロゲン化物含有溶液との界面重縮合により分離機能層を形成する工程を有し、
前記工程が、
(a)多官能脂肪族アミン水溶液を前記支持膜に含浸させるステップと、
(b)前記支持膜に10~38℃の多官能酸ハロゲン化物含有溶液を接触させるステップと
を有する
複合半透膜の製造方法。
[12]前記ステップ(a)が、前記支持膜表面の温度より5~15℃高い多官能脂肪族アミン水溶液を前記支持膜表面に塗布するステップである
上記[11]に記載の複合半透膜の製造方法。 Amide group ratio (molar ratio) = amide group amount / (polyfunctional aliphatic amine amount + polyfunctional aromatic acid halide amount)
[8] Any of the above [1] to [7] in which the abundance ratio (molar ratio) of the polyfunctional aliphatic amine and the polyfunctional aromatic acid halide in the semiaromatic polyamide has the following relationship. The composite semipermeable membrane according to.
1.25 ≤ number of moles of polyfunctional aliphatic amine / number of moles of polyfunctional acid aromatic halide ≤ 1.65
[9] The composite semipermeable membrane according to any one of the above [1] to [8], wherein the polyfunctional acid halide is an aromatic polyfunctional carboxylic acid halide or an aromatic polyfunctional sulfonic acid halide.
[10] The magnesium sulfate removal rate and magnesium chloride removal rate are lower when a 2000 ppm magnesium sulfate aqueous solution at 25 ° C and pH 6.5 and a 2000 ppm magnesium chloride aqueous solution at 25 ° C and pH 6.5 are permeated at an operating pressure of 0.5 MPa, respectively. The composite translucent film according to any one of the above [1] to [9], which simultaneously satisfies the formulas (I) and (II).
Magnesium sulfate removal rate ≧ 97% ・ ・ ・ (I)
Magnesium Sulfate Removal Rate-Magnesium Chloride Removal Rate ≤ 20% ... (II)
[11] A composite having a support membrane and a separation functional layer containing a semi-aromatic crosslinked polyamide which is a condensate of a polyfunctional aliphatic amine formed on the support membrane and a polyfunctional aromatic acid halide. It is a method for manufacturing a semipermeable membrane.
It has a step of forming a separation functional layer on the support membrane by interfacial polycondensation of a polyfunctional aliphatic amine aqueous solution and a polyfunctional acid halide-containing solution.
The above process
(A) A step of impregnating the support membrane with an aqueous solution of a polyfunctional aliphatic amine,
(B) A method for producing a composite semipermeable membrane, which comprises a step of contacting the support membrane with a polyfunctional acid halide-containing solution at 10 to 38 ° C.
[12] The composite semipermeable membrane according to the above [11], wherein the step (a) is a step of applying a polyfunctional aliphatic amine aqueous solution 5 to 15 ° C. higher than the temperature of the support membrane surface to the support membrane surface. Manufacturing method.
本発明の複合半透膜は、多官能脂肪族アミンと多官能芳香族酸ハロゲン化物との縮合体である半芳香族架橋ポリアミドを主成分として含有する分離機能層を有し、かつ前記分離機能層表面の比表面積が1.2以上5.0以下であり、X線光電子分光測定において、測定された元素中の炭素原子に対する窒素原子と酸素原子の和の割合、C/(N+O)が2.3以上、4.0以下である分離機能層を備えることで、高い選択分離性能に加え、高い耐酸・アルカリ性を持つ複合半透膜が得られる。
The composite semipermeable membrane of the present invention has a separation functional layer containing a semi-aromatic cross-linked polyamide which is a condensate of a polyfunctional aliphatic amine and a polyfunctional aromatic acid halide as a main component, and has the separation function. The specific surface area of the layer surface is 1.2 or more and 5.0 or less, and in the X-ray photoelectron spectroscopy measurement, the ratio of the sum of nitrogen and oxygen atoms to the carbon atom in the measured element, C / (N + O) is 2. By providing a separation functional layer having a concentration of 0.3 or more and 4.0 or less, a composite semipermeable membrane having high acid resistance and alkalinity in addition to high selective separation performance can be obtained.
1.複合半透膜
本発明の複合半透膜は、支持膜と、前記支持膜上に形成された多官能脂肪族アミンと多官能芳香族酸ハロゲン化物との縮合体である半芳香族架橋ポリアミドを含有する分離機能層と、を有する。一般的に、分離膜の耐酸性、耐アルカリ性に影響を与える因子として、分離機能層の厚み、化学結合様式(エステル結合、アミド結合など)などが考えられるが、本発明者らは、分離機能層の比表面積および化学組成に着目した。 1. 1. Composite Semipermeable Membrane The composite semipermeable membrane of the present invention comprises a support membrane and a semi-aromatic cross-linked polyamide which is a condensate of a polyfunctional aliphatic amine formed on the support membrane and a polyfunctional aromatic acid halide. It has a separating functional layer containing it. Generally, factors that affect the acid resistance and alkali resistance of the separation membrane include the thickness of the separation functional layer and the chemical bond mode (ester bond, amide bond, etc.). We focused on the specific surface area and chemical composition of the layers.
本発明の複合半透膜は、支持膜と、前記支持膜上に形成された多官能脂肪族アミンと多官能芳香族酸ハロゲン化物との縮合体である半芳香族架橋ポリアミドを含有する分離機能層と、を有する。一般的に、分離膜の耐酸性、耐アルカリ性に影響を与える因子として、分離機能層の厚み、化学結合様式(エステル結合、アミド結合など)などが考えられるが、本発明者らは、分離機能層の比表面積および化学組成に着目した。 1. 1. Composite Semipermeable Membrane The composite semipermeable membrane of the present invention comprises a support membrane and a semi-aromatic cross-linked polyamide which is a condensate of a polyfunctional aliphatic amine formed on the support membrane and a polyfunctional aromatic acid halide. It has a separating functional layer containing it. Generally, factors that affect the acid resistance and alkali resistance of the separation membrane include the thickness of the separation functional layer and the chemical bond mode (ester bond, amide bond, etc.). We focused on the specific surface area and chemical composition of the layers.
本明細書において、「比表面積」とは、多孔質支持層の表面積に対する、分離機能層の表面積の比である。比表面積が大きいほど透水性は大きくなる。従来、多官能性脂肪族アミンと多官能酸ハロゲン化物との重合物を含む分離機能層から構成される分離膜は、2価イオン選択除去性には優れるものの、高比表面積化が困難であり、耐酸性および耐アルカリ性向上を達成できなかった。
In the present specification, the "specific surface area" is the ratio of the surface area of the separating functional layer to the surface area of the porous support layer. The larger the specific surface area, the greater the water permeability. Conventionally, a separation membrane composed of a separation functional layer containing a polymer of a polyfunctional aliphatic amine and a polyfunctional acid halide has excellent divalent ion selective removal property, but it is difficult to increase the specific surface area. , Acid resistance and alkali resistance improvement could not be achieved.
本発明者らは鋭意検討を重ねた結果、多官能性脂肪族アミンと多官能酸ハロゲン化物との重合物を含む、比表面積が1.2以上の分離機能層は、耐酸性、耐アルカリ性および2価イオン選択除去性に優れた分離膜が得られることを見出した。
As a result of diligent studies, the present inventors have found that the separation functional layer having a specific surface area of 1.2 or more, which contains a polymer of a polyfunctional aliphatic amine and a polyfunctional acid halide, has acid resistance, alkali resistance and It has been found that a separation membrane having excellent divalent ion selective removal property can be obtained.
また、本明細書において、分離機能層の「化学組成」とは、分離機能層に存在する元素の割合を示す。本発明者らは鋭意検討を重ねた結果、分離機能層の炭素原子の割合(C)に対する、窒素原子の割合(N)と酸素原子の割合(O)の和の比、C/(N+O)が2.3以上4.0以下であることにより、耐酸、耐アルカリ性と2価イオン選択除去性が共に優れた分離膜が得られることを見出した。
Further, in the present specification, the "chemical composition" of the separation functional layer indicates the ratio of the elements present in the separation functional layer. As a result of diligent studies, the present inventors have calculated the ratio of the sum of the ratio of nitrogen atoms (N) and the ratio of oxygen atoms (O) to the ratio of carbon atoms (C) in the separation functional layer, C / (N + O). It was found that a separation membrane having excellent acid resistance, alkali resistance and divalent ion selective removal property can be obtained when the ratio is 2.3 or more and 4.0 or less.
(1-1)支持膜
支持膜は、分離機能層を支持することで、複合半透膜に強度を与えるためのものである。支持膜自体は、低分子有機物、イオン等の分離性能を実質的に有さない。支持膜は、基材と多孔性支持層とを含む。 (1-1) Support Membrane The support membrane is for giving strength to the composite semipermeable membrane by supporting the separation functional layer. The support membrane itself has substantially no separation performance for low molecular weight organic substances, ions and the like. The support film includes a base material and a porous support layer.
支持膜は、分離機能層を支持することで、複合半透膜に強度を与えるためのものである。支持膜自体は、低分子有機物、イオン等の分離性能を実質的に有さない。支持膜は、基材と多孔性支持層とを含む。 (1-1) Support Membrane The support membrane is for giving strength to the composite semipermeable membrane by supporting the separation functional layer. The support membrane itself has substantially no separation performance for low molecular weight organic substances, ions and the like. The support film includes a base material and a porous support layer.
支持膜における孔のサイズや分布は特に限定されないが、例えば、均一で微細な孔、あるいは分離機能層が形成される側の表面からもう一方の面即ち基材側の面まで徐々に大きな微細孔となり、かつ、分離機能層が形成される側の表面における微細孔の大きさが0.1nm以上100nm以下であるような孔が好ましい。
The size and distribution of the pores in the support membrane are not particularly limited, but for example, uniform and fine pores, or fine pores gradually increasing from the surface on the side where the separation functional layer is formed to the other surface, that is, the surface on the base material side. It is preferable that the pores have a size of 0.1 nm or more and 100 nm or less on the surface on the side where the separation functional layer is formed.
支持膜は、図1(a)に示すように、基材2と、基材上に配置された多孔性支持層3とを備える。
As shown in FIG. 1A, the support film includes a base material 2 and a porous support layer 3 arranged on the base material.
基材2としては、ポリエステルおよび芳香族ポリアミドから選ばれる少なくとも一種からなる布帛が例示される。機械的および熱的に安定性の高いポリエステルを使用するのが特に好ましい。
Examples of the base material 2 include a cloth made of at least one selected from polyester and aromatic polyamide. It is particularly preferred to use polyester, which is mechanically and thermally stable.
基材2に用いられる布帛としては、長繊維不織布や短繊維不織布を好ましく用いることができる。基材上に高分子重合体の溶液を流延した際にそれが過浸透により裏抜けしたり、基材と多孔性支持層が剥離したり、さらには基材の毛羽立ち等により膜の不均一化やピンホール等の欠点が生じたりすることがないような優れた製膜性が要求されることから、長繊維不織布をより好ましく用いることができる。長繊維不織布としては、熱可塑性連続フィラメントより構成される長繊維不織布などが挙げられる。基材が長繊維不織布からなることにより、短繊維不織布を用いたときに起こる、毛羽立ちによって生じる高分子溶液流延時の不均一化や、膜欠点を抑制することができる。また、複合半透膜を連続製膜する工程においては、基材の製膜方向に張力がかけられることからも、基材としては、寸法安定性に優れる長繊維不織布を用いることが好ましい。
As the fabric used for the base material 2, a long fiber non-woven fabric or a short fiber non-woven fabric can be preferably used. When a solution of a polymer polymer is cast on a base material, it strikes through due to over-penetration, the base material and the porous support layer are peeled off, and the film is non-uniform due to fluffing of the base material. Long-fiber non-woven fabrics can be more preferably used because excellent film-forming properties are required so as not to cause defects such as formation and pinholes. Examples of the long-fiber non-woven fabric include long-fiber non-woven fabrics composed of thermoplastic continuous filaments. Since the base material is made of a long-fiber non-woven fabric, it is possible to suppress the non-uniformity at the time of spreading the polymer solution caused by fluffing and the film defects that occur when the short-fiber non-woven fabric is used. Further, in the step of continuously forming a composite semipermeable membrane, tension is applied in the film forming direction of the base material, so that it is preferable to use a long fiber non-woven fabric having excellent dimensional stability as the base material.
特に、基材2において多孔性支持層3と接するのとは逆側の面での繊維の配向が、製膜方向に対して縦配向であることにより、基材の強度を保ち、膜破れ等を防ぐことができるので好ましい。ここで、縦配向とは、繊維の配向方向が製膜方向と平行であることを言う。逆に、繊維の配向方向が製膜方向と直角である場合は、横配向と言う。
In particular, in the base material 2, the orientation of the fibers on the surface opposite to the surface in contact with the porous support layer 3 is longitudinally oriented with respect to the film forming direction, so that the strength of the base material is maintained, the film is torn, and the like. It is preferable because it can prevent. Here, the longitudinal orientation means that the orientation direction of the fibers is parallel to the film forming direction. On the contrary, when the orientation direction of the fibers is perpendicular to the film formation direction, it is called lateral orientation.
繊維の繊維配向度としては0°~25°の範囲にあることが好ましい。ここで繊維配向度とは、不織布の繊維の向きを示す指標であり、連続製膜を行う際の製膜方向を0°とし、製膜方向と直角方向、すなわち不織布の幅方向を90°としたときの、不織布を構成する繊維の平均の角度のことを言う。よって、繊維配向度が0°に近いほど縦配向であり、90°に近いほど横配向であることを示す。
The fiber orientation of the fiber is preferably in the range of 0 ° to 25 °. Here, the fiber orientation is an index indicating the orientation of the fibers of the non-woven fabric, and the film-forming direction when continuous film-forming is performed is 0 °, and the direction perpendicular to the film-forming direction, that is, the width direction of the non-woven fabric is 90 °. It refers to the average angle of the fibers that make up the non-woven fabric. Therefore, the closer the fiber orientation is to 0 °, the longer the vertical orientation, and the closer the fiber orientation is to 90 °, the more the horizontal orientation.
複合半透膜の製造工程やエレメントの製造工程には、加熱工程が含まれるが、加熱により支持膜または複合半透膜が収縮する現象が起きる。特に連続製膜において、幅方向には張力が付与されていないので、幅方向に収縮しやすい。支持膜または複合半透膜が収縮することにより、寸法安定性等に問題が生じるため、基材としては熱寸法変化率が小さいものが望まれる。
The manufacturing process of the composite semipermeable membrane and the manufacturing process of the element include a heating step, but a phenomenon occurs in which the support membrane or the composite semipermeable membrane shrinks due to heating. Especially in continuous film formation, since tension is not applied in the width direction, it tends to shrink in the width direction. Since the shrinkage of the support membrane or the composite semipermeable membrane causes problems in dimensional stability and the like, a base material having a small thermal dimensional change rate is desired.
不織布基材においては、多孔性支持層と反対側における繊維と多孔性支持層側における繊維との配向度差が10°~90°であると、熱による幅方向の変化を抑制することができ好ましい。
In the non-woven fabric base material, when the difference in orientation between the fibers on the side opposite to the porous support layer and the fibers on the side of the porous support layer is 10 ° to 90 °, the change in the width direction due to heat can be suppressed. preferable.
基材の通気度は2.0cc/cm2/sec以上であることが好ましい。通気度がこの範囲であると、複合半透膜の透水性能が高くなる。これは、支持膜を形成する工程で、基材上に高分子重合体を流延し、凝固浴に浸漬した際に、基材側からの非溶媒置換速度が速くなることで多孔性支持層の内部構造が変化し、その後の分離機能層を形成する工程においてモノマーの保持量や拡散速度に影響を及ぼすためと考えられる。
The air permeability of the base material is preferably 2.0 cc / cm 2 / sec or more. When the air permeability is in this range, the water permeability of the composite semipermeable membrane becomes high. This is a step of forming a support film, when a polymer polymer is cast on a base material and immersed in a coagulation bath, the non-solvent replacement rate from the base material side is increased, so that the porous support layer is formed. It is considered that this is because the internal structure of the polymer changes, which affects the amount of monomer retained and the diffusion rate in the subsequent step of forming the separation functional layer.
なお、通気度はJIS L1096(2010)に基づき、フラジール形試験機によって測定できる。例えば、200mm×200mmの大きさに基材を切り出し、サンプルとする。このサンプルをフラジール形試験機に取り付け、傾斜形気圧計が125Paの圧力になるように吸込みファン及び空気孔を調整し、このときの垂直形気圧計の示す圧力と使用した空気孔の種類から基材を通過する空気量、すなわち通気度を算出することができる。フラジール形試験機は、カトーテック株式会社製KES-F8-AP1などが使用できる。
The air permeability can be measured by a Frazier type tester based on JIS L1096 (2010). For example, a base material is cut out to a size of 200 mm × 200 mm and used as a sample. This sample was attached to the Frazier type tester, the suction fan and air holes were adjusted so that the inclined barometer had a pressure of 125 Pa, and the pressure indicated by the vertical barometer at this time and the type of air holes used were used as the basis. The amount of air passing through the material, that is, the air permeability, can be calculated. As the Frazier type testing machine, KES-F8-AP1 manufactured by Kato Tech Co., Ltd. can be used.
また、基材の厚みは、10μm以上200μm以下の範囲内にあることが好ましく、より好ましくは30μm以上120μm以下の範囲内である。
Further, the thickness of the base material is preferably in the range of 10 μm or more and 200 μm or less, and more preferably in the range of 30 μm or more and 120 μm or less.
多孔性支持層は、例えば、ポリスルホン、ポリエーテルスルホン、酢酸セルロース、ポリ塩化ビニル、あるいはそれらの混合物である。化学的、機械的および熱的に安定性の高いポリスルホン、ポリエーテルスルホンが特に好ましい。
The porous support layer is, for example, polysulfone, polyethersulfone, cellulose acetate, polyvinyl chloride, or a mixture thereof. Polysulfone and polyethersulfone, which are chemically, mechanically and thermally stable, are particularly preferable.
上記の多孔性支持層の厚みは、得られる複合半透膜の強度およびそれをエレメントにしたときの充填密度に影響を与える。多孔性支持層の厚みは、十分な機械的強度および充填密度を得るためには、50μm以上300μm以下の範囲内にあることが好ましく、より好ましくは100μm以上250μm以下の範囲内である。
The thickness of the above-mentioned porous support layer affects the strength of the obtained composite semipermeable membrane and the packing density when it is used as an element. The thickness of the porous support layer is preferably in the range of 50 μm or more and 300 μm or less, and more preferably in the range of 100 μm or more and 250 μm or less in order to obtain sufficient mechanical strength and packing density.
多孔性支持層の形態は、走査型電子顕微鏡や透過型電子顕微鏡、原子間顕微鏡により観察できる。例えば走査型電子顕微鏡で観察するのであれば、基材から多孔性支持層を剥がした後、これを凍結割断法で切断して断面観察のサンプルとする。このサンプルに白金または白金-パラジウムまたは四塩化ルテニウム、好ましくは四塩化ルテニウムを薄くコーティングして3~15kVの加速電圧で高分解能電界放射型走査電子顕微鏡(UHR-FE-SEM)によって観察する。高分解能電界放射型走査電子顕微鏡は、日立製S-900型電子顕微鏡などが使用できる。
The morphology of the porous support layer can be observed with a scanning electron microscope, a transmission electron microscope, and an atomic force microscope. For example, when observing with a scanning electron microscope, the porous support layer is peeled off from the base material and then cut by a freeze-cutting method to prepare a sample for cross-sectional observation. This sample is lightly coated with platinum or platinum-palladium or ruthenium tetrachloride, preferably ruthenium tetrachloride, and observed with a high resolution field emission scanning electron microscope (UHR-FE-SEM) at an acceleration voltage of 3 to 15 kV. As the high-resolution field emission scanning electron microscope, a Hitachi S-900 type electron microscope or the like can be used.
支持膜は、ミリポア社製”ミリポアフィルターVSWP”(商品名)や、東洋濾紙社製”ウルトラフィルターUK10”(商品名)のような各種市販材料から選択することもできるし、”オフィス・オブ・セイリーン・ウォーター・リサーチ・アンド・ディベロップメント・プログレス・レポート”No.359(1968)に記載された方法などに従って製造することもできる。
The support film can be selected from various commercially available materials such as "Millipore Filter VSWP" (trade name) manufactured by Millipore and "Ultra Filter UK10" (trade name) manufactured by Toyo Filter Paper Co., Ltd., or "Office of the Office of Saline Water Research and Development Progress Report "No. It can also be produced according to the method described in 359 (1968) and the like.
なお、基材2の厚みおよび複合半透膜1の厚みは、デジタルシックネスゲージによって測定することができる。また、分離機能層の厚みは支持膜と比較して非常に薄いので、複合半透膜の厚みを支持膜の厚みとみなすことができる。つまり、複合半透膜の厚みをデジタルシックネスゲージで測定し、これを支持膜の厚みとみなすことができる。また、複合半透膜の厚みから基材の厚みを引くことで、多孔性支持層の厚みを簡易的に算出することができる。デジタルシックネスゲージとしては、尾崎製作所株式会社のPEACOCKなどが使用できる。デジタルシックネスゲージを用いる場合は、20箇所について厚みを測定して平均値を算出する。
The thickness of the base material 2 and the thickness of the composite semipermeable membrane 1 can be measured by a digital thickness gauge. Further, since the thickness of the separation functional layer is very thin as compared with the support membrane, the thickness of the composite semipermeable membrane can be regarded as the thickness of the support membrane. That is, the thickness of the composite semipermeable membrane can be measured with a digital thickness gauge, and this can be regarded as the thickness of the support membrane. Further, the thickness of the porous support layer can be easily calculated by subtracting the thickness of the base material from the thickness of the composite semipermeable membrane. As the digital thickness gauge, PEACOCK of Ozaki Seisakusho Co., Ltd. can be used. When using a digital thickness gauge, the thickness is measured at 20 points and the average value is calculated.
なお、基材2の厚みまたは複合半透膜1の厚みをシックネスゲージによって測定することが困難な場合、走査型電子顕微鏡で測定してもよい。1つのサンプルについて任意の5箇所における断面観察の電子顕微鏡写真から厚みを測定し、平均値を算出することで厚みが求められる。
If it is difficult to measure the thickness of the base material 2 or the thickness of the composite semipermeable membrane 1 with a thickness gauge, it may be measured with a scanning electron microscope. The thickness of one sample is obtained by measuring the thickness from electron micrographs of cross-sectional observations at arbitrary five points and calculating the average value.
(1-2)分離機能層
分離機能層4は、図1(a)に示すように多孔性支持層3上に配置され、複合半透膜において溶質の分離機能を担う層である。分離機能層は、脂肪族多官能アミンと多官能芳香族酸ハロゲン化物との重合物であるポリアミドを含有する。 (1-2) Separation Function Layer TheSeparation Function Layer 4 is a layer that is arranged on the porous support layer 3 as shown in FIG. 1 (a) and has a solute separation function in the composite semipermeable membrane. The separation functional layer contains a polyamide which is a polymer of an aliphatic polyfunctional amine and a polyfunctional aromatic acid halide.
