WO2014104241A1 - Composite semipermeable membrane - Google Patents

Composite semipermeable membrane Download PDF

Info

Publication number
WO2014104241A1
WO2014104241A1 PCT/JP2013/084984 JP2013084984W WO2014104241A1 WO 2014104241 A1 WO2014104241 A1 WO 2014104241A1 JP 2013084984 W JP2013084984 W JP 2013084984W WO 2014104241 A1 WO2014104241 A1 WO 2014104241A1
Authority
WO
WIPO (PCT)
Prior art keywords
semipermeable membrane
composite semipermeable
layer
membrane
polyamide
Prior art date
Application number
PCT/JP2013/084984
Other languages
French (fr)
Japanese (ja)
Inventor
清彦 高谷
雅和 小岩
由恵 丸谷
将弘 木村
佐々木 崇夫
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2014500199A priority Critical patent/JP6269474B2/en
Publication of WO2014104241A1 publication Critical patent/WO2014104241A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • B01D69/1251In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction by interfacial polymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis

Definitions

  • the present invention relates to a composite semipermeable membrane for selectively separating divalent ions from a mixed solution of monovalent ions and divalent ions.
  • ions such as HCO 3 ⁇ , SO 4 2 ⁇ , Mg 2+ , and Ca 2+ contained in seawater are concentrated by heating, It is deposited as a scale of CaCO 3 , Mg (OH) 2 , CaSO 4 or the like. Since the scale adheres to the heat exchanger tube of the heat exchanger, the operating efficiency of desalination is greatly reduced.
  • a pretreatment process using a film is performed.
  • a water injection method is used in which seawater is injected into the oil field and the crude oil is pushed out with the pressure for the purpose of improving the recovery rate.
  • the water injection method has a problem that a scale is generated by sulfate ions contained in seawater and Ba 2+ and Sr 2+ contained in crude oil, and the scale clogs a pipe for recovering crude oil. . Furthermore, the water injection method also has a problem that the quality of crude oil is reduced due to the generation of hydrogen sulfide by sulfate ion-reducing bacteria present in the crude oil. Therefore, in the recovery of crude oil by the water injection method, removal of sulfate ions from seawater by a membrane is required as a pretreatment step as a measure against scale and improvement of crude oil quality.
  • a polyfunctional aromatic carboxylic acid chloride is added to a diamine component of piperazine or a diamine component of piperazine and 4,4′-bipiperidine.
  • a composite nanofiltration membrane made of polyamide obtained by reacting.
  • Patent Document 3 discloses separation of monovalent ions and divalent ions using a composite reverse osmosis membrane obtained by reacting piperazine and trimesic acid chloride.
  • Patent Documents 4 and 5 in the composite semipermeable membrane and the composite nanofiltration membrane obtained by reacting piperazine and trimesic acid chloride, a detailed examination is made on the composition and concentration at the time of film formation.
  • Japanese Unexamined Patent Publication No. 2005-262078 Japanese Unexamined Patent Publication No. 2007-277298 Japanese Patent Publication No. 1-38522 Japanese Unexamined Patent Publication No. Sho 62-201606 Japanese Unexamined Patent Publication No. 2010-137192
  • the nanofiltration membrane described in Patent Literature 1 and Patent Literature 2 and the reverse osmosis membrane described in Patent Literature 3 have insufficient divalent ion removal performance or selectivity.
  • the semipermeable membrane and the nanofiltration membrane described in Patent Literature 4 and Patent Literature 5 have sufficient divalent ion removal performance, there is room for improvement in selectivity.
  • An object of the present invention is to provide a composite semipermeable membrane capable of selectively and sufficiently removing scale components.
  • the present inventors have found the following composite semipermeable membrane capable of selectively and sufficiently removing scale components from raw water such as seawater, and completed the present invention. It came to do. That is, the present invention has the following configurations (1) to (13).
  • a composite semipermeable membrane comprising a substrate and a support membrane comprising a porous support layer provided on the substrate, and a polyamide separation functional layer formed on the porous support layer,
  • the polyamide separation functional layer is formed of a polyamide obtained from an aliphatic polyfunctional amine and a polyfunctional acid halide, and the abundance ratio (molar ratio) of the aliphatic polyfunctional amine and the polyfunctional acid halide is represented by the following formula:
  • a composite semipermeable membrane 1.2 ⁇ number of moles of aliphatic polyfunctional amine / number of moles of polyfunctional acid halide ⁇ 1.8
  • the polyamide separation functional layer contains a secondary amine, and the polyamide separation functional layer has a zeta potential difference of 12 mV or more at pH 6 and pH 9.
  • the scale component can be selectively and sufficiently removed from seawater by the composite semipermeable membrane of the present invention. Therefore, generation of scale can be effectively prevented when raw water such as seawater is desalinated by an evaporation method, and fresh water can be stably obtained with a high recovery rate.
  • the injection water that can effectively prevent the generation of scale and deterioration of crude oil quality is stably supplied from seawater. be able to.
  • the composite semipermeable membrane of the present invention comprises a substrate and a support membrane comprising a porous support layer provided on the substrate, and a polyamide separation functional layer formed on the porous support layer.
  • the separation functional layer is a layer responsible for the solute separation function in the composite semipermeable membrane. In this invention, it forms from the polyamide obtained by reaction of an aliphatic polyfunctional amine and polyfunctional acid halide.
  • the selective separation of monovalent ions and divalent ions in the composite semipermeable membrane requires control of both surface charge and pore size. As the surface charge is closer to neutrality, monovalent ions are more easily transmitted. At this time, since the pore size of the separation functional layer is controlled to a size that can remove divalent ions, divalent ions can be removed reliably, and the selective removal of divalent ions is enhanced. .
  • the magnitude of the surface charge depends on the amount of functional groups (amino group, carboxy group) in the polyamide, in order to make the surface charge neutral, the amount of amino group and the amount of carboxy group should be made equal. It is preferable that an aliphatic polyfunctional amine and a polyfunctional acid halide are present in an amount in which both are equal.
  • the present inventors have intensively studied, and by precisely controlling the abundance ratio of the aliphatic polyfunctional amine and the polyfunctional acid halide in the separation functional layer, improvement of the divalent ion removability of the composite semipermeable membrane, and It has been found that the selective removal of monovalent ions and divalent ions can be improved.
  • the surface charge is considered to be a value close to neutrality.
  • the amounts of amino groups and carboxy groups in the polyamide are almost equal, and the network structure of the polyamide is considered to be uniform. Therefore, it is considered that the pore size distribution is also controlled.
  • the abundance ratio of the aliphatic polyfunctional amine and the polyfunctional acid halide in the polyamide separation functional layer is determined by 13 C-NMR measurement of the separation functional layer peeled from the support film, or the strong separation of the separation functional layer peeled from the support film.
  • the components of the aliphatic polyfunctional amine and the polyfunctional acid halide were analyzed by 1 H-NMR measurement using a sample hydrolyzed with an aqueous solution, and the aliphatic polyfunctional amine component was analyzed for the polyfunctional acid halide. It can be determined by dividing by the component.
  • the abundance ratio of the aliphatic polyfunctional amine to the polyfunctional acid halide (aliphatic polyfunctional amine / polyfunctional acid halide) in the polyamide separation functional layer is 1.2 or more, preferably 1.3. Or more, more preferably 1.35 or more, and even more preferably 1.4 or more.
  • the abundance ratio is 1.8 or less, preferably 1.7 or less, more preferably 1.65 or less, and even more preferably 1.6 or less in terms of molar ratio.
  • the abundance ratio is 1.2 or more, the negative charge amount of the membrane can be controlled so as not to become too large, so that high monovalent ion permeability can be obtained.
  • the abundance ratio is 1.8 or less, the positive charge amount of the membrane can be controlled so as not to become too large, so that sufficient divalent ion removal property can be obtained.
  • the polyamide separation functional layer of the present invention preferably has a zeta potential difference (absolute value) at pH 6 and pH 9 of 12 mV or more.
  • the zeta potential difference (absolute value) at pH 6 and pH 9 of the separation functional layer is related to divalent ion removal performance and divalent ion selectivity.
  • the zeta potential difference is 12 mV or more, the divalent ion of the composite semipermeable membrane Removal performance and divalent ion selectivity are increased. This is because the degree of dissociation of the amino group and carboxy group varies greatly between pH 6 and pH 9, and it is considered that the amount of amino group and carboxy group is large when the potential difference is large. When the amount of amino group and carboxy group is large, electrostatic repulsion increases, so that it is considered that the divalent ion removal performance and the divalent ion selectivity are increased. *
  • the zeta potential can be measured with an electrophoretic light scattering photometer.
  • the measurement is performed by setting in a flat sample cell so that the separation functional layer surface of the composite semipermeable membrane is in contact with the monitor particle solution.
  • the monitor particles are obtained by coating polystyrene latex with hydroxypropylcellulose, and are dispersed in a 10 mM NaCl solution to form a monitor particle solution.
  • the pH of the monitor particle solution By adjusting the pH of the monitor particle solution, the zeta potential at a predetermined pH can be measured.
  • ELS-8000 manufactured by Otsuka Electronics Co., Ltd. can be used as the electrophoretic light scattering photometer.
  • the aliphatic polyfunctional amine is an aliphatic amine having two or more amino groups in one molecule.
  • piperazine-based amines and derivatives thereof In view of the stability of performance, it is preferable to use piperazine-based amines and derivatives thereof, and among them, piperazine (hereinafter sometimes referred to as “Pip”) is more preferable.
  • Piperazine hereinafter sometimes referred to as “Pip”
  • These aliphatic polyfunctional amines may be used alone or in combination of two or more.
  • the polyfunctional acid halide refers to an acid halide having at least two carbonyl halide groups in one molecule.
  • examples of the trifunctional acid halide include trimesic acid chloride, 1,3,5-cyclohexanetricarboxylic acid trichloride, 1,2,4-cyclobutanetricarboxylic acid trichloride, and the like.
  • bifunctional acid halide examples include aromatic bifunctional acid halides such as biphenyl dicarboxylic acid dichloride, azobenzene dicarboxylic acid dichloride, terephthalic acid chloride, isophthalic acid chloride, and naphthalene dicarboxylic acid chloride; adipoyl chloride, sebacoyl chloride, and the like.
  • aromatic bifunctional acid halides such as biphenyl dicarboxylic acid dichloride, azobenzene dicarboxylic acid dichloride, terephthalic acid chloride, isophthalic acid chloride, and naphthalene dicarboxylic acid chloride; adipoyl chloride, sebacoyl chloride, and the like.
  • Aliphatic bifunctional acid halides; cycloaliphatic difunctional acid halides such as cyclopentane dicarboxylic acid dichloride, cyclohexane dicarboxylic acid dichloride, and
  • the polyfunctional acid halide is preferably a polyfunctional acid chloride.
  • the polyfunctional acid chloride is more preferably a polyfunctional aromatic acid chloride having 2 to 4 carbonyl chloride groups in one molecule.
  • trimesic acid chloride hereinafter sometimes referred to as “TMC”.
  • TMC trimesic acid chloride
  • the polyamide constituting the separation functional layer is preferably a crosslinked polyamide obtained by interfacial polycondensation with the above-mentioned aliphatic polyfunctional amine and polyfunctional acid halide from the viewpoint of ease of production.
  • the thickness of the polyamide separation functional layer is preferably 40 nm or less. If the thickness is 40 nm or less, sufficient water permeability can be obtained while enhancing divalent ion removal performance.
  • the thickness of the polyamide separation functional layer can be analyzed using an observation technique such as a transmission electron microscope, TEM tomography, or a focused ion beam / scanning electron microscope (FIB / SEM).
  • an observation technique such as a transmission electron microscope, TEM tomography, or a focused ion beam / scanning electron microscope (FIB / SEM).
  • FIB / SEM focused ion beam / scanning electron microscope
  • the thickness of a layer or film means an average value.
  • the average value represents an arithmetic average value.
  • the thickness of the layer or film is obtained by calculating the average value of the thicknesses of 20 points measured at intervals of 20 ⁇ m in the direction orthogonal to the thickness direction in the cross-sectional observation of the layer or film (the surface direction of the layer or film or the horizontal direction). It is done.
  • the support membrane includes a base material and a porous support layer provided on the base material, and has substantially no separation performance of ions or the like, and has a strength in the separation functional layer. Can be given.
  • the thickness of the support membrane affects the strength of the composite semipermeable membrane and the packing density when the composite semipermeable membrane is used as a membrane element.
  • the thickness of the support membrane is preferably in the range of 50 to 300 ⁇ m, more preferably in the range of 100 to 250 ⁇ m.
  • porous support layer in the present invention preferably contains the following materials as main components.
  • a material for the porous support layer polysulfone, polyethersulfone, polyamide, polyester, cellulosic polymer, vinyl polymer, polyphenylene sulfide, polyphenylene sulfide sulfone, polyphenylene sulfone, homopolymer or copolymer such as polyphenylene oxide, alone or in a blend Can be used.
  • cellulose acetate, cellulose nitrate and the like are used as the cellulose polymer, and polyethylene, polypropylene, polyvinyl chloride, polyacrylonitrile and the like can be used as the vinyl polymer.
  • homopolymers such as polysulfone, polyamide, polyester, cellulose acetate, cellulose nitrate, polyvinyl chloride, polyacrylonitrile, polyphenylene sulfide, polyphenylene sulfide sulfone, polyphenylene sulfone, and copolymers thereof are preferable. More preferred is cellulose acetate, polysulfone, polyphenylene sulfide sulfone, or polyphenylene sulfone.
  • polysulfone is particularly preferably used because of its high chemical, mechanical and thermal stability and easy molding. Specifically, it is preferable to use polysulfone composed of repeating units represented by the following chemical formula as the main component of the porous support layer because the pore diameter can be easily controlled and the dimensional stability is high.
  • the polysulfone used in the present invention preferably has a weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) using N-methylpyrrolidone as a developing solvent and polystyrene as a standard substance. Those within the range of 200,000, more preferably 15,000 to 100,000. When the Mw is 10,000 or more, preferable mechanical strength and heat resistance can be obtained as the porous support layer. Moreover, when Mw is 200,000 or less, the viscosity of the solution falls within an appropriate range, and good moldability can be realized.
  • Mw weight average molecular weight measured by gel permeation chromatography
  • the size and distribution of the pores in the porous support layer are not particularly limited.
  • the pore size is gradually increased from the surface on the side where the uniform and fine pores or the separation functional layer is formed to the other surface, that is, the surface on the substrate side.
  • a hole that is a micropore and that has a size of 0.1 to 100 nm on the surface on the side where the separation functional layer is formed is preferable.
  • the porous support layer is prepared by, for example, casting an N, N-dimethylformamide (hereinafter also referred to as “DMF”) solution in which the above polysulfone is dissolved to a certain thickness on a substrate. Can be obtained by wet coagulation in water. Most of the surface of the support membrane obtained by this method can have fine pores having a diameter of 1 to 30 nm.
  • DMF N, N-dimethylformamide
  • the thickness of the porous support layer affects the strength of the resulting composite semipermeable membrane and the packing density when it is used as an element.
  • the thickness is preferably in the range of 10 to 200 ⁇ m, more preferably in the range of 20 to 150 ⁇ m.
  • the morphology of the porous support layer can be observed with a scanning electron microscope, a transmission electron microscope, or an atomic microscope.
  • a scanning electron microscope after peeling off the porous support layer from the substrate, it is cut by the freeze cleaving method to obtain a sample for cross-sectional observation.
  • the sample is thinly coated with platinum or platinum-palladium or ruthenium tetrachloride, preferably ruthenium tetrachloride, and observed with a high resolution field emission scanning electron microscope (UHR-FE-SEM) at an acceleration voltage of 3 to 15 kV.
  • UHR-FE-SEM high resolution field emission scanning electron microscope
  • Hitachi S-900 electron microscope can be used.
  • Substrate examples of the substrate constituting the support membrane include a polyester polymer, a polyamide polymer, a polyolefin polymer, or a mixture or copolymer thereof.
  • a polyester polymer is preferable because an excellent support film can be obtained due to mechanical strength, heat resistance, water resistance, and the like.
  • the polyester polymer used in the present invention is a polyester composed of an acid component and an alcohol component, and is preferably the main component of the substrate in the present invention.
  • a main component means 70 weight% or more in the polymer which comprises a base material, Preferably it contains 90 weight% or more.