分離機能層4は、図1(a)に示すように多孔性支持層3上に配置され、複合半透膜において溶質の分離機能を担う層である。分離機能層は、脂肪族多官能アミンと多官能芳香族酸ハロゲン化物との重合物であるポリアミドを含有する。 (1-2) Separation Function Layer The
本発明の複合半透膜は、一般的にナノろ過膜と定義される、逆浸透膜と限外ろ過膜との間に位置づけられる分画特性を有する領域の膜である。逆浸透膜として一般に知られた膜は、実際に大部分の有機物、イオンを除去する傾向にあり、他方において、限外ろ過膜は、通常、大部分のイオン種を除去せず、但し、高分子量の有機物を除去する。
The composite semipermeable membrane of the present invention is a membrane in a region having fractionation characteristics positioned between a reverse osmosis membrane and an ultrafiltration membrane, which is generally defined as a nanofiltration membrane. Membranes commonly known as reverse osmosis membranes actually tend to remove most of the organic matter, ions, while ultrafiltration membranes usually do not remove most of the ionic species, but high. Removes molecular weight organic matter.
本発明の複合半透膜における分離機能層は、2価以上の多官能脂肪族アミン化合物と、2価以上の多官能芳香族酸ハロゲン化物との界面重合によって得られる半芳香族架橋ポリアミドを50重量%以上含有する。好ましくは、分離機能層は、この半芳香族架橋ポリアミドを80重量%以上、より好ましくは90重量%以上含有し、さらに好ましくはこの半芳香族架橋ポリアミドのみからなる。半芳香族架橋ポリアミドが分離機能層の主成分であることで、ポリアミド中の芳香環に由来するπ-π相互作用による過度な緻密化が抑制され、優れた2価イオン選択除去性が得られる。
The separating functional layer in the composite semipermeable membrane of the present invention is a semi-aromatic cross-linked polyamide obtained by interfacial polymerization of a divalent or higher polyfunctional aliphatic amine compound and a divalent or higher polyfunctional aromatic acid halide. Contains% by weight or more. Preferably, the separation functional layer contains 80% by weight or more, more preferably 90% by weight or more of the semi-aromatic crosslinked polyamide, and more preferably only the semi-aromatic crosslinked polyamide. Since the semi-aromatic crosslinked polyamide is the main component of the separation functional layer, excessive densification due to π-π interaction derived from the aromatic ring in the polyamide is suppressed, and excellent divalent ion selective removal property can be obtained. ..
多官能脂肪族アミンは脂環式ジアミンであることが好ましく、よピペラジン誘導体であることがより好ましい。
The polyfunctional aliphatic amine is preferably an alicyclic diamine, more preferably a piperazine derivative.
また、多官能脂肪族アミンは、ClogPが-1.0以上2.0以下であることが好ましく、-0.5以上1.5以下であることがより好ましい。ここで、ClogPとは、化合物のオクタノール-水分配係数を、化合物が含有する各官能基のオクタノール-水分配係数から算出した値(文献Environ. Sci. Pollute. Res. ,2, 153-160(1995))であり、Chem Drawなどの構造式作画ソフトで計算できる。
Further, the polyfunctional aliphatic amine preferably has a ClogP of -1.0 or more and 2.0 or less, and more preferably -0.5 or more and 1.5 or less. Here, ClogP is a value obtained by calculating the octanol-water partition coefficient of a compound from the octanol-water partition coefficient of each functional group contained in the compound (Reference Environ. Sci. Pollute. Res., 2, 153-160 (Reference). 1995)), and can be calculated with structural formula drawing software such as ChemDraw.
ポリアミドの界面重合は、アミンが有機相に分配・拡散し、有機相中で多官能酸ハロゲン化物と反応することで進行することは古くから知られており(文献P.W.Morgan,S.L.Kwolek,J.Polym.Sci.,299-327(1959))、ClogPが-1.0以上2.0以下であることで、界面重縮合時の有機溶媒への多官能脂肪族アミンの分配、拡散が最適化され、ひだ状の分離機能層が形成されやすくなる。
It has long been known that the interfacial polymerization of polyamide proceeds by partitioning and diffusing amines in the organic phase and reacting with polyfunctional acid halides in the organic phase (References PW Morgan, S.A. L. Kwalk, J. Polym. Sci., 299-327 (1959)), ClogP of -1.0 or more and 2.0 or less means that the polyfunctional aliphatic amine to the organic solvent at the time of interfacial polycondensation Distributing and diffusion are optimized, and pleated separation functional layers are easily formed.
ClogPが-1.0以上2.0以下であるピペラジン誘導体としては、例えば、ピペラジン環が炭素数1~3のアルキル基で置換された置換ピペラジン(例えば、2-メチルピペラジン、2-エチルピペラジン、2-ノルマルプロピルピペラジン、2,2-ジメチルピペラジン、2,2-ジエチルピペラジン、2,2-ノルマルプロピルピペラジン、2,3-ジメチルピペラジン、2,3-ジエチルピペラジン、2,3-ノルマルプロピルピペラジン、2,5-ジメチルピペラジン、2,5-ジエチルピペラジン、2,5-ノルマルプロピルピペラジン、2,6-ジメチルピペラジン、2,6-ジエチルピペラジン、2,6-ノルマルプロピルピペラジン、2,3,5,6-テトラメチルピペラジン、等)が挙げられる。
Examples of the piperazine derivative having a ClogP of -1.0 or more and 2.0 or less include substituted piperazines in which the piperazine ring is substituted with an alkyl group having 1 to 3 carbon atoms (for example, 2-methylpiperazine, 2-ethylpiperazine, etc.). 2-Normal propyl piperazine, 2,2-dimethyl piperazine, 2,2-diethyl piperazine, 2,2-normal propyl piperazine, 2,3-dimethyl piperazine, 2,3-diethyl piperazine, 2,3-normal propyl piperazine, 2,5-Dimethylpiperazine, 2,5-diethylpiperazine, 2,5-normalpropylpiperazine, 2,6-dimethylpiperazine, 2,6-diethylpiperazine, 2,6-normalpropylpiperazine, 2,3,5 6-Tetramethylpiperazine, etc.).
本発明において、分離機能層を構成する多官能脂肪族アミン成分のうち、融点が100℃以上であるピペラジン誘導体を80mol%以上含むことが好ましく、より好ましくは90mol%以上含み、前記ピペラジン誘導体はピペラジン環の二つ以上の炭素がアルキル基、フルオロアルキル基、チオエーテル基のいずれかで置換されたピペラジン(以下単に「置換ピペラジン」とも記載する)であることが好ましい。
In the present invention, among the polyfunctional aliphatic amine components constituting the separation functional layer, it is preferable that the piperazine derivative having a melting point of 100 ° C. or higher is contained in an amount of 80 mol% or more, more preferably 90 mol% or more, and the piperazine derivative is piperazine. It is preferably piperazine in which two or more carbons of the ring are substituted with any of an alkyl group, a fluoroalkyl group and a thioether group (hereinafter, also simply referred to as "substituted piperazine").
発明者らは鋭意検討の結果、分離機能層を構成する多官能脂肪族アミンが、融点が100℃以上のピペラジン誘導体であり、かつ前記ピペラジン誘導体はピペラジン環の二つ以上の炭素がアルキル基、フルオロアルキル基、チオエーテル基のいずれかで置換されたピペラジン(置換ピペラジン)であることで優れた耐酸、耐アルカリ性が得られること見出した。
As a result of diligent studies, the inventors have found that the polyfunctional aliphatic amine constituting the separation functional layer is a piperazine derivative having a melting point of 100 ° C. or higher, and the piperazine derivative has an alkyl group having two or more carbons of the piperazine ring. It has been found that excellent acid resistance and alkali resistance can be obtained by using piperazine (substituted piperazine) substituted with either a fluoroalkyl group or a thioether group.
融点が100℃以上であり、かつピペラジン環の二つ以上の炭素にアルキル基、フルオロアルキル基、チオエーテル基を有する置換ピペラジンとしては、例えば、2,2-ジメチルピペラジン、2,2-ジエチルピペラジン、2,2-ノルマルプロピルピペラジン、2,2-イソプロピルピペラジン、2,3-ジメチルピペラジン、2,3-ジエチルピペラジン、2,3-ノルマルプロピルピペラジン、2,3-イソプロピルピペラジン、2,5-ジメチルピペラジン、2,5-ジエチルピペラジン、2,5-ノルマルプロピルピペラジン、2,5-イソプロピルピペラジン、2,6-ジメチルピペラジン、2,6-ジエチルピペラジン、2,6-ノルマルプロピルピペラジン、2,6-イソプロピルピペラジン、2,3,5,6-テトラメチルピペラジン、2,2-ビス(トリフルオロメチル)ピペラジン、2,3-ビス(トリフルオロメチル)ピペラジン、2,5-ビス(トリフルオロメチル)ピペラジン、2,6-ビス(トリフルオロメチル)ピペラジン、2,2-ビス(ジフルオロメチル)ピペラジン、2,3-ビス(ジフルオロメチル)ピペラジン、2,5-ビス(ジフルオロメチル)ピペラジン、2,6-ビス(ジフルオロメチル)ピペラジン、2,2-ビス(メチルチオ)ピペラジン、2,3-ビス(メチルチオ)ピペラジン、2,5-ビス(メチルチオ)ピペラジン、2,6-ビス(メチルチオ)ピペラジン、2,2-ビス(エチルチオ)ピペラジン、2,3-ビス(エチルチオ)ピペラジン、2,5-ビス(エチルチオ)ピペラジン、2,6-ビス(エチルチオ)ピペラジン等があげられる。
Examples of the substituted piperazine having a melting point of 100 ° C. or higher and having an alkyl group, a fluoroalkyl group, and a thioether group on two or more carbons of the piperazine ring include 2,2-dimethylpiperazine and 2,2-diethylpiperazine. 2,2-Normalpropyl Piperazine, 2,2-Isopropyl Piperazine, 2,3-Dimethyl Piperazine, 2,3-Diethyl Piperazine, 2,3-Normalpropyl Piperazine, 2,3-Isopropyl Piperazine, 2,5-Dimethyl Piperazine , 2,5-diethylpiperazine, 2,5-normalpropylpiperazine, 2,5-isopropylpiperazine, 2,6-dimethylpiperazine, 2,6-diethylpiperazine, 2,6-normalpropylpiperazine, 2,6-isopropyl Piperazine, 2,3,5,6-tetramethylpiperazine, 2,2-bis (trifluoromethyl) piperazine, 2,3-bis (trifluoromethyl) piperazine, 2,5-bis (trifluoromethyl) piperazine, 2,6-bis (trifluoromethyl) piperazine, 2,2-bis (difluoromethyl) piperazine, 2,3-bis (difluoromethyl) piperazine, 2,5-bis (difluoromethyl) piperazine, 2,6-bis (Difluoromethyl) piperazine, 2,2-bis (methylthio) piperazine, 2,3-bis (methylthio) piperazine, 2,5-bis (methylthio) piperazine, 2,6-bis (methylthio) piperazine, 2,2- Examples thereof include bis (ethylthio) piperazine, 2,3-bis (ethylthio) piperazine, 2,5-bis (ethylthio) piperazine, and 2,6-bis (ethylthio) piperazine.
前記置換ピペラジンの融点は100℃以上が好ましく、より好ましくは110℃以上であり、200℃以下であることが好ましい。
The melting point of the substituted piperazine is preferably 100 ° C. or higher, more preferably 110 ° C. or higher, and preferably 200 ° C. or lower.
置換ピペラジンの融点が100℃以上であることにより、分離機能層中のアミド基周辺の分子運動性が低下し、酸やアルカリ接触時のポリアミドのコンフォメーション変化が起こりにくくなるため、耐酸、耐アルカリ性が向上すると考えられる。また、融点が200℃以下であることで、ポリアミドの分子運動性が過度に低下しないため、水和イオン半径の小さい1価イオンの透過を妨げず、優れた2価イオン選択除去性が得られる。
When the melting point of the substituted piperazine is 100 ° C. or higher, the molecular motility around the amide group in the separation functional layer is lowered, and the conformational change of the polyamide at the time of contact with an acid or an alkali is less likely to occur. Is expected to improve. Further, since the melting point is 200 ° C. or lower, the molecular motility of the polyamide is not excessively lowered, so that the permeation of monovalent ions having a small hydrated ionic radius is not hindered, and excellent divalent ion selective removal property can be obtained. ..
また、ピペラジン環の2つ以上の炭素に置換基を設けることで、アミド基近傍に立体的な障害が生じ、酸やアルカリによるアミド基の加水分解が抑制され、耐久性が向上する。さらに、置換基が疎水的なアルキル基、フルオロアルキル基、チオエーテル基のいずれかであることで、置換基によりアミド基周辺が疎水的になり、酸やアルカリ接触時に、ポリアミドの加水分解の主要因である水分子のアミド基への付加が抑制されることで、耐酸、耐アルカリ性が著しく向上すると考えられる。
Further, by providing a substituent on two or more carbons of the piperazine ring, a steric disorder occurs in the vicinity of the amide group, hydrolysis of the amide group by an acid or an alkali is suppressed, and durability is improved. Furthermore, since the substituent is any of a hydrophobic alkyl group, fluoroalkyl group, and thioether group, the substituent makes the periphery of the amide group hydrophobic, which is a main factor in the hydrolysis of polyamide when it comes into contact with an acid or an alkali. It is considered that the acid resistance and alkali resistance are remarkably improved by suppressing the addition of the water molecule to the amide group.
ピペラジン環の置換基一つあたりの炭素数は1~3であることが好ましい。ピペラジン構造に炭素数1~3の置換基を導入することにより、アミド基近傍の立体障害と、ポリアミド架橋構造の孔径分布(分子間隙)が好適に制御でき、透水性と選択分離性を維持したまま、酸やアルカリに対する耐久性向上が可能になる。置換基の炭素数が4より大きくなると、立体障害によりポリアミドの架橋反応が進みにくくなり、選択分離性、酸・アルカリに対する耐久性が低下する。
The number of carbon atoms per substituent of the piperazine ring is preferably 1 to 3. By introducing a substituent having 1 to 3 carbon atoms into the piperazine structure, steric hindrance near the amide group and the pore size distribution (molecular gap) of the polyamide crosslinked structure can be suitably controlled, and water permeability and selective separability are maintained. As it is, it is possible to improve the durability against acids and alkalis. When the number of carbon atoms of the substituent is larger than 4, the cross-linking reaction of the polyamide is difficult to proceed due to steric hindrance, and the selective separability and durability against acids and alkalis are lowered.
ピペラジン環の2つの炭素に置換基を設けた置換ピペラジンの中で、2,3-置換体、2,5-置換体、および2,6-置換体にはcis体とtrans体の2種の立体異性体が存在するが、ポリアミドの耐酸、耐アルカリ性を向上させるという観点では、trans体がより好ましい。trans体はアミンの立体的な対称性が高いため、cis体と比較して、ポリアミドを形成した際のアミド基近傍の立体障害効果が大きく、酸やアルカリに対する耐久性向上効果も高まる。
Among the substituted piperazines in which substituents are provided on the two carbons of the piperazine ring, there are two types of 2,3-substituted products, 2,5-substituted products, and 2,6-substituted products, cis and trans isomers. Although a steric isomer is present, the trans isomer is more preferable from the viewpoint of improving the acid resistance and alkali resistance of the polyamide. Since the trans isomer has a high steric symmetry of amine, the steric hindrance effect in the vicinity of the amide group when forming the polyamide is larger than that of the cis isomer, and the effect of improving the durability against acids and alkalis is also enhanced.
なお、前記置換ピペラジンは単独で用いても、2種類以上を混合して用いてもよい。
The substituted piperazine may be used alone or in combination of two or more.
分離機能層を構成する多官能脂肪族アミン成分のうち、上記置換ピペラジンを80mol%以上含むことで分離機能層全体の耐酸、耐アルカリ性が向上する。
Among the polyfunctional aliphatic amine components constituting the separation functional layer, the acid resistance and alkali resistance of the entire separation functional layer are improved by containing 80 mol% or more of the above substituted piperazine.
多官能芳香族酸ハロゲン化物とは、一分子中に2個以上のハロゲン化カルボニル基を有する芳香族酸ハロゲン化物であり、上記多官能脂肪族アミンとの反応により半芳香族ポリアミドを与えるものであれば特に限定されない。多官能芳香族酸ハロゲン化物としては、例えば、1,3,5-ベンゼントリカルボン酸、1,2,4-ベンゼントリカルボン酸、1,3-ベンゼンジカルボン酸、1,4-ベンゼンジカルボン酸、1,3,5-ベンゼントリスルホン酸、1,3,6-ナフタレントリスルホン酸等のハロゲン化物を用いることができる。芳香族酸ハロゲン化物の中でも、酸塩化物が好ましく、特に経済性、入手の容易さ、取り扱い易さ、反応性の容易さ等の点から、1,3,5-ベンゼントリカルボン酸の酸ハロゲン化物であるトリメシン酸クロリド、1,3-ベンゼンジカルボン酸の酸ハロゲン化物であるイソフタル酸クロリド、1,4-ベンゼンジカルボン酸の酸ハロゲン化物であるテレフタル酸クロリド、1,3,5-ベンゼントリスルホン酸の酸ハロゲン化物である1,3,5-ベンゼントリスルホン酸クロリド、1,3,6-ナフタレントリスルホン酸の酸ハロゲン化物である1,3,6-ナフタレントリスルホン酸クロリドが好ましい。上記多官能芳香族酸ハロゲン化物は単独で用いても、2種類以上を混合して用いてもよいが、三官能のトリメシン酸クロリド、1,3,5-ベンゼントリスルホン酸クロリド、1,3,6-ナフタレントリスルホン酸クロリドに、二官能のイソフタル酸クロリド、テレフタル酸クロリドのどちらか一方を混合することにより、ポリアミド架橋構造の分子間隙が拡大し、均一な孔径分布を持った膜を広範囲に制御することができる。三官能酸クロリドと二官能酸クロリドの混合モル比は、1:20から50:1が好ましく、1:1から20:1がより好ましい。
The polyfunctional aromatic acid halide is an aromatic acid halide having two or more carbonyl halide groups in one molecule, and gives a semi-aromatic polyamide by reaction with the polyfunctional aliphatic amine. If there is, it is not particularly limited. Examples of the polyfunctional aromatic acid halide include 1,3,5-benzenetricarboxylic acid, 1,2,4-benzenetricarboxylic acid, 1,3-benzenedicarboxylic acid, 1,4-benzenedicarboxylic acid, 1, Halogen compounds such as 3,5-benzenetrisulfonic acid and 1,3,6-naphthalenetrisulfonic acid can be used. Among aromatic acid halides, acid halides are preferable, and acid halides of 1,3,5-benzenetricarboxylic acid are particularly preferable from the viewpoints of economy, availability, handling, and reactivity. Trimesinic acid chloride, isophthalic acid chloride which is an acid halide of 1,3-benzenedicarboxylic acid, terephthalic acid chloride which is an acid halide of 1,4-benzenedicarboxylic acid, 1,3,5-benzenetrisulfonic acid. 1,3,5-Benzene trisulfonic acid chloride, which is an acid halide of, and 1,3,6-naphthalene trisulfonic acid chloride, which is an acid halide of 1,3,6-naphthalene trisulfonic acid, are preferable. The polyfunctional aromatic acid halide may be used alone or in combination of two or more, but trifunctional trimesic acid chloride, 1,3,5-benzenetrisulfonic acid chloride, 1,3. By mixing either bifunctional isophthalic acid chloride or terephthalic acid chloride with 6-naphthalene trisulfonic acid chloride, the molecular gap of the polyamide crosslinked structure is expanded, and a film having a uniform pore size distribution is widely spread. Can be controlled to. The mixed molar ratio of the trifunctional acid chloride and the difunctional acid chloride is preferably 1:20 to 50: 1, more preferably 1: 1 to 20: 1.
本発明の分離膜において、分離機能層の比表面積は1.2以上5.0以下であり、好ましくは1.3以上4.0以下であり、より好ましくは1.5以上3.0以下である。
In the separation membrane of the present invention, the specific surface area of the separation functional layer is 1.2 or more and 5.0 or less, preferably 1.3 or more and 4.0 or less, and more preferably 1.5 or more and 3.0 or less. is there.
分離機能層の比表面積が1.2以上であることにより、2価イオン選択除去性に優れた分離膜が得られる。加えて、発明者らは、鋭意検討の結果、分離機能層の比表面積が1.2以上で耐酸性、耐アルカリ性が向上することを見出した。比表面積が大きくなることで、単位面積当たりの酸やアルカリの有効接触濃度が低減し、ポリアミドの加水分解が抑制されるためと考えられる。分離機能層の比表面積が5.0以下であることにより、分離膜を高圧で運転して使用する際にも下記のひだ構造が潰れることがなく、分離機能層の比表面積が4.0以下であることにより、ばらつきの小さな膜性能を得ることができる。更に、分離機能層の比表面積が3.0以下であることにより、長時間安定した膜性能を維持することができる。
When the specific surface area of the separation functional layer is 1.2 or more, a separation membrane having excellent divalent ion selective removal property can be obtained. In addition, as a result of diligent studies, the inventors have found that acid resistance and alkali resistance are improved when the specific surface area of the separation functional layer is 1.2 or more. It is considered that the increase in the specific surface area reduces the effective contact concentration of the acid or alkali per unit area and suppresses the hydrolysis of the polyamide. Since the specific surface area of the separation function layer is 5.0 or less, the following fold structure is not crushed even when the separation membrane is operated at high pressure, and the specific surface area of the separation function layer is 4.0 or less. Therefore, it is possible to obtain film performance with little variation. Further, when the specific surface area of the separation functional layer is 3.0 or less, stable film performance can be maintained for a long time.
「分離機能層の比表面積」とは、「多孔性支持膜の表面積」に対する「分離機能層の表面積」の比である。上記「分離機能層の表面積」とは、分離機能層のうち供給液と接触する側の面の表面積を表している。また、上記「多孔性支持膜の表面積」は、分離機能層と接触している面の表面積を表している。上記表面積及び比表面積を求める方法は、一般的な表面積や比表面積を求める手法に従い求めることができ、特に手法が限定されるものではない。
The "specific surface area of the separation function layer" is the ratio of the "surface area of the separation function layer" to the "surface area of the porous support membrane". The above-mentioned "surface area of the separation function layer" represents the surface area of the surface of the separation function layer on the side in contact with the feed liquid. Further, the above-mentioned "surface area of the porous support membrane" represents the surface area of the surface in contact with the separation functional layer. The method for obtaining the surface area and the specific surface area can be obtained according to a general method for obtaining the surface area and the specific surface area, and the method is not particularly limited.
使用できる測定装置としては、例えば、表面積測定装置や比表面積測定装置(AFM)、走査電子顕微鏡(SEM,FE-SEM)、透過電子顕微鏡(TEM)等が挙げられる。具体的な測定方法の一例を実施例に示している。
Examples of the measuring device that can be used include a surface area measuring device, a specific surface area measuring device (AFM), a scanning electron microscope (SEM, FE-SEM), a transmission electron microscope (TEM), and the like. An example of a specific measurement method is shown in the examples.
本発明の複合半透膜について、分離機能層側からX線を照射することで行われるX線光電子分光(以下、XPS)測定において、測定された元素中の炭素原子に対する窒素原子と酸素原子の和の割合、C/(N+O)が2.3以上、好ましくは2.4以上であり、より好ましくは2.5以上である。また、C/(N+O)は4.0以下、好ましくは3.5以下であり、より好ましくは3.0以下である。
In the X-ray photoelectron spectroscopy (hereinafter referred to as XPS) measurement performed by irradiating the composite translucent film of the present invention with X-rays from the separation functional layer side, the nitrogen atom and the oxygen atom with respect to the carbon atom in the measured element The sum ratio, C / (N + O), is 2.3 or more, preferably 2.4 or more, and more preferably 2.5 or more. Further, C / (N + O) is 4.0 or less, preferably 3.5 or less, and more preferably 3.0 or less.
発明者らは鋭意検討の結果、分離機能層のC/(N+O)が2.3以上4.0以下であることにより、高い耐酸、耐アルカリ性と優れた2価イオン選択除去性を両立することができることを見出した。
As a result of diligent studies, the inventors have determined that the C / (N + O) of the separation functional layer is 2.3 or more and 4.0 or less, thereby achieving both high acid resistance and alkali resistance and excellent divalent ion selective removal property. I found that I could do it.
分離機能層のC/(N+O)が2.3以上であることは、ポリアミドの化学組成が疎水的であることを意味するため、酸やアルカリ接触時に、ポリアミドの加水分解の主要因である水分子のアミド基への付加が抑制されることで、耐酸、耐アルカリ性が大きく向上したと考えられる。また、分離機能層のC/(N+O)が4.0以下であることにより、ポリアミドが過度に疎水的にならず、ポリアミド間に働く疎水性相互作用が適当であるため、孔の過度な緻密化による1価イオンの透過性の低下が起こらず、優れた2価イオン除去選択性が得られると考えられる。
When the C / (N + O) of the separation functional layer is 2.3 or more, it means that the chemical composition of the polyamide is hydrophobic. Therefore, water, which is a main factor in the hydrolysis of the polyamide when it comes into contact with an acid or an alkali. It is considered that the acid resistance and alkali resistance were greatly improved by suppressing the addition of the molecule to the amide group. Further, when the C / (N + O) of the separation functional layer is 4.0 or less, the polyamide is not excessively hydrophobic, and the hydrophobic interaction acting between the polyamides is appropriate, so that the pores are excessively dense. It is considered that the permeability of the monovalent ion does not decrease due to the conversion, and excellent divalent ion removal selectivity can be obtained.
分離機能層4は、図1(b)に示すように、ひだ状の薄膜41を有する。ひだは、凸部42と凹部43とが交互にならんだ構造である。
As shown in FIG. 1 (b), the separation function layer 4 has a fold-shaped thin film 41. The folds have a structure in which convex portions 42 and concave portions 43 are alternately arranged.
図2にひだ構造の拡大図を示す。図2において、「ひだ高さH/薄膜厚みT」が1.2以上であることが好ましい。なお、高さHおよび厚みTは、後述するように平均値であるが、説明の便宜上単に「高さ」「厚み」とよぶ。H/Tがこの範囲であれば、凸部42内(薄膜41と多孔性支持層3との間)に空隙があるといえる。つまり、この場合、分離機能層は中空のひだ構造を有する。中空のひだ構造を有することで、分離機能層と支持膜との間に透過液を保持できる空間を確保することができ、分離機能層表面側から支持膜側に透過した酸やアルカリの成分を含む水が、中空の空間に効率的に拡散でき、局所的な酸やアルカリの接触によるポリアミドの分解を抑制することができる。H/Tは、好ましくは2.0以上であり、より好ましくは3.0以上である。
Figure 2 shows an enlarged view of the fold structure. In FIG. 2, the “fold height H / thin film thickness T” is preferably 1.2 or more. The height H and the thickness T are average values as described later, but are simply referred to as "height" and "thickness" for convenience of explanation. If the H / T is in this range, it can be said that there is a gap in the convex portion 42 (between the thin film 41 and the porous support layer 3). That is, in this case, the separating functional layer has a hollow pleated structure. By having a hollow fold structure, it is possible to secure a space between the separation function layer and the support membrane that can hold the permeated liquid, and the acid and alkali components that have permeated from the surface side of the separation function layer to the support membrane side can be removed. The contained water can be efficiently diffused into the hollow space, and the decomposition of the polyamide due to the contact with a local acid or alkali can be suppressed. The H / T is preferably 2.0 or more, and more preferably 3.0 or more.
高さHおよび厚みTの測定方法は以下のとおりである。複合半透膜を3cm×3cm角に切り出して蒸留水で洗浄する。洗浄後の複合半透膜をエポキシ樹脂で包埋し、さらに四酸化オスミウムで染色する。こうして得られたサンプルにおいて、分離機能層4の薄膜41の断面を走査型透過電子顕微鏡で倍率100万倍での画像を得る。無作為に10個の凸部42を選択し、1個の凸部42につき5カ所で、凸部42の外表面と内表面の最短距離を測定する。こうして得られた50個の値の平均値を算出し、この平均値をひだ厚みTとする。また、無作為に選択した50個の凸部42について、各凸部42の外表面から多孔性支持層表面までの最大距離(ひだ頂点から支持膜表面までの距離)を測定する。得られた50個の値の平均値をひだ高さHの平均値とする。これらの値TおよびHをH/Tの算出に用いる。
The measurement method of height H and thickness T is as follows. The composite semipermeable membrane is cut into 3 cm × 3 cm squares and washed with distilled water. The washed composite semipermeable membrane is embedded with an epoxy resin and further stained with osmium tetroxide. In the sample thus obtained, an image of the cross section of the thin film 41 of the separation function layer 4 at a magnification of 1 million is obtained with a scanning transmission electron microscope. Ten convex portions 42 are randomly selected, and the shortest distance between the outer surface and the inner surface of the convex portions 42 is measured at five points for each convex portion 42. The average value of the 50 values thus obtained is calculated, and this average value is defined as the fold thickness T. Further, for 50 randomly selected convex portions 42, the maximum distance from the outer surface of each convex portion 42 to the surface of the porous support layer (distance from the apex of the fold to the surface of the support film) is measured. The average value of the obtained 50 values is taken as the average value of the fold height H. These values T and H are used to calculate H / T.
分離機能層の薄膜厚みTは、好ましくは10nm以上、より好ましくは15nm以上である。薄膜厚みが10nm以上であることで、十分な透水性を備えた複合半透膜を容易に得ることができ、また、薄膜厚みTが15nm以上であることにより、欠点の発生に伴う除去性の低下を招くことなく、十分な透水性を備えた複合半透膜を安定に得ることができる。
The thin film thickness T of the separation functional layer is preferably 10 nm or more, more preferably 15 nm or more. When the thin film thickness is 10 nm or more, a composite semipermeable membrane having sufficient water permeability can be easily obtained, and when the thin film thickness T is 15 nm or more, the removability due to the occurrence of defects is achieved. A composite semipermeable membrane having sufficient water permeability can be stably obtained without causing a decrease.
また、分離機能層の薄膜厚みTは、好ましくは100nm以下であり、より好ましくは50nm以下であり、更に好ましくは30nm以下である。薄膜厚みが100nm以下であることにより、安定した膜性能を得ることができ、また、薄膜厚みが80nm以下であることにより、十分な透水性を備え、かつ安定した膜性能を得ることができる。更に、薄膜厚みが30nm以下であることにより、より十分な透水性を備え、かつ安定した膜性能を維持することができる。
The thin film thickness T of the separation functional layer is preferably 100 nm or less, more preferably 50 nm or less, and further preferably 30 nm or less. When the thin film thickness is 100 nm or less, stable film performance can be obtained, and when the thin film thickness is 80 nm or less, sufficient water permeability and stable film performance can be obtained. Further, when the thin film thickness is 30 nm or less, more sufficient water permeability can be provided and stable film performance can be maintained.
ひだ高さHは、好ましくは20nm以上、より好ましくは50nm以上である。ひだ高さが20nm以上であることで、十分な耐酸性、耐アルカリ性を備えた複合半透膜を容易に得ることができる。
The fold height H is preferably 20 nm or more, more preferably 50 nm or more. When the fold height is 20 nm or more, a composite semipermeable membrane having sufficient acid resistance and alkali resistance can be easily obtained.
また、ひだ高さHは、好ましくは1000nm以下であり、より好ましくは800nm以下であり、更に好ましくは300nm以下である。ひだ高さが1000nm以下であることにより、複合半透膜を高圧で運転して使用する際にもひだが潰れることなく、また、ひだ高さが800nm以下であることにより、安定した膜性能を得ることができる。更に、ひだ高さが300nm以下であることにより、長時間安定した膜性能を維持することができる。
The fold height H is preferably 1000 nm or less, more preferably 800 nm or less, and further preferably 300 nm or less. The fold height of 1000 nm or less prevents the folds from collapsing even when the composite semipermeable membrane is operated at high pressure, and the fold height of 800 nm or less provides stable membrane performance. Obtainable. Further, when the fold height is 300 nm or less, stable film performance can be maintained for a long time.
図1(a)に示す複合半透膜の2の面F1、F2のうち、分離機能層側表面F1において全反射赤外吸収スペクトル法(以下、ATR-IR)で測定される、半芳香族ポリアミドのアミド基に由来する吸収ピーク強度を(IA)と支持膜に由来する吸収ピーク強度をISと定義する。それぞれのピーク強度の比、IA/ISが0.15以上、好ましくは0.20以上、より好ましくは0.35以上0.50以下であることが好ましい。IA/ISが0.15以上であることにより、分離機能層中のアミド基の分子内ないし分子間の水素結合などの相互作用が大きくなり、酸やアルカリのアミド基への接触が阻害され、性能安定性が向上する。また、IA/ISが0.50以下であることにより、高い耐酸、耐アルカリ性と高い2価イオン選択除去性を両立することができる。
IAは具体的には以下のとおりであり、ISは複合半透膜が基材、多孔性支持層、分離機能層を有し、多孔性支持層がポリスルホンまたはポリエーテルスルホンである場合には、以下のように定義される。 Of the two surfaces F1 and F2 of the composite semipermeable membrane shown in FIG. 1A, the semiaromatics measured by total reflection infrared absorption spectroscopy (hereinafter, ATR-IR) on the surface F1 on the separation function layer side. the absorption peak intensity derived from the absorption peak intensity derived from the amide group of the polyamide and the support film (I a) is defined as I S. The ratio of the respective peak intensities, I A / I S is 0.15 or more, preferably 0.20 or more, and more preferably 0.35 to 0.50. By I A / I S is 0.15 or more, interaction such as hydrogen bonding between intramolecular or molecules of the amide groups in the separating functional layer is increased, the contact to the amide groups of the acid or alkali inhibition And performance stability is improved. Further, by I A / I S is 0.50 or less, it is possible to achieve both high acid, alkali resistance and high divalent ion selective removability.
I A is specifically as follows, I S is the composite semipermeable membrane substrate, the porous support layer has a separation function layer, if the porous support layer is polysulfone or polyether sulfone Is defined as follows.
IAは具体的には以下のとおりであり、ISは複合半透膜が基材、多孔性支持層、分離機能層を有し、多孔性支持層がポリスルホンまたはポリエーテルスルホンである場合には、以下のように定義される。 Of the two surfaces F1 and F2 of the composite semipermeable membrane shown in FIG. 1A, the semiaromatics measured by total reflection infrared absorption spectroscopy (hereinafter, ATR-IR) on the surface F1 on the separation function layer side. the absorption peak intensity derived from the absorption peak intensity derived from the amide group of the polyamide and the support film (I a) is defined as I S. The ratio of the respective peak intensities, I A / I S is 0.15 or more, preferably 0.20 or more, and more preferably 0.35 to 0.50. By I A / I S is 0.15 or more, interaction such as hydrogen bonding between intramolecular or molecules of the amide groups in the separating functional layer is increased, the contact to the amide groups of the acid or alkali inhibition And performance stability is improved. Further, by I A / I S is 0.50 or less, it is possible to achieve both high acid, alkali resistance and high divalent ion selective removability.
I A is specifically as follows, I S is the composite semipermeable membrane substrate, the porous support layer has a separation function layer, if the porous support layer is polysulfone or polyether sulfone Is defined as follows.
IA:1600~1650cm-1の範囲に存在する吸収ピークの極大値
IS:1242cm-1の多孔性支持層に対応する吸収ピーク値
また、本発明において、複合半透膜を40℃の1mol/L硫酸水溶液に、21日間浸漬させた後にATR-IR測定した際の、半芳香族ポリアミドのアミド基に由来する吸収ピーク強度をIA2後と定義し、多孔性支持層に由来する吸収ピーク強度をIS2と定義する。また、比R1,R2を以下のように定義する。
R1:下記Rbの測定における硫酸水溶液への浸漬を行う前の複合半透膜ついて、分離機能層表面における全反射赤外吸収スペクトル法により測定される、半芳香族ポリアミドのアミド基に由来する吸収ピーク強度(IA)と支持膜に由来する吸収ピーク強度(IS)との比(IA/IS)
R2:複合半透膜を40℃の1mol/L硫酸水溶液に21日間を浸漬させた後に、分離機能層表面における全反射赤外吸収スペクトル法で測定される、半芳香族ポリアミドのアミド基に由来する吸収ピーク強度(IA2)と支持膜に由来する吸収ピーク強度(IS2)との比(IA2/IS2)
R2/R1は、0.40以上、好ましくは0.60以上、より好ましくは0.80以上であり、1.0以下であることが好ましい。 I A: 1600 ~ 1650cm absorption maximum peak present in the range of -1 I S: absorption peak corresponding to the porous support layer of 1242Cm -1 In the present invention, the composite semipermeable membrane of 40 ° C. 1 mol The absorption peak intensity derived from the amide group of the semi-aromatic polyamide when measured by ATR-IR after being immersed in the / L sulfuric acid aqueous solution for 21 days is defined as after I A2, and the absorption peak derived from the porous support layer. Intensity is defined as IS2. Further, the ratios R1 and R2 are defined as follows.
R1: Absorption derived from the amide group of the semi-aromatic polyamide measured by total internal reflection infrared absorption spectroscopy on the surface of the separation functional layer for the composite semipermeable membrane before immersion in the sulfuric acid aqueous solution in the measurement of Rb below. peak intensity (I a) and the absorption peak intensity derived from the support film (I S) and the ratio of (I a / I S)
R2: Derived from the amide group of semi-aromatic polyamide measured by total internal reflection infrared absorption spectroscopy on the surface of the separation functional layer after immersing the composite semipermeable membrane in a 1 mol / L sulfuric acid aqueous solution at 40 ° C. for 21 days. Ratio of absorption peak intensity (I A2 ) to absorption peak intensity derived from the support membrane (I S2 ) (IA2 / IS2 )
R2 / R1 is 0.40 or more, preferably 0.60 or more, more preferably 0.80 or more, and preferably 1.0 or less.
IS:1242cm-1の多孔性支持層に対応する吸収ピーク値
また、本発明において、複合半透膜を40℃の1mol/L硫酸水溶液に、21日間浸漬させた後にATR-IR測定した際の、半芳香族ポリアミドのアミド基に由来する吸収ピーク強度をIA2後と定義し、多孔性支持層に由来する吸収ピーク強度をIS2と定義する。また、比R1,R2を以下のように定義する。
R1:下記Rbの測定における硫酸水溶液への浸漬を行う前の複合半透膜ついて、分離機能層表面における全反射赤外吸収スペクトル法により測定される、半芳香族ポリアミドのアミド基に由来する吸収ピーク強度(IA)と支持膜に由来する吸収ピーク強度(IS)との比(IA/IS)
R2:複合半透膜を40℃の1mol/L硫酸水溶液に21日間を浸漬させた後に、分離機能層表面における全反射赤外吸収スペクトル法で測定される、半芳香族ポリアミドのアミド基に由来する吸収ピーク強度(IA2)と支持膜に由来する吸収ピーク強度(IS2)との比(IA2/IS2)
R2/R1は、0.40以上、好ましくは0.60以上、より好ましくは0.80以上であり、1.0以下であることが好ましい。 I A: 1600 ~ 1650cm absorption maximum peak present in the range of -1 I S: absorption peak corresponding to the porous support layer of 1242Cm -1 In the present invention, the composite semipermeable membrane of 40 ° C. 1 mol The absorption peak intensity derived from the amide group of the semi-aromatic polyamide when measured by ATR-IR after being immersed in the / L sulfuric acid aqueous solution for 21 days is defined as after I A2, and the absorption peak derived from the porous support layer. Intensity is defined as IS2. Further, the ratios R1 and R2 are defined as follows.
R1: Absorption derived from the amide group of the semi-aromatic polyamide measured by total internal reflection infrared absorption spectroscopy on the surface of the separation functional layer for the composite semipermeable membrane before immersion in the sulfuric acid aqueous solution in the measurement of Rb below. peak intensity (I a) and the absorption peak intensity derived from the support film (I S) and the ratio of (I a / I S)
R2: Derived from the amide group of semi-aromatic polyamide measured by total internal reflection infrared absorption spectroscopy on the surface of the separation functional layer after immersing the composite semipermeable membrane in a 1 mol / L sulfuric acid aqueous solution at 40 ° C. for 21 days. Ratio of absorption peak intensity (I A2 ) to absorption peak intensity derived from the support membrane (I S2 ) (IA2 / IS2 )
R2 / R1 is 0.40 or more, preferably 0.60 or more, more preferably 0.80 or more, and preferably 1.0 or less.
ピーク強度比R2/R1は、分離機能層強度の指標として用いることができる。多孔性支持層に対する吸収ピーク値と分離機能層に対応する吸収ピーク値との比であり、酸浸漬前後の該ピーク強度比が1.0に近いほど、分離機能層を構成するポリアミドの溶出や分解が起こらず、酸接触前の状態を維持していることを示す。
The peak intensity ratio R2 / R1 can be used as an index of the strength of the separation functional layer. It is the ratio of the absorption peak value to the porous support layer and the absorption peak value corresponding to the separation function layer. The closer the peak intensity ratio before and after acid immersion is to 1.0, the more the polyamide constituting the separation function layer is eluted. It shows that decomposition does not occur and the state before acid contact is maintained.
ピーク強度比R1およびR2の測定は、以下のとおり行うことができる。まず、測定する膜を充分に乾燥させる。次に、膜の表面(つまり分離機能層の表面)に赤外線を照射して、反射光を検知することで、スペクトルを得る。より具体的な測定方法については実施例に記載されている。本書に記載のピーク強度比R1およびR2は、具体的には、実施例に記載の方法によって測定した値から算出したものである。
The peak intensity ratios R1 and R2 can be measured as follows. First, the membrane to be measured is sufficiently dried. Next, the surface of the membrane (that is, the surface of the separation function layer) is irradiated with infrared rays, and the reflected light is detected to obtain a spectrum. More specific measurement methods are described in Examples. The peak intensity ratios R1 and R2 described in this document are specifically calculated from the values measured by the method described in the examples.
複合半透膜を1mol/L硫酸水溶液に40℃、21日間を浸漬させた前後の分離機能層表面への接触角の差が15°以下であることが好ましく、より好ましくは10度以下である。ここでの接触角とは、静的接触角を指し、分離機能層表面の親水性の高さを意味する。
The difference in contact angle with the surface of the separation functional layer before and after immersing the composite semipermeable membrane in a 1 mol / L sulfuric acid aqueous solution at 40 ° C. for 21 days is preferably 15 ° C. or less, more preferably 10 ° C. or less. .. The contact angle here refers to a static contact angle, and means a high degree of hydrophilicity on the surface of the separation functional layer.
発明者らは鋭意検討の結果、硫酸水溶液に長期間浸漬させた前後の分離機能層表面の接触角の差が小さいほど耐酸性、耐アルカリ性が高いことを見出した。
As a result of diligent studies, the inventors have found that the smaller the difference in contact angle between the surfaces of the separation functional layer before and after being immersed in a sulfuric acid aqueous solution for a long period of time, the higher the acid resistance and alkali resistance.
純水を分離機能層表面に滴下すると、「ヤングの式」と呼ばれる、式(1)が成り立つ。
When pure water is dropped on the surface of the separation functional layer, the formula (1) called "Young's formula" is established.
γS=γLcosθ+γSL (1)
ここで、γSは分離機能層の表面張力、γLは純水の表面張力、γSLは分離機能層と純水の界面張力である。この式を満たすときの純水の接線と分離機能層表面のなす角θを接触角という。硫酸水溶液に長期間浸漬させた前後の分離機能層表面の接触角の差が小さいということは、ポリアミドの加水分解や支持層の部分的な露出による表面の親水性変化が小さいということを意味しており、分離機能層の分解および剥離が起こりにくいため、強酸の接触による2価選択除去性の低下を抑制できると考えられる。 γ S = γ L cos θ + γ SL (1)
Here, γ S is the surface tension of the separation function layer, γ L is the surface tension of pure water, and γ SL is the interfacial tension between the separation function layer and pure water. The angle θ formed by the tangent of pure water and the surface of the separation function layer when this equation is satisfied is called the contact angle. The small difference in contact angle between the surfaces of the separation functional layer before and after being immersed in a sulfuric acid aqueous solution for a long period of time means that the change in hydrophilicity of the surface due to hydrolysis of polyamide or partial exposure of the support layer is small. Therefore, since decomposition and peeling of the separation functional layer are unlikely to occur, it is considered that a decrease in divalent selective removability due to contact with a strong acid can be suppressed.
ここで、γSは分離機能層の表面張力、γLは純水の表面張力、γSLは分離機能層と純水の界面張力である。この式を満たすときの純水の接線と分離機能層表面のなす角θを接触角という。硫酸水溶液に長期間浸漬させた前後の分離機能層表面の接触角の差が小さいということは、ポリアミドの加水分解や支持層の部分的な露出による表面の親水性変化が小さいということを意味しており、分離機能層の分解および剥離が起こりにくいため、強酸の接触による2価選択除去性の低下を抑制できると考えられる。 γ S = γ L cos θ + γ SL (1)
Here, γ S is the surface tension of the separation function layer, γ L is the surface tension of pure water, and γ SL is the interfacial tension between the separation function layer and pure water. The angle θ formed by the tangent of pure water and the surface of the separation function layer when this equation is satisfied is called the contact angle. The small difference in contact angle between the surfaces of the separation functional layer before and after being immersed in a sulfuric acid aqueous solution for a long period of time means that the change in hydrophilicity of the surface due to hydrolysis of polyamide or partial exposure of the support layer is small. Therefore, since decomposition and peeling of the separation functional layer are unlikely to occur, it is considered that a decrease in divalent selective removability due to contact with a strong acid can be suppressed.
本発明における分離機能層には、多官能脂肪族アミンと多官能芳香族酸ハロゲン化物の重合物に由来するアミド基、未反応官能基に由来するアミノ基とカルボキシ基が存在する。本発明者らは鋭意検討した結果、下記式で表わされる7が、アミド基率は0.80以上、1.20以下であることにより、高い透水性、選択分離性に加え、酸やアルカリに対する高い耐久性が得られることを見出した。アミド基率としてより好ましくは0.90以上、1.10以下である。0.80未満ではポリアミドの架橋構造形成が不十分なため、酸やアルカリに対する耐久性が低く、逆に1.20より大きい場合、酸やアルカリに対する耐久性はさらに高まるものの、緻密性が過度に高くなるため、透水性や選択分離性が大きく低下してしまう。
The separation functional layer in the present invention contains an amide group derived from a polymer of a polyfunctional aliphatic amine and a polyfunctional aromatic acid halide, and an amino group and a carboxy group derived from an unreacted functional group. As a result of diligent studies by the present inventors, 7 represented by the following formula has an amide group ratio of 0.80 or more and 1.20 or less, so that in addition to high water permeability and selective separability, it is resistant to acids and alkalis. We have found that high durability can be obtained. The amide group ratio is more preferably 0.90 or more and 1.10 or less. If it is less than 0.80, the crosslinked structure of the polyamide is not sufficiently formed, so that the durability against acids and alkalis is low. On the contrary, if it is larger than 1.20, the durability against acids and alkalis is further increased, but the density is excessive. As the temperature increases, the water permeability and selective separability are greatly reduced.