  • the acid component examples include aromatic carboxylic acids such as terephthalic acid, isophthalic acid, and phthalic acid; aliphatic dicarboxylic acids such as adipic acid and sebacic acid; and alicyclic dicarboxylic acids such as cyclohexanecarboxylic acid.
  • aromatic carboxylic acids such as terephthalic acid, isophthalic acid, and phthalic acid
  • aliphatic dicarboxylic acids such as adipic acid and sebacic acid
  • alicyclic dicarboxylic acids such as cyclohexanecarboxylic acid.
  • the alcohol component ethylene glycol, diethylene glycol, polyethylene glycol, or the like can be used.
  • polyester polymer examples include polyethylene terephthalate resin, polybutylene terephthalate resin, polytrimethylene terephthalate resin, polyethylene naphthalate resin, polylactic acid resin, and polybutylene succinate resin.
  • polyester polymer examples include coalescence.
  • a polyethylene terephthalate homopolymer or a copolymer thereof is preferably used because it is particularly excellent in production cost.
  • the base material in the present invention is a cloth-like material made of the polymer or the like. It is preferable to use a fibrous base material for the fabric in terms of strength, unevenness forming ability, and fluid permeability.
  • a base material both a long fiber nonwoven fabric and a short fiber nonwoven fabric can be used preferably.
  • the fibers in the surface layer on the side opposite to the porous support layer are preferably longitudinally oriented as compared with the fibers in the surface layer on the porous support layer side in terms of moldability and strength. The longitudinal alignment will be described later.
  • the fiber orientation degree in the surface layer of the long fiber nonwoven fabric or short fiber nonwoven fabric opposite to the porous support layer is preferably 0 ° to 25 °. Further, it is preferable that the difference in the degree of orientation between the fiber orientation degree on the surface layer opposite to the porous support layer and the fiber orientation degree on the surface layer on the porous support layer side is 10 ° to 90 °.
  • a heating process is included, but a phenomenon occurs in which the porous support layer or the separation functional layer contracts due to the heating. This is particularly noticeable in the width direction where no tension is applied in continuous film formation.
  • the “fiber orientation degree” is an index indicating the fiber orientation of the nonwoven fabric base material constituting the porous support layer.
  • a nonwoven fabric base material when the film forming direction for continuous film formation that is, the longitudinal direction of the nonwoven fabric base material is 0 °
  • the direction perpendicular to the film forming direction that is, the width direction of the nonwoven fabric base material is 90 °. This refers to the average angle of the constituent fibers. Accordingly, the closer to 0 ° the fiber orientation, the longer the orientation, and the closer to 90 °, the lateral orientation.
  • the fiber orientation degree is measured as follows. Ten small sample samples are randomly collected from the nonwoven fabric, and the surface of the sample is photographed at 100 to 1000 times with a scanning electron microscope. In the photographed image, 10 fibers are selected from each sample, and for a total of 100 fibers, the longitudinal direction (longitudinal direction, film forming direction) of the nonwoven fabric is 0 °, and the width direction (lateral direction) of the nonwoven fabric is 90 degrees. Measure the angle at °. In the average value of the measured angles, the value obtained by rounding off the first decimal place is the fiber orientation degree.
  • the air permeability of the substrate is preferably 2.0 cc / cm 2 / sec or more. When the air permeability is within this range, the water permeability of the composite semipermeable membrane is enhanced. This is a process of forming a porous support membrane. When a polymer is cast on a base material and immersed in a coagulation bath, the non-solvent replacement rate from the base material side becomes faster. This is presumably because the internal structure of the support layer changes and affects the amount of monomer retained and the diffusion rate in the subsequent step of forming the separation functional layer.
  • the air permeability can be measured by a Frazier type tester based on JIS L1096 (2010). For example, a base material is cut out to a size of 200 mm ⁇ 200 mm and used as a sample. This sample is attached to the Frazier type tester, and the suction fan and air hole are adjusted so that the inclined barometer has a pressure of 125 Pa. Based on the pressure indicated by the vertical barometer at this time and the type of air hole used, The amount of air passing through the material, that is, the air permeability can be calculated.
  • KES-F8-AP1 manufactured by Kato Tech Co., Ltd. can be used as the Frazier type tester.
  • the thickness of the substrate is preferably in the range of 10 to 200 ⁇ m from the viewpoint of mechanical strength and packing density, and more preferably in the range of 30 to 120 ⁇ m.
  • the support membrane used in the present invention can be selected from various commercially available materials such as “Millipore Filter VSWP” (trade name) manufactured by Millipore, and “Ultra Filter UK10” (trade name) manufactured by Toyo Roshi Kaisha, “Office of Saleen Water Research and Development Progress Report” No. 359 (1968).
  • the thickness of a base material and the thickness of a composite semipermeable membrane can be easily measured with a digital thickness gauge.
  • the thickness of the separation functional layer is very thin compared with the support membrane, the thickness of the composite semipermeable membrane can be regarded as the thickness of the support membrane. Therefore, the thickness of the porous support layer can be calculated by measuring the thickness of the composite semipermeable membrane with a digital thickness gauge and subtracting the thickness of the substrate from the thickness of the composite semipermeable membrane.
  • the digital thickness gauge “PEACOCK (registered trademark)” manufactured by Ozaki Mfg. Co., Ltd. can be used. When a digital thickness gauge is used, the average value is calculated by measuring the thickness at 20 locations.
  • the thickness may be measured with a scanning electron microscope.
  • the membrane charge can be neutralized by the protective layer, electrostatic interaction between ions and the membrane can be suppressed. As a result, the removability of monovalent ions in the film can be reduced. Furthermore, the polymer component contained in the protective layer can block pores larger than divalent ions. As a result, it is considered that the removal of divalent ions (particularly sulfate ions) can be sufficiently enhanced.
  • the polymer component is not particularly limited as long as it does not dissolve the polyamide separation functional layer and the porous support membrane and does not elute during the water treatment operation.
  • polyvinyl alcohol is preferable from the viewpoint of economy, availability, and ease of handling.
  • the saponification degree of polyvinyl alcohol is preferably 85% or more, and more preferably 90% or more.
  • the degree of polymerization of polyvinyl alcohol is preferably in the range of 50 to 50,000.
  • the degree of polymerization is 50 or more, the solubility in water decreases, and elution of polyvinyl alcohol during water treatment can be prevented.
  • the degree of polymerization is 50000 or less, the viscosity of the aqueous polyvinyl alcohol solution can be suitably maintained, and the coating thickness of the aqueous polyvinyl alcohol solution can be reduced.
  • the above-described function as the protective layer and the water permeability of the membrane can be compatible.
  • the polymer in the protective layer can be cross-linked to the polyamide separation functional layer, so that the ability to remove divalent ions can be enhanced compared to uncrosslinked, and the elution of the polymer in the protective layer during water treatment operation can be enhanced. Can be prevented.
  • crosslink a hydrophilic polymer is preferable from the point of the ease of handling and a water-permeable fall suppression, Especially polyvinyl alcohol is preferable and polyvinyl alcohol with a saponification degree of 85% or more is more preferable. Since the reactivity of polyvinyl alcohol changes depending on the degree of saponification, the effect of crosslinking is enhanced when the degree of saponification is 85% or more.
  • an organic crosslinking agent such as a polyhydric aldehyde, an epoxy compound, a polyvalent carboxylic acid, an organic titanium compound, or an organic zirconium compound, or an inorganic crosslinking agent such as a boron compound.
  • an organic crosslinking agent such as a polyhydric aldehyde, an epoxy compound, a polyvalent carboxylic acid, an organic titanium compound, or an organic zirconium compound, or an inorganic crosslinking agent such as a boron compound.
  • a polyvalent aldehyde is more preferable, and glutaraldehyde is particularly preferable from the viewpoint of ease of reactivity.
  • the thickness of the protective layer is not particularly limited, but is usually 0.01 ⁇ m or more, preferably 0.05 ⁇ m or more. If the thickness of the protective layer is too thin, the polymer component tends to be eluted during the water treatment operation, and the membrane performance tends to deteriorate. Moreover, the thickness of a protective layer is 5 micrometers or less normally, Preferably it is 3 micrometers or less, More preferably, it is 2 micrometers or less. On the other hand, if the thickness of the protective layer is too thick, the permeation flux tends to decrease.
  • the manufacturing method includes a support film forming step and a separation functional layer forming step.
  • the support film forming step includes a step of applying a polymer solution to a substrate and a step of immersing the substrate coated with the solution in a coagulation bath to coagulate the polymer. .
  • the polymer solution is prepared by dissolving the polymer that is a component of the porous support layer in a good solvent for the polymer.
  • the temperature of the polymer solution during application of the polymer solution is preferably in the range of 10 ° C. to 60 ° C. when polysulfone is used as the polymer. If the temperature of the polymer solution is within this range, the polymer does not precipitate, and the polymer solution is sufficiently impregnated between the fibers of the base material and then solidified. As a result, the porous support layer is firmly bonded to the substrate by the anchor effect, and a good support film can be obtained.
  • the preferred temperature range of the polymer solution can be adjusted as appropriate depending on the type of polymer used, the desired solution viscosity, and the like.
  • the time from application of the polymer solution on the substrate to immersion in the coagulation bath is preferably in the range of 0.1 to 5 seconds. If the time until dipping in the coagulation bath is within this range, the organic solvent solution containing the polymer is sufficiently impregnated between the fibers of the base material and then solidified.
  • the preferable range of time until it immerses in a coagulation bath can be suitably adjusted with the kind of polymer solution to be used, desired solution viscosity, etc.
  • the coagulation bath water is usually used, but any solid can be used as long as it does not dissolve the polymer that is a component of the porous support layer.
  • the membrane form of the support membrane obtained by the composition of the coagulation bath changes, and the resulting composite semipermeable membrane also changes.
  • the temperature of the coagulation bath is preferably 5 ° C to 100 ° C. More preferably, it is 10 ° C to 40 ° C. If the temperature of the coagulation bath is lower than the upper limit, vibration of the coagulation bath surface due to thermal motion can be suppressed, and the smoothness of the film surface after film formation can be maintained. Further, if the temperature is equal to or higher than the lower limit, the solidification rate can be maintained, so that the film forming property can be improved.
  • the support membrane thus obtained is washed with hot water in order to remove the solvent remaining in the membrane.
  • the temperature of the hot water at this time is preferably 40 ° C. to 100 ° C., more preferably 60 ° C. to 95 ° C. If the washing temperature is lower than the upper limit, the shrinkage degree of the support membrane does not become too large, and deterioration of water permeability can be prevented. Moreover, if the cleaning temperature is equal to or higher than the lower limit, the cleaning effect is sufficient.
  • the concentration of the aliphatic polyfunctional amine in the aliphatic polyfunctional amine aqueous solution is preferably 1.0% by weight or more and 8.0% by weight or less.
  • concentration of the aliphatic polyfunctional amine is 1.0% by weight or more, a uniform separation function layer is formed, and sufficient divalent ion removal performance can be obtained.
  • thickness of the separation functional layer will not be too thick, and sufficient monovalent ion permeability and water permeability can be obtained.
  • a solubility parameter (SP value) that is immiscible with water, does not destroy the support membrane, and does not inhibit the formation reaction of the crosslinked polyamide.
  • SP value solubility parameter
  • the SP value is 15.2 (MPa) 1/2 or more and the log P is 3.2 or more, the distribution and diffusion of the aliphatic polyfunctional amine at the time of interfacial polycondensation are optimized, and the amount of functional groups is reduced. Can be increased.
  • octane, nonane, decane, undecane, dodecane, tridecane, tetradecane, heptadecane, hexadecane, cyclooctane, ethylcyclohexane, 1-octene, 1-decene, or a mixture of these is preferably used.
  • nonane, decane, undecane, and dodecane are preferable from the viewpoint of stability of performance expression.
  • the concentration of the polyfunctional acid halide in the water-immiscible organic solvent solution is preferably in the range of 0.01 wt% to 5.0 wt%, preferably 0.1 wt% to 3.0 wt%. It is more preferable that it is in the following range, and it is more preferable that it is in the range of 0.2 wt% or more and 1.0 wt% or less.
  • concentration is 0.01% by weight or more, a sufficient reaction rate can be obtained, and when it is 5.0% by weight or less, the occurrence of side reactions can be suppressed.
  • the piperazine concentration / trimesic acid chloride concentration is preferably 5.0 or more and 30.0 or less. More preferably, it is 0 or more and 30.0 or less.
  • Pip / TMC ⁇ 1.2 is obtained as the abundance ratio (molar ratio) of piperazine (Pip) and trimesic acid chloride (TMC) in the formed polyamide within the range of 5.0 to 30.0.
  • high divalent ion selectivity can be obtained.
  • the aqueous solution containing the aliphatic polyfunctional amine may contain a surfactant.
  • a surfactant examples thereof include sodium dodecylbenzenesulfonate, sodium dodecylsulfate, sodium dodecyldiphenyl ether disulfonate, styrene bis (sodium naphthalenesulfonate), sodium polyoxyethylene alkyl ether sulfate, and the like.
  • the aqueous solution containing the aliphatic polyfunctional amine may contain alcohol.
  • alcohol for example, ethanol, 1-propanol, 2-propanol, butanol and the like can be mentioned.
  • alcohol By including alcohol, the interfacial polycondensation field is disturbed, and the effect of increasing the amount of functional groups in the polyamide, particularly the amount of amino groups, can be obtained.
  • the aqueous solution containing the aliphatic polyfunctional amine may contain an alkaline compound.
  • alkaline compound examples include sodium hydroxide, trisodium phosphate, triethylamine and the like.
  • an alkaline compound hydrogen halide generated in the interfacial polycondensation reaction can be removed, and a decrease in the reactivity of the aliphatic polyfunctional amine can be suppressed, and high divalent ion selectivity can be obtained.
  • An aqueous solution containing an aliphatic polyfunctional amine and an organic solvent solution containing a polyfunctional acid halide each contain compounds such as an acylation catalyst, a polar solvent, and an antioxidant as necessary. Also good.
  • the support membrane surface is first coated with an aqueous solution containing an aliphatic polyfunctional amine.
  • an aqueous solution containing an aliphatic polyfunctional amine As a method of coating the surface of the support membrane with an aqueous solution containing an aliphatic polyfunctional amine, it is sufficient that the surface of the support membrane is uniformly and continuously coated with this aqueous solution, and a known coating means, for example, an aqueous solution is supported. What is necessary is just to perform by the method of coating on the surface of a membrane, the method of immersing a support membrane in aqueous solution, etc.
  • the contact time between the support membrane and the aqueous solution containing the aliphatic polyfunctional amine is preferably in the range of 5 seconds to 10 minutes, and more preferably in the range of 10 seconds to 2 minutes.
  • a liquid draining step there are, for example, a method of holding the film surface in a vertical direction and letting it flow down naturally, a method of removing it by blowing air, and the like.
  • the membrane surface may be dried to remove all or part of the water in the aqueous solution.
  • an organic solvent solution containing the above-mentioned polyfunctional acid halide is applied to a support film coated with an aqueous solution containing an aliphatic polyfunctional amine, and a separation functional layer of crosslinked polyamide is formed by interfacial polycondensation.
  • the time for performing the interfacial polycondensation is preferably from 0.1 second to 3 minutes, and more preferably from 0.1 second to 1 minute.
  • the coating temperature of the organic solvent solution containing the aforementioned polyfunctional acid halide is preferably 10 ° C. or lower.
  • the coating temperature is 10 ° C. or lower, the separation functional layer becomes thin and the water permeability becomes high.
  • the organic solvent can be removed by, for example, a method in which the membrane is held in a vertical direction to remove excess organic solvent by flowing down, a method in which the organic solvent is dried by blowing air with a blower, or a mixed fluid of water and air.
  • a method of removing excess organic solvent with (2 fluids) can be used.
  • the composite semipermeable membrane obtained by the above-described method is further added with a process of washing with hot water for 1 minute to 60 minutes within the range of 25 ° C to 90 ° C, so that the solute blocking performance of the composite semipermeable membrane is added. And water permeability can be further improved.
  • the protective layer forming step is a step in which a solution containing a polymer component is applied directly on the polyamide separation functional layer or via another layer (for example, a hydrophilic layer containing a hydrophilic resin). And subsequently drying the solution.