(アミド基率)=(アミド基モル量比)/{(多官能脂肪族アミンモル量比)+(多官能芳香族酸ハロゲン化物モル量比)}
ここで、式中のアミド基モル量比、多官能脂肪族アミンモル量比、多官能芳香族酸ハロゲン化物量比は、前述の分離機能層の13C固体NMR測定より求めることができる。 (Amid group ratio) = (Amid group molar amount ratio) / {(Polyfunctional aliphatic amine molar amount ratio) + (Polyfunctional aromatic acid halide molar amount ratio)}
Here, the molar ratio of amide groups, the molar ratio of polyfunctional aliphatic amines, and the ratio of polyfunctional aromatic acid halides in the formula can be obtained from the 13 C solid-state NMR measurement of the above-mentioned separation functional layer.
ここで、式中のアミド基モル量比、多官能脂肪族アミンモル量比、多官能芳香族酸ハロゲン化物量比は、前述の分離機能層の13C固体NMR測定より求めることができる。 (Amid group ratio) = (Amid group molar amount ratio) / {(Polyfunctional aliphatic amine molar amount ratio) + (Polyfunctional aromatic acid halide molar amount ratio)}
Here, the molar ratio of amide groups, the molar ratio of polyfunctional aliphatic amines, and the ratio of polyfunctional aromatic acid halides in the formula can be obtained from the 13 C solid-state NMR measurement of the above-mentioned separation functional layer.
分離機能層における多官能脂肪族アミンと多官能芳香族酸ハロゲン化物の存在比(多官能脂肪族アミン/多官能芳香族酸ハロゲン化物)は、モル比で、1.25以上が好ましく、より好ましくは1.3以上であり、更に好ましくは1.35以上である。また、前記存在比は、モル比で、1.65以下が好ましく、より好ましくは1.60以下であり、更に好ましくは1.55以下である。前記存在比が1.25以上、1.65以下であることにより、ポリアミド中のアミノ基およびカルボキシ基量はほぼ等しくなっており、ポリアミドの網目構造は均一になっていることが考えられる。よって、孔径分布も制御されていると考えられる。
The abundance ratio of the polyfunctional aliphatic amine and the polyfunctional aromatic acid halide in the separation functional layer (polyfunctional aliphatic amine / polyfunctional aromatic acid halide) is preferably 1.25 or more in terms of molar ratio, which is more preferable. Is 1.3 or more, more preferably 1.35 or more. The abundance ratio is preferably 1.65 or less, more preferably 1.60 or less, and further preferably 1.55 or less in terms of molar ratio. When the abundance ratio is 1.25 or more and 1.65 or less, it is considered that the amounts of amino groups and carboxy groups in the polyamide are substantially equal, and the network structure of the polyamide is uniform. Therefore, it is considered that the pore size distribution is also controlled.
分離機能層における多官能脂肪族アミンと多官能芳香族酸ハロゲン化物の存在比は、支持膜から剥離した分離機能層を13C-NMR測定することや、支持膜から剥離した分離機能層を高温の強アルカリ水溶液で加水分解した試料を用いて1H-NMR測定することにより、脂肪族多官能アミンと多官能芳香族酸ハロゲン化物の成分をそれぞれ分析し、脂肪族多官能アミン成分を、多官能芳香族酸ハロゲン化物の成分で除することにより求めることができる。
The abundance ratio of the polyfunctional aliphatic amine and the polyfunctional aromatic acid halide in the separation functional layer can be determined by measuring 13 C-NMR of the separation functional layer peeled from the support film or by measuring the separation functional layer peeled from the support film at a high temperature. By 1 H-NMR measurement using a sample hydrolyzed with a strong alkaline aqueous solution of the above, the components of the aliphatic polyfunctional amine and the polyfunctional aromatic acid halide are analyzed, and the components of the aliphatic polyfunctional amine are polymorphized. It can be obtained by dividing by the component of the functional aromatic acid halide.
分離機能層おける多官能脂肪族アミンと多官能芳香族酸ハロゲン化物の存在比を制御する方法としては、界面重縮合時の多官能脂肪族アミン濃度と多官能芳香族酸ハロゲン化物濃度との比率を調整する方法、多官能酸ハロゲン化物を溶解する溶媒を変える方法、界面重縮合場を界面活性剤によって乱す方法、界面重縮合途中で反応停止させる方法、界面重縮合時に反応を阻害するような添加剤を加える方法、界面重縮合時に外部から熱を加えることで反応を活性化する方法などがある。
As a method of controlling the abundance ratio of the polyfunctional aliphatic amine and the polyfunctional aromatic acid halide in the separation functional layer, the ratio of the polyfunctional aliphatic amine concentration and the polyfunctional aromatic acid halide concentration at the time of intercondensation is used. Method, method of changing the solvent that dissolves the polyfunctional acid halide, method of disturbing the intercondensation field with a surfactant, method of stopping the reaction during intercondensation, method of inhibiting the reaction during intercondensation. There are a method of adding an additive and a method of activating the reaction by applying heat from the outside at the time of intercondensation.
本発明の複合半透膜は、0.5MPaの操作圧力で25℃、pH6.5の2000ppm硫酸マグネシウム水溶液および25℃、pH6.5の2000ppm塩化マグネシウム水溶液をそれぞれ透過させた時の硫酸マグネシウム除去率が97%以上、好ましくは98%以上、さらに好ましくは99%以上であり、かつ、硫酸マグネシウム除去率と塩化マグネシウム除去率の差が20%以下、好ましくは15%以下、さらに好ましくは10%以下であることにより、高い選択分離性能に加え、高い耐酸・アルカリ性を達成可能である。
The composite translucent film of the present invention has a magnesium sulfate removal rate when permeated with a 2000 ppm magnesium sulfate aqueous solution at 25 ° C and pH 6.5 and a 2000 ppm magnesium chloride aqueous solution at 25 ° C and pH 6.5 at an operating pressure of 0.5 MPa. 97% or more, preferably 98% or more, more preferably 99% or more, and the difference between the magnesium sulfate removal rate and the magnesium chloride removal rate is 20% or less, preferably 15% or less, still more preferably 10% or less. Therefore, in addition to high selective separation performance, high acid resistance and alkalinity can be achieved.
(1-3)その他
多官能脂肪族アミンと多官能芳香族酸ハロゲン化物とから構成される分離機能層上に直接又は他の層を介して設けられたポリマー成分を含有する保護層を設けてもよい。保護層により、複合半透膜の2価イオン(特に、硫酸イオン)除去性能が向上すると共に、1価イオンと2価イオンとの選択分離性を向上可能である。 (1-3) In addition, a protective layer containing a polymer component provided directly or via another layer is provided on a separation functional layer composed of a polyfunctional aliphatic amine and a polyfunctional aromatic acid halide. May be good. The protective layer can improve the divalent ion (particularly sulfate ion) removing performance of the composite semipermeable membrane and can improve the selective separability between the monovalent ion and the divalent ion.
多官能脂肪族アミンと多官能芳香族酸ハロゲン化物とから構成される分離機能層上に直接又は他の層を介して設けられたポリマー成分を含有する保護層を設けてもよい。保護層により、複合半透膜の2価イオン(特に、硫酸イオン)除去性能が向上すると共に、1価イオンと2価イオンとの選択分離性を向上可能である。 (1-3) In addition, a protective layer containing a polymer component provided directly or via another layer is provided on a separation functional layer composed of a polyfunctional aliphatic amine and a polyfunctional aromatic acid halide. May be good. The protective layer can improve the divalent ion (particularly sulfate ion) removing performance of the composite semipermeable membrane and can improve the selective separability between the monovalent ion and the divalent ion.
ポリマー成分は、分離機能層及び支持膜を溶解せず、また水処理操作時に溶出しないポリマーであれば特に制限されず、例えば、ポリビニルアルコール、ポリビニルピロール、ポリビニルピロリドン、ヒドロキシプロピルセルロース、ポリエチレングリコール、キトサン、及びケン化ポリエチレン-酢酸ビニル共重合体などが挙げられる。
これらのうち、ポリビニルアルコールは、経済性、入手の容易さ、取り扱い易さの点から好ましい。特に、ポリビニルアルコールのケン化度が85%以上であることが好ましく、90%以上であることがより好ましい。ケン化度が85%以上であることで、分子鎖間水素結合の影響により、熱水(80℃程度)には可溶であるが常温付近(25℃程度)では水不溶性となり、水処理操作時におけるポリビニルアルコールの溶出を防止することができる。また、ポリビニルアルコールの重合度は、50~50,000の範囲内にあることが好ましい。重合度が50以上であることで水への溶解性が低下し、水処理操作時におけるポリビニルアルコールの溶出を防止することができる。一方、重合度が50000以下であることにより、ポリビニルアルコール水溶液の粘度を好適に保つことができ、ポリビニルアルコール水溶液の塗布厚みを薄くすることができる。その結果、保護層としての上述の機能と膜の透水性を両立することができる。 The polymer component is not particularly limited as long as it is a polymer that does not dissolve the separation functional layer and the support film and does not elute during the water treatment operation. For example, polyvinyl alcohol, polyvinylpyrrolid, polyvinylpyrrolidone, hydroxypropyl cellulose, polyethylene glycol, chitosan. , And a saponified polyethylene-vinyl acetate copolymer and the like.
Of these, polyvinyl alcohol is preferable from the viewpoint of economy, availability, and handling. In particular, the saponification degree of polyvinyl alcohol is preferably 85% or more, and more preferably 90% or more. When the saponification degree is 85% or more, it is soluble in hot water (about 80 ° C) due to the influence of hydrogen bonds between molecular chains, but becomes water-insoluble near room temperature (about 25 ° C), and water treatment operation It is possible to prevent the elution of polyvinyl alcohol at the time. The degree of polymerization of polyvinyl alcohol is preferably in the range of 50 to 50,000. When the degree of polymerization is 50 or more, the solubility in water is lowered, and the elution of polyvinyl alcohol during the water treatment operation can be prevented. On the other hand, when the degree of polymerization is 50,000 or less, the viscosity of the polyvinyl alcohol aqueous solution can be preferably maintained, and the coating thickness of the polyvinyl alcohol aqueous solution can be reduced. As a result, both the above-mentioned function as a protective layer and the water permeability of the film can be achieved.
これらのうち、ポリビニルアルコールは、経済性、入手の容易さ、取り扱い易さの点から好ましい。特に、ポリビニルアルコールのケン化度が85%以上であることが好ましく、90%以上であることがより好ましい。ケン化度が85%以上であることで、分子鎖間水素結合の影響により、熱水(80℃程度)には可溶であるが常温付近(25℃程度)では水不溶性となり、水処理操作時におけるポリビニルアルコールの溶出を防止することができる。また、ポリビニルアルコールの重合度は、50~50,000の範囲内にあることが好ましい。重合度が50以上であることで水への溶解性が低下し、水処理操作時におけるポリビニルアルコールの溶出を防止することができる。一方、重合度が50000以下であることにより、ポリビニルアルコール水溶液の粘度を好適に保つことができ、ポリビニルアルコール水溶液の塗布厚みを薄くすることができる。その結果、保護層としての上述の機能と膜の透水性を両立することができる。 The polymer component is not particularly limited as long as it is a polymer that does not dissolve the separation functional layer and the support film and does not elute during the water treatment operation. For example, polyvinyl alcohol, polyvinylpyrrolid, polyvinylpyrrolidone, hydroxypropyl cellulose, polyethylene glycol, chitosan. , And a saponified polyethylene-vinyl acetate copolymer and the like.
Of these, polyvinyl alcohol is preferable from the viewpoint of economy, availability, and handling. In particular, the saponification degree of polyvinyl alcohol is preferably 85% or more, and more preferably 90% or more. When the saponification degree is 85% or more, it is soluble in hot water (about 80 ° C) due to the influence of hydrogen bonds between molecular chains, but becomes water-insoluble near room temperature (about 25 ° C), and water treatment operation It is possible to prevent the elution of polyvinyl alcohol at the time. The degree of polymerization of polyvinyl alcohol is preferably in the range of 50 to 50,000. When the degree of polymerization is 50 or more, the solubility in water is lowered, and the elution of polyvinyl alcohol during the water treatment operation can be prevented. On the other hand, when the degree of polymerization is 50,000 or less, the viscosity of the polyvinyl alcohol aqueous solution can be preferably maintained, and the coating thickness of the polyvinyl alcohol aqueous solution can be reduced. As a result, both the above-mentioned function as a protective layer and the water permeability of the film can be achieved.
また、保護層中のポリマーを前記分離機能層に架橋させることにより、2価イオンの除去性を未架橋に比べ高めることができるほか、水処理操作時における保護層中のポリマーの溶出を高度に防止することができる。なお、架橋させるポリマーとしては取り扱い易さや透水性低下抑制の点から親水性ポリマーが好ましく、特にポリビニルアルコールが好ましく、ケン化度85%以上のポリビニルアルコールがより好ましい。ケン化度によりポリビニルアルコールの反応性が変化するので、ケン化度85%以上であることで架橋による効果が高められる。
ポリビニルアルコールを架橋させる方法としては、多価アルデヒド、エポキシ化合物、多価カルボン酸、有機チタン化合物、有機ジルコニウム化合物などの有機架橋剤、ホウ素化合物などの無機架橋剤を用いることが好ましく、経済性、入手の容易さ、取り扱い易さの点から、多価アルデヒドがより好ましく、反応性の容易さからグルタルアルデヒドが特に好ましい。 Further, by cross-linking the polymer in the protective layer to the separation functional layer, the removability of divalent ions can be enhanced as compared with the non-cross-linked layer, and the elution of the polymer in the protective layer during water treatment operation is highly advanced. Can be prevented. As the polymer to be crosslinked, a hydrophilic polymer is preferable from the viewpoint of ease of handling and suppression of deterioration of water permeability, and polyvinyl alcohol is particularly preferable, and polyvinyl alcohol having a saponification degree of 85% or more is more preferable. Since the reactivity of polyvinyl alcohol changes depending on the degree of saponification, the effect of cross-linking is enhanced when the degree of saponification is 85% or more.
As a method for cross-linking polyvinyl alcohol, it is preferable to use an organic cross-linking agent such as polyvalent aldehyde, epoxy compound, polyvalent carboxylic acid, organic titanium compound, organic zirconium compound, and inorganic cross-linking agent such as boron compound, which is economical. Polyvalent aldehyde is more preferable from the viewpoint of easy availability and handling, and glutaraldehyde is particularly preferable from the viewpoint of ease of reactivity.
ポリビニルアルコールを架橋させる方法としては、多価アルデヒド、エポキシ化合物、多価カルボン酸、有機チタン化合物、有機ジルコニウム化合物などの有機架橋剤、ホウ素化合物などの無機架橋剤を用いることが好ましく、経済性、入手の容易さ、取り扱い易さの点から、多価アルデヒドがより好ましく、反応性の容易さからグルタルアルデヒドが特に好ましい。 Further, by cross-linking the polymer in the protective layer to the separation functional layer, the removability of divalent ions can be enhanced as compared with the non-cross-linked layer, and the elution of the polymer in the protective layer during water treatment operation is highly advanced. Can be prevented. As the polymer to be crosslinked, a hydrophilic polymer is preferable from the viewpoint of ease of handling and suppression of deterioration of water permeability, and polyvinyl alcohol is particularly preferable, and polyvinyl alcohol having a saponification degree of 85% or more is more preferable. Since the reactivity of polyvinyl alcohol changes depending on the degree of saponification, the effect of cross-linking is enhanced when the degree of saponification is 85% or more.
As a method for cross-linking polyvinyl alcohol, it is preferable to use an organic cross-linking agent such as polyvalent aldehyde, epoxy compound, polyvalent carboxylic acid, organic titanium compound, organic zirconium compound, and inorganic cross-linking agent such as boron compound, which is economical. Polyvalent aldehyde is more preferable from the viewpoint of easy availability and handling, and glutaraldehyde is particularly preferable from the viewpoint of ease of reactivity.
保護層の厚さは特に制限されないが、通常0.01μm以上であり、好ましくは0.05μm以上である。保護層の厚さが薄すぎると水処理操作時にポリマー成分が溶出やすくなって膜性能が低下しやすくなる。また、保護層の厚さは通常5μm以下であり、好ましくは3μm以下であり、より好ましくは2μm以下である。一方、保護層の厚さが厚すぎると透過流束が低下しやすくなる。
The thickness of the protective layer is not particularly limited, but is usually 0.01 μm or more, preferably 0.05 μm or more. If the thickness of the protective layer is too thin, the polymer component tends to elute during the water treatment operation, and the film performance tends to deteriorate. The thickness of the protective layer is usually 5 μm or less, preferably 3 μm or less, and more preferably 2 μm or less. On the other hand, if the protective layer is too thick, the permeation flux tends to decrease.
2.製造方法
次に、上記複合半透膜の製造方法について説明する。製造方法は、支持膜の形成工程、分離機能層の形成工程を含む。 2. Manufacturing Method Next, a manufacturing method of the composite semipermeable membrane will be described. The manufacturing method includes a step of forming a support film and a step of forming a separation functional layer.
次に、上記複合半透膜の製造方法について説明する。製造方法は、支持膜の形成工程、分離機能層の形成工程を含む。 2. Manufacturing Method Next, a manufacturing method of the composite semipermeable membrane will be described. The manufacturing method includes a step of forming a support film and a step of forming a separation functional layer.
(2-1)支持膜の形成工程
支持膜の形成工程は、多孔性支持層の形成工程と言い換えることもできる。本工程は、基材に高分子溶液を塗布する工程および溶液を塗布した前記基材を凝固浴に浸漬させて高分子を凝固させる工程を含む。 (2-1) Support film forming step The support film forming step can be rephrased as the forming of the porous support layer. This step includes a step of applying a polymer solution to a base material and a step of immersing the base material to which the solution is applied in a coagulation bath to coagulate the polymer.
支持膜の形成工程は、多孔性支持層の形成工程と言い換えることもできる。本工程は、基材に高分子溶液を塗布する工程および溶液を塗布した前記基材を凝固浴に浸漬させて高分子を凝固させる工程を含む。 (2-1) Support film forming step The support film forming step can be rephrased as the forming of the porous support layer. This step includes a step of applying a polymer solution to a base material and a step of immersing the base material to which the solution is applied in a coagulation bath to coagulate the polymer.
基材に高分子溶液を塗布する工程において、高分子溶液は、多孔性支持層の成分である高分子を、その高分子の良溶媒に溶解して調製する。
In the step of applying the polymer solution to the base material, the polymer solution is prepared by dissolving the polymer, which is a component of the porous support layer, in a good solvent of the polymer.
高分子溶液塗布時の高分子溶液の温度は、高分子としてポリスルホンを用いる場合、10℃~60℃の範囲が好ましい。高分子溶液の温度が、この範囲内であれば、高分子が析出することがなく、高分子溶液が基材の繊維間にまで充分含浸したのち固化される。その結果、アンカー効果により基材に強固に接合した多孔性支持層を得ることができる。なお、高分子溶液の好ましい温度範囲は、用いる高分子の種類や、所望の溶液粘度などによって適宜調整することができる。
When polysulfone is used as the polymer, the temperature of the polymer solution when the polymer solution is applied is preferably in the range of 10 ° C to 60 ° C. When the temperature of the polymer solution is within this range, the polymer does not precipitate, and the polymer solution is sufficiently impregnated between the fibers of the base material and then solidified. As a result, a porous support layer firmly bonded to the base material can be obtained by the anchor effect. The preferable temperature range of the polymer solution can be appropriately adjusted depending on the type of polymer used, the desired solution viscosity, and the like.
高分子溶液の溶媒としては、N,N-ジメチルホルムアミド(DMF)が好ましい。
As the solvent of the polymer solution, N, N-dimethylformamide (DMF) is preferable.
基材上に高分子溶液を塗布した後、凝固浴に浸漬させるまでの時間は、0.1~5秒間の範囲であることが好ましい。凝固浴に浸漬するまでの時間がこの範囲であれば、高分子を含む有機溶媒溶液が基材の繊維間にまで充分含浸したのち固化される。なお、凝固浴に浸漬するまでの時間の好ましい範囲は、用いる高分子溶液の種類や、所望の溶液粘度などによって適宜調整することができる。
The time from applying the polymer solution on the substrate to immersing it in the coagulation bath is preferably in the range of 0.1 to 5 seconds. If the time until immersion in the coagulation bath is within this range, the organic solvent solution containing the polymer is sufficiently impregnated between the fibers of the base material and then solidified. The preferable range of the time until immersion in the coagulation bath can be appropriately adjusted depending on the type of the polymer solution to be used, the desired solution viscosity, and the like.
凝固浴としては、通常水が使われるが、多孔性支持層の成分である高分子を溶解しないものであればよい。凝固浴の温度は、-20℃~100℃であることが好ましい。凝固浴の温度は、10℃~50℃であることがさらに好ましい。凝固浴の温度が100℃以下であれば、熱運動による凝固浴面の振動を抑えることができ、膜形成後の膜表面の平滑性を保持できる。また温度が-20℃以上であれば凝固速度が維持できるため、製膜性を向上できる。
Water is usually used as the coagulation bath, but it may be any one that does not dissolve the polymer that is a component of the porous support layer. The temperature of the coagulation bath is preferably −20 ° C. to 100 ° C. The temperature of the coagulation bath is more preferably 10 ° C to 50 ° C. When the temperature of the coagulation bath is 100 ° C. or lower, vibration of the coagulation bath surface due to thermal motion can be suppressed, and the smoothness of the film surface after film formation can be maintained. Further, when the temperature is −20 ° C. or higher, the solidification rate can be maintained, so that the film forming property can be improved.
次に、このようにして得られた支持膜を、膜中に残存する溶媒を除去するために熱水洗浄してもよい。このときの熱水の温度は40℃~100℃が好ましく、60℃~95℃がさらに好ましい。洗浄温度が上限以下であれば、支持膜の収縮度が大きくなり過ぎず、透水性能の低下を抑制することができる。また、洗浄温度が40℃以上であれば高い洗浄効果が得られる。
Next, the support film thus obtained may be washed with hot water in order to remove the solvent remaining in the film. The temperature of the hot water at this time is preferably 40 ° C. to 100 ° C., more preferably 60 ° C. to 95 ° C. When the cleaning temperature is not more than the upper limit, the shrinkage of the support membrane does not become too large, and the deterioration of the water permeability can be suppressed. Further, if the cleaning temperature is 40 ° C. or higher, a high cleaning effect can be obtained.
(2-2)分離機能層の形成工程
次に、複合半透膜を構成する分離機能層の形成工程を説明する。分離機能層の形成工程では、多官能脂肪族アミン化合物を含有する水溶液と、多官能芳香族酸ハロゲン化物を含有する有機溶媒溶液とを用い、支持膜の表面で界面重縮合によってポリアミドを生成する。 (2-2) Separation Function Layer Formation Step Next, a separation function layer forming step constituting the composite semipermeable membrane will be described. In the step of forming the separation functional layer, an aqueous solution containing a polyfunctional aliphatic amine compound and an organic solvent solution containing a polyfunctional aromatic acid halide are used to generate a polyamide by interfacial polycondensation on the surface of a support film. ..
次に、複合半透膜を構成する分離機能層の形成工程を説明する。分離機能層の形成工程では、多官能脂肪族アミン化合物を含有する水溶液と、多官能芳香族酸ハロゲン化物を含有する有機溶媒溶液とを用い、支持膜の表面で界面重縮合によってポリアミドを生成する。 (2-2) Separation Function Layer Formation Step Next, a separation function layer forming step constituting the composite semipermeable membrane will be described. In the step of forming the separation functional layer, an aqueous solution containing a polyfunctional aliphatic amine compound and an organic solvent solution containing a polyfunctional aromatic acid halide are used to generate a polyamide by interfacial polycondensation on the surface of a support film. ..
具体的には、分離機能層を形成する工程は、
(a)多官能脂肪族アミン水溶液を前記支持膜に含浸させるステップと、
(b)前記(a)の後に、前記支持膜に10~38℃の多官能酸ハロゲン化物含有溶液を接触させるステップと
を有する。 Specifically, the step of forming the separation functional layer is
(A) A step of impregnating the support membrane with an aqueous solution of a polyfunctional aliphatic amine,
(B) After the (a), there is a step of contacting the support membrane with a polyfunctional acid halide-containing solution at 10 to 38 ° C.
(a)多官能脂肪族アミン水溶液を前記支持膜に含浸させるステップと、
(b)前記(a)の後に、前記支持膜に10~38℃の多官能酸ハロゲン化物含有溶液を接触させるステップと
を有する。 Specifically, the step of forming the separation functional layer is
(A) A step of impregnating the support membrane with an aqueous solution of a polyfunctional aliphatic amine,
(B) After the (a), there is a step of contacting the support membrane with a polyfunctional acid halide-containing solution at 10 to 38 ° C.
ひだ状のポリアミドの薄膜を形成し、優れた2価イオン選択除去性と耐酸、耐アルカリ性を両立した膜を得るためには、前述の通り、界面重合時の有機溶媒への多官能脂肪族アミンの分配、拡散の最適化が重要である。この最適化のためには、多官能脂肪族アミンが含浸した支持膜と多官能酸ハロゲン化物を含有する有機溶媒溶液を10℃~38℃で接触させることが好適である。この技術を実施すれば、分離機能層をひだ状に形成し、2価イオンの選択除去性と耐酸、耐アルカリ性を両立した膜を得ることができる。
In order to form a fold-shaped polyamide thin film and obtain a film having both excellent divalent ion selective removal property, acid resistance, and alkali resistance, as described above, a polyfunctional aliphatic amine to an organic solvent during interfacial polymerization is required. It is important to optimize the distribution and diffusion of For this optimization, it is preferable to bring the support membrane impregnated with the polyfunctional aliphatic amine into contact with the organic solvent solution containing the polyfunctional acid halide at 10 ° C. to 38 ° C. When this technique is carried out, a separation functional layer is formed in a pleated shape, and a film having both selective removal of divalent ions, acid resistance, and alkali resistance can be obtained.
さらに、前記ステップ(a)において、前記支持膜表面の温度より5~15℃高い多官能脂肪族アミン水溶液を前記支持膜表面に塗布することでで膜性能はさらに向上する。
Further, in the step (a), the film performance is further improved by applying a polyfunctional aliphatic amine aqueous solution having a temperature of 5 to 15 ° C. higher than the temperature of the support film surface to the support film surface.
多官能芳香族酸ハロゲン化物含有溶液における溶媒は有機溶媒である。有機溶媒としては、水と非混和性のものであって、支持膜を破壊しないものであり、かつ、架橋ポリアミドの生成反応を阻害しない、溶解性パラメーター(SP値)が15.2(MPa)1/2以上、かつ、logPが3.2以上の有機溶媒を用いる。SP値が15.2(MPa)1/2以上、かつ、logPが3.2以上であることで、界面重縮合時の多官能脂肪族アミンの分配、拡散が最適化され、官能基量を増加することができる。代表例としては、オクタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、テトラデカン、ヘプタデカン、ヘキサデカンなど、シクロオクタン、エチルシクロヘキサン、1-オクテン、1-デセンなどの単体あるいはこれらの混合物が好ましく用いられる。
The solvent in the polyfunctional aromatic acid halide-containing solution is an organic solvent. The organic solvent is immiscible with water, does not destroy the support film, and does not inhibit the reaction of forming the crosslinked polyamide, and has a solubility parameter (SP value) of 15.2 (MPa). Use an organic solvent having a log P of 1/2 or more and a log P of 3.2 or more. When the SP value is 15.2 (MPa) 1/2 or more and the logP is 3.2 or more, the partition and diffusion of the polyfunctional aliphatic amine during interfacial polycondensation are optimized, and the amount of functional groups can be increased. Can be increased. As a representative example, octane, nonane, decane, undecane, dodecane, tridecane, tetradecane, heptadecane, hexadecane and the like, cyclooctane, ethylcyclohexane, 1-octene, 1-decene and the like alone or a mixture thereof are preferably used.
多官能脂肪族アミンを含有する水溶液には、界面活性剤が含まれていてもよい。例えば、ドデシルベンゼンスルホン酸ナトリウム、ドデシル硫酸ナトリウム、ドデシルジフェニルエーテルジスルホン酸ナトリウム、スチレンビス(ナフタレンスルホン酸ナトリウム)、ポリオキシエチレンアルキルエーテル硫酸エステルナトリウムなどが挙げられる。界面活性剤が含まれることで、多孔性支持層の表面をピペラジン系化合物の水溶液で均一に被覆できるので、分離機能層が均一に形成され、膜性能が安定する効果、および分離機能層と多孔性支持層との接着性を高める効果が得られる。
The aqueous solution containing the polyfunctional aliphatic amine may contain a surfactant. For example, sodium dodecylbenzene sulfonate, sodium dodecyl sulfate, sodium dodecyldiphenyl ether disulfonate, styrene bis (sodium naphthalene sulfonate), sodium polyoxyethylene alkyl ether sulfate and the like can be mentioned. Since the surface of the porous support layer can be uniformly coated with an aqueous solution of a piperazine compound by containing a surfactant, the separation functional layer is uniformly formed, the effect of stabilizing the membrane performance, and the porosity with the separation functional layer. The effect of enhancing the adhesiveness with the sex support layer can be obtained.
多官能脂肪族アミンを含有する水溶液には、アルコールが含まれていてもよい。例えば、エタノール、1-プロパノール、2-プロパノール、ブタノールなどが挙げられる。アルコールが含まれることで、上述の界面活性剤と同様の効果が得られる。
The aqueous solution containing the polyfunctional aliphatic amine may contain alcohol. For example, ethanol, 1-propanol, 2-propanol, butanol and the like can be mentioned. By containing alcohol, the same effect as that of the above-mentioned surfactant can be obtained.
多官能脂肪族アミンを含有する水溶液には、アルカリ性化合物が含まれていてもよい。例えば、水酸化ナトリウム、リン酸三ナトリウム、トリエチルアミンなどが挙げられる。アルカリ性化合物が含まれることで、界面重縮合反応にて発生するハロゲン化水素を除去し、ピペラジン系化合物の反応性低下を抑制することができ、ポリアミド化反応を促進し、選択分離性に加え、酸、アルカリに対する耐久性を向上させることができる。
The aqueous solution containing the polyfunctional aliphatic amine may contain an alkaline compound. For example, sodium hydroxide, trisodium phosphate, triethylamine and the like can be mentioned. By containing the alkaline compound, hydrogen halide generated in the intercondensation reaction can be removed, the decrease in the reactivity of the piperazine compound can be suppressed, the polyamide reaction can be promoted, and in addition to the selective separability, Durability against acids and alkalis can be improved.
多官能脂肪族アミン含有する水溶液や多官能酸ハロゲン化物を含有する有機溶媒溶液には、それぞれ、必要に応じて、アシル化触媒や極性溶媒、酸捕捉剤、酸化防止剤等の化合物が含まれていてもよい。
The aqueous solution containing a polyfunctional aliphatic amine and the organic solvent solution containing a polyfunctional acid halide each contain compounds such as an acylation catalyst, a polar solvent, an acid trapping agent, and an antioxidant, if necessary. May be.
界面重縮合を多孔性支持層上で行うために、まず、多官能脂肪族アミンを含有する水溶液で多孔性支持層表面を被覆する。前記多官能脂肪族アミンを含有する水溶液で多孔性支持層表面を被覆する方法としては、多孔性支持層の表面がこの水溶液によって均一にかつ連続的に被覆されればよく、例えば、水溶液を多孔性支持層表面に塗布する方法、支持膜を水溶液に浸漬する方法等で行えばよいが、本発明においては、水溶液を多孔性支持層表面に塗布する方法がより好ましい。多官能脂肪族アミンを含有する水溶液を支持層表面に塗布することで、浸漬する手法と比較して、支持層が含有する水分量が少なくなり熱容量が小さくなるため、多官能芳香族酸ハロゲン化物を塗布した後の界面重合工程において、ポリアミドの架橋反応が効率的に進行し、優れた耐酸、耐アルカリ性が得られる。
In order to carry out interfacial polycondensation on the porous support layer, first, the surface of the porous support layer is coated with an aqueous solution containing a polyfunctional aliphatic amine. As a method of coating the surface of the porous support layer with the aqueous solution containing the polyfunctional aliphatic amine, the surface of the porous support layer may be uniformly and continuously coated with this aqueous solution. For example, the aqueous solution is porous. The method may be carried out by a method of applying to the surface of the sex support layer, a method of immersing the support film in an aqueous solution, or the like, but in the present invention, a method of applying the aqueous solution to the surface of the porous support layer is more preferable. By applying an aqueous solution containing a polyfunctional aliphatic amine to the surface of the support layer, the amount of water contained in the support layer is reduced and the heat capacity is reduced as compared with the dipping method. In the interfacial polymerization step after coating, the cross-linking reaction of the polyamide proceeds efficiently, and excellent acid resistance and alkali resistance can be obtained.
また、支持膜の膜面温度より5~15℃高温の多官能脂肪族アミン含有水溶液を支持膜表面に塗布することが好ましい。多官能脂肪族アミン含有水溶液の温度を支持膜の膜面温度より高くすることで、支持膜面のアミン保持量が大きくなり、後の多官能芳香族酸ハロゲン化物を塗布した際のアミンの拡散性が向上する。その結果、均一性の高いひだ状構造、孔構造を形成し、優れた耐酸、耐アルカリ性と2価イオン選択除去性を両立した分離膜が得られる。支持膜の膜面温度より16℃度以上高温の多官能脂肪族アミン含有水溶液を用いた場合、反応速度の向上による拡散の阻害が起こるため、ひだ状構造および孔構造が不均一となり、耐酸、耐アルカリ性が低下する。
Further, it is preferable to apply a polyfunctional aliphatic amine-containing aqueous solution having a temperature of 5 to 15 ° C. higher than the film surface temperature of the support film on the surface of the support film. By raising the temperature of the polyfunctional aliphatic amine-containing aqueous solution higher than the film surface temperature of the support film, the amount of amine retained on the support film surface increases, and the amine diffuses when the later polyfunctional aromatic acid halide is applied. The sex improves. As a result, a highly uniform pleated structure and pore structure are formed, and a separation membrane having both excellent acid resistance, alkali resistance and divalent ion selective removal property can be obtained. When a polyfunctional aliphatic amine-containing aqueous solution having a temperature of 16 ° C. or higher higher than the membrane surface temperature of the support film is used, diffusion is inhibited by improving the reaction rate, so that the fold structure and pore structure become non-uniform, and acid resistance is increased. Alkali resistance is reduced.
次いで、過剰に塗布された水溶液を液切り工程により除去することが好ましい。液切りの方法としては、例えば膜面を垂直方向に保持して自然流下させる方法等がある。液切り後、膜面を乾燥させ、水溶液の水の全部あるいは一部を除去してもよい。
Next, it is preferable to remove the excessively applied aqueous solution by a liquid draining step. As a method of draining the liquid, for example, there is a method of holding the film surface in the vertical direction and allowing it to flow naturally. After draining the liquid, the membrane surface may be dried to remove all or part of the aqueous solution of water.
前記多官能脂肪族アミンの濃度は、0.5重量%以上、8.0重量%以下であることが好ましく、より好ましくは1.0重量%以上、6.0重量%以下であり、更に好ましくは2.0重量%、以上4.0重量%以下である。濃度が0.5重量%より低いと均一な分離機能層が形成されず、選択分離性、酸、アルカリに対する耐久性が不十分な膜が得られる。また、10.0重量%より高濃度の場合、分離機能層の厚みが厚くなり過ぎ、透水性能が著しく低下してしまう。
The concentration of the polyfunctional aliphatic amine is preferably 0.5% by weight or more and 8.0% by weight or less, more preferably 1.0% by weight or more and 6.0% by weight or less, and further preferably. Is 2.0% by weight or more and 4.0% by weight or less. If the concentration is lower than 0.5% by weight, a uniform separation functional layer is not formed, and a film having insufficient selective separability and durability against acids and alkalis can be obtained. Further, when the concentration is higher than 10.0% by weight, the thickness of the separation functional layer becomes too thick, and the water permeability is significantly deteriorated.
その後、前記多官能脂肪族アミンを含有する水溶液を含む多孔性支持層に、前述の多官能酸ハロゲン化物を含有する有機溶媒溶液を塗布する。塗布温度は、10℃~38℃の範囲内で行うことが必要である。有機溶媒溶液の接触温度は20℃~35℃の温度範囲であるとより好ましい。塗布温度が10℃以下では有機溶媒中へのアミンの拡散速度が十分でなく、ひだ構造の形成および、2価イオン選択除去性に必要な孔径のポリアミド形成が困難となる。また、塗布時の温度が39℃を超えると、反応速度の向上による拡散の阻害が起こるため、ひだ状構造および孔構造が不均一となり、耐酸、耐アルカリ性が低下する問題がある。
Then, the organic solvent solution containing the above-mentioned polyfunctional acid halide is applied to the porous support layer containing the aqueous solution containing the polyfunctional aliphatic amine. The coating temperature needs to be in the range of 10 ° C. to 38 ° C. The contact temperature of the organic solvent solution is more preferably in the temperature range of 20 ° C. to 35 ° C. When the coating temperature is 10 ° C. or lower, the diffusion rate of amine in the organic solvent is not sufficient, and it becomes difficult to form a fold structure and a polyamide having a pore size required for divalent ion selective removal. Further, if the temperature at the time of coating exceeds 39 ° C., diffusion is hindered by improving the reaction rate, so that the pleated structure and the pore structure become non-uniform, and there is a problem that acid resistance and alkali resistance are lowered.
多官能芳香族酸ハロゲン化物としてトリメシン酸クロリドを含有している場合、有機溶媒溶液におけるトリメシン酸クロリドの濃度は、0.05重量%以上、0.70重量%以下程度が好ましく、より好ましくは0.08重量%以上、0.3重量%以下である。この範囲内であれば、十分な透水性能、選択分離性能、酸、アルカリに対する耐久性能が得られる。その他の3官能酸クロリド、2官能酸クロリドを用いる際は、前述のトリメシン酸クロリドの分子量比に合わせて、酸クロリドのモル濃度が同程度になるよう調整して用いる。
When trimesic acid chloride is contained as a polyfunctional aromatic acid halide, the concentration of trimesic acid chloride in the organic solvent solution is preferably about 0.05% by weight or more and 0.70% by weight or less, more preferably 0. It is .08% by weight or more and 0.3% by weight or less. Within this range, sufficient water permeability, selective separation performance, and durability against acids and alkalis can be obtained. When other trifunctional acid chlorides and difunctional acid chlorides are used, they are used after adjusting the molar concentration of the acid chlorides to be about the same according to the molecular weight ratio of the above-mentioned trimesic acid chlorides.
こうして多官能脂肪族アミンと多官能酸ハロゲン化物とを接触させることで、両者を界面重合させる。界面重合は、50℃以上の温度条件下で行われることが好ましく、80℃以上の温度条件下で行われることがより好ましく、多官能脂肪族アミンの融点以上で行われることが好ましい。また、界面重合は、120℃以下の温度条件下で行われることが好ましい。50℃以上で界面重合が行われることで、界面重合反応において、ポリアミドの嵩高さが増すことによるモノマーやオリゴマーの運動性の低下を抑制することができ、アミド基率が0.80以上となり、多官能脂肪族アミンの融点以上で界面重合が行われることで、反応系で多官能脂肪族アミンが高い運動性を維持でき、効率的な架橋反応が進行し、優れた耐酸、耐アルカリ性と2価イオン選択除去性を両立できる。また、120℃以下で界面重合が行われることで、分離機能層および多孔性支持層の過乾燥を防ぐことができ、実用的な透水性および2価イオン選択除去性を確保することができる。
By contacting the polyfunctional aliphatic amine and the polyfunctional acid halide in this way, both are interfacially polymerized. The interfacial polymerization is preferably carried out under a temperature condition of 50 ° C. or higher, more preferably carried out under a temperature condition of 80 ° C. or higher, and preferably carried out at a melting point or higher of the polyfunctional aliphatic amine. Further, the interfacial polymerization is preferably carried out under a temperature condition of 120 ° C. or lower. By performing the interfacial polymerization at 50 ° C. or higher, it is possible to suppress a decrease in the motility of the monomer or oligomer due to the increase in bulkiness of the polyamide in the interfacial polymerization reaction, and the amide group ratio becomes 0.80 or higher. By performing interfacial polymerization above the melting point of the polyfunctional aliphatic amine, the polyfunctional aliphatic amine can maintain high motility in the reaction system, an efficient cross-linking reaction proceeds, and excellent acid resistance and alkali resistance are obtained. Both valent ion selective removal properties can be achieved. Further, by performing the interfacial polymerization at 120 ° C. or lower, overdrying of the separation functional layer and the porous support layer can be prevented, and practical water permeability and divalent ion selective removal property can be ensured.
界面重合を実施する時間は、0.1秒以上3分以下が好ましく、0.1秒以上1分以下であるとより好ましい。
The time for carrying out the interfacial polymerization is preferably 0.1 seconds or more and 3 minutes or less, and more preferably 0.1 seconds or more and 1 minute or less.
次に、反応後の有機溶媒溶液を液切り工程により除去することが好ましい。有機溶媒の除去は、例えば、膜を垂直方向に把持して過剰の有機溶媒を自然流下して除去する方法や送風機で風を吹き付けることで有機溶媒を乾燥する方法、水とエアーの混合流体で過剰の有機溶媒を除去する方法を用いることができる。特に、水とエアーの混合流体による除去が好ましい。水とエアーの混合流体を用いると、分離機能層中に水が含まれることで膨潤し、透水性が高くなる。自然流下の場合、垂直方向に把持する時間としては、1分以上5分以下の間にあることが好ましく、1分以上3分以下の間であるとより好ましい。把持する時間が1分間以上であることで目的の機能を有する分離機能層を得やすく、3分間以下であることで有機溶媒の過乾燥による欠点の発生を抑制できるので、性能低下を抑制することができる。
Next, it is preferable to remove the organic solvent solution after the reaction by a draining step. The organic solvent can be removed by, for example, a method of grasping the membrane in the vertical direction and naturally flowing down the excess organic solvent to remove the organic solvent, a method of drying the organic solvent by blowing wind with a blower, or a mixed fluid of water and air. A method of removing excess organic solvent can be used. In particular, removal with a mixed fluid of water and air is preferable. When a mixed fluid of water and air is used, the separation functional layer contains water, which causes swelling and high water permeability. In the case of natural flow, the time for gripping in the vertical direction is preferably between 1 minute and 5 minutes, and more preferably between 1 minute and 3 minutes. When the gripping time is 1 minute or more, it is easy to obtain a separation functional layer having a desired function, and when it is 3 minutes or less, the occurrence of defects due to overdrying of the organic solvent can be suppressed, so that the deterioration of performance can be suppressed. Can be done.
上述の方法により得られた複合半透膜は、さらに、25℃~90℃の範囲内で1分間~60分間熱水で洗浄処理する工程を付加することで、複合半透膜の溶質阻止性能や透水性能をより一層向上させることができる。
The composite semipermeable membrane obtained by the above method is further subjected to a step of washing with hot water in the range of 25 ° C. to 90 ° C. for 1 minute to 60 minutes to prevent the solute of the composite semipermeable membrane. And water permeability can be further improved.
3.複合半透膜の利用
本発明の複合半透膜は、ナノろ過膜として、一価イオンと二価イオンの分離用に好適に用いることができる。この複合半透膜は、例えば、かん水や海水からの塩分除去やミネラル調整、食品分野での塩分除去やミネラル調整、メッキ、精錬など工業用途からの酸、アルカリの回収、更には酸、アルカリ溶液中の金属回収、などが可能となる。
3. 3. Utilization of Composite Semipermeable Membrane The composite semipermeable membrane of the present invention can be suitably used as a nanofiltration membrane for separating monovalent ions and divalent ions. This composite translucent film can be used to remove acids and alkalis from industrial applications such as salt removal and mineral adjustment from brackish water and seawater, salt removal and mineral adjustment in the food field, plating, and refining, as well as acid and alkali solutions. It is possible to recover the metal inside.
本発明の複合半透膜は、プラスチックネットなどの原水流路材と、トリコットなどの透過水流路材と、必要に応じて耐圧性を高めるためのフィルムと共に、多数の孔を穿設した筒状の集水管の周りに巻回され、スパイラル型の複合半透膜エレメントとして好適に用いられる。さらに、このエレメントを直列または並列に接続して圧力容器に収納した複合半透膜モジュールとすることもできる。
The composite semipermeable membrane of the present invention has a tubular shape in which a large number of holes are bored together with a raw water flow path material such as a plastic net, a permeation water flow path material such as a tricot, and a film for increasing pressure resistance as needed. It is wound around the water collecting pipe of the above and is suitably used as a spiral type composite semipermeable membrane element. Further, the elements can be connected in series or in parallel to form a composite semipermeable membrane module housed in a pressure vessel.
また、上記の複合半透膜やそのエレメント、モジュールは、それらに原水を供給するポンプや、その原水を前処理する装置などと組み合わせて、流体分離装置を構成することができる。この分離装置を用いることにより、原水を飲料水などの透過水と膜を透過しなかった濃縮水とに分離して、目的にあった水を得ることができる。
Further, the above-mentioned composite semipermeable membrane, its elements, and modules can be combined with a pump for supplying raw water to them, a device for pretreating the raw water, and the like to form a fluid separation device. By using this separation device, raw water can be separated into permeated water such as drinking water and concentrated water that has not permeated the membrane, and water suitable for the purpose can be obtained.
以下に実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものはない。
<膜の比表面積測定>
分離膜サンプルをPVA樹脂で包埋し、断面観察を容易にするためOsO4で染色して、これをウルトラミクロトームで切断し超薄切片を10個作成した。得られた超薄切片について、透過型電子顕微鏡を用いて断面写真を撮影した。観察時の加速電圧は100kVであり、観察倍率は10,000倍であった。得られた10個の断面写真を画像解析ソフトImage Jで解析を行い、分離機能層の長さ、および多孔性支持層の長さを算出後、下式から分離機能層の比表面積平均値を求めた。 Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.
<Measurement of specific surface area of membrane>
The separation membrane sample was embedded in PVA resin, stained with OsO 4 to facilitate cross-sectional observation, and cut with an ultramicrotome to prepare 10 ultrathin sections. A cross-sectional photograph of the obtained ultrathin section was taken using a transmission electron microscope. The acceleration voltage at the time of observation was 100 kV, and the observation magnification was 10,000 times. The 10 cross-sectional photographs obtained were analyzed with the image analysis software ImageJ, the length of the separation functional layer and the length of the porous support layer were calculated, and then the average specific surface area of the separation functional layer was calculated from the following formula. I asked.
<膜の比表面積測定>
分離膜サンプルをPVA樹脂で包埋し、断面観察を容易にするためOsO4で染色して、これをウルトラミクロトームで切断し超薄切片を10個作成した。得られた超薄切片について、透過型電子顕微鏡を用いて断面写真を撮影した。観察時の加速電圧は100kVであり、観察倍率は10,000倍であった。得られた10個の断面写真を画像解析ソフトImage Jで解析を行い、分離機能層の長さ、および多孔性支持層の長さを算出後、下式から分離機能層の比表面積平均値を求めた。 Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.