  • Examples of the coating method include spraying, coating, and showering.
  • an organic solvent that does not deteriorate the performance such as a polyamide separation functional layer, may be used in combination.
  • organic solvents include, for example, aliphatic alcohols such as methanol, ethanol, propanol, and butanol; lower alcohols such as methoxymethanol and methoxyethanol. Of course, these may be used alone or as a mixed solvent of two or more.
  • the temperature of the solution is not particularly limited as long as the solution exists as a liquid, but is preferably 10 to 90 ° C. from the viewpoint of preventing deterioration of the polyamide separation functional layer and ease of handling. More preferably, the temperature is ⁇ 60 ° C., and more preferably 10 to 45 ° C.
  • the step of drying the solution after coating the solution on the polyamide separation functional layer is performed, for example, by heating or blowing.
  • the temperature at which the drying treatment is performed is not particularly limited, but is preferably about 20 to 160 ° C, more preferably 40 to 130 ° C, and further preferably 60 to 120 ° C.
  • the drying temperature is 20 ° C. or higher, the time required for drying can be shortened, and good film performance can be obtained by sufficiently drying the solution.
  • the structural change of the film due to heat is suppressed when the temperature is 160 ° C. or less, good film performance can be obtained.
  • a crosslinking method in the case of using polyvinyl alcohol will be given below.
  • a crosslinking method for example, a method of immersing in an acidic polyhydric aldehyde solution after drying treatment (Method A), or an acidic solution containing polyvinyl alcohol and a polyhydric aldehyde is applied on the polyamide separation functional layer and dried by heating.
  • Method B there is a method in which polyvinyl alcohol is cross-linked to the polyamide separation functional layer with a polyvalent aldehyde at the same time as forming the protective layer.
  • the acid may be an inorganic acid or an organic acid, and for example, sulfuric acid, hydrochloric acid and the like are used. Furthermore, there is a method (Method C) in which an aqueous solution containing polyvinyl alcohol and an organic titanium compound or an organic zirconium compound is coated on a polyamide separation functional layer and dried by heating to form a protective layer of crosslinked polyvinyl alcohol. It is done. The method B is more preferable from the viewpoints of economy and ease of operation.
  • the concentration of polyvinyl alcohol in the solution is preferably 0.01 to 1% by weight, more preferably 0.1 to 0.7% by weight.
  • a polyvinyl alcohol concentration in the solution of 0.01% by weight or more is suitable for obtaining the above function as a protective layer.
  • the polyvalent aldehyde concentration is preferably 0.001 to 0.5% by weight, more preferably 0.01 to 0.3% by weight.
  • the acid concentration is in the range of 0.01 to 1 mol / liter, more preferably in the range of 0.01 to 0.5 mol / liter, still more preferably 0.01 to 0.3. It may be in the range of mol / liter.
  • the concentration is 0.01 mol / liter or more, the function of the acid as a catalyst is sufficiently expressed.
  • the acid concentration is extremely high, the crosslinking reaction may be inhibited. However, if the acid concentration is 1 mol / liter or less, the crosslinking reaction is hardly hindered.
  • various conventionally known treatments may be performed in order to improve the salt blocking property, water permeability, oxidation resistance, and the like of the composite semipermeable membrane.
  • the composite semipermeable membrane of the present invention can be suitably used for removing divalent ions.
  • the present invention is applicable to salt removal or mineral adjustment from canned water or seawater, and salt removal or mineral adjustment in the food field.
  • the composite semipermeable membrane of the present invention is suitably used for membrane separation treatment before distillation on raw water (for example, seawater, surface water, etc.) in a method for obtaining fresh water by a distillation method.
  • a distillation method By this membrane separation treatment, it is possible to obtain permeated water that is reduced to such an extent that the scale component does not become a practical problem.
  • Fresh water is obtained by processing the permeated water thus obtained by a distillation method.
  • precipitation of scales such as CaCO 3 , Mg (OH) 2 , and CaSO 4 can be effectively suppressed in the distillation step.
  • Examples of the distillation method in the present invention include a multistage distillation method, a multiple effect method, an evaporation compression method, and the like, and the multistage distillation method is particularly preferable.
  • the multistage distillation method is a preferable method because the thermal energy required to obtain the same amount of fresh water can be greatly reduced as compared with a method in which the entire amount is evaporated in one stage.
  • this composite semipermeable membrane is suitably used for obtaining water to be injected into the oil field from the subsea oil field for the purpose of improving the recovery rate of the crude oil. That is, by using this composite semipermeable membrane for membrane separation treatment of raw water (for example, seawater, surface water, etc.) containing divalent ions (particularly sulfate ions), the divalent ions (particularly sulfate ions) are used. Permeated water can be obtained in which the concentration of is sufficiently reduced to such an extent that it does not become a practical problem. Furthermore, in the permeated water obtained in this way, the concentration of divalent ions (particularly, sulfate ions) is reduced to such an extent that there is no problem in the subsequent steps.
  • the composite semipermeable membrane of the present invention has a cylindrical shape in which a large number of holes are perforated together with a raw water channel material such as a plastic net, a permeate channel material such as tricot, and a film for enhancing pressure resistance as required. It is wound around a water collecting pipe and is preferably used as a spiral composite semipermeable membrane element. Furthermore, a composite semipermeable membrane module in which these elements are connected in series or in parallel and accommodated in a pressure vessel can be obtained.
  • the above-described composite semipermeable membrane, its elements, and modules can be combined with a pump for supplying raw water to them, a device for pretreating the raw water, and the like to constitute a fluid separation device.
  • a separation device By using this separation device, raw water can be separated into permeated water such as drinking water and concentrated water that has not permeated through the membrane, and water suitable for the purpose can be obtained.
  • ⁇ NaCl removal rate> The composite semipermeable membrane was subjected to membrane filtration treatment by supplying evaluation water adjusted to a temperature of 25 ° C., pH 7.5, and NaCl concentration of 500 ppm at an operating pressure of 0.48 MPa.
  • the electric conductivity of the supplied water and the permeated water was measured with an electric conductivity meter manufactured by Toa Denpa Kogyo Co., Ltd. to obtain the respective practical salinities, that is, NaCl concentrations. Based on the NaCl concentration thus obtained and the following equation, the NaCl removal rate was calculated.
  • NaCl removal rate (%) 100 ⁇ ⁇ 1 ⁇ (NaCl concentration in permeated water / NaCl concentration in feed water) ⁇
  • Divalent ion selectivity (MgSO 4 removal rate) / (NaCl removal rate)
  • ⁇ Abundance ratio of piperazine and trimesic acid chloride constituting separation functional layer> After separating the base material from the composite semipermeable membrane to obtain a laminate of the porous support layer and the separation functional layer, the separation layer was obtained by dissolving the porous support layer with dichloromethane. The obtained separation functional layer was hydrolyzed by heating with a strong alkaline heavy aqueous solution, and the hydrolyzed aqueous solution was filtered and subjected to 1 H-NMR measurement. The data obtained by the measurement was analyzed, and the abundance ratio of piperazine and trimesic acid chloride was calculated from the peak area value.
  • the composite semipermeable membrane is washed with ultrapure water, set in a flat sample cell so that the separation functional layer surface of the composite semipermeable membrane is in contact with the monitor particle solution, and an electrophoretic light scattering photometer (ELS) manufactured by Otsuka Electronics Co., Ltd. -8000).
  • ELS electrophoretic light scattering photometer
  • As the monitor particle solution a measurement solution in which polystyrene latex monitor particles were dispersed in a 10 mM NaCl aqueous solution adjusted to pH 6 and pH 9 was used.
  • Thickness of separation functional layer sum of measured thickness / number of samples (Equation 1)
  • Example 1 ⁇ Production of composite semipermeable membrane> (Example 1) A 15% by weight dimethylformamide (DMF) solution of polysulfone was cast at a room temperature (25 ° C.) at a coating thickness of 180 ⁇ m on a non-woven fabric (air permeability 1.0 cc / cm 2 / sec) made of polyester fiber manufactured by a papermaking method. Thereafter, the substrate was immediately immersed in pure water for 5 minutes to form a porous support layer on the substrate, thereby preparing a support film.
  • DMF dimethylformamide
  • the support membrane was immersed for 10 seconds in an aqueous solution in which piperazine was 1.0 wt%, sodium dodecyl diphenyl ether disulfonate 100 ppm, and trisodium phosphate 1.0 wt%, and then from an air nozzle.
  • Example 1 (Examples 2 to 10, Comparative Examples 1 to 3)
  • Example 1 the same method as in Example 1 except that the piperazine concentration, trimesic acid chloride concentration, trisodium phosphate concentration, sodium dodecyl diphenyl ether disulfonate concentration, and the solvent for dissolving trimesic acid chloride were changed to the values shown in Table 1.
  • a composite semipermeable membrane was prepared. Table 1 shows the membrane performance of the obtained composite semipermeable membrane.
  • Example 11 A composite semipermeable membrane was produced in the same manner as in Example 1 except that the solution application temperature of trimesic acid chloride was changed to the value shown in Table 2 in Example 1. Table 2 shows the membrane performance of the obtained composite semipermeable membrane.
  • Example 13 Comparative Example 4
  • the membrane performance was the value shown in Table 2.
  • Example 14 The film obtained in Example 1 contains 0.2% by weight of polyvinyl alcohol (saponification degree 88%, average polymerization degree 500), glutaraldehyde 0.065% by weight, and sulfuric acid 0.04 mol / liter as an acid catalyst.
  • the aqueous solution was applied to the film surface, dried at 65 ° C. for 2 minutes with a hot air dryer, and crosslinked. Thereafter, in order to remove the uncrosslinked product and the acid catalyst, washing is performed with hot water at 70 ° C., and after contact with an aqueous solution containing 10% by weight of isopropyl alcohol for 10 minutes, sufficient washing is performed to obtain a composite semipermeable membrane. It was.
  • Table 3 The evaluation results of this film are shown in Table 3.
  • Example 16 An aqueous solution containing 0.2% by weight of polyvinyl alcohol (saponification degree 88%, average polymerization degree 500) and 0.04% by weight of an organic titanium compound (titanium lactate) was applied to the surface of the film obtained in Example 1. Then, it dried at 40 degreeC with the hot air dryer for 12 hours, and bridge
  • Example 17 A protective layer was formed on the membrane obtained in Example 4 in the same manner as in Example 14 to obtain a composite semipermeable membrane. The evaluation results of this film are shown in Table 3.
  • the electric conductivity of the permeated water and the supplied water was measured with an electric conductivity meter manufactured by Toa Radio Industry Co., Ltd., and the TDS concentration was determined.
  • Ion removal rate (%) 100 ⁇ ⁇ 1- (each ion concentration in permeated water / each ion concentration in feed water) ⁇
  • TDS removal rate (%) 100 ⁇ ⁇ 1 ⁇ (TDS concentration in permeated water / TDS concentration in feed water) ⁇
  • the membrane permeation flux (m 3 / m 2 / d) was expressed by the amount of water per day (cubic meter) per square meter of membrane surface.
  • Table 4 shows the evaluation results in the characteristic evaluation 2 of the composite semipermeable membrane obtained in Example 3.
  • Table 4 shows the evaluation results in the characteristic evaluation 2 of the composite semipermeable membrane obtained in Example 4.
  • Table 4 shows the evaluation results in the characteristic evaluation 2 of the composite semipermeable membrane obtained in Example 17.
  • Table 4 shows that the composite semipermeable membrane of the present invention has a high removal rate of divalent ions such as sulfate ions, calcium ions, and magnesium ions. Therefore, the scale component can be sufficiently removed.

Abstract

The present invention provides a composite semipermeable membrane which is capable of selectively and sufficiently removing a scale component and is also capable of stably obtaining fresh water with high recovery rate. A composite semipermeable membrane of the present invention comprises: a supporting film which comprises a base and a porous supporting layer that is provided on the base; and a polyamide separation function layer that is formed on the porous supporting layer. The polyamide separation function layer is formed of a polyamide that is obtained from an aliphatic polyfunctional amine and a polyfunctional acid halide, and the abundance ratio (molar ratio) thereof satisfies the following relation. 1.2 ≤ number of moles of aliphatic polyfunctional amine/number of moles of polyfunctional acid halide ≤ 1.8

Description

複合半透膜Composite semipermeable membrane
 本発明は、一価イオンと二価イオンの混合溶液から二価イオンを選択的に分離するための複合半透膜に関する。 The present invention relates to a composite semipermeable membrane for selectively separating divalent ions from a mixed solution of monovalent ions and divalent ions.
 一価イオンと二価イオンの混合溶液からどちらかのイオンを選択的に除去することは、多くの技術分野において必要であるか、または望まれている。 It is necessary or desirable in many technical fields to selectively remove either ion from a mixed solution of monovalent ions and divalent ions.
 例えば、海水を淡水化する方法である多段蒸留法では、海水中に含まれるHCO 、SO 2-、Mg2+、Ca2+などのイオン(スケール成分)が加熱されることで濃縮され、CaCO、Mg(OH)、CaSOなどのスケールとなって析出する。スケールは熱交換器の伝熱管に付着するので、淡水化の運転効率を大きく低下させる。この問題を解決するために、つまりスケール対策および運転効率向上方法として、膜による前処理工程が行われる。また、海底油田から原油を回収する技術においては、回収率向上を目的として、油田内に海水を注入し、その圧力で原油を押し出す水注入法が用いられる。 For example, in a multistage distillation method that desalinates seawater, ions (scale components) such as HCO 3 , SO 4 2− , Mg 2+ , and Ca 2+ contained in seawater are concentrated by heating, It is deposited as a scale of CaCO 3 , Mg (OH) 2 , CaSO 4 or the like. Since the scale adheres to the heat exchanger tube of the heat exchanger, the operating efficiency of desalination is greatly reduced. In order to solve this problem, that is, as a measure against scale and a method for improving operation efficiency, a pretreatment process using a film is performed. Moreover, in the technique of recovering crude oil from a subsea oil field, a water injection method is used in which seawater is injected into the oil field and the crude oil is pushed out with the pressure for the purpose of improving the recovery rate.
 しかし、水注入法は、海水中に含まれる硫酸イオンと原油中に含まれるBa2+およびSr2+とによりスケールが発生し、そのスケールが原油回収用の配管を閉塞させるという問題を有している。更に、水注入法は、原油中に存在する硫酸イオン還元菌により、硫化水素が発生することで、原油の品質が低下するという問題も有している。そのため、水注入法による原油回収では、スケール対策および原油品質向上方法として、膜による海水からの硫酸イオン除去が、前処理工程として必要とされている。これらの前処理において、一価イオンと二価イオンの混合溶液から二価イオン(特に、硫酸イオン)だけを選択的に除去することができれば、前処理工程前後での浸透圧差が小さくなるので、海水からの硫酸イオン除去に必要なエネルギーを大幅に減少させることができる。 However, the water injection method has a problem that a scale is generated by sulfate ions contained in seawater and Ba 2+ and Sr 2+ contained in crude oil, and the scale clogs a pipe for recovering crude oil. . Furthermore, the water injection method also has a problem that the quality of crude oil is reduced due to the generation of hydrogen sulfide by sulfate ion-reducing bacteria present in the crude oil. Therefore, in the recovery of crude oil by the water injection method, removal of sulfate ions from seawater by a membrane is required as a pretreatment step as a measure against scale and improvement of crude oil quality. In these pretreatments, if only divalent ions (particularly sulfate ions) can be selectively removed from the mixed solution of monovalent ions and divalent ions, the difference in osmotic pressure before and after the pretreatment step is reduced. The energy required for removing sulfate ions from seawater can be greatly reduced.
 海水中からスケール成分を選択的に除去する膜として、例えば特許文献1及び2に、ピペラジンのジアミン成分、またはピペラジンおよび4,4’-ビピペリジンとのジアミン成分に、多官能芳香族カルボン酸塩化物を反応させて得られるポリアミドからなる複合ナノろ過膜が開示されている。 As a membrane for selectively removing scale components from seawater, for example, in Patent Documents 1 and 2, a polyfunctional aromatic carboxylic acid chloride is added to a diamine component of piperazine or a diamine component of piperazine and 4,4′-bipiperidine. There is disclosed a composite nanofiltration membrane made of polyamide obtained by reacting.
 特許文献3では、ピペラジンとトリメシン酸クロリドを反応させて得られる複合逆浸透膜を用いた一価イオンと二価イオンの分離が開示されている。 Patent Document 3 discloses separation of monovalent ions and divalent ions using a composite reverse osmosis membrane obtained by reacting piperazine and trimesic acid chloride.
 特許文献4及び5では、ピペラジンとトリメシン酸クロリドを反応させて得られる複合半透膜及び複合ナノろ過膜において、製膜時の組成および濃度についての詳細な検討がされている。 In Patent Documents 4 and 5, in the composite semipermeable membrane and the composite nanofiltration membrane obtained by reacting piperazine and trimesic acid chloride, a detailed examination is made on the composition and concentration at the time of film formation.
日本国特開2005-262078号公報Japanese Unexamined Patent Publication No. 2005-262078 日本国特開2007-277298号公報Japanese Unexamined Patent Publication No. 2007-277298 日本国特公平1-38522号公報Japanese Patent Publication No. 1-38522 日本国特開昭62-201606号公報Japanese Unexamined Patent Publication No. Sho 62-201606 日本国特開2010-137192号公報Japanese Unexamined Patent Publication No. 2010-137192
 しかしながら、上記特許文献1及び特許文献2に記載のナノろ過膜および特許文献3に記載の逆浸透膜では、二価イオンの除去性能または選択性が不十分である。
 また、特許文献4及び特許文献5に記載の半透膜及びナノろ過膜では、二価イオンの除去性能は十分であるが、選択性については改善の余地がある。
However, the nanofiltration membrane described in Patent Literature 1 and Patent Literature 2 and the reverse osmosis membrane described in Patent Literature 3 have insufficient divalent ion removal performance or selectivity.
Moreover, although the semipermeable membrane and the nanofiltration membrane described in Patent Literature 4 and Patent Literature 5 have sufficient divalent ion removal performance, there is room for improvement in selectivity.
 本発明の目的は、スケール成分を選択的かつ十分に除去することが可能な複合半透膜を供給することである。 An object of the present invention is to provide a composite semipermeable membrane capable of selectively and sufficiently removing scale components.
 本発明者らは、上記目的を達成すべく鋭意検討を重ねた結果、海水等の原水からスケール成分を選択的かつ十分に除去することができる下記の複合半透膜を見いだし、本発明を完成するに至った。
 すなわち、本発明は下記(1)~(13)の構成をとる。
(1)基材および前記基材上に設けられた多孔性支持層を備える支持膜と、前記多孔性支持層上に形成されたポリアミド分離機能層と、を備える複合半透膜であって、前記ポリアミド分離機能層が脂肪族多官能アミンと多官能酸ハロゲン化物から得られるポリアミドによって形成され、前記脂肪族多官能アミンと前記多官能酸ハロゲン化物の存在比(モル比)が下式の関係にある複合半透膜。
 1.2≦脂肪族多官能アミンのモル数/多官能酸ハロゲン化物のモル数≦1.8
(2)前記存在比が1.3以上1.7以下である、前記(1)に記載の複合半透膜。
(3)前記存在比が1.35以上1.65以下である、前記(2)に記載の複合半透膜。
(4)前記存在比が1.4以上1.6以下である、前記(3)に記載の複合半透膜。
(5)前記ポリアミド分離機能層は第二級アミンを含み、かつ、前記ポリアミド分離機能層のpH6とpH9におけるゼータ電位差が12mV以上である、前記(1)~(4)のいずれか1つに記載の複合半透膜。
(6)前記ポリアミドが界面重縮合によって得られる、前記(1)~(5)のいずれか1つに記載の複合半透膜。
(7)前記脂肪族多官能アミンが2官能である、前記(1)~(6)のいずれか1つに記載の複合半透膜。
(8)前記多官能酸ハロゲン化物が2官能または3官能の酸ハロゲン化物、またはそれらの混合物である、前記(1)~(7)のいずれか1つに記載の複合半透膜。
(9)前記脂肪族多官能アミンがピペラジンであり、前記多官能酸ハロゲン化物がトリメシン酸クロリドである、前記(1)~(8)のいずれか1つに記載の複合半透膜。
(10)前記ポリアミド分離機能層上に直接又は他の層を介して、ポリマー成分を含有する保護層が設けられている、前記(1)~(9)のいずれか1つに記載の複合半透膜。
(11)前記ポリマー成分が親水性ポリマーの架橋体である、前記(10)に記載の複合半透膜。
(12)前記架橋体は、多価アルデヒドを含有する、前記(11)に記載の複合半透膜。
(13)前記架橋体がポリビニルアルコールとグルタルアルデヒドの反応物を含む、前記(12)に記載の複合半透膜。
As a result of intensive studies to achieve the above object, the present inventors have found the following composite semipermeable membrane capable of selectively and sufficiently removing scale components from raw water such as seawater, and completed the present invention. It came to do.
That is, the present invention has the following configurations (1) to (13).
(1) A composite semipermeable membrane comprising a substrate and a support membrane comprising a porous support layer provided on the substrate, and a polyamide separation functional layer formed on the porous support layer, The polyamide separation functional layer is formed of a polyamide obtained from an aliphatic polyfunctional amine and a polyfunctional acid halide, and the abundance ratio (molar ratio) of the aliphatic polyfunctional amine and the polyfunctional acid halide is represented by the following formula: A composite semipermeable membrane.
1.2 ≦ number of moles of aliphatic polyfunctional amine / number of moles of polyfunctional acid halide ≦ 1.8
(2) The composite semipermeable membrane according to (1), wherein the abundance ratio is 1.3 or more and 1.7 or less.
(3) The composite semipermeable membrane according to (2), wherein the abundance ratio is 1.35 or more and 1.65 or less.
(4) The composite semipermeable membrane according to (3), wherein the abundance ratio is 1.4 or more and 1.6 or less.
(5) In any one of (1) to (4), the polyamide separation functional layer contains a secondary amine, and the polyamide separation functional layer has a zeta potential difference of 12 mV or more at pH 6 and pH 9. The composite semipermeable membrane described.
(6) The composite semipermeable membrane according to any one of (1) to (5), wherein the polyamide is obtained by interfacial polycondensation.
(7) The composite semipermeable membrane according to any one of (1) to (6), wherein the aliphatic polyfunctional amine is bifunctional.
(8) The composite semipermeable membrane according to any one of (1) to (7), wherein the polyfunctional acid halide is a bifunctional or trifunctional acid halide, or a mixture thereof.
(9) The composite semipermeable membrane according to any one of (1) to (8), wherein the aliphatic polyfunctional amine is piperazine and the polyfunctional acid halide is trimesic acid chloride.
(10) The composite half according to any one of (1) to (9), wherein a protective layer containing a polymer component is provided directly on the polyamide separation functional layer or via another layer. Permeable membrane.
(11) The composite semipermeable membrane according to (10), wherein the polymer component is a crosslinked polymer of a hydrophilic polymer.
(12) The composite semipermeable membrane according to (11), wherein the crosslinked body contains a polyvalent aldehyde.
(13) The composite semipermeable membrane according to (12), wherein the crosslinked body contains a reaction product of polyvinyl alcohol and glutaraldehyde.
 本発明の複合半透膜によって、海水からスケール成分を選択的かつ十分に除去することができる。そのため、海水等の原水を蒸発法によって淡水化する際にスケールの発生を効果的に防止し、淡水を高回収率でかつ安定的に得ることができる。また、海底油田から水注入法により効率的に原油を回収する際に、スケールの発生、および原油品質の低下を効果的に防止可能な注入水を、高回収率かつ安定的に海水から供給することができる。 The scale component can be selectively and sufficiently removed from seawater by the composite semipermeable membrane of the present invention. Therefore, generation of scale can be effectively prevented when raw water such as seawater is desalinated by an evaporation method, and fresh water can be stably obtained with a high recovery rate. In addition, when recovering crude oil efficiently from the seabed oil field by water injection method, the injection water that can effectively prevent the generation of scale and deterioration of crude oil quality is stably supplied from seawater. be able to.
 1.複合半透膜
 本発明の複合半透膜は、基材および基材上に設けられた多孔性支持層を備える支持膜と、多孔性支持層上に形成されたポリアミド分離機能層とを備える。
1. Composite semipermeable membrane The composite semipermeable membrane of the present invention comprises a substrate and a support membrane comprising a porous support layer provided on the substrate, and a polyamide separation functional layer formed on the porous support layer.
(1-1)ポリアミド分離機能層
 分離機能層は、複合半透膜において溶質の分離機能を担う層である。本発明においては、脂肪族多官能アミンと多官能酸ハロゲン化物との反応によって得られるポリアミドから形成される。
(1-1) Polyamide Separation Functional Layer The separation functional layer is a layer responsible for the solute separation function in the composite semipermeable membrane. In this invention, it forms from the polyamide obtained by reaction of an aliphatic polyfunctional amine and polyfunctional acid halide.
 複合半透膜の1価イオンと2価イオンの選択分離性には、表面荷電および孔径の両方の制御が必要である。表面荷電が中性に近づくほど1価イオンは透過しやすくなる。このとき、分離機能層の孔径が、2価イオンを除去できる程度の大きさに制御されていることで、2価イオンを確実に除去することができ、2価イオンの選択除去性は高くなる。ここで、表面荷電の大きさは、ポリアミド中の官能基(アミノ基、カルボキシ基)の量に依存するため、表面荷電を中性にするためには、アミノ基量およびカルボキシ基量を等しくすればよく、両者が等しくなる量の脂肪族多官能アミンおよび多官能酸ハロゲン化物が存在していることが好ましい。 The selective separation of monovalent ions and divalent ions in the composite semipermeable membrane requires control of both surface charge and pore size. As the surface charge is closer to neutrality, monovalent ions are more easily transmitted. At this time, since the pore size of the separation functional layer is controlled to a size that can remove divalent ions, divalent ions can be removed reliably, and the selective removal of divalent ions is enhanced. . Here, since the magnitude of the surface charge depends on the amount of functional groups (amino group, carboxy group) in the polyamide, in order to make the surface charge neutral, the amount of amino group and the amount of carboxy group should be made equal. It is preferable that an aliphatic polyfunctional amine and a polyfunctional acid halide are present in an amount in which both are equal.
 本発明者らは鋭意検討を行い、分離機能層における脂肪族多官能アミンと多官能酸ハロゲン化物の存在比を精密に制御することにより、複合半透膜の2価イオン除去性の向上および、1価イオンと2価イオンの選択除去性を向上できることを見出した。このとき、表面荷電は中性に近い値となっていると考えられる。また、このとき、ポリアミド中のアミノ基およびカルボキシ基量はほぼ等しくなっており、ポリアミドの網目構造は均一になっていることが考えられる。よって、孔径分布も制御されていると考えられる。 The present inventors have intensively studied, and by precisely controlling the abundance ratio of the aliphatic polyfunctional amine and the polyfunctional acid halide in the separation functional layer, improvement of the divalent ion removability of the composite semipermeable membrane, and It has been found that the selective removal of monovalent ions and divalent ions can be improved. At this time, the surface charge is considered to be a value close to neutrality. At this time, the amounts of amino groups and carboxy groups in the polyamide are almost equal, and the network structure of the polyamide is considered to be uniform. Therefore, it is considered that the pore size distribution is also controlled.
 ポリアミド分離機能層における脂肪族多官能アミンと多官能酸ハロゲン化物の存在比は、支持膜から剥離した分離機能層を13C-NMR測定することや、支持膜から剥離した分離機能層を強アルカリ水溶液で加水分解した試料を用いてH-NMR測定することにより、脂肪族多官能アミンと多官能酸ハロゲン化物の成分をそれぞれ分析し、脂肪族多官能アミン成分を、多官能酸ハロゲン化物の成分で除することにより求めることができる。 The abundance ratio of the aliphatic polyfunctional amine and the polyfunctional acid halide in the polyamide separation functional layer is determined by 13 C-NMR measurement of the separation functional layer peeled from the support film, or the strong separation of the separation functional layer peeled from the support film. The components of the aliphatic polyfunctional amine and the polyfunctional acid halide were analyzed by 1 H-NMR measurement using a sample hydrolyzed with an aqueous solution, and the aliphatic polyfunctional amine component was analyzed for the polyfunctional acid halide. It can be determined by dividing by the component.
 ポリアミド分離機能層における脂肪族多官能アミンと多官能酸ハロゲン化物の存在比(脂肪族多官能アミン/多官能酸ハロゲン化物)は、モル比で、1.2以上であり、好ましくは1.3以上であり、より好ましくは1.35以上であり、1.4以上がさらに好ましい。また、前記存在比は、モル比で、1.8以下であり、好ましくは1.7以下であり、より好ましくは1.65以下であり、1.6以下がさらに好ましい。前記存在比が1.2以上であることにより、膜の負の荷電量を大きくなりすぎない程度に制御できるため、高い1価イオン透過性を得ることができる。また、前記存在比が1.8以下であることにより、膜の正の荷電量を大きくなり過ぎない程度に制御できるため、十分な2価イオン除去性を得ることができる。 The abundance ratio of the aliphatic polyfunctional amine to the polyfunctional acid halide (aliphatic polyfunctional amine / polyfunctional acid halide) in the polyamide separation functional layer is 1.2 or more, preferably 1.3. Or more, more preferably 1.35 or more, and even more preferably 1.4 or more. The abundance ratio is 1.8 or less, preferably 1.7 or less, more preferably 1.65 or less, and even more preferably 1.6 or less in terms of molar ratio. When the abundance ratio is 1.2 or more, the negative charge amount of the membrane can be controlled so as not to become too large, so that high monovalent ion permeability can be obtained. Further, when the abundance ratio is 1.8 or less, the positive charge amount of the membrane can be controlled so as not to become too large, so that sufficient divalent ion removal property can be obtained.
 ポリアミド分離機能層おける多官能脂肪族アミンと多官能酸ハロゲン化物の存在比を制御する方法としては、界面重縮合時の多官能脂肪族アミン濃度と多官能酸ハロゲン化物濃度との比率を調整する方法、多官能酸ハロゲン化物を溶解する溶媒を変える方法、界面重縮合場を界面活性剤によって乱す方法、界面重縮合途中で反応停止させる方法、界面重縮合時に反応を阻害するような添加剤を加える方法、界面重縮合時に外部から熱を加えることで反応を活性化する方法などがある。 To control the ratio of polyfunctional aliphatic amine and polyfunctional acid halide in the polyamide separation functional layer, adjust the ratio of polyfunctional aliphatic amine concentration to polyfunctional acid halide concentration during interfacial polycondensation. Methods, methods of changing the solvent in which the polyfunctional acid halide is dissolved, methods of disturbing the interfacial polycondensation field with surfactants, methods of stopping the reaction during interfacial polycondensation, additives that inhibit the reaction during interfacial polycondensation And a method of activating the reaction by applying heat from the outside during interfacial polycondensation.
 本発明のポリアミド分離機能層は、pH6とpH9におけるゼータ電位差(絶対値)が12mV以上であることが好ましい。分離機能層のpH6とpH9におけるゼータ電位差(絶対値)は、2価イオン除去性能および2価イオン選択性に関係しており、ゼータ電位差が12mV以上であると、複合半透膜の2価イオン除去性能および2価イオン選択性は高くなる。これは、pH6~pH9でアミノ基およびカルボキシ基の解離度が大きく変化するためで、電位差が大きいとアミノ基およびカルボキシ基の量が多いと考えられる。アミノ基およびカルボキシ基の量が多いと、静電反発が大きくなるため、2価イオン除去性能および2価イオン選択性が高くなると考えられる。  The polyamide separation functional layer of the present invention preferably has a zeta potential difference (absolute value) at pH 6 and pH 9 of 12 mV or more. The zeta potential difference (absolute value) at pH 6 and pH 9 of the separation functional layer is related to divalent ion removal performance and divalent ion selectivity. When the zeta potential difference is 12 mV or more, the divalent ion of the composite semipermeable membrane Removal performance and divalent ion selectivity are increased. This is because the degree of dissociation of the amino group and carboxy group varies greatly between pH 6 and pH 9, and it is considered that the amount of amino group and carboxy group is large when the potential difference is large. When the amount of amino group and carboxy group is large, electrostatic repulsion increases, so that it is considered that the divalent ion removal performance and the divalent ion selectivity are increased. *
 なお、ゼータ電位は、電気泳動光散乱光度計により測定できる。例えば、平板試料用セルに、複合半透膜の分離機能層面がモニター粒子溶液に接するようにセットして測定する。モニター粒子はポリスチレンラテックスをヒドロキシプロピルセルロースでコーティングしたもので、10mM-NaCl溶液に分散させてモニター粒子溶液とする。モニター粒子溶液のpHを調整しておくことで所定のpHでのゼータ電位を測定することができる。電気泳動光散乱光度計は、大塚電子株式会社製ELS-8000などが使用できる。 The zeta potential can be measured with an electrophoretic light scattering photometer. For example, the measurement is performed by setting in a flat sample cell so that the separation functional layer surface of the composite semipermeable membrane is in contact with the monitor particle solution. The monitor particles are obtained by coating polystyrene latex with hydroxypropylcellulose, and are dispersed in a 10 mM NaCl solution to form a monitor particle solution. By adjusting the pH of the monitor particle solution, the zeta potential at a predetermined pH can be measured. As the electrophoretic light scattering photometer, ELS-8000 manufactured by Otsuka Electronics Co., Ltd. can be used.