<Measurement of specific surface area of membrane>
The separation membrane sample was embedded in PVA resin, stained with OsO 4 to facilitate cross-sectional observation, and cut with an ultramicrotome to prepare 10 ultrathin sections. A cross-sectional photograph of the obtained ultrathin section was taken using a transmission electron microscope. The acceleration voltage at the time of observation was 100 kV, and the observation magnification was 10,000 times. The 10 cross-sectional photographs obtained were analyzed with the image analysis software ImageJ, the length of the separation functional layer and the length of the porous support layer were calculated, and then the average specific surface area of the separation functional layer was calculated from the following formula. I asked.
分離機能層の比表面積=(分離機能層の長さ)2/(多孔性支持層の長さ)2
<ひだ構造の有無>
前記比表面積の測定時に撮影した透過型電子顕微鏡による断面写真において、「分離機能層のひだ高さH」及び「分離機能層の薄膜厚みT」を測定し、「H/T」を算出した。H/Tが1.2以上であれば、分離機能層が中空のひだ状構造を有しているとし、1.2未満であれば分離機能層が中空のひだ状構造を有さないとした。 Specific surface area of separation function layer = (length of separation function layer) 2 / (length of porous support layer) 2
<Presence or absence of fold structure>
In the cross-sectional photograph taken by the transmission electron microscope at the time of measuring the specific surface area, "the fold height H of the separation functional layer" and "the thin film thickness T of the separation functional layer" were measured, and "H / T" was calculated. If the H / T is 1.2 or more, the separation function layer has a hollow pleated structure, and if it is less than 1.2, the separation function layer does not have a hollow fold structure. ..
<ひだ構造の有無>
前記比表面積の測定時に撮影した透過型電子顕微鏡による断面写真において、「分離機能層のひだ高さH」及び「分離機能層の薄膜厚みT」を測定し、「H/T」を算出した。H/Tが1.2以上であれば、分離機能層が中空のひだ状構造を有しているとし、1.2未満であれば分離機能層が中空のひだ状構造を有さないとした。 Specific surface area of separation function layer = (length of separation function layer) 2 / (length of porous support layer) 2
<Presence or absence of fold structure>
In the cross-sectional photograph taken by the transmission electron microscope at the time of measuring the specific surface area, "the fold height H of the separation functional layer" and "the thin film thickness T of the separation functional layer" were measured, and "H / T" was calculated. If the H / T is 1.2 or more, the separation function layer has a hollow pleated structure, and if it is less than 1.2, the separation function layer does not have a hollow fold structure. ..
厚みTおよび高さHの測定について図2を参照しながら説明する。複合半透膜を3cm×3cm角に切り出し、25℃の蒸留水で24時間洗浄した。洗浄後の複合半透膜をエポキシ樹脂で包埋した後、四酸化オスミウムで染色して測定サンプルとした。得られたサンプルにおいて、分離機能層4の薄膜41の断面を走査型透過電子顕微鏡(日立製作所製;HD2700)で倍率100万倍での画像を得た。
The measurement of the thickness T and the height H will be described with reference to FIG. The composite semipermeable membrane was cut into 3 cm × 3 cm squares and washed with distilled water at 25 ° C. for 24 hours. The washed composite semipermeable membrane was embedded with an epoxy resin and then stained with osmium tetroxide to prepare a measurement sample. In the obtained sample, an image of the cross section of the thin film 41 of the separation function layer 4 was obtained with a scanning transmission electron microscope (manufactured by Hitachi, Ltd .; HD2700) at a magnification of 1 million times.
無作為に10個の凸部42を選択し、1個の凸部42につき5カ所で、凸部42の外表面と内表面の最短距離を測定した。こうして得られた50個の値の平均値を算出し、これをひだ厚みTとした。
Ten convex portions 42 were randomly selected, and the shortest distance between the outer surface and the inner surface of the convex portions 42 was measured at five locations for each convex portion 42. The average value of the 50 values thus obtained was calculated and used as the fold thickness T.
また、無作為に選択した50個の凸部42について、各凸部42の外表面から多孔性支持層表面までの最大距離(ひだ頂点から支持膜表面までの距離)を測定した。得られた50個の値の平均値をひだ高さHの平均値とした。
In addition, for 50 randomly selected convex portions 42, the maximum distance from the outer surface of each convex portion 42 to the surface of the porous support layer (distance from the apex of the fold to the surface of the support film) was measured. The average value of the obtained 50 values was taken as the average value of the fold height H.
<X線光電子分光法>
XPS測定は、複合半透膜を25℃、pH2の塩酸水溶液に30分浸漬させた後に、90℃の純水に30分浸漬させることで膜表面を洗浄した後に、室温・真空下で乾燥させたものについて実施した。XPS測定によるワイドスキャン分析にて、0eV以上1400eV以下の範囲に検出される元素の組成分析をおこなった。米国SSI社製X線光電子分光測定装置SSX-100を用い、励起X線としてアルミニウム Kα1線、Kα2線(1486.6eV)、X線出力を10kV、20mV、光電子脱出角度を90°の条件で測定し、異なる膜位置での測定を10回繰り返し行い、その平均値を測定値とした。
<X-ray photoelectron spectroscopy>
In the XPS measurement, the composite semipermeable membrane is immersed in a hydrochloric acid aqueous solution at 25 ° C. and
<全反射赤外分光法>
ATR-IR測定は、Nicolet株式会社製Avatar360FT-IR測定機を用い、全反射測定用のアクセサリーとして同社製の一回反射型水平状ATR測定装置(OMNI-Sampler)及びゲルマニウム製のATRクリスタルを用いて、多孔質体表面に赤外線を照射することで、スペクトルを得た。測定条件として、分解能を2cm-1に設定し、スキャン回数を256回に設定し、任意の10点で測定を行った。こうして得られたスペクトルについて、オートベースライン補正を行った後に、900cm-1、1800cm-1、3800cm-1の3点をゼロ点として補正した。このようにして得たスペクトルから、1600cm-1と1650cm-1のなかで極大値をとるピークをアミド基由来のピーク、1242cm-1のピークを支持膜由来のピークとして決定し、ピーク強度比IA/ISを求め、任意10点測定の平均値を算出した。その後、測定する複合半透膜を40℃、1mol/L硫酸水溶液に21日間浸漬させた後、大量の純水で洗浄し、十分に乾燥させ、再度上記の条件でピーク強度比IA後/IS後を求め、酸浸漬前のピーク強度比(IA/IS)に対するピーク強度比の割合R2/R1を算出した。 <Total internal reflection infrared spectroscopy>
For ATR-IR measurement, the Avatar 360FT-IR measuring machine manufactured by Nicolet Co., Ltd. is used, and the single reflection type horizontal ATR measuring device (OMNI-Sampler) manufactured by Nicolet Co., Ltd. and the ATR crystal made of germanium are used as accessories for total reflection measurement. Then, the spectrum was obtained by irradiating the surface of the porous body with infrared rays. As the measurement conditions, the resolution was set to 2 cm -1 , the number of scans was set to 256, and the measurement was performed at any 10 points. The thus obtained spectrum, after the automatic baseline correction, 900 cm -1, 1800 cm -1, and corrected as zero point three points 3800 cm -1. From the spectra thus obtained, the peak having the maximum value among 1600 cm -1 and 1650 cm -1 was determined as the peak derived from the amide group, and the peak 1242 cm -1 was determined as the peak derived from the support film, and the peak intensity ratio I seeking a / I S, to calculate the average value of an arbitrary 10-point measurement. Then, the composite semipermeable membrane to be measured is immersed in a 1 mol / L sulfuric acid aqueous solution at 40 ° C. for 21 days, washed with a large amount of pure water, sufficiently dried, and again after the peak intensity ratio IA / under the above conditions. seek post I S, and calculates the ratio R2 / R1 of the peak intensity ratio to the peak intensity ratio before acid immersion (I a / I S).
ATR-IR測定は、Nicolet株式会社製Avatar360FT-IR測定機を用い、全反射測定用のアクセサリーとして同社製の一回反射型水平状ATR測定装置(OMNI-Sampler)及びゲルマニウム製のATRクリスタルを用いて、多孔質体表面に赤外線を照射することで、スペクトルを得た。測定条件として、分解能を2cm-1に設定し、スキャン回数を256回に設定し、任意の10点で測定を行った。こうして得られたスペクトルについて、オートベースライン補正を行った後に、900cm-1、1800cm-1、3800cm-1の3点をゼロ点として補正した。このようにして得たスペクトルから、1600cm-1と1650cm-1のなかで極大値をとるピークをアミド基由来のピーク、1242cm-1のピークを支持膜由来のピークとして決定し、ピーク強度比IA/ISを求め、任意10点測定の平均値を算出した。その後、測定する複合半透膜を40℃、1mol/L硫酸水溶液に21日間浸漬させた後、大量の純水で洗浄し、十分に乾燥させ、再度上記の条件でピーク強度比IA後/IS後を求め、酸浸漬前のピーク強度比(IA/IS)に対するピーク強度比の割合R2/R1を算出した。 <Total internal reflection infrared spectroscopy>
For ATR-IR measurement, the Avatar 360FT-IR measuring machine manufactured by Nicolet Co., Ltd. is used, and the single reflection type horizontal ATR measuring device (OMNI-Sampler) manufactured by Nicolet Co., Ltd. and the ATR crystal made of germanium are used as accessories for total reflection measurement. Then, the spectrum was obtained by irradiating the surface of the porous body with infrared rays. As the measurement conditions, the resolution was set to 2 cm -1 , the number of scans was set to 256, and the measurement was performed at any 10 points. The thus obtained spectrum, after the automatic baseline correction, 900 cm -1, 1800 cm -1, and corrected as zero point three points 3800 cm -1. From the spectra thus obtained, the peak having the maximum value among 1600 cm -1 and 1650 cm -1 was determined as the peak derived from the amide group, and the peak 1242 cm -1 was determined as the peak derived from the support film, and the peak intensity ratio I seeking a / I S, to calculate the average value of an arbitrary 10-point measurement. Then, the composite semipermeable membrane to be measured is immersed in a 1 mol / L sulfuric acid aqueous solution at 40 ° C. for 21 days, washed with a large amount of pure water, sufficiently dried, and again after the peak intensity ratio IA / under the above conditions. seek post I S, and calculates the ratio R2 / R1 of the peak intensity ratio to the peak intensity ratio before acid immersion (I a / I S).
<単位面積あたりのアミド基率>
複合半透膜5m2から基材を物理的に剥離させ、多孔性支持層と分離機能層を回収した。回収した多孔性支持層と分離機能層を95℃の温水で2時間洗浄した。25℃で24時間静置することで乾燥させた後、ジクロロメタンの入ったビーカー内に少量ずつ加えて撹拌し、多孔性支持層を構成するポリマーを溶解させた。ビーカー内の不溶物を濾紙で回収した。この不溶物をジクロロメタンの入ったビーカー内に入れ攪拌し、ビーカー内の不溶物を回収した。この作業をジクロロメタン溶液中に多孔性支持層を形成するポリマーの溶出が検出できなくなるまで繰り返した。回収した分離機能層は真空乾燥機で乾燥させ、残存するジクロロメタンを除去した。 <Amide group ratio per unit area>
The base material was physically peeled off from the composite semipermeable membrane 5 m 2 , and the porous support layer and the separating functional layer were recovered. The recovered porous support layer and separation functional layer were washed with warm water at 95 ° C. for 2 hours. After drying by allowing to stand at 25 ° C. for 24 hours, it was added little by little to a beaker containing dichloromethane and stirred to dissolve the polymer constituting the porous support layer. The insoluble matter in the beaker was collected with filter paper. This insoluble matter was placed in a beaker containing dichloromethane and stirred to recover the insoluble matter in the beaker. This process was repeated until the elution of the polymer forming the porous support layer in the dichloromethane solution could not be detected. The recovered separation functional layer was dried in a vacuum dryer to remove residual dichloromethane.
複合半透膜5m2から基材を物理的に剥離させ、多孔性支持層と分離機能層を回収した。回収した多孔性支持層と分離機能層を95℃の温水で2時間洗浄した。25℃で24時間静置することで乾燥させた後、ジクロロメタンの入ったビーカー内に少量ずつ加えて撹拌し、多孔性支持層を構成するポリマーを溶解させた。ビーカー内の不溶物を濾紙で回収した。この不溶物をジクロロメタンの入ったビーカー内に入れ攪拌し、ビーカー内の不溶物を回収した。この作業をジクロロメタン溶液中に多孔性支持層を形成するポリマーの溶出が検出できなくなるまで繰り返した。回収した分離機能層は真空乾燥機で乾燥させ、残存するジクロロメタンを除去した。 <Amide group ratio per unit area>
The base material was physically peeled off from the composite semipermeable membrane 5 m 2 , and the porous support layer and the separating functional layer were recovered. The recovered porous support layer and separation functional layer were washed with warm water at 95 ° C. for 2 hours. After drying by allowing to stand at 25 ° C. for 24 hours, it was added little by little to a beaker containing dichloromethane and stirred to dissolve the polymer constituting the porous support layer. The insoluble matter in the beaker was collected with filter paper. This insoluble matter was placed in a beaker containing dichloromethane and stirred to recover the insoluble matter in the beaker. This process was repeated until the elution of the polymer forming the porous support layer in the dichloromethane solution could not be detected. The recovered separation functional layer was dried in a vacuum dryer to remove residual dichloromethane.
得られた分離機能層を凍結粉砕によって粉末状の試料とし、固体NMR法測定に用いられる試料管内に封入して、CP/MAS法、及びDD/MAS法による13C固体NMR測定を行った。13C固体NMR測定には、例えば、Chemagnetics社製CMX-300を用いることができる。測定条件例を以下に示す。
The obtained separation functional layer was made into a powder sample by freeze-grinding, sealed in a sample tube used for solid-state NMR measurement, and 13 C solid-state NMR measurement was performed by CP / MAS method and DD / MAS method. For 13 C solid-state NMR measurement, for example, CMX-300 manufactured by Chemagnetics can be used. An example of measurement conditions is shown below.
基準物質:ポリジメチルシロキサン(内部基準:1.56ppm)
試料回転数:10.5kHz
パルス繰り返し時間:100s
得られたスペクトルから、各官能基が結合している炭素原子由来のピークごとにピーク分割を行い、分割されたピークの面積から官能基量比を定量した。定量した値を用いて、アミド基率として下記式に従い、算出した。 Reference substance: Polydimethylsiloxane (internal standard: 1.56 ppm)
Sample rotation speed: 10.5 kHz
Pulse repetition time: 100s
From the obtained spectrum, peak division was performed for each peak derived from the carbon atom to which each functional group was bonded, and the functional group amount ratio was quantified from the area of the divided peak. Using the quantified value, the amide group ratio was calculated according to the following formula.
試料回転数:10.5kHz
パルス繰り返し時間:100s
得られたスペクトルから、各官能基が結合している炭素原子由来のピークごとにピーク分割を行い、分割されたピークの面積から官能基量比を定量した。定量した値を用いて、アミド基率として下記式に従い、算出した。 Reference substance: Polydimethylsiloxane (internal standard: 1.56 ppm)
Sample rotation speed: 10.5 kHz
Pulse repetition time: 100s
From the obtained spectrum, peak division was performed for each peak derived from the carbon atom to which each functional group was bonded, and the functional group amount ratio was quantified from the area of the divided peak. Using the quantified value, the amide group ratio was calculated according to the following formula.
(アミド基率)=(アミド基モル量比)/{(脂肪族多官能アミンモル量比)+(多官能酸ハロゲン化物モル量比)}
<分離機能層を構成する多官能脂肪族アミンと多官能酸クロリドの存在比>
前述のアミド基率測定用に作製した分離機能層の凍結乾燥品を強アルカリ重水溶液にて加熱することにより加水分解し、加水分解後の重水溶液をろ過して1H-NMR測定した。測定で得られたデータを解析し、ピークの面積値から多官能脂肪族アミンと多官能酸クロリドの存在比を算出した。 (Amid group ratio) = (Amid group molar amount ratio) / {(Aliphatic polyfunctional amine molar amount ratio) + (Polyfunctional acid halide molar amount ratio)}
<Abundance ratio of polyfunctional aliphatic amines and polyfunctional acid chlorides constituting the separation functional layer>
The lyophilized product of the separation functional layer prepared for the above-mentioned measurement of amide group ratio was hydrolyzed by heating with a strong alkaline heavy aqueous solution, and the hydrolyzed heavy aqueous solution was filtered and measured by 1 H-NMR. The data obtained by the measurement was analyzed, and the abundance ratio of the polyfunctional aliphatic amine and the polyfunctional acid chloride was calculated from the area value of the peak.
<分離機能層を構成する多官能脂肪族アミンと多官能酸クロリドの存在比>
前述のアミド基率測定用に作製した分離機能層の凍結乾燥品を強アルカリ重水溶液にて加熱することにより加水分解し、加水分解後の重水溶液をろ過して1H-NMR測定した。測定で得られたデータを解析し、ピークの面積値から多官能脂肪族アミンと多官能酸クロリドの存在比を算出した。 (Amid group ratio) = (Amid group molar amount ratio) / {(Aliphatic polyfunctional amine molar amount ratio) + (Polyfunctional acid halide molar amount ratio)}
<Abundance ratio of polyfunctional aliphatic amines and polyfunctional acid chlorides constituting the separation functional layer>
The lyophilized product of the separation functional layer prepared for the above-mentioned measurement of amide group ratio was hydrolyzed by heating with a strong alkaline heavy aqueous solution, and the hydrolyzed heavy aqueous solution was filtered and measured by 1 H-NMR. The data obtained by the measurement was analyzed, and the abundance ratio of the polyfunctional aliphatic amine and the polyfunctional acid chloride was calculated from the area value of the peak.
<MgSO4除去率>
複合半透膜に、温度25℃、pH6.5、MgSO4濃度2000mg/Lに調整した塩水を操作圧力0.5MPaで供給して膜ろ過処理を行った。供給水および透過水の電気伝導度を東亜電波工業株式会社製電気伝導度計で測定して、それぞれの実用塩分、すなわちMgSO4濃度を得た。こうして得られたMgSO4濃度および下記式に基づいて、MgSO4除去率を算出した。 <sulfonyl 4 removal rate>
Composite semi-permeable membrane, a temperature 25 ° C., pH 6.5, were subjected to membrane filtration process by supplying the salt water adjusted to MgSO 4 concentration 2000 mg / L at the operating pressure 0.5 MPa. The electric conductivity of the feed water and permeate water measured by Toa Electronics Ltd. electrical conductivity meter to obtain respective practical salinity, i.e. MgSO 4 concentration. Based on the silyl 4 concentration thus obtained and the following formula, the transferase 4 removal rate was calculated.
複合半透膜に、温度25℃、pH6.5、MgSO4濃度2000mg/Lに調整した塩水を操作圧力0.5MPaで供給して膜ろ過処理を行った。供給水および透過水の電気伝導度を東亜電波工業株式会社製電気伝導度計で測定して、それぞれの実用塩分、すなわちMgSO4濃度を得た。こうして得られたMgSO4濃度および下記式に基づいて、MgSO4除去率を算出した。 <sulfonyl 4 removal rate>
Composite semi-permeable membrane, a temperature 25 ° C., pH 6.5, were subjected to membrane filtration process by supplying the salt water adjusted to MgSO 4 concentration 2000 mg / L at the operating pressure 0.5 MPa. The electric conductivity of the feed water and permeate water measured by Toa Electronics Ltd. electrical conductivity meter to obtain respective practical salinity, i.e. MgSO 4 concentration. Based on the silyl 4 concentration thus obtained and the following formula, the transferase 4 removal rate was calculated.
MgSO4除去率(%)={1-(透過液中のMgSO4濃度)/(供給液中のMgSO4濃度)}×100
<MgCl2除去率>
複合半透膜に、温度25℃、pH6.5、MgCl2濃度2000ppmに調整した評価水を操作圧力0.5MPaで供給して膜ろ過処理を行なった。供給水および透過水の電気伝導度を東亜電波工業株式会社製電気伝導度計で測定して、それぞれの実用塩分、すなわちMgCl2濃度を得た。こうして得られたMgCl2濃度および下記式に基づいて、MgCl2除去率を算出した。 MgSO 4 removal rate (%) = {1- / (MgSO 4 concentration in the feed solution) (MgSO 4 concentration in the permeate)} × 100
<MgCl 2 removal rate>
Evaluation water adjusted to a temperature of 25 ° C., a pH of 6.5, and a MgCl 2 concentration of 2000 ppm was supplied to the composite semipermeable membrane at an operating pressure of 0.5 MPa to perform a membrane filtration treatment. The electric conductivity of the supplied water and the permeated water was measured with an electric conductivity meter manufactured by Toa Denpa Kogyo Co., Ltd. to obtain the respective practical salt content, that is, the MgCl 2 concentration. The MgCl 2 removal rate was calculated based on the MgCl 2 concentration thus obtained and the following formula.
<MgCl2除去率>
複合半透膜に、温度25℃、pH6.5、MgCl2濃度2000ppmに調整した評価水を操作圧力0.5MPaで供給して膜ろ過処理を行なった。供給水および透過水の電気伝導度を東亜電波工業株式会社製電気伝導度計で測定して、それぞれの実用塩分、すなわちMgCl2濃度を得た。こうして得られたMgCl2濃度および下記式に基づいて、MgCl2除去率を算出した。 MgSO 4 removal rate (%) = {1- / (
<MgCl 2 removal rate>
Evaluation water adjusted to a temperature of 25 ° C., a pH of 6.5, and a MgCl 2 concentration of 2000 ppm was supplied to the composite semipermeable membrane at an operating pressure of 0.5 MPa to perform a membrane filtration treatment. The electric conductivity of the supplied water and the permeated water was measured with an electric conductivity meter manufactured by Toa Denpa Kogyo Co., Ltd. to obtain the respective practical salt content, that is, the MgCl 2 concentration. The MgCl 2 removal rate was calculated based on the MgCl 2 concentration thus obtained and the following formula.
MgCl2除去率(%)=100×{1-(透過水中のMgCl2濃度/供給水中のMgCl2濃度)}
<NaCl除去率>
複合半透膜に、温度25℃、pH6.5、NaCl濃度500ppmに調整した評価水を操作圧力0.5MPaで供給して膜ろ過処理を行なった。供給水および透過水の電気伝導度を東亜電波工業株式会社製電気伝導度計で測定して、それぞれの実用塩分、すなわちNaCl濃度を得た。こうして得られたNaCl濃度および下記式に基づいて、NaCl除去率を算出した。 MgCl 2 removal rate (%) = 100 × {1- (MgCl 2 concentration / MgCl 2 concentration in the feed water of the transmitted water)}
<NaCl removal rate>
Evaluation water adjusted to a temperature of 25 ° C., a pH of 6.5, and a NaCl concentration of 500 ppm was supplied to the composite semipermeable membrane at an operating pressure of 0.5 MPa to perform membrane filtration treatment. The electric conductivity of the supplied water and the permeated water was measured with an electric conductivity meter manufactured by Toa Denpa Kogyo Co., Ltd. to obtain the respective practical salt content, that is, the NaCl concentration. The NaCl removal rate was calculated based on the NaCl concentration thus obtained and the following formula.
<NaCl除去率>
複合半透膜に、温度25℃、pH6.5、NaCl濃度500ppmに調整した評価水を操作圧力0.5MPaで供給して膜ろ過処理を行なった。供給水および透過水の電気伝導度を東亜電波工業株式会社製電気伝導度計で測定して、それぞれの実用塩分、すなわちNaCl濃度を得た。こうして得られたNaCl濃度および下記式に基づいて、NaCl除去率を算出した。 MgCl 2 removal rate (%) = 100 × {1- (
<NaCl removal rate>
Evaluation water adjusted to a temperature of 25 ° C., a pH of 6.5, and a NaCl concentration of 500 ppm was supplied to the composite semipermeable membrane at an operating pressure of 0.5 MPa to perform membrane filtration treatment. The electric conductivity of the supplied water and the permeated water was measured with an electric conductivity meter manufactured by Toa Denpa Kogyo Co., Ltd. to obtain the respective practical salt content, that is, the NaCl concentration. The NaCl removal rate was calculated based on the NaCl concentration thus obtained and the following formula.