 脂肪族多官能アミンとは、一分子中に2個以上のアミノ基を有する脂肪族アミンであり、例えば、エチレンジアミン、N-メチルエチレンジアミン、N,N’-ジメチルエチレンジアミン、ジエチレントリアミン、ピペラジン、2,5-ジメチルピペラジン、2-メチルピペラジン、2,6-ジメチルピペラジン、2,3,5-トリメチルピペラジン、2,5-ジエチルピペラジン、2,3,5-トリエチルピペラジン、2-n-プロピルピペラジン、2,5-ジ-n-ブチルピペラジン、ヘキサヒドロ-1,3,5-トリアジン、1,3,5-トリメチルヘキサヒドロ-1,3,5-トリアジン、1,3,5-トリエチルヘキサヒドロ-1,3,5-トリアジン、1,3,5-トリ-n-ブチルヘキサヒドロ-1,3,5-トリアジンなどが例示される。性能発現の安定性から、ピペラジン系アミンおよびその誘導体を用いることが好ましく、中でも、ピペラジン(以下、「Pip」と称することがある。)を用いるとさらに好ましい。これらの脂肪族多官能アミンは、単独で用いても、2種類以上を混合して用いてもよい。 The aliphatic polyfunctional amine is an aliphatic amine having two or more amino groups in one molecule. For example, ethylenediamine, N-methylethylenediamine, N, N′-dimethylethylenediamine, diethylenetriamine, piperazine, 2,5 -Dimethylpiperazine, 2-methylpiperazine, 2,6-dimethylpiperazine, 2,3,5-trimethylpiperazine, 2,5-diethylpiperazine, 2,3,5-triethylpiperazine, 2-n-propylpiperazine, 2, 5-di-n-butylpiperazine, hexahydro-1,3,5-triazine, 1,3,5-trimethylhexahydro-1,3,5-triazine, 1,3,5-triethylhexahydro-1,3 , 5-triazine, 1,3,5-tri-n-butylhexahydro-1,3,5-triazine There are exemplified. In view of the stability of performance, it is preferable to use piperazine-based amines and derivatives thereof, and among them, piperazine (hereinafter sometimes referred to as “Pip”) is more preferable. These aliphatic polyfunctional amines may be used alone or in combination of two or more.
 多官能酸ハロゲン化物とは、一分子中に少なくとも2個のハロゲン化カルボニル基を有する酸ハロゲン化物をいう。
 例えば、3官能酸ハロゲン化物としては、トリメシン酸クロリド、1,3,5-シクロヘキサントリカルボン酸トリクロリド、1,2,4-シクロブタントリカルボン酸トリクロリドなどを挙げることができる。
 2官能酸ハロゲン化物としては、ビフェニルジカルボン酸ジクロリド、アゾベンゼンジカルボン酸ジクロリド、テレフタル酸クロリド、イソフタル酸クロリド、ナフタレンジカルボン酸クロリドなどの芳香族2官能酸ハロゲン化物;アジポイルクロリド、セバコイルクロリドなどの脂肪族2官能酸ハロゲン化物;シクロペンタンジカルボン酸ジクロリド、シクロヘキサンジカルボン酸ジクロリド、テトラヒドロフランジカルボン酸ジクロリドなどの脂環式2官能酸ハロゲン化物を挙げることができる。
The polyfunctional acid halide refers to an acid halide having at least two carbonyl halide groups in one molecule.
For example, examples of the trifunctional acid halide include trimesic acid chloride, 1,3,5-cyclohexanetricarboxylic acid trichloride, 1,2,4-cyclobutanetricarboxylic acid trichloride, and the like.
Examples of the bifunctional acid halide include aromatic bifunctional acid halides such as biphenyl dicarboxylic acid dichloride, azobenzene dicarboxylic acid dichloride, terephthalic acid chloride, isophthalic acid chloride, and naphthalene dicarboxylic acid chloride; adipoyl chloride, sebacoyl chloride, and the like. Aliphatic bifunctional acid halides; cycloaliphatic difunctional acid halides such as cyclopentane dicarboxylic acid dichloride, cyclohexane dicarboxylic acid dichloride, and tetrahydrofuran dicarboxylic acid dichloride can be exemplified.
 脂肪族多官能アミンとの反応性を考慮すると、多官能酸ハロゲン化物は多官能酸塩化物であることが好ましい。また、膜の選択分離性、耐熱性を考慮すると、多官能酸塩化物は一分子中に2~4個の塩化カルボニル基を有する多官能芳香族酸塩化物であることがより好ましい。中でも、入手の容易性や取り扱いのしやすさの観点から、トリメシン酸クロリド(以下、「TMC」と称することがある。)を用いるとさらに好ましい。これらの多官能酸ハロゲン化物は、単独で用いても、2種以上を同時に用いてもよい。 Considering the reactivity with the aliphatic polyfunctional amine, the polyfunctional acid halide is preferably a polyfunctional acid chloride. In view of the selective separation and heat resistance of the membrane, the polyfunctional acid chloride is more preferably a polyfunctional aromatic acid chloride having 2 to 4 carbonyl chloride groups in one molecule. Among these, from the viewpoint of easy availability and ease of handling, it is more preferable to use trimesic acid chloride (hereinafter sometimes referred to as “TMC”). These polyfunctional acid halides may be used alone or in combination of two or more.
 分離機能層を構成するポリアミドは、上記の脂肪族多官能アミン及び多官能酸ハロゲン化物との界面重縮合によって得られる架橋ポリアミドであることが、製造の容易性の観点から好ましい。 The polyamide constituting the separation functional layer is preferably a crosslinked polyamide obtained by interfacial polycondensation with the above-mentioned aliphatic polyfunctional amine and polyfunctional acid halide from the viewpoint of ease of production.
 ポリアミド分離機能層の厚みは40nm以下であることが好ましい。厚みが40nm以下であれば、2価イオン除去性能を高めつつ、十分な透水性能が得られる。  The thickness of the polyamide separation functional layer is preferably 40 nm or less. If the thickness is 40 nm or less, sufficient water permeability can be obtained while enhancing divalent ion removal performance. *
 ポリアミド分離機能層の厚みは、透過型電子顕微鏡、TEMトモグラフィー、集束イオンビーム/走査型電子顕微鏡(FIB/SEM)等の観察手法を用いて分析できる。例えば、TEMトモグラフィーで観察するのであれば、複合ナノろ過膜を水溶性高分子で処理してポリアミド分離機能層の形状を保持したのち、四酸化オスミウム等で染色し観察を行う。  The thickness of the polyamide separation functional layer can be analyzed using an observation technique such as a transmission electron microscope, TEM tomography, or a focused ion beam / scanning electron microscope (FIB / SEM). For example, when observing by TEM tomography, the composite nanofiltration membrane is treated with a water-soluble polymer to maintain the shape of the polyamide separation functional layer, and then stained with osmium tetroxide or the like for observation. *
 なお、本明細書において、特に付記しない限り、層又は膜の厚みとは、それぞれ平均値を意味する。ここで平均値とは相加平均値を表す。
 層又は膜の厚みは、層又は膜の断面観察で厚み方向に直交する方向(層又は膜の面方向、水平方向)に20μm間隔で測定した20点の厚みの平均値を算出することで求められる。
In the present specification, unless otherwise specified, the thickness of a layer or film means an average value. Here, the average value represents an arithmetic average value.
The thickness of the layer or film is obtained by calculating the average value of the thicknesses of 20 points measured at intervals of 20 μm in the direction orthogonal to the thickness direction in the cross-sectional observation of the layer or film (the surface direction of the layer or film or the horizontal direction). It is done.
(1-2)支持膜
 支持膜は、基材と前記基材上に設けられる多孔性支持層とを備えるものであり、実質的にイオン等の分離性能を有さず、分離機能層に強度を与えることができる。
(1-2) Support membrane The support membrane includes a base material and a porous support layer provided on the base material, and has substantially no separation performance of ions or the like, and has a strength in the separation functional layer. Can be given.
 支持膜の厚みは、複合半透膜の強度および複合半透膜を膜エレメントにしたときの充填密度に影響を与える。十分な機械的強度および充填密度を得るためには、支持膜の厚さは50~300μmの範囲内にあることが好ましく、より好ましくは100~250μmの範囲内である。 The thickness of the support membrane affects the strength of the composite semipermeable membrane and the packing density when the composite semipermeable membrane is used as a membrane element. In order to obtain sufficient mechanical strength and packing density, the thickness of the support membrane is preferably in the range of 50 to 300 μm, more preferably in the range of 100 to 250 μm.
(1-2-1)多孔性支持層
 本発明における多孔性支持層は、下記素材を主成分として含有することが好ましい。多孔性支持層の素材としては、ポリスルホン、ポリエーテルスルホン、ポリアミド、ポリエステル、セルロース系ポリマー、ビニルポリマー、ポリフェニレンスルフィド、ポリフェニレンスルフィドスルホン、ポリフェニレンスルホン、あるいはポリフェニレンオキシドなどのホモポリマー又はコポリマーを単独で若しくはブレンドして使用することができる。
(1-2-1) Porous Support Layer The porous support layer in the present invention preferably contains the following materials as main components. As a material for the porous support layer, polysulfone, polyethersulfone, polyamide, polyester, cellulosic polymer, vinyl polymer, polyphenylene sulfide, polyphenylene sulfide sulfone, polyphenylene sulfone, homopolymer or copolymer such as polyphenylene oxide, alone or in a blend Can be used.
 ここでセルロース系ポリマーとしては酢酸セルロース、硝酸セルロースなどが使用され、ビニルポリマーとしてはポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリアクリロニトリルなどが使用できる。
 中でもポリスルホン、ポリアミド、ポリエステル、酢酸セルロース、硝酸セルロース、ポリ塩化ビニル、ポリアクリロニトリル、ポリフェニレンスルフィド、ポリフェニレンスルフィドスルホン、ポリフェニレンスルホンなどのホモポリマーまたはこれらのコポリマーが好ましい。
 より好ましくは酢酸セルロース、ポリスルホン、ポリフェニレンスルフィドスルホン、またはポリフェニレンスルホンが挙げられる。
Here, cellulose acetate, cellulose nitrate and the like are used as the cellulose polymer, and polyethylene, polypropylene, polyvinyl chloride, polyacrylonitrile and the like can be used as the vinyl polymer.
Among them, homopolymers such as polysulfone, polyamide, polyester, cellulose acetate, cellulose nitrate, polyvinyl chloride, polyacrylonitrile, polyphenylene sulfide, polyphenylene sulfide sulfone, polyphenylene sulfone, and copolymers thereof are preferable.
More preferred is cellulose acetate, polysulfone, polyphenylene sulfide sulfone, or polyphenylene sulfone.
 これらの素材の中では化学的、機械的、熱的に安定性が高く、さらに成型が容易であることからポリスルホンが特に好ましく使用できる。
 具体的には、多孔性支持層の主成分となる素材として、次の化学式に示す繰り返し単位からなるポリスルホンを用いると、孔径を制御しやすく、寸法安定性が高いため好ましい。
Among these materials, polysulfone is particularly preferably used because of its high chemical, mechanical and thermal stability and easy molding.
Specifically, it is preferable to use polysulfone composed of repeating units represented by the following chemical formula as the main component of the porous support layer because the pore diameter can be easily controlled and the dimensional stability is high.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 本発明で使用されるポリスルホンは、ゲルパーミエーションクロマトグラフィー(GPC)でN-メチルピロリドンを展開溶媒に、ポリスチレンを標準物質として測定した場合の重量平均分子量(Mw)が、好ましくは10,000~200,000、より好ましくは15,000~100,000の範囲内にあるものである。
 このMwが10,000以上であることで、多孔性支持層として、好ましい機械的強度および耐熱性を得ることができる。また、Mwが200,000以下であることで、溶液の粘度が適切な範囲となり、良好な成形性を実現することができる。
The polysulfone used in the present invention preferably has a weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) using N-methylpyrrolidone as a developing solvent and polystyrene as a standard substance. Those within the range of 200,000, more preferably 15,000 to 100,000.
When the Mw is 10,000 or more, preferable mechanical strength and heat resistance can be obtained as the porous support layer. Moreover, when Mw is 200,000 or less, the viscosity of the solution falls within an appropriate range, and good moldability can be realized.
 多孔性支持層における孔のサイズや分布は特に限定されないが、例えば、均一で微細な孔、あるいは分離機能層が形成される側の表面からもう一方の面即ち基材側の面まで徐々に大きな微細孔となり、かつ、分離機能層が形成される側の表面における微細孔の大きさが0.1nm以上100nm以下であるような孔が好ましい。 The size and distribution of the pores in the porous support layer are not particularly limited. For example, the pore size is gradually increased from the surface on the side where the uniform and fine pores or the separation functional layer is formed to the other surface, that is, the surface on the substrate side. A hole that is a micropore and that has a size of 0.1 to 100 nm on the surface on the side where the separation functional layer is formed is preferable.
 多孔性支持層は、例えば、上記ポリスルホンを溶解させたN,N-ジメチルホルムアミド(以下、「DMF」と称することもある。)溶液を、基材上に一定の厚さに注型し、それを水中で湿式凝固させることにより得られる。この方法によって得られた支持膜は、その表面の大部分が直径1~30nmの微細な孔を有することができる。 The porous support layer is prepared by, for example, casting an N, N-dimethylformamide (hereinafter also referred to as “DMF”) solution in which the above polysulfone is dissolved to a certain thickness on a substrate. Can be obtained by wet coagulation in water. Most of the surface of the support membrane obtained by this method can have fine pores having a diameter of 1 to 30 nm.
 また、多孔性支持層の厚みは、得られる複合半透膜の強度およびそれをエレメントにしたときの充填密度に影響を与える。十分な機械的強度および充填密度を得るためには、厚みが10~200μmの範囲内にあることが好ましく、より好ましくは20~150μmの範囲内である。 Also, the thickness of the porous support layer affects the strength of the resulting composite semipermeable membrane and the packing density when it is used as an element. In order to obtain sufficient mechanical strength and packing density, the thickness is preferably in the range of 10 to 200 μm, more preferably in the range of 20 to 150 μm.
 多孔性支持層の形態は、走査型電子顕微鏡や透過型電子顕微鏡、原子間顕微鏡により観察できる。例えば走査型電子顕微鏡で観察するのであれば、基材から多孔性支持層を剥がした後、これを凍結割断法で切断して断面観察のサンプルとする。このサンプルに白金または白金-パラジウムまたは四塩化ルテニウム、好ましくは四塩化ルテニウムを薄くコーティングして3~15kVの加速電圧で高分解能電界放射型走査電子顕微鏡(UHR-FE-SEM)によって観察する。高分解能電界放射型走査電子顕微鏡は、日立製S-900型電子顕微鏡などが使用できる。 The morphology of the porous support layer can be observed with a scanning electron microscope, a transmission electron microscope, or an atomic microscope. For example, when observing with a scanning electron microscope, after peeling off the porous support layer from the substrate, it is cut by the freeze cleaving method to obtain a sample for cross-sectional observation. The sample is thinly coated with platinum or platinum-palladium or ruthenium tetrachloride, preferably ruthenium tetrachloride, and observed with a high resolution field emission scanning electron microscope (UHR-FE-SEM) at an acceleration voltage of 3 to 15 kV. As the high-resolution field emission scanning electron microscope, Hitachi S-900 electron microscope can be used.