NaCl除去率(%)=100×{1-(透過水中のNaCl濃度/供給水中のNaCl濃度)}
<1価イオン/2価イオン選択性>
上記算出したMgSO4除去率、NaCl除去率および下記式に基づいて、1価イオン/2価イオン選択性を算出した。
1価イオン/2価イオン選択性=(100-NaCl除去率)/(100-MgSO4除去率)
<膜透過流束>
前項の試験において、供給水(MgSO4水溶液)の膜透過水量を測定し、膜面1平方メートル当たり、1日の透水量(立方メートル)に換算した値を膜透過流束(m3/m2/日)とした。 NaCl removal rate (%) = 100 × {1- (NaCl concentration in permeated water / NaCl concentration in feed water)}
<Monovalent ion / divalent ion selectivity>
The monovalent ion / divalent ion selectivity was calculated based on the calculated sulfonyl 4 removal rate, NaCl removal rate and the following formula.
Monovalent ion / divalent ion selectivity = (100-NaCl removal rate) / (100- Then 4 removal rate)
<Membrane permeation flux>
In the test of the previous section, the amount of water permeated through the membrane of the supplied water (sulfonyl 4 aqueous solution) was measured, and the value converted to the amount of water permeated per day (cubic meter) per square meter of the membrane surface was converted into the membrane permeation flux (m 3 / m 2 / Day).
<1価イオン/2価イオン選択性>
上記算出したMgSO4除去率、NaCl除去率および下記式に基づいて、1価イオン/2価イオン選択性を算出した。
1価イオン/2価イオン選択性=(100-NaCl除去率)/(100-MgSO4除去率)
<膜透過流束>
前項の試験において、供給水(MgSO4水溶液)の膜透過水量を測定し、膜面1平方メートル当たり、1日の透水量(立方メートル)に換算した値を膜透過流束(m3/m2/日)とした。 NaCl removal rate (%) = 100 × {1- (NaCl concentration in permeated water / NaCl concentration in feed water)}
<Monovalent ion / divalent ion selectivity>
The monovalent ion / divalent ion selectivity was calculated based on the calculated sulfonyl 4 removal rate, NaCl removal rate and the following formula.
Monovalent ion / divalent ion selectivity = (100-NaCl removal rate) / (100- Then 4 removal rate)
<Membrane permeation flux>
In the test of the previous section, the amount of water permeated through the membrane of the supplied water (sulfonyl 4 aqueous solution) was measured, and the value converted to the amount of water permeated per day (cubic meter) per square meter of the membrane surface was converted into the membrane permeation flux (m 3 / m 2 / Day).
<耐酸性試験>
複合半透膜を40℃の1硫酸水溶液に10日間浸漬した後、MgSO4除去率を測定し、浸漬前後での除去性能比較を行った。 <Acid resistance test>
After immersing the composite semipermeable membrane in a monosulfuric acid aqueous solution at 40 ° C. for 10 days, the removal rate of sulfonyl 4 was measured, and the removal performance before and after the immersion was compared.
複合半透膜を40℃の1硫酸水溶液に10日間浸漬した後、MgSO4除去率を測定し、浸漬前後での除去性能比較を行った。 <Acid resistance test>
After immersing the composite semipermeable membrane in a monosulfuric acid aqueous solution at 40 ° C. for 10 days, the removal rate of sulfonyl 4 was measured, and the removal performance before and after the immersion was compared.
<耐アルカリ性試験>
複合半透膜を40℃の1M水酸化ナトリウム水溶液に10日間浸漬した後、MgSO4除去率を測定し、浸漬前後での除去性能比較を行った。 <Alkali resistance test>
After immersing the composite semipermeable membrane in a 1 M sodium hydroxide aqueous solution at 40 ° C. for 10 days, the removal rate of sulfonyl 4 was measured, and the removal performance before and after the immersion was compared.
複合半透膜を40℃の1M水酸化ナトリウム水溶液に10日間浸漬した後、MgSO4除去率を測定し、浸漬前後での除去性能比較を行った。 <Alkali resistance test>
After immersing the composite semipermeable membrane in a 1 M sodium hydroxide aqueous solution at 40 ° C. for 10 days, the removal rate of sulfonyl 4 was measured, and the removal performance before and after the immersion was compared.
(実施例1)
<複合半透膜の作製>
抄紙法で製造されたポリエステル繊維からなる不織布(通気度1.0cc/cm2/sec)上に、ポリスルホンの18重量%ジメチルホルムアミド(DMF)溶液を室温(25℃)下、塗布厚み180μmでキャストした後、ただちに純水中に5分間浸漬することによって基材上に多孔性支持層を形成し、支持膜を作製した。 (Example 1)
<Preparation of composite semipermeable membrane>
An 18 wt% dimethylformamide (DMF) solution of polysulfone was cast on a non-woven fabric (breathability 1.0 cc / cm 2 / sec) made of polyester fibers manufactured by the papermaking method at room temperature (25 ° C.) at a coating thickness of 180 μm. Immediately after that, the porous support layer was formed on the base material by immersing it in pure water for 5 minutes to prepare a support film.
<複合半透膜の作製>
抄紙法で製造されたポリエステル繊維からなる不織布(通気度1.0cc/cm2/sec)上に、ポリスルホンの18重量%ジメチルホルムアミド(DMF)溶液を室温(25℃)下、塗布厚み180μmでキャストした後、ただちに純水中に5分間浸漬することによって基材上に多孔性支持層を形成し、支持膜を作製した。 (Example 1)
<Preparation of composite semipermeable membrane>
An 18 wt% dimethylformamide (DMF) solution of polysulfone was cast on a non-woven fabric (breathability 1.0 cc / cm 2 / sec) made of polyester fibers manufactured by the papermaking method at room temperature (25 ° C.) at a coating thickness of 180 μm. Immediately after that, the porous support layer was formed on the base material by immersing it in pure water for 5 minutes to prepare a support film.
次に、26℃に調整したエアーを吹き付け余分な水分を除去しつつ、支持膜の膜面温度を26℃に調整した。2-ノルマルブチルピペラジン2.0重量%、ドデシルジフェニルエーテルジスルホン酸ナトリウム250ppm、リン酸三ナトリウム1.0重量%を溶解した30℃の水溶液に15秒間浸漬した後、エアーノズルから窒素を吹き付け余分な水溶液を除去することで支持膜上にアミン水溶液の被覆層を形成させた。さらにトリメシン酸クロリド(TMC)0.2重量%を含む38℃のn-デカン溶液を多孔性支持層の表面全体に均一塗布した後、50℃で1分間静置し、膜面に2流体(純水とエアー)を吹き付けて、表面の溶液を除去した。その後、80℃の純水で洗浄し、複合半透膜を得た。
Next, the film surface temperature of the support film was adjusted to 26 ° C while removing excess water by blowing air adjusted to 26 ° C. After immersing in an aqueous solution at 30 ° C. in which 2.0% by weight of 2-normal butyl piperazine, 250 ppm by weight of sodium dodecyldiphenyl ether disulfonate, and 1.0% by weight of trisodium phosphate are dissolved for 15 seconds, nitrogen is blown from an air nozzle to make an excess aqueous solution. Was removed to form a coating layer of an aqueous amine solution on the support film. Further, an n-decane solution at 38 ° C. containing 0.2% by weight of trimesic acid chloride (TMC) was uniformly applied to the entire surface of the porous support layer, and then allowed to stand at 50 ° C. for 1 minute, and two fluids (2 fluids) were applied to the film surface. Pure water and air) were sprayed to remove the surface solution. Then, it was washed with pure water of 80 degreeC, and a composite semipermeable membrane was obtained.
(実施例2)
実施例1において、多官能脂肪族アミンをcis-2.3-ジメチルピペラジンに変更し、多官能酸クロリドの溶液温度を30℃に変更した以外は実施例1と同様の方法で複合半透膜を作製した。 (Example 2)
In Example 1, the composite semipermeable membrane was changed in the same manner as in Example 1 except that the polyfunctional aliphatic amine was changed to cis-2.3-dimethylpiperazine and the solution temperature of the polyfunctional acid chloride was changed to 30 ° C. Was produced.
実施例1において、多官能脂肪族アミンをcis-2.3-ジメチルピペラジンに変更し、多官能酸クロリドの溶液温度を30℃に変更した以外は実施例1と同様の方法で複合半透膜を作製した。 (Example 2)
In Example 1, the composite semipermeable membrane was changed in the same manner as in Example 1 except that the polyfunctional aliphatic amine was changed to cis-2.3-dimethylpiperazine and the solution temperature of the polyfunctional acid chloride was changed to 30 ° C. Was produced.
(実施例3)
実施例2において、支持膜へのエアーの吹き付け温度と支持膜の膜面温度を25℃に調変更し、多官能脂肪族アミンをtrans-2,5-ジメチルピペラジンに変更した以外は実施例2と同様の方法で複合半透膜を作製した。 (Example 3)
In Example 2, the temperature at which air was blown onto the support membrane and the surface temperature of the support membrane were adjusted to 25 ° C., and the polyfunctional aliphatic amine was changed to trans-2,5-dimethylpiperazine. A composite semipermeable membrane was prepared in the same manner as in the above.
実施例2において、支持膜へのエアーの吹き付け温度と支持膜の膜面温度を25℃に調変更し、多官能脂肪族アミンをtrans-2,5-ジメチルピペラジンに変更した以外は実施例2と同様の方法で複合半透膜を作製した。 (Example 3)
In Example 2, the temperature at which air was blown onto the support membrane and the surface temperature of the support membrane were adjusted to 25 ° C., and the polyfunctional aliphatic amine was changed to trans-2,5-dimethylpiperazine. A composite semipermeable membrane was prepared in the same manner as in the above.
(実施例4)
実施例3において、支持膜上へのアミン水溶液の被覆層の形成方法を、支持膜表面上にアミン水溶液を塗布して15秒静置する方法に変更し、多官能脂肪族アミンを2,3,5,6-テトラメチルピペラジンに変更した以外は、実施例3と同様の方法で複合半透膜を作製した。 (Example 4)
In Example 3, the method of forming the coating layer of the amine aqueous solution on the support film was changed to the method of applying the amine aqueous solution on the support film surface and allowing it to stand for 15 seconds, and a few polyfunctional aliphatic amines were added. A composite semipermeable membrane was prepared in the same manner as in Example 3 except that the mixture was changed to 5,6-tetramethylpiperazine.
実施例3において、支持膜上へのアミン水溶液の被覆層の形成方法を、支持膜表面上にアミン水溶液を塗布して15秒静置する方法に変更し、多官能脂肪族アミンを2,3,5,6-テトラメチルピペラジンに変更した以外は、実施例3と同様の方法で複合半透膜を作製した。 (Example 4)
In Example 3, the method of forming the coating layer of the amine aqueous solution on the support film was changed to the method of applying the amine aqueous solution on the support film surface and allowing it to stand for 15 seconds, and a few polyfunctional aliphatic amines were added. A composite semipermeable membrane was prepared in the same manner as in Example 3 except that the mixture was changed to 5,6-tetramethylpiperazine.
(実施例5)
実施例4において、多官能脂肪族アミンをtrans-2,5-ジノルマルプロピルピペラジン、多官能酸クロリド溶液塗布後の雰囲気温度を80℃に変更した以外は実施例4と同様の方法で複合半透膜を作製した。 (Example 5)
In Example 4, the composite semi-compounded by the same method as in Example 4 except that the atmospheric temperature after applying the polyfunctional aliphatic amine trans-2,5-dinormalpropylpiperazine and the polyfunctional acid chloride solution was changed to 80 ° C. A permeable membrane was prepared.
実施例4において、多官能脂肪族アミンをtrans-2,5-ジノルマルプロピルピペラジン、多官能酸クロリド溶液塗布後の雰囲気温度を80℃に変更した以外は実施例4と同様の方法で複合半透膜を作製した。 (Example 5)
In Example 4, the composite semi-compounded by the same method as in Example 4 except that the atmospheric temperature after applying the polyfunctional aliphatic amine trans-2,5-dinormalpropylpiperazine and the polyfunctional acid chloride solution was changed to 80 ° C. A permeable membrane was prepared.
(実施例6)
実施例5において、多官能脂肪族アミンをtrans-2,5-ビス(ジフルオロメチル)ピペラジンに変更し、アミン水溶液温度を40℃に変更し、TMC濃度を0.2重量%から0.1重量%に変更した以外は実施例5と同様の方法で複合半透膜を作製した。 (Example 6)
In Example 5, the polyfunctional aliphatic amine was changed to trans-2,5-bis (difluoromethyl) piperazine, the amine aqueous solution temperature was changed to 40 ° C., and the TMC concentration was changed from 0.2% by weight to 0.1% by weight. A composite semipermeable membrane was prepared in the same manner as in Example 5 except that it was changed to%.
実施例5において、多官能脂肪族アミンをtrans-2,5-ビス(ジフルオロメチル)ピペラジンに変更し、アミン水溶液温度を40℃に変更し、TMC濃度を0.2重量%から0.1重量%に変更した以外は実施例5と同様の方法で複合半透膜を作製した。 (Example 6)
In Example 5, the polyfunctional aliphatic amine was changed to trans-2,5-bis (difluoromethyl) piperazine, the amine aqueous solution temperature was changed to 40 ° C., and the TMC concentration was changed from 0.2% by weight to 0.1% by weight. A composite semipermeable membrane was prepared in the same manner as in Example 5 except that it was changed to%.
(実施例7)
実施例5において、多官能脂肪族アミンをtrans-2,5-ビス(ジメチルチオ)ピペラジンに、アミン水溶液温度を41℃に変更した以外は実施例5と同様の方法で複合半透膜を作製した。 (Example 7)
In Example 5, a composite semipermeable membrane was prepared in the same manner as in Example 5 except that the polyfunctional aliphatic amine was changed to trans-2,5-bis (dimethylthio) piperazine and the amine aqueous solution temperature was changed to 41 ° C. ..
実施例5において、多官能脂肪族アミンをtrans-2,5-ビス(ジメチルチオ)ピペラジンに、アミン水溶液温度を41℃に変更した以外は実施例5と同様の方法で複合半透膜を作製した。 (Example 7)
In Example 5, a composite semipermeable membrane was prepared in the same manner as in Example 5 except that the polyfunctional aliphatic amine was changed to trans-2,5-bis (dimethylthio) piperazine and the amine aqueous solution temperature was changed to 41 ° C. ..
(実施例8)
実施例5において、多官能脂肪族アミンをtrans-2,5-ジメチルピペラジンに、アミン水溶液温度を35℃に変更した以外は実施例5と同様の方法で複合半透膜を作製した。 (Example 8)
In Example 5, a composite semipermeable membrane was prepared in the same manner as in Example 5 except that the polyfunctional aliphatic amine was changed to trans-2,5-dimethylpiperazine and the amine aqueous solution temperature was changed to 35 ° C.
実施例5において、多官能脂肪族アミンをtrans-2,5-ジメチルピペラジンに、アミン水溶液温度を35℃に変更した以外は実施例5と同様の方法で複合半透膜を作製した。 (Example 8)
In Example 5, a composite semipermeable membrane was prepared in the same manner as in Example 5 except that the polyfunctional aliphatic amine was changed to trans-2,5-dimethylpiperazine and the amine aqueous solution temperature was changed to 35 ° C.
(実施例9)
実施例8において、多官能脂肪族アミンを2,3,5,6-テトラメチルピペラジン、多官能酸クロリド溶液塗布後の雰囲気温度を120℃に変更した以外は実施例8と同様の方法で複合半透膜を作製した。 (Example 9)
In Example 8, the polyfunctional aliphatic amine was compounded in the same manner as in Example 8 except that the atmospheric temperature after applying the polyfunctional aliphatic amine 2,3,5,6-tetramethylpiperazine and the polyfunctional acid chloride solution was changed to 120 ° C. A semipermeable membrane was prepared.
実施例8において、多官能脂肪族アミンを2,3,5,6-テトラメチルピペラジン、多官能酸クロリド溶液塗布後の雰囲気温度を120℃に変更した以外は実施例8と同様の方法で複合半透膜を作製した。 (Example 9)
In Example 8, the polyfunctional aliphatic amine was compounded in the same manner as in Example 8 except that the atmospheric temperature after applying the polyfunctional
(実施例10)
実施例9において、多官能脂肪族アミンをtrans-2,5-ジノルマルブチルピペラジン、アミンの濃度を4.0重量%、多官能酸クロリドを1,3,5-ベンゼントリスルホン酸クロリドに変更した以外は実施例9と同様の方法で複合半透膜を作製した。 (Example 10)
In Example 9, the polyfunctional aliphatic amine was changed to trans-2,5-dinormalbutylpiperazine, the amine concentration was changed to 4.0% by weight, and the polyfunctional acid chloride was changed to 1,3,5-benzenetrisulfonic acid chloride. A composite semipermeable membrane was prepared in the same manner as in Example 9 except for the above.
実施例9において、多官能脂肪族アミンをtrans-2,5-ジノルマルブチルピペラジン、アミンの濃度を4.0重量%、多官能酸クロリドを1,3,5-ベンゼントリスルホン酸クロリドに変更した以外は実施例9と同様の方法で複合半透膜を作製した。 (Example 10)
In Example 9, the polyfunctional aliphatic amine was changed to trans-2,5-dinormalbutylpiperazine, the amine concentration was changed to 4.0% by weight, and the polyfunctional acid chloride was changed to 1,3,5-benzenetrisulfonic acid chloride. A composite semipermeable membrane was prepared in the same manner as in Example 9 except for the above.
(実施例11)
実施例9において、多官能脂肪族アミンをtrans-2,5-ジエチルピペラジンに変更した以外は実施例9と同様の方法で複合半透膜を作製した。 (Example 11)
In Example 9, a composite semipermeable membrane was prepared in the same manner as in Example 9 except that the polyfunctional aliphatic amine was changed to trans-2,5-diethylpiperazine.
実施例9において、多官能脂肪族アミンをtrans-2,5-ジエチルピペラジンに変更した以外は実施例9と同様の方法で複合半透膜を作製した。 (Example 11)
In Example 9, a composite semipermeable membrane was prepared in the same manner as in Example 9 except that the polyfunctional aliphatic amine was changed to trans-2,5-diethylpiperazine.
(実施例12)
実施例9において、多官能脂肪族アミンをtrans-2,5-ジメチルピペラジンに変更した以外は実施例9と同様の方法で複合半透膜を作製した。 (Example 12)
In Example 9, a composite semipermeable membrane was prepared in the same manner as in Example 9 except that the polyfunctional aliphatic amine was changed to trans-2,5-dimethylpiperazine.
実施例9において、多官能脂肪族アミンをtrans-2,5-ジメチルピペラジンに変更した以外は実施例9と同様の方法で複合半透膜を作製した。 (Example 12)
In Example 9, a composite semipermeable membrane was prepared in the same manner as in Example 9 except that the polyfunctional aliphatic amine was changed to trans-2,5-dimethylpiperazine.
(実施例13)
実施例9において、多官能脂肪族アミンをtrans-2,5-ビス(ジフルオロメチル)ピペラジンに変更した以外は実施例9と同様の方法で複合半透膜を作製した。 (Example 13)
In Example 9, a composite semipermeable membrane was prepared in the same manner as in Example 9 except that the polyfunctional aliphatic amine was changed to trans-2,5-bis (difluoromethyl) piperazine.
実施例9において、多官能脂肪族アミンをtrans-2,5-ビス(ジフルオロメチル)ピペラジンに変更した以外は実施例9と同様の方法で複合半透膜を作製した。 (Example 13)
In Example 9, a composite semipermeable membrane was prepared in the same manner as in Example 9 except that the polyfunctional aliphatic amine was changed to trans-2,5-bis (difluoromethyl) piperazine.
(比較例1)
実施例3において、多官能脂肪族アミンをピペラジン、アミン水溶液温度を25℃に変更した以外は実施例3と同様の方法で複合半透膜を作製した。 (Comparative Example 1)
In Example 3, a composite semipermeable membrane was prepared in the same manner as in Example 3 except that the polyfunctional aliphatic amine was piperazine and the amine aqueous solution temperature was changed to 25 ° C.
実施例3において、多官能脂肪族アミンをピペラジン、アミン水溶液温度を25℃に変更した以外は実施例3と同様の方法で複合半透膜を作製した。 (Comparative Example 1)
In Example 3, a composite semipermeable membrane was prepared in the same manner as in Example 3 except that the polyfunctional aliphatic amine was piperazine and the amine aqueous solution temperature was changed to 25 ° C.
(比較例2)
比較例1において、多官能脂肪族アミン濃度を8.0重量%、多官能酸クロリド溶液塗布後の雰囲気温度を120℃に変更した以外は比較例1と同様の方法で複合半透膜を作製した。 (Comparative Example 2)
In Comparative Example 1, a composite semipermeable membrane was prepared by the same method as in Comparative Example 1 except that the concentration of the polyfunctional aliphatic amine was changed to 8.0% by weight and the atmospheric temperature after applying the polyfunctional acid chloride solution was changed to 120 ° C. did.
比較例1において、多官能脂肪族アミン濃度を8.0重量%、多官能酸クロリド溶液塗布後の雰囲気温度を120℃に変更した以外は比較例1と同様の方法で複合半透膜を作製した。 (Comparative Example 2)
In Comparative Example 1, a composite semipermeable membrane was prepared by the same method as in Comparative Example 1 except that the concentration of the polyfunctional aliphatic amine was changed to 8.0% by weight and the atmospheric temperature after applying the polyfunctional acid chloride solution was changed to 120 ° C. did.
(比較例3)
比較例2で作成した膜を平膜評価用のセルにセットし、pH7.5、次亜塩素酸ナトリウム20ppmを含む水溶液を複合半透膜の供給側と透過側に1.5MPaの差圧を与えて30分接触させ、分離機能層のポリアミドが塩素化された複合半透膜を作製した。 (Comparative Example 3)
The membrane prepared in Comparative Example 2 was set in a cell for evaluation of a flat membrane, and an aqueous solution containing pH 7.5 and sodium hypochlorite 20 ppm was applied to the supply side and the permeation side of the composite semipermeable membrane with a differential pressure of 1.5 MPa. It was given and contacted for 30 minutes to prepare a composite semipermeable membrane in which the polyamide of the separation functional layer was chlorinated.
比較例2で作成した膜を平膜評価用のセルにセットし、pH7.5、次亜塩素酸ナトリウム20ppmを含む水溶液を複合半透膜の供給側と透過側に1.5MPaの差圧を与えて30分接触させ、分離機能層のポリアミドが塩素化された複合半透膜を作製した。 (Comparative Example 3)
The membrane prepared in Comparative Example 2 was set in a cell for evaluation of a flat membrane, and an aqueous solution containing pH 7.5 and sodium hypochlorite 20 ppm was applied to the supply side and the permeation side of the composite semipermeable membrane with a differential pressure of 1.5 MPa. It was given and contacted for 30 minutes to prepare a composite semipermeable membrane in which the polyamide of the separation functional layer was chlorinated.