(1-2-2)基材
 支持膜を構成する基材としては、例えば、ポリエステル系重合体、ポリアミド系重合体、ポリオレフィン系重合体、あるいはこれらの混合物や共重合体等が挙げられる。中でも、機械的強度、耐熱性、耐水性等により優れた支持膜を得られることから、ポリエステル系重合体であることが好ましい。
(1-2-2) Substrate Examples of the substrate constituting the support membrane include a polyester polymer, a polyamide polymer, a polyolefin polymer, or a mixture or copolymer thereof. Among these, a polyester polymer is preferable because an excellent support film can be obtained due to mechanical strength, heat resistance, water resistance, and the like.
 本発明で用いられるポリエステル系重合体とは、酸成分とアルコール成分からなるポリエステルであり、本発明における基材の主成分であることが好ましい。なお、主成分とは、基材を構成する重合体中、70重量%以上、好ましくは90重量%以上含有することをいう。 The polyester polymer used in the present invention is a polyester composed of an acid component and an alcohol component, and is preferably the main component of the substrate in the present invention. In addition, a main component means 70 weight% or more in the polymer which comprises a base material, Preferably it contains 90 weight% or more.
 酸成分としては、テレフタル酸、イソフタル酸およびフタル酸などの芳香族カルボン酸;アジピン酸やセバシン酸などの脂肪族ジカルボン酸;およびシクロヘキサンカルボン酸等の脂環族ジカルボン酸などを用いることができる。
 また、アルコール成分としては、エチレングリコール、ジエチレングリコールおよびポリエチレングリコールなどを用いることができる。
Examples of the acid component include aromatic carboxylic acids such as terephthalic acid, isophthalic acid, and phthalic acid; aliphatic dicarboxylic acids such as adipic acid and sebacic acid; and alicyclic dicarboxylic acids such as cyclohexanecarboxylic acid.
Further, as the alcohol component, ethylene glycol, diethylene glycol, polyethylene glycol, or the like can be used.
 ポリエステル系重合体の例としては、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリトリメチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ポリ乳酸樹脂およびポリブチレンサクシネート樹脂等が挙げられ、またこれらの樹脂の共重合体も挙げられる。中でも製造面でのコストに特に優れている点からポリエチレンテレフタレートのホモポリマーまたはこれらのコポリマーが好ましく用いられる。 Examples of the polyester polymer include polyethylene terephthalate resin, polybutylene terephthalate resin, polytrimethylene terephthalate resin, polyethylene naphthalate resin, polylactic acid resin, and polybutylene succinate resin. Examples include coalescence. Among them, a polyethylene terephthalate homopolymer or a copolymer thereof is preferably used because it is particularly excellent in production cost.
 本発明における基材は、前記重合体等からなる布帛状のものである。前記布帛には、強度、凹凸形成能、流体透過性の点で繊維状基材を用いることが好ましい。
 基材としては、長繊維不織布及び短繊維不織布のいずれも好ましく用いることができる。
 長繊維不織布又は短繊維不織布は、成形性、強度の点で、多孔性支持層とは反対側の表層における繊維が、多孔性支持層側の表層の繊維よりも縦配向であることが好ましい。縦配向については後述する。
The base material in the present invention is a cloth-like material made of the polymer or the like. It is preferable to use a fibrous base material for the fabric in terms of strength, unevenness forming ability, and fluid permeability.
As a base material, both a long fiber nonwoven fabric and a short fiber nonwoven fabric can be used preferably.
In the long-fiber non-woven fabric or the short-fiber non-woven fabric, the fibers in the surface layer on the side opposite to the porous support layer are preferably longitudinally oriented as compared with the fibers in the surface layer on the porous support layer side in terms of moldability and strength. The longitudinal alignment will be described later.
 そのような構造を取ることにより、強度を保つことで複合半透膜の膜破れ等を防ぐ高い効果が実現されるだけでなく、分離機能層に凹凸を付与する際の、多孔性支持層と基材とを含む積層体としての成形性も向上し、分離機能層表面の凹凸形状が安定するので好ましい。 By taking such a structure, not only a high effect of preventing the membrane breakage of the composite semipermeable membrane by maintaining the strength is realized, but also the porous support layer when imparting irregularities to the separation functional layer, Formability as a laminate including a substrate is also improved, and the uneven shape on the surface of the separation functional layer is stabilized, which is preferable.
 より具体的に、前記長繊維不織布又は短繊維不織布の、多孔性支持層とは反対側の表層における繊維配向度は、0°~25°であることが好ましい。また、多孔性支持層とは反対側の表層における繊維配向度と、多孔性支持層側の表層における繊維配向度との配向度差が10°~90°であることが好ましい。 More specifically, the fiber orientation degree in the surface layer of the long fiber nonwoven fabric or short fiber nonwoven fabric opposite to the porous support layer is preferably 0 ° to 25 °. Further, it is preferable that the difference in the degree of orientation between the fiber orientation degree on the surface layer opposite to the porous support layer and the fiber orientation degree on the surface layer on the porous support layer side is 10 ° to 90 °.
 複合半透膜の製造工程やエレメントの製造工程においては加熱する工程が含まれるが、加熱により多孔性支持層または分離機能層が収縮する現象が起きる。特に連続製膜において張力が付与されていない幅方向において顕著である。 In the manufacturing process of the composite semipermeable membrane and the manufacturing process of the element, a heating process is included, but a phenomenon occurs in which the porous support layer or the separation functional layer contracts due to the heating. This is particularly noticeable in the width direction where no tension is applied in continuous film formation.
 収縮することにより寸法安定性等に問題が生じるため、基材としては熱寸法変化率が小さいものが望まれる。不織布において多孔性支持層とは反対側の表層における繊維配向度と多孔性支持層側表層における繊維配向度との差が10°~90°であると、熱による幅方向の変化を抑制することもでき、好ましい。 Since shrinkage causes problems in dimensional stability and the like, a substrate having a low thermal dimensional change rate is desired. In the nonwoven fabric, when the difference between the fiber orientation degree on the surface layer opposite to the porous support layer and the fiber orientation degree on the porous support layer side surface layer is 10 ° to 90 °, the change in the width direction due to heat is suppressed. Can also be preferred.
 本明細書において「繊維配向度」とは、多孔性支持層を構成する不織布基材の繊維の向きを示す指標である。連続製膜を行う際の製膜方向、すなわち不織布基材の長手方向を0°とし、前記製膜方向と直角方向、すなわち不織布基材の幅方向を90°としたときの、不織布基材を構成する繊維の平均の角度のことを言う。よって、繊維配向度が0°に近いほど縦配向であり、90°に近いほど横配向であることを示す。 In the present specification, the “fiber orientation degree” is an index indicating the fiber orientation of the nonwoven fabric base material constituting the porous support layer. A nonwoven fabric base material when the film forming direction for continuous film formation, that is, the longitudinal direction of the nonwoven fabric base material is 0 °, and the direction perpendicular to the film forming direction, that is, the width direction of the nonwoven fabric base material is 90 °. This refers to the average angle of the constituent fibers. Accordingly, the closer to 0 ° the fiber orientation, the longer the orientation, and the closer to 90 °, the lateral orientation.
 繊維配向度は以下のように測定する。
 不織布からランダムに小片サンプル10個を採取し、該サンプルの表面を走査型電子顕微鏡で100~1000倍で撮影する。撮影像の中で、各サンプルから繊維を10本ずつ選び、計100本の繊維について、不織布の長手方向(縦方向、製膜方向)を0°とし、不織布の幅方向(横方向)を90°としたときの角度を測定する。測定した角度の平均値において、小数点以下第一位を四捨五入して得られる値が繊維配向度である。
The fiber orientation degree is measured as follows.
Ten small sample samples are randomly collected from the nonwoven fabric, and the surface of the sample is photographed at 100 to 1000 times with a scanning electron microscope. In the photographed image, 10 fibers are selected from each sample, and for a total of 100 fibers, the longitudinal direction (longitudinal direction, film forming direction) of the nonwoven fabric is 0 °, and the width direction (lateral direction) of the nonwoven fabric is 90 degrees. Measure the angle at °. In the average value of the measured angles, the value obtained by rounding off the first decimal place is the fiber orientation degree.
 基材の通気度は2.0cc/cm/sec以上であることが好ましい。通気度がこの範囲であると、複合半透膜の透水性能が高くなる。これは、多孔性支持膜を形成する工程で、基材上に高分子重合体を流延し、凝固浴に浸漬した際に、基材側からの非溶媒置換速度が速くなることで多孔性支持層の内部構造が変化し、その後の分離機能層を形成する工程においてモノマーの保持量や拡散速度に影響を及ぼすためと考えられる。 The air permeability of the substrate is preferably 2.0 cc / cm 2 / sec or more. When the air permeability is within this range, the water permeability of the composite semipermeable membrane is enhanced. This is a process of forming a porous support membrane. When a polymer is cast on a base material and immersed in a coagulation bath, the non-solvent replacement rate from the base material side becomes faster. This is presumably because the internal structure of the support layer changes and affects the amount of monomer retained and the diffusion rate in the subsequent step of forming the separation functional layer.
 なお、通気度はJIS L1096(2010)に基づき、フラジール形試験機によって測定できる。例えば、200mm×200mmの大きさに基材を切り出し、サンプルとする。このサンプルをフラジール形試験機に取り付け、傾斜形気圧計が125Paの圧力になるように吸込みファン及び空気孔を調整し、このときの垂直形気圧計の示す圧力と使用した空気孔の種類から基材を通過する空気量、すなわち通気度を算出することができる。フラジール形試験機は、カトーテック株式会社製KES-F8-AP1などが使用できる。
 また、基材の厚みは10~200μmの範囲内にあることが機械的強度及び充填密度の点から好ましく、より好ましくは30~120μmの範囲内である。
The air permeability can be measured by a Frazier type tester based on JIS L1096 (2010). For example, a base material is cut out to a size of 200 mm × 200 mm and used as a sample. This sample is attached to the Frazier type tester, and the suction fan and air hole are adjusted so that the inclined barometer has a pressure of 125 Pa. Based on the pressure indicated by the vertical barometer at this time and the type of air hole used, The amount of air passing through the material, that is, the air permeability can be calculated. As the Frazier type tester, KES-F8-AP1 manufactured by Kato Tech Co., Ltd. can be used.
The thickness of the substrate is preferably in the range of 10 to 200 μm from the viewpoint of mechanical strength and packing density, and more preferably in the range of 30 to 120 μm.
 本発明に使用する支持膜は、ミリポア社製”ミリポアフィルターVSWP”(商品名)や、東洋濾紙社製”ウルトラフィルターUK10”(商品名)のような各種市販材料から選択することもできるし、”オフィス・オブ・セイリーン・ウォーター・リサーチ・アンド・ディベロップメント・プログレス・レポート”No.359(1968)に記載された方法などに従って製造することもできる。 The support membrane used in the present invention can be selected from various commercially available materials such as “Millipore Filter VSWP” (trade name) manufactured by Millipore, and “Ultra Filter UK10” (trade name) manufactured by Toyo Roshi Kaisha, “Office of Saleen Water Research and Development Progress Report” No. 359 (1968).
 なお、基材の厚みおよび複合半透膜の厚みは、デジタルシックネスゲージによって簡易的に測定することができる。また、分離機能層の厚みは支持膜と比較して非常に薄いので、複合半透膜の厚みを支持膜の厚みとみなすことができる。従って、複合半透膜の厚みをデジタルシックネスゲージで測定し、複合半透膜の厚みから基材の厚みを引くことで、多孔性支持層の厚みを算出することができる。デジタルシックネスゲージとしては、株式会社尾崎製作所製”PEACOCK(登録商標)”などが使用できる。デジタルシックネスゲージを用いる場合は、20箇所について厚みを測定して平均値を算出する。
 なお、基材の厚みもしくは複合半透膜の厚みをシックネスゲージによって測定することが困難な場合、走査型電子顕微鏡で測定してもよい。
In addition, the thickness of a base material and the thickness of a composite semipermeable membrane can be easily measured with a digital thickness gauge. Moreover, since the thickness of the separation functional layer is very thin compared with the support membrane, the thickness of the composite semipermeable membrane can be regarded as the thickness of the support membrane. Therefore, the thickness of the porous support layer can be calculated by measuring the thickness of the composite semipermeable membrane with a digital thickness gauge and subtracting the thickness of the substrate from the thickness of the composite semipermeable membrane. As the digital thickness gauge, “PEACOCK (registered trademark)” manufactured by Ozaki Mfg. Co., Ltd. can be used. When a digital thickness gauge is used, the average value is calculated by measuring the thickness at 20 locations.
In addition, when it is difficult to measure the thickness of the substrate or the thickness of the composite semipermeable membrane with a thickness gauge, the thickness may be measured with a scanning electron microscope.
(1-3)保護層
 本願発明者らは鋭意検討を行った結果、多官能脂肪族アミンと多官能酸ハロゲン化物とから構成されるポリアミド分離機能層上に直接又は他の層を介して設けられたポリマー成分を含有する保護層により、複合半透膜の2価イオン(特に、硫酸イオン)除去性能が向上すると共に、1価イオンと2価イオンとの選択分離性が向上することを見出した。
(1-3) Protective layer As a result of intensive studies, the inventors of the present application have provided it directly or via another layer on a polyamide separation functional layer composed of a polyfunctional aliphatic amine and a polyfunctional acid halide. It has been found that the protective layer containing the polymer component improves the ability to remove divalent ions (particularly sulfate ions) of the composite semipermeable membrane and improves the selective separation between monovalent ions and divalent ions. It was.
 まず、保護層によって、膜荷電を中性化することができるので、イオンと膜との静電相互作用を抑制することができる。その結果、膜における1価イオンの除去性を低減させることができる。さらに、保護層に含まれるポリマー成分が、2価イオンよりも大きな孔を塞ぐことができる。その結果、2価イオン(特に、硫酸イオン)の除去性を十分に高めることができると考えられる。 First, since the membrane charge can be neutralized by the protective layer, electrostatic interaction between ions and the membrane can be suppressed. As a result, the removability of monovalent ions in the film can be reduced. Furthermore, the polymer component contained in the protective layer can block pores larger than divalent ions. As a result, it is considered that the removal of divalent ions (particularly sulfate ions) can be sufficiently enhanced.
 ポリマー成分は、ポリアミド分離機能層及び多孔性支持膜を溶解せず、また水処理操作時に溶出しないポリマーであれば特に制限されず、例えば、ポリビニルアルコール、ポリビニルピロール、ポリビニルピロリドン、ヒドロキシプロピルセルロース、ポリエチレングリコール、キトサン、及びケン化ポリエチレン-酢酸ビニル共重合体などが挙げられる。 The polymer component is not particularly limited as long as it does not dissolve the polyamide separation functional layer and the porous support membrane and does not elute during the water treatment operation. For example, polyvinyl alcohol, polyvinyl pyrrole, polyvinyl pyrrolidone, hydroxypropyl cellulose, polyethylene Examples thereof include glycol, chitosan, and saponified polyethylene-vinyl acetate copolymer.
 これらのうち、ポリビニルアルコールは、経済性、入手の容易さ、取り扱い易さの点から好ましい。特に、ポリビニルアルコールのケン化度が85%以上であることが好ましく、90%以上であることがより好ましい。ケン化度が85%以上であることで、分子鎖間水素結合の影響により、熱水(80℃程度)には可溶であるが常温付近(25℃程度)では水不溶性となり、水処理操作時におけるポリビニルアルコールの溶出を防止することができる。また、ポリビニルアルコールの重合度は、50~50,000の範囲内にあることが好ましい。重合度が50以上であることで水への溶解性が低下し、水処理操作時におけるポリビニルアルコールの溶出を防止することができる。一方、重合度が50000以下であることにより、ポリビニルアルコール水溶液の粘度を好適に保つことができ、ポリビニルアルコール水溶液の塗布厚みを薄くすることができる。その結果、保護層としての上述の機能と膜の透水性を両立することができる。 Of these, polyvinyl alcohol is preferable from the viewpoint of economy, availability, and ease of handling. In particular, the saponification degree of polyvinyl alcohol is preferably 85% or more, and more preferably 90% or more. When the degree of saponification is 85% or more, it is soluble in hot water (about 80 ° C) due to the influence of intermolecular chain hydrogen bonding, but becomes water-insoluble near room temperature (about 25 ° C), and water treatment operation The elution of polyvinyl alcohol at the time can be prevented. The degree of polymerization of polyvinyl alcohol is preferably in the range of 50 to 50,000. When the degree of polymerization is 50 or more, the solubility in water decreases, and elution of polyvinyl alcohol during water treatment can be prevented. On the other hand, when the degree of polymerization is 50000 or less, the viscosity of the aqueous polyvinyl alcohol solution can be suitably maintained, and the coating thickness of the aqueous polyvinyl alcohol solution can be reduced. As a result, the above-described function as the protective layer and the water permeability of the membrane can be compatible.
 また、保護層中のポリマーを前記ポリアミド分離機能層に架橋させることにより、2価イオンの除去性を未架橋に比べ高めることができるほか、水処理操作時における保護層中のポリマーの溶出を高度に防止することができる。なお、架橋させるポリマーとしては取り扱い易さや透水性低下抑制の点から親水性ポリマーが好ましく、特にポリビニルアルコールが好ましく、ケン化度85%以上のポリビニルアルコールがより好ましい。ケン化度によりポリビニルアルコールの反応性が変化するので、ケン化度85%以上であることで架橋による効果が高められる。 In addition, the polymer in the protective layer can be cross-linked to the polyamide separation functional layer, so that the ability to remove divalent ions can be enhanced compared to uncrosslinked, and the elution of the polymer in the protective layer during water treatment operation can be enhanced. Can be prevented. In addition, as a polymer to bridge | crosslink, a hydrophilic polymer is preferable from the point of the ease of handling and a water-permeable fall suppression, Especially polyvinyl alcohol is preferable and polyvinyl alcohol with a saponification degree of 85% or more is more preferable. Since the reactivity of polyvinyl alcohol changes depending on the degree of saponification, the effect of crosslinking is enhanced when the degree of saponification is 85% or more.
 ポリビニルアルコールを架橋させる方法としては、多価アルデヒド、エポキシ化合物、多価カルボン酸、有機チタン化合物、有機ジルコニウム化合物などの有機架橋剤、ホウ素化合物などの無機架橋剤を用いることが好ましく、経済性、入手の容易さ、取り扱い易さの点から、多価アルデヒドがより好ましく、反応性の容易さからグルタルアルデヒドが特に好ましい。 As a method of crosslinking polyvinyl alcohol, it is preferable to use an organic crosslinking agent such as a polyhydric aldehyde, an epoxy compound, a polyvalent carboxylic acid, an organic titanium compound, or an organic zirconium compound, or an inorganic crosslinking agent such as a boron compound. From the viewpoint of easy availability and ease of handling, a polyvalent aldehyde is more preferable, and glutaraldehyde is particularly preferable from the viewpoint of ease of reactivity.
 保護層の厚さは特に制限されないが、通常0.01μm以上であり、好ましくは0.05μm以上である。保護層の厚さが薄すぎると水処理操作時にポリマー成分が溶出やすくなって膜性能が低下しやすくなる。また、保護層の厚さは通常5μm以下であり、好ましくは3μm以下であり、より好ましくは2μm以下である。一方、保護層の厚さが厚すぎると透過流束が低下しやすくなる。 The thickness of the protective layer is not particularly limited, but is usually 0.01 μm or more, preferably 0.05 μm or more. If the thickness of the protective layer is too thin, the polymer component tends to be eluted during the water treatment operation, and the membrane performance tends to deteriorate. Moreover, the thickness of a protective layer is 5 micrometers or less normally, Preferably it is 3 micrometers or less, More preferably, it is 2 micrometers or less. On the other hand, if the thickness of the protective layer is too thick, the permeation flux tends to decrease.
2.複合半透膜の製造方法
 次に、上記複合半透膜の製造方法について説明する。製造方法は、支持膜の形成工程および分離機能層の形成工程を含む。
2. Next, a method for manufacturing the composite semipermeable membrane will be described. The manufacturing method includes a support film forming step and a separation functional layer forming step.
(2-1)支持膜の形成工程
 支持膜の形成工程は、基材に高分子溶液を塗布する工程および溶液を塗布した前記基材を凝固浴に浸漬させて高分子を凝固させる工程を含む。
(2-1) Support film forming step The support film forming step includes a step of applying a polymer solution to a substrate and a step of immersing the substrate coated with the solution in a coagulation bath to coagulate the polymer. .
 基材に高分子溶液を塗布する工程において、高分子溶液は、多孔性支持層の成分である高分子を、その高分子の良溶媒に溶解して調製する。 In the step of applying the polymer solution to the substrate, the polymer solution is prepared by dissolving the polymer that is a component of the porous support layer in a good solvent for the polymer.
 高分子溶液塗布時の高分子溶液の温度は、高分子としてポリスルホンを用いる場合、10℃~60℃の範囲が好ましい。高分子溶液の温度が、この範囲内であれば、高分子が析出することがなく、高分子溶液が基材の繊維間にまで充分含浸したのち固化される。その結果、アンカー効果により多孔性支持層が基材に強固に接合し、良好な支持膜を得ることができる。なお、高分子溶液の好ましい温度範囲は、用いる高分子の種類や、所望の溶液粘度などによって適宜調整することができる。 The temperature of the polymer solution during application of the polymer solution is preferably in the range of 10 ° C. to 60 ° C. when polysulfone is used as the polymer. If the temperature of the polymer solution is within this range, the polymer does not precipitate, and the polymer solution is sufficiently impregnated between the fibers of the base material and then solidified. As a result, the porous support layer is firmly bonded to the substrate by the anchor effect, and a good support film can be obtained. The preferred temperature range of the polymer solution can be adjusted as appropriate depending on the type of polymer used, the desired solution viscosity, and the like.
 基材上に高分子溶液を塗布した後、凝固浴に浸漬させるまでの時間は、0.1~5秒間の範囲であることが好ましい。凝固浴に浸漬するまでの時間がこの範囲であれば、高分子を含む有機溶媒溶液が基材の繊維間にまで充分含浸したのち固化される。なお、凝固浴に浸漬するまでの時間の好ましい範囲は、用いる高分子溶液の種類や、所望の溶液粘度などによって適宜調整することができる。 The time from application of the polymer solution on the substrate to immersion in the coagulation bath is preferably in the range of 0.1 to 5 seconds. If the time until dipping in the coagulation bath is within this range, the organic solvent solution containing the polymer is sufficiently impregnated between the fibers of the base material and then solidified. In addition, the preferable range of time until it immerses in a coagulation bath can be suitably adjusted with the kind of polymer solution to be used, desired solution viscosity, etc.
 凝固浴としては、通常水が使われるが、多孔性支持層の成分である高分子を溶解しないものであればよい。凝固浴の組成によって得られる支持膜の膜形態が変化し、それによって得られる複合半透膜も変化する。凝固浴の温度は、5℃~100℃が好ましい。さらに好ましくは10℃~40℃である。凝固浴の温度が上限以下であれば、熱運動による凝固浴面の振動を抑えることができ、膜形成後の膜表面の平滑性を保持できる。また温度が下限以上であれば凝固速度が維持できるため、製膜性を向上できる。 As the coagulation bath, water is usually used, but any solid can be used as long as it does not dissolve the polymer that is a component of the porous support layer. The membrane form of the support membrane obtained by the composition of the coagulation bath changes, and the resulting composite semipermeable membrane also changes. The temperature of the coagulation bath is preferably 5 ° C to 100 ° C. More preferably, it is 10 ° C to 40 ° C. If the temperature of the coagulation bath is lower than the upper limit, vibration of the coagulation bath surface due to thermal motion can be suppressed, and the smoothness of the film surface after film formation can be maintained. Further, if the temperature is equal to or higher than the lower limit, the solidification rate can be maintained, so that the film forming property can be improved.
 次に、このようにして得られた支持膜を、膜中に残存する溶媒を除去するために熱水洗浄する。このときの熱水の温度は40℃~100℃が好ましく、さらに好ましくは60℃~95℃である。洗浄温度が上限以下であれば、支持膜の収縮度が大きくなり過ぎず、透水性能の低下を防ぐことができる。また、洗浄温度が下限以上であれば洗浄効果が十分となる。 Next, the support membrane thus obtained is washed with hot water in order to remove the solvent remaining in the membrane. The temperature of the hot water at this time is preferably 40 ° C. to 100 ° C., more preferably 60 ° C. to 95 ° C. If the washing temperature is lower than the upper limit, the shrinkage degree of the support membrane does not become too large, and deterioration of water permeability can be prevented. Moreover, if the cleaning temperature is equal to or higher than the lower limit, the cleaning effect is sufficient.
(2-2)分離機能層の形成工程
 次に、複合半透膜を構成するポリアミド分離機能層の形成工程の一例として、界面重縮合を行うポリアミドの形成を挙げて説明する。ポリアミド分離機能層の形成工程では、脂肪族多官能アミンを含有する水溶液と、多官能酸ハロゲン化物を含有する有機溶媒溶液とを用い、支持膜の表面で界面重縮合を行うことにより、ポリアミド分離機能層を形成する。
(2-2) Formation Process of Separation Function Layer Next, as an example of the formation process of the polyamide separation function layer constituting the composite semipermeable membrane, formation of polyamide that performs interfacial polycondensation will be described. In the process of forming the polyamide separation functional layer, polyamide separation is performed by performing interfacial polycondensation on the surface of the support film using an aqueous solution containing an aliphatic polyfunctional amine and an organic solvent solution containing a polyfunctional acid halide. A functional layer is formed.
 脂肪族多官能アミン水溶液における脂肪族多官能アミンの濃度は1.0重量%以上8.0重量%以下であることが好ましい。脂肪族多官能アミンの濃度が1.0重量%以上であれば均一な分離機能層が形成され、十分な2価イオン除去性能が得られる。また、8.0重量%以下であれば分離機能層の厚みが厚くなり過ぎず、十分な1価イオン透過性および透水性が得られる。 The concentration of the aliphatic polyfunctional amine in the aliphatic polyfunctional amine aqueous solution is preferably 1.0% by weight or more and 8.0% by weight or less. When the concentration of the aliphatic polyfunctional amine is 1.0% by weight or more, a uniform separation function layer is formed, and sufficient divalent ion removal performance can be obtained. Moreover, if it is 8.0 weight% or less, the thickness of the separation functional layer will not be too thick, and sufficient monovalent ion permeability and water permeability can be obtained.
 多官能酸ハロゲン化物を溶解する有機溶媒としては、水と非混和性のものであって、支持膜を破壊しないものであり、かつ、架橋ポリアミドの生成反応を阻害しない、溶解性パラメーター(SP値)が15.2(MPa)1/2以上、かつ、logPが3.2以上の有機溶媒を用いる。SP値が15.2(MPa)1/2以上、かつ、logPが3.2以上であることで、界面重縮合時の脂肪族多官能アミンの分配、拡散が最適化され、官能基量を増加することができる。代表例としては、オクタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、テトラデカン、ヘプタデカン、ヘキサデカン、シクロオクタン、エチルシクロヘキサン、1-オクテン、1-デセンなどの単体あるいはこれらの混合物が好ましく用いられ、中でも取り扱いや性能発現の安定性からノナン、デカン、ウンデカン、ドデカンが好ましい。 As an organic solvent for dissolving the polyfunctional acid halide, a solubility parameter (SP value) that is immiscible with water, does not destroy the support membrane, and does not inhibit the formation reaction of the crosslinked polyamide. ) Is 15.2 (MPa) 1/2 or more, and an organic solvent having a log P of 3.2 or more is used. When the SP value is 15.2 (MPa) 1/2 or more and the log P is 3.2 or more, the distribution and diffusion of the aliphatic polyfunctional amine at the time of interfacial polycondensation are optimized, and the amount of functional groups is reduced. Can be increased. As typical examples, octane, nonane, decane, undecane, dodecane, tridecane, tetradecane, heptadecane, hexadecane, cyclooctane, ethylcyclohexane, 1-octene, 1-decene, or a mixture of these is preferably used. And nonane, decane, undecane, and dodecane are preferable from the viewpoint of stability of performance expression.
 水と非混和性の有機溶媒溶液中の多官能酸ハロゲン化物濃度は、0.01重量%以上5.0重量%以下の範囲内であると好ましく、0.1重量%以上3.0重量%以下の範囲内であるとより好ましく、0.2重量%以上1.0重量%以下の範囲内であるとさらに好ましい。多官能酸ハロゲン化物濃度が0.01重量%以上であることで十分な反応速度が得られ、また、5.0重量%以下であることで副反応の発生を抑制することができる。 The concentration of the polyfunctional acid halide in the water-immiscible organic solvent solution is preferably in the range of 0.01 wt% to 5.0 wt%, preferably 0.1 wt% to 3.0 wt%. It is more preferable that it is in the following range, and it is more preferable that it is in the range of 0.2 wt% or more and 1.0 wt% or less. When the polyfunctional acid halide concentration is 0.01% by weight or more, a sufficient reaction rate can be obtained, and when it is 5.0% by weight or less, the occurrence of side reactions can be suppressed.
 そして脂肪族多官能アミンとしてピペラジンを、多官能酸ハロゲン化物としてトリメシン酸クロリドを含有している場合、ピペラジン濃度/トリメシン酸クロリド濃度が5.0以上30.0以下であることが好ましく、10.0以上30.0以下であることがより好ましい。5.0以上30.0以下の範囲内であると、形成されたポリアミド中のピペラジン(Pip)とトリメシン酸クロリド(TMC)の存在比(モル比)としてPip/TMC≧1.2を得ることができ、高い2価イオン選択性が得られる。 When piperazine is contained as the aliphatic polyfunctional amine and trimesic acid chloride is contained as the polyfunctional acid halide, the piperazine concentration / trimesic acid chloride concentration is preferably 5.0 or more and 30.0 or less. More preferably, it is 0 or more and 30.0 or less. Pip / TMC ≧ 1.2 is obtained as the abundance ratio (molar ratio) of piperazine (Pip) and trimesic acid chloride (TMC) in the formed polyamide within the range of 5.0 to 30.0. And high divalent ion selectivity can be obtained.
 脂肪族多官能アミンを含有する水溶液には、界面活性剤が含まれていてもよい。例えば、ドデシルベンゼンスルホン酸ナトリウム、ドデシル硫酸ナトリウム、ドデシルジフェニルエーテルジスルホン酸ナトリウム、スチレンビス(ナフタレンスルホン酸ナトリウム)、ポリオキシエチレンアルキルエーテル硫酸エステルナトリウムなどが挙げられる。界面活性剤が含まれることで、分離機能層と多孔性支持層との接着性を高める効果や、界面重縮合場を乱すことでポリアミド中の官能基量、特にアミノ基量が増加する効果を得られる。このとき、脂肪族多官能アミンとしてピペラジンを、多官能酸ハロゲン化物としてトリメシン酸クロリドを含有している場合は、ポリアミド中のPip/TMCの値を1.5にさらに近づけることができ、高い2価イオン選択性が得られる。 The aqueous solution containing the aliphatic polyfunctional amine may contain a surfactant. Examples thereof include sodium dodecylbenzenesulfonate, sodium dodecylsulfate, sodium dodecyldiphenyl ether disulfonate, styrene bis (sodium naphthalenesulfonate), sodium polyoxyethylene alkyl ether sulfate, and the like. By including a surfactant, the effect of increasing the adhesion between the separation functional layer and the porous support layer, and the effect of increasing the amount of functional groups in the polyamide, particularly the amount of amino groups, by disturbing the interfacial polycondensation field can get. At this time, when piperazine is contained as the aliphatic polyfunctional amine and trimesic acid chloride is contained as the polyfunctional acid halide, the value of Pip / TMC in the polyamide can be made closer to 1.5. Valent ion selectivity is obtained.
 脂肪族多官能アミンを含有する水溶液には、アルコールが含まれていてもよい。例えば、エタノール、1-プロパノール、2-プロパノール、ブタノールなどが挙げられる。アルコールが含まれることで、界面重縮合場を乱し、ポリアミド中の官能基量、特にアミノ基量が増加する効果を得られる。 The aqueous solution containing the aliphatic polyfunctional amine may contain alcohol. For example, ethanol, 1-propanol, 2-propanol, butanol and the like can be mentioned. By including alcohol, the interfacial polycondensation field is disturbed, and the effect of increasing the amount of functional groups in the polyamide, particularly the amount of amino groups, can be obtained.