(比較例4)
比較例1において、多官能酸クロリドを1,3,5-ベンゼントリスルホン酸クロリド、多官能酸クロリド溶液塗布後の雰囲気温度を120℃に変更した以外は、比較例1と同様の方法で複合半透膜を作製した。 (Comparative Example 4)
In Comparative Example 1, the polyfunctional acid chloride was combined in the same manner as in Comparative Example 1 except that the atmospheric temperature after applying the 1,3,5-benzenetrisulfonic acid chloride and the polyfunctional acid chloride solution was changed to 120 ° C. A semipermeable membrane was prepared.
比較例1において、多官能酸クロリドを1,3,5-ベンゼントリスルホン酸クロリド、多官能酸クロリド溶液塗布後の雰囲気温度を120℃に変更した以外は、比較例1と同様の方法で複合半透膜を作製した。 (Comparative Example 4)
In Comparative Example 1, the polyfunctional acid chloride was combined in the same manner as in Comparative Example 1 except that the atmospheric temperature after applying the 1,3,5-benzenetrisulfonic acid chloride and the polyfunctional acid chloride solution was changed to 120 ° C. A semipermeable membrane was prepared.
(比較例5)
比較例1において、多官能脂肪族アミンを2-メチルピペラジンに変更した以外は、比較例1と同様の方法で複合半透膜を作製した。 (Comparative Example 5)
In Comparative Example 1, a composite semipermeable membrane was prepared in the same manner as in Comparative Example 1 except that the polyfunctional aliphatic amine was changed to 2-methylpiperazine.
比較例1において、多官能脂肪族アミンを2-メチルピペラジンに変更した以外は、比較例1と同様の方法で複合半透膜を作製した。 (Comparative Example 5)
In Comparative Example 1, a composite semipermeable membrane was prepared in the same manner as in Comparative Example 1 except that the polyfunctional aliphatic amine was changed to 2-methylpiperazine.
(比較例6)
比較例5において、多官能脂肪族アミン濃度6.0重量%、多官能酸クロリド溶液塗布後の雰囲気温度を120℃に変更した以外は、比較例5と同様の方法で複合半透膜を作製した。 (Comparative Example 6)
In Comparative Example 5, a composite semipermeable membrane was prepared in the same manner as in Comparative Example 5 except that the polyfunctional aliphatic amine concentration was 6.0% by weight and the atmospheric temperature after applying the polyfunctional acid chloride solution was changed to 120 ° C. did.
比較例5において、多官能脂肪族アミン濃度6.0重量%、多官能酸クロリド溶液塗布後の雰囲気温度を120℃に変更した以外は、比較例5と同様の方法で複合半透膜を作製した。 (Comparative Example 6)
In Comparative Example 5, a composite semipermeable membrane was prepared in the same manner as in Comparative Example 5 except that the polyfunctional aliphatic amine concentration was 6.0% by weight and the atmospheric temperature after applying the polyfunctional acid chloride solution was changed to 120 ° C. did.
(比較例7)
比較例1において、多官能アミン濃度が6.0重量%となるよう、多官能アミンとして脂肪族アミンのピペラジンと芳香族アミンのm-フェニレンジアミンをモル比で9:1の割合で調整するよう変更した以外は、比較例1と同様の方法で複合半透膜を作製した。 (Comparative Example 7)
In Comparative Example 1, the aliphatic amine piperazine and the aromatic amine m-phenylenediamine are adjusted in a molar ratio of 9: 1 so that the polyfunctional amine concentration is 6.0% by weight. A composite semipermeable membrane was prepared in the same manner as in Comparative Example 1 except that it was changed.
比較例1において、多官能アミン濃度が6.0重量%となるよう、多官能アミンとして脂肪族アミンのピペラジンと芳香族アミンのm-フェニレンジアミンをモル比で9:1の割合で調整するよう変更した以外は、比較例1と同様の方法で複合半透膜を作製した。 (Comparative Example 7)
In Comparative Example 1, the aliphatic amine piperazine and the aromatic amine m-phenylenediamine are adjusted in a molar ratio of 9: 1 so that the polyfunctional amine concentration is 6.0% by weight. A composite semipermeable membrane was prepared in the same manner as in Comparative Example 1 except that it was changed.
(比較例7)
比較例1において、多官能アミン濃度が6.0重量%となるよう、多官能アミンとして脂肪族アミンのピペラジンと芳香族アミンのm-フェニレンジアミンをモル比で9:1の割合で調整するよう変更した以外は、比較例1と同様の方法で複合半透膜を作製した。 (Comparative Example 7)
In Comparative Example 1, the aliphatic amine piperazine and the aromatic amine m-phenylenediamine are adjusted in a molar ratio of 9: 1 so that the polyfunctional amine concentration is 6.0% by weight. A composite semipermeable membrane was prepared in the same manner as in Comparative Example 1 except that it was changed.
比較例1において、多官能アミン濃度が6.0重量%となるよう、多官能アミンとして脂肪族アミンのピペラジンと芳香族アミンのm-フェニレンジアミンをモル比で9:1の割合で調整するよう変更した以外は、比較例1と同様の方法で複合半透膜を作製した。 (Comparative Example 7)
In Comparative Example 1, the aliphatic amine piperazine and the aromatic amine m-phenylenediamine are adjusted in a molar ratio of 9: 1 so that the polyfunctional amine concentration is 6.0% by weight. A composite semipermeable membrane was prepared in the same manner as in Comparative Example 1 except that it was changed.
(比較例8)
実施例3において、多官能脂肪族アミンを2-ノルマルブチルピペラジン、多官能酸クロリドの溶液温度を10℃に変更した以外は、実施例3と同様の方法で複合半透膜を作製した。 (Comparative Example 8)
In Example 3, a composite semipermeable membrane was prepared in the same manner as in Example 3 except that the solution temperature of the polyfunctional aliphatic amine was 2-normal butylpiperazine and the polyfunctional acid chloride was changed to 10 ° C.
実施例3において、多官能脂肪族アミンを2-ノルマルブチルピペラジン、多官能酸クロリドの溶液温度を10℃に変更した以外は、実施例3と同様の方法で複合半透膜を作製した。 (Comparative Example 8)
In Example 3, a composite semipermeable membrane was prepared in the same manner as in Example 3 except that the solution temperature of the polyfunctional aliphatic amine was 2-normal butylpiperazine and the polyfunctional acid chloride was changed to 10 ° C.
(比較例9)
比較例8において、支持膜上へのアミン水溶液の被覆層の形成方法を、支持膜表面上にアミン水溶液を塗布して15秒静置する方法に変更し、多官能酸クロリドの溶液温度を40℃に変更した以外は、実施例3と同様の方法で複合半透膜を作製した。 (Comparative Example 9)
In Comparative Example 8, the method of forming the coating layer of the amine aqueous solution on the support film was changed to the method of applying the amine aqueous solution on the support film surface and allowing it to stand for 15 seconds, and the solution temperature of the polyfunctional acid chloride was changed to 40. A composite semipermeable membrane was prepared in the same manner as in Example 3 except that the temperature was changed to ° C.
比較例8において、支持膜上へのアミン水溶液の被覆層の形成方法を、支持膜表面上にアミン水溶液を塗布して15秒静置する方法に変更し、多官能酸クロリドの溶液温度を40℃に変更した以外は、実施例3と同様の方法で複合半透膜を作製した。 (Comparative Example 9)
In Comparative Example 8, the method of forming the coating layer of the amine aqueous solution on the support film was changed to the method of applying the amine aqueous solution on the support film surface and allowing it to stand for 15 seconds, and the solution temperature of the polyfunctional acid chloride was changed to 40. A composite semipermeable membrane was prepared in the same manner as in Example 3 except that the temperature was changed to ° C.
実施例に示したように、多官能脂肪族アミンと多官能芳香族酸ハロゲン化物との縮合体である半芳香族架橋ポリアミドを主成分として含有する分離機能層表面の比表面積が1.2以上5.0以下であり、C/(N+O)が2.3以上、4.0以下である複合半透膜は、高い1価イオン/2価イオン選択分離性能に加え、高い耐酸・アルカリ性を有する。
As shown in the examples, the specific surface area of the surface of the separation functional layer containing a semi-aromatic cross-linked polyamide, which is a condensate of a polyfunctional aliphatic amine and a polyfunctional aromatic acid halide, as a main component is 1.2 or more. A composite semipermeable membrane having a C / (N + O) of 2.3 or more and 4.0 or less of 5.0 or less has high acid resistance and alkalinity in addition to high monovalent ion / divalent ion selective separation performance. ..
Claims (12)
- 支持膜と、前記支持膜上に形成された多官能脂肪族アミンと多官能芳香族酸ハロゲン化物との縮合体である半芳香族架橋ポリアミドを含有する分離機能層と、を有する複合半透膜であって、
前記分離機能層表面の比表面積が1.2以上5.0以下であり、
前記分離機能層表面でのX線光電子分光により測定される炭素原子数に対する窒素原子数と酸素原子数の和の割合C/(N+O)が2.3以上、4.0以下である複合半透膜。 A composite semipermeable membrane having a support membrane and a separation functional layer containing a semi-aromatic crosslinked polyamide formed on the support membrane, which is a condensate of a polyfunctional aliphatic amine and a polyfunctional aromatic acid halide. And
The specific surface area of the surface of the separation functional layer is 1.2 or more and 5.0 or less.
Composite semipermeable membrane in which the ratio C / (N + O) of the sum of the number of nitrogen atoms and the number of oxygen atoms to the number of carbon atoms measured by X-ray photoelectron spectroscopy on the surface of the separation functional layer is 2.3 or more and 4.0 or less. film. - 前記分離機能層が、(ひだ高さ/厚み)が1.2以上であるひだ状の薄膜を有する
請求項1に記載の複合半透膜。 The composite semipermeable membrane according to claim 1, wherein the separating functional layer has a fold-shaped thin film having a (fold height / thickness) of 1.2 or more. - 前記複合半透膜における分離機能層側表面で、全反射赤外吸収スペクトル法により測定される、半芳香族ポリアミドのアミド基に由来する吸収ピーク強度(IA)と支持膜に由来する吸収ピーク強度(IS)との比(IA/IS)が0.15以上0.50以下である
請求項1または2に記載の複合半透膜。 The composite separation functional layer side surface of the semipermeable membrane, as measured by total reflection infrared absorption spectrum method, the absorption peak derived from an a support film the absorption peak intensity derived from the amide group of semi-aromatic polyamide (I A) the composite semipermeable membrane according to claim 1 or 2 intensity (I S) and the ratio of (I a / I S) is 0.15 to 0.50. - Ra/Rbが0.40以上1.0以下である、
請求項1~3のいずれかに記載の複合半透膜。
R1:下記Rbの測定における硫酸水溶液への浸漬を行う前の複合半透膜ついて、分離機能層側の表面で全反射赤外吸収スペクトル法により測定される、半芳香族ポリアミドのアミド基に由来する吸収ピーク強度(IA)と支持膜に由来する吸収ピーク強度(IS)との比(IA/IS)
R2:複合半透膜を40℃の1mol/L硫酸水溶液に21日間を浸漬させた後に、分離機能層側の表面で全反射赤外吸収スペクトル法により測定される、半芳香族ポリアミドのアミド基に由来する吸収ピーク強度(IA2)と支持膜に由来する吸収ピーク強度(IS2)との比(IA2/IS2) Ra / Rb is 0.40 or more and 1.0 or less.
The composite semipermeable membrane according to any one of claims 1 to 3.
R1: The composite semipermeable membrane before immersion in the sulfuric acid aqueous solution in the measurement of Rb below is derived from the amide group of the semi-aromatic polyamide measured by the total internal reflection infrared absorption spectroscopy on the surface on the separation function layer side. absorption peak intensity (I a) and the absorption peak intensity derived from the support film (I S) and the ratio of (I a / I S)
R2: An amide group of a semi-aromatic polyamide measured by total internal reflection infrared absorption spectroscopy on the surface of the separation function layer side after immersing the composite semipermeable membrane in a 1 mol / L sulfuric acid aqueous solution at 40 ° C. for 21 days. from absorption peak intensity (I A2) and the absorption peak intensity derived from the support film the ratio between (I S2) (I A2 / I S2) - 複合半透膜を40℃の1mol/L硫酸水溶液に21日間を浸漬させる前後での接触角の差が15°以下である
請求項1~4のいずれかに記載の複合半透膜。 The composite semipermeable membrane according to any one of claims 1 to 4, wherein the difference in contact angle before and after immersing the composite semipermeable membrane in a 1 mol / L sulfuric acid aqueous solution at 40 ° C. for 21 days is 15 ° or less. - 前記分離機能層を構成する多官能脂肪族アミン成分のうち、融点が100℃以上であるピペラジン誘導体を80mol%以上含み、前記ピペラジン誘導体はピペラジン環の二つ以上の炭素がアルキル基、フルオロアルキル基、チオエーテル基のいずれかで置換されたピペラジンである
請求項1~5のいずれかに記載の複合半透膜。
Among the polyfunctional aliphatic amine components constituting the separation functional layer, 80 mol% or more of a piperazine derivative having a melting point of 100 ° C. or higher is contained, and the piperazine derivative contains two or more carbons of the piperazine ring as an alkyl group or a fluoroalkyl group. , The composite translucent film according to any one of claims 1 to 5, which is a piperazine substituted with any of the thioether groups.
- 前記半芳香族架橋ポリアミド中の、多官能脂肪族アミンと多官能芳香族酸ハロゲン化物の合計物質量(mol)とアミド基の物質量(mol)とのモル比率(アミド基率)が0.80以上1.20以下である
請求項1~6のいずれかに記載の複合半透膜。
アミド基率(モル比)=アミド基量/(多官能脂肪族アミン量+多官能芳香族酸ハロゲン化物量) The molar ratio (amide group ratio) of the total amount of the polyfunctional aliphatic amine and the polyfunctional aromatic acid halide to the amount of the amide group (mol) in the semi-aromatic cross-linked polyamide is 0. The composite translucent film according to any one of claims 1 to 6, which is 80 or more and 1.20 or less.
Amide group ratio (molar ratio) = amide group amount / (polyfunctional aliphatic amine amount + polyfunctional aromatic acid halide amount) - 前記半芳香族ポリアミド中の前記多官能脂肪族アミンと前記多官能芳香族酸ハロゲン化物の存在比(モル比)が下式の関係にある
請求項1~7のいずれかに記載の複合半透膜。
1.25≦多官能脂肪族アミンのモル数/多官能酸芳香族ハロゲン化物のモル数≦1.65 The composite semipermeable membrane according to any one of claims 1 to 7, wherein the abundance ratio (molar ratio) of the polyfunctional aliphatic amine and the polyfunctional aromatic acid halide in the semi-aromatic polyamide is as follows. film.
1.25 ≤ number of moles of polyfunctional aliphatic amine / number of moles of polyfunctional acid aromatic halide ≤ 1.65 - 前記多官能酸ハロゲン化物が、芳香族多官能カルボン酸ハロゲン化物または芳香族多官能スルホン酸ハロゲン化物である
請求項1~8のいずれかに記載の複合半透膜。 The composite semipermeable membrane according to any one of claims 1 to 8, wherein the polyfunctional acid halide is an aromatic polyfunctional carboxylic acid halide or an aromatic polyfunctional sulfonic acid halide. - 0.5MPaの操作圧力で25℃、pH6.5の2000ppm硫酸マグネシウム水溶液および25℃、pH6.5の2000ppm塩化マグネシウム水溶液をそれぞれ透過させた時の硫酸マグネシウム除去率及び塩化マグネシウム除去率が下式(I)及び(II)を同時に満足する
請求項1~9のいずれかに記載の複合半透膜。
硫酸マグネシウム除去率≧97%・・・(I)
硫酸マグネシウム除去率-塩化マグネシウム除去率≦20%・・・(II) The following formulas show the magnesium sulfate removal rate and magnesium chloride removal rate when a 2000 ppm magnesium sulfate aqueous solution at 25 ° C and pH 6.5 and a 2000 ppm magnesium chloride aqueous solution at 25 ° C and pH 6.5 are permeated at an operating pressure of 0.5 MPa, respectively. ) And (II) at the same time. The composite translucent film according to any one of claims 1 to 9.
Magnesium sulfate removal rate ≧ 97% ・ ・ ・ (I)
Magnesium Sulfate Removal Rate-Magnesium Chloride Removal Rate ≤ 20% ... (II) - 支持膜と、前記支持膜上に形成された多官能脂肪族アミンと多官能芳香族酸ハロゲン化物との縮合体である半芳香族架橋ポリアミドを含有する分離機能層と、を有する複合半透膜の製造方法であって、
前記支持膜上で多官能脂肪族アミン水溶液と多官能酸ハロゲン化物含有溶液との界面重縮合により分離機能層を形成する工程を有し、
前記工程が、
(a)多官能脂肪族アミン水溶液を前記支持膜に含浸させるステップと、
(b)前記支持膜に10~38℃の多官能酸ハロゲン化物含有溶液を接触させるステップと
を有する
複合半透膜の製造方法。 A composite semipermeable membrane having a support membrane and a separation functional layer containing a semi-aromatic crosslinked polyamide formed on the support membrane, which is a condensate of a polyfunctional aliphatic amine and a polyfunctional aromatic acid halide. It is a manufacturing method of
It has a step of forming a separation functional layer on the support membrane by interfacial polycondensation of a polyfunctional aliphatic amine aqueous solution and a polyfunctional acid halide-containing solution.
The above process
(A) A step of impregnating the support membrane with an aqueous solution of a polyfunctional aliphatic amine,
(B) A method for producing a composite semipermeable membrane, which comprises a step of contacting the support membrane with a polyfunctional acid halide-containing solution at 10 to 38 ° C. - 前記ステップ(a)が、前記支持膜表面の温度より5~15℃高い多官能脂肪族アミン水溶液を前記支持膜表面に塗布するステップである
請求項11に記載の複合半透膜の製造方法。
The method for producing a composite semipermeable membrane according to claim 11, wherein step (a) is a step of applying a polyfunctional aliphatic amine aqueous solution having a temperature higher than the temperature of the support membrane surface by 5 to 15 ° C. on the support membrane surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021519175A JPWO2021085600A1 (en) | 2019-10-31 | 2020-10-30 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019198706 | 2019-10-31 | ||
JP2019-198706 | 2019-10-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021085600A1 true WO2021085600A1 (en) | 2021-05-06 |
Family
ID=75715187
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/040810 WO2021085600A1 (en) | 2019-10-31 | 2020-10-30 | Composite semipermeable membrane and manufacturing method therefor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2021085600A1 (en) |
WO (1) | WO2021085600A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115155327A (en) * | 2022-05-10 | 2022-10-11 | 广东奥斯博膜材料技术有限公司 | Nanofiltration membrane suitable for low-temperature pretreatment of salt lake brine and preparation method thereof |
WO2024117238A1 (en) * | 2022-11-30 | 2024-06-06 | 東レ株式会社 | Composite semipermeable membrane, composite semipermeable membrane element, and filter device |
WO2024162250A1 (en) * | 2023-01-31 | 2024-08-08 | 東レ株式会社 | Method for recovering metal salts, plating method, metal recovery device, and plating device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008253906A (en) * | 2007-04-03 | 2008-10-23 | Nitto Denko Corp | Dry composite semipermeable membrane |
WO2011105278A1 (en) * | 2010-02-23 | 2011-09-01 | 東レ株式会社 | Composite semipermeable membrane and process for production thereof |
WO2014104241A1 (en) * | 2012-12-27 | 2014-07-03 | 東レ株式会社 | Composite semipermeable membrane |
WO2016002821A1 (en) * | 2014-06-30 | 2016-01-07 | 東レ株式会社 | Composite semipermeable membrane |
WO2016052669A1 (en) * | 2014-09-30 | 2016-04-07 | 東レ株式会社 | Composite semipermeable membrane |
WO2017022694A1 (en) * | 2015-07-31 | 2017-02-09 | 東レ株式会社 | Separation membrane, separation membrane element, water purifier and method for producing separation membrane |
-
2020
- 2020-10-30 JP JP2021519175A patent/JPWO2021085600A1/ja active Pending
- 2020-10-30 WO PCT/JP2020/040810 patent/WO2021085600A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008253906A (en) * | 2007-04-03 | 2008-10-23 | Nitto Denko Corp | Dry composite semipermeable membrane |
WO2011105278A1 (en) * | 2010-02-23 | 2011-09-01 | 東レ株式会社 | Composite semipermeable membrane and process for production thereof |
WO2014104241A1 (en) * | 2012-12-27 | 2014-07-03 | 東レ株式会社 | Composite semipermeable membrane |
WO2016002821A1 (en) * | 2014-06-30 | 2016-01-07 | 東レ株式会社 | Composite semipermeable membrane |
WO2016052669A1 (en) * | 2014-09-30 | 2016-04-07 | 東レ株式会社 | Composite semipermeable membrane |
WO2017022694A1 (en) * | 2015-07-31 | 2017-02-09 | 東レ株式会社 | Separation membrane, separation membrane element, water purifier and method for producing separation membrane |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115155327A (en) * | 2022-05-10 | 2022-10-11 | 广东奥斯博膜材料技术有限公司 | Nanofiltration membrane suitable for low-temperature pretreatment of salt lake brine and preparation method thereof |
CN115155327B (en) * | 2022-05-10 | 2024-07-19 | 广东奥斯博膜材料技术有限公司 | Nanofiltration membrane suitable for low-temperature pretreatment of salt lake brine and preparation method thereof |
WO2024117238A1 (en) * | 2022-11-30 | 2024-06-06 | 東レ株式会社 | Composite semipermeable membrane, composite semipermeable membrane element, and filter device |
WO2024162250A1 (en) * | 2023-01-31 | 2024-08-08 | 東レ株式会社 | Method for recovering metal salts, plating method, metal recovery device, and plating device |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021085600A1 (en) | 2021-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021085600A1 (en) | Composite semipermeable membrane and manufacturing method therefor | |
JP5978998B2 (en) | Composite semipermeable membrane, composite semipermeable membrane element, and method for producing composite semipermeable membrane | |
US10974206B2 (en) | Composite semipermeable membrane | |
KR101967262B1 (en) | Composite semipermeable membrane | |
JP6197649B2 (en) | Composite semipermeable membrane | |
KR102289642B1 (en) | Composite semipermeable membrane | |
JP6052172B2 (en) | Manufacturing method of composite semipermeable membrane | |
JP6269474B2 (en) | Composite semipermeable membrane | |
JP2018039003A (en) | Composite semipermeable membrane and production method of the same | |
WO2014133133A1 (en) | Composite semipermeable membrane | |
JP6642860B2 (en) | Water treatment separation membrane and method for producing the same | |
JP2014233652A (en) | Composite semipermeable membrane | |
JP2014065004A (en) | Composite semipermeable membrane | |
JP5030192B2 (en) | Manufacturing method of composite semipermeable membrane | |
JP2006102594A (en) | Method for manufacturing composite semipermeable membrane | |
JP6702181B2 (en) | Composite semipermeable membrane | |
WO2016052669A1 (en) | Composite semipermeable membrane | |
JP2008253906A (en) | Dry composite semipermeable membrane | |
JP2021035658A (en) | Composite semipermeable membrane and production method of composite semipermeable membrane | |
JP2014065003A (en) | Composite semipermeable membrane and water production | |
JP4284767B2 (en) | Composite semipermeable membrane, water production method using the same, and fluid separation element | |
JP4923913B2 (en) | Composite semipermeable membrane and method for producing the same | |
JPWO2020137066A1 (en) | Composite semipermeable membrane | |
WO2024048695A1 (en) | Composite semipermeable membrane and method for producing composite semipermeable membrane | |
WO2023145845A1 (en) | Composite semipermeable membrane and method for producing composite semipermeable membrane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2021519175 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20881837 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20881837 Country of ref document: EP Kind code of ref document: A1 |