 脂肪族多官能アミンを含有する水溶液には、アルカリ性化合物が含まれていてもよい。例えば、水酸化ナトリウム、リン酸三ナトリウム、トリエチルアミンなどが挙げられる。アルカリ性化合物が含まれることで、界面重縮合反応にて発生するハロゲン化水素を除去し、脂肪族多官能アミンの反応性低下を抑制することができ、高い2価イオン選択性が得られる。 The aqueous solution containing the aliphatic polyfunctional amine may contain an alkaline compound. Examples thereof include sodium hydroxide, trisodium phosphate, triethylamine and the like. By including an alkaline compound, hydrogen halide generated in the interfacial polycondensation reaction can be removed, and a decrease in the reactivity of the aliphatic polyfunctional amine can be suppressed, and high divalent ion selectivity can be obtained.
 脂肪族多官能アミンを含有する水溶液や、多官能酸ハロゲン化物を含有する有機溶媒溶液には、それぞれ、必要に応じて、アシル化触媒や極性溶媒、酸化防止剤等の化合物が含まれていてもよい。 An aqueous solution containing an aliphatic polyfunctional amine and an organic solvent solution containing a polyfunctional acid halide each contain compounds such as an acylation catalyst, a polar solvent, and an antioxidant as necessary. Also good.
 界面重縮合を支持膜上で行うために、まず、脂肪族多官能アミンを含有する水溶液で支持膜表面を被覆する。脂肪族多官能アミンを含有する水溶液で支持膜表面を被覆する方法としては、支持膜の表面がこの水溶液によって均一にかつ連続的に被覆されればよく、公知の塗布手段、例えば、水溶液を支持膜表面にコーティングする方法、支持膜を水溶液に浸漬する方法等で行えばよい。支持膜と脂肪族多官能アミンを含有する水溶液との接触時間は、5秒以上10分以下の範囲内であることが好ましく、10秒以上2分以下の範囲内であるとさらに好ましい。 In order to perform interfacial polycondensation on the support membrane, the support membrane surface is first coated with an aqueous solution containing an aliphatic polyfunctional amine. As a method of coating the surface of the support membrane with an aqueous solution containing an aliphatic polyfunctional amine, it is sufficient that the surface of the support membrane is uniformly and continuously coated with this aqueous solution, and a known coating means, for example, an aqueous solution is supported. What is necessary is just to perform by the method of coating on the surface of a membrane, the method of immersing a support membrane in aqueous solution, etc. The contact time between the support membrane and the aqueous solution containing the aliphatic polyfunctional amine is preferably in the range of 5 seconds to 10 minutes, and more preferably in the range of 10 seconds to 2 minutes.
 次いで、過剰に塗布された水溶液を液切り工程により除去することが好ましい。液切りの方法としては、例えば膜面を垂直方向に保持して自然流下させる方法やエアーを吹き付けて除去する方法等がある。液切り後、膜面を乾燥させ、水溶液の水の全部あるいは一部を除去してもよい。 Next, it is preferable to remove the excessively applied aqueous solution by a liquid draining step. As a method of draining, there are, for example, a method of holding the film surface in a vertical direction and letting it flow down naturally, a method of removing it by blowing air, and the like. After draining, the membrane surface may be dried to remove all or part of the water in the aqueous solution.
 その後、脂肪族多官能アミンを含有する水溶液で被覆した支持膜に、前述の多官能酸ハロゲン化物を含有する有機溶媒溶液を塗布し、界面重縮合により架橋ポリアミドの分離機能層を形成させる。界面重縮合を実施する時間は、0.1秒以上3分以下が好ましく、0.1秒以上1分以下であるとより好ましい。 Thereafter, an organic solvent solution containing the above-mentioned polyfunctional acid halide is applied to a support film coated with an aqueous solution containing an aliphatic polyfunctional amine, and a separation functional layer of crosslinked polyamide is formed by interfacial polycondensation. The time for performing the interfacial polycondensation is preferably from 0.1 second to 3 minutes, and more preferably from 0.1 second to 1 minute.
 前述の多官能酸ハロゲン化物を含有する有機溶媒溶液の塗布温度は、10℃以下が好ましい。塗布温度が10℃以下であれば、分離機能層の厚みが薄くなり、透水性が高くなる。 The coating temperature of the organic solvent solution containing the aforementioned polyfunctional acid halide is preferably 10 ° C. or lower. When the coating temperature is 10 ° C. or lower, the separation functional layer becomes thin and the water permeability becomes high.
 次に、反応後の有機溶媒溶液を液切り工程により除去することが好ましい。有機溶媒の除去は、例えば、膜を垂直方向に保持して過剰の有機溶媒を自然流下して除去する方法や送風機で風を吹き付けることで有機溶媒を乾燥除去する方法、水とエアーの混合流体(2流体)で過剰の有機溶媒を除去する方法等を用いることができる。 Next, it is preferable to remove the organic solvent solution after the reaction by a liquid draining step. The organic solvent can be removed by, for example, a method in which the membrane is held in a vertical direction to remove excess organic solvent by flowing down, a method in which the organic solvent is dried by blowing air with a blower, or a mixed fluid of water and air. A method of removing excess organic solvent with (2 fluids) can be used.
 上述の方法により得られた複合半透膜は、さらに、25℃~90℃の範囲内で1分間~60分間熱水で洗浄処理する工程を付加することで、複合半透膜の溶質阻止性能や透水性能をより一層向上させることができる。 The composite semipermeable membrane obtained by the above-described method is further added with a process of washing with hot water for 1 minute to 60 minutes within the range of 25 ° C to 90 ° C, so that the solute blocking performance of the composite semipermeable membrane is added. And water permeability can be further improved.
(2-3)保護層の形成工程
 次に、保護層の形成工程を説明する。保護層の形成工程では、分離機能層上に直接又は他の層を介して、ポリマー成分を含有する保護層を形成する。
(2-3) Protection Layer Formation Step Next, the protection layer formation step will be described. In the protective layer forming step, a protective layer containing a polymer component is formed on the separation functional layer directly or via another layer.
 保護層の形成工程は、具体的には、ポリマー成分を含有する溶液をポリアミド分離機能層上に直接又は他の層(例えば、親水性樹脂を含む親水性層など)を介して塗工するステップ、およびその後に溶液を乾燥させるステップを備える。 Specifically, the protective layer forming step is a step in which a solution containing a polymer component is applied directly on the polyamide separation functional layer or via another layer (for example, a hydrophilic layer containing a hydrophilic resin). And subsequently drying the solution.
 塗工方法としては、例えば、噴霧、塗布、シャワーなどが挙げられる。溶媒としては、水の他、ポリアミド分離機能層等の性能を低下させない有機溶媒を併用してもよい。そのような有機溶媒としては、例えば、メタノール、エタノール、プロパノール、及びブタノールなどの脂肪族アルコール;メトキシメタノール及びメトキシエタノールなどの低級アルコールが挙げられる。もちろん、これらは単独で用いても2種以上の混合溶媒として用いても構わない。 Examples of the coating method include spraying, coating, and showering. As the solvent, in addition to water, an organic solvent that does not deteriorate the performance, such as a polyamide separation functional layer, may be used in combination. Such organic solvents include, for example, aliphatic alcohols such as methanol, ethanol, propanol, and butanol; lower alcohols such as methoxymethanol and methoxyethanol. Of course, these may be used alone or as a mixed solvent of two or more.
 溶液の温度は、該溶液が液体として存在する温度範囲であれば特に制限されないが、ポリアミド分離機能層の劣化防止の観点、及び取り扱いの容易さ等から10~90℃であることが好ましく、10~60℃であることがより好ましく、10~45℃であることがさらに好ましい。 The temperature of the solution is not particularly limited as long as the solution exists as a liquid, but is preferably 10 to 90 ° C. from the viewpoint of preventing deterioration of the polyamide separation functional layer and ease of handling. More preferably, the temperature is ˜60 ° C., and more preferably 10 to 45 ° C.
 前記溶液をポリアミド分離機能層上に塗工した後、溶液を乾燥させるステップは、例えば加熱または送風等により実行される。乾燥処理を行う際の温度は特に制限されないが、20~160℃程度であることが好ましく、40~130℃であることがより好ましく、60~120℃であることがさらに好ましい。乾燥温度が20℃以上であることで、乾燥にかかる時間が短縮できると共に、溶液を充分に乾燥させることで、良好な膜性能を得ることができる。一方、温度が160℃以下であることで、熱による膜の構造変化が抑制されるので、良好な膜性能が得られる。 The step of drying the solution after coating the solution on the polyamide separation functional layer is performed, for example, by heating or blowing. The temperature at which the drying treatment is performed is not particularly limited, but is preferably about 20 to 160 ° C, more preferably 40 to 130 ° C, and further preferably 60 to 120 ° C. When the drying temperature is 20 ° C. or higher, the time required for drying can be shortened, and good film performance can be obtained by sufficiently drying the solution. On the other hand, since the structural change of the film due to heat is suppressed when the temperature is 160 ° C. or less, good film performance can be obtained.
 前記ポリマー成分を架橋する方法として、以下にポリビニルアルコールを用いる場合の架橋方法を挙げる。架橋方法としては、例えば、乾燥処理後に酸性の多価アルデヒド溶液中に浸漬する方法(方法A)、また、ポリビニルアルコール及び多価アルデヒドを含有する酸性溶液をポリアミド分離機能層上に塗布し加熱乾燥して保護層を形成すると同時に、多価アルデヒドによってポリビニルアルコールをポリアミド分離機能層に架橋させる方法(方法B)が挙げられる。酸としては、無機酸でも有機酸でも構わないが、例えば、硫酸、塩酸等が使用される。更には、ポリビニルアルコール、および有機チタン系化合物、または有機ジルコニウム化合物を含有する水溶液をポリアミド分離機能層上に塗布し加熱乾燥して、架橋ポリビニルアルコールによる保護層を形成する方法(方法C)が挙げられる。経済性、操作性の容易さ等の点から方法Bがより好ましい。 As a method for crosslinking the polymer component, a crosslinking method in the case of using polyvinyl alcohol will be given below. As a crosslinking method, for example, a method of immersing in an acidic polyhydric aldehyde solution after drying treatment (Method A), or an acidic solution containing polyvinyl alcohol and a polyhydric aldehyde is applied on the polyamide separation functional layer and dried by heating. Thus, there is a method (Method B) in which polyvinyl alcohol is cross-linked to the polyamide separation functional layer with a polyvalent aldehyde at the same time as forming the protective layer. The acid may be an inorganic acid or an organic acid, and for example, sulfuric acid, hydrochloric acid and the like are used. Furthermore, there is a method (Method C) in which an aqueous solution containing polyvinyl alcohol and an organic titanium compound or an organic zirconium compound is coated on a polyamide separation functional layer and dried by heating to form a protective layer of crosslinked polyvinyl alcohol. It is done. The method B is more preferable from the viewpoints of economy and ease of operation.
 前記方法Bを用いる場合、溶液中のポリビニルアルコール濃度は、0.01~1重量%であることが好ましく、0.1~0.7重量%がより好ましい。溶液中のポリビニルアルコール濃度が0.01重量%以上であることは、保護層としての上述の機能を得るために好適である。また、溶液中のポリビニルアルコール濃度が1重量%以下であることは、保護層としての上述の機能と膜の透水性を両立する上で好適である。 When using the method B, the concentration of polyvinyl alcohol in the solution is preferably 0.01 to 1% by weight, more preferably 0.1 to 0.7% by weight. A polyvinyl alcohol concentration in the solution of 0.01% by weight or more is suitable for obtaining the above function as a protective layer. Moreover, it is suitable for the polyvinyl alcohol concentration in a solution to be 1 weight% or less in order to make the above-mentioned function as a protective layer and the water permeability of a film compatible.
 前記方法Bを用いる場合、多価アルデヒド濃度は、0.001~0.5重量%であることが好ましく、より好ましくは0.01~0.3重量%である。
 前記方法Bを用いる場合、酸濃度は、0.01~1モル/リットルの範囲内、より好ましくは0.01~0.5モル/リットルの範囲内、さらに好ましくは0.01~0.3モル/リットルの範囲内とするとよい。濃度が0.01モル/リットル以上であることで、触媒としての酸の機能が十分に発現される。また、酸濃度が極端に高いと架橋反応を阻害することがあるが、酸濃度が1モル/リットル以下であれば、架橋反応を妨げにくい。
When Method B is used, the polyvalent aldehyde concentration is preferably 0.001 to 0.5% by weight, more preferably 0.01 to 0.3% by weight.
When the method B is used, the acid concentration is in the range of 0.01 to 1 mol / liter, more preferably in the range of 0.01 to 0.5 mol / liter, still more preferably 0.01 to 0.3. It may be in the range of mol / liter. When the concentration is 0.01 mol / liter or more, the function of the acid as a catalyst is sufficiently expressed. In addition, if the acid concentration is extremely high, the crosslinking reaction may be inhibited. However, if the acid concentration is 1 mol / liter or less, the crosslinking reaction is hardly hindered.
 また、複合半透膜の塩阻止性、透水性、及び耐酸化剤性等を向上させるために、従来公知の各種処理を施してもよい。 In addition, various conventionally known treatments may be performed in order to improve the salt blocking property, water permeability, oxidation resistance, and the like of the composite semipermeable membrane.
3.複合半透膜の利用
 本発明の複合半透膜は、二価イオンの除去に好適に用いることができる。例えば、カン水若しくは海水からの塩分除去またはミネラル調整、および食品分野での塩分除去またはミネラル調整などに適用可能である。
3. Use of Composite Semipermeable Membrane The composite semipermeable membrane of the present invention can be suitably used for removing divalent ions. For example, the present invention is applicable to salt removal or mineral adjustment from canned water or seawater, and salt removal or mineral adjustment in the food field.
 より具体的には、本発明の複合半透膜は、蒸留法により淡水を得る方法において、原水(例えば、海水、地表水など)に対する蒸留前の膜分離処理に好適に用いられる。この膜分離処理によって、スケール成分が実用上問題とならない程度に低減された透過水を得ることができる。こうして得られる透過水を蒸留法により処理することで、淡水が得られる。このように、蒸留に用いられる水におけるスケール成分の濃度を低減することで、蒸留工程においてCaCO、Mg(OH)、CaSOなどのスケールの析出を効果的に抑制することができる。 More specifically, the composite semipermeable membrane of the present invention is suitably used for membrane separation treatment before distillation on raw water (for example, seawater, surface water, etc.) in a method for obtaining fresh water by a distillation method. By this membrane separation treatment, it is possible to obtain permeated water that is reduced to such an extent that the scale component does not become a practical problem. Fresh water is obtained by processing the permeated water thus obtained by a distillation method. Thus, by reducing the concentration of the scale component in the water used for distillation, precipitation of scales such as CaCO 3 , Mg (OH) 2 , and CaSO 4 can be effectively suppressed in the distillation step.
 本発明における蒸留法としては、多段蒸留法、多重効用法、蒸発圧縮法等が挙げられるが、特に多段蒸留法が好ましい。多段蒸留法は、1段で全量を蒸発させる方式と比較して、同一量の淡水を得るのに必要な熱エネルギーを大幅に減少させることができるため好ましい方法である。かかる多段蒸発法の条件等の詳細は、“「造水技術ハンドブック」、2004年11月25日、造水技術ハンドブック編集企画委員会編、財団法人造水促進センター発行、122~124頁”等に記載されており、それらの公知技術を適宜採用することができる。 Examples of the distillation method in the present invention include a multistage distillation method, a multiple effect method, an evaporation compression method, and the like, and the multistage distillation method is particularly preferable. The multistage distillation method is a preferable method because the thermal energy required to obtain the same amount of fresh water can be greatly reduced as compared with a method in which the entire amount is evaporated in one stage. For details on the conditions of the multistage evaporation method, etc., ““ Freshing Technology Handbook ”, November 25, 2004, edited by the Freshwater Technology Handbook Editorial Planning Committee, issued by the Fresh Water Promotion Center, pages 122-124, etc. These known techniques can be employed as appropriate.
 また、この複合半透膜は、海底油田から原油の回収率向上を目的に油田内に注入する水を得るために、好適に用いられる。すなわち、2価イオン(特に、硫酸イオン)を含有する原水(例えば、海水、地表水など)の膜分離処理工程にこの複合半透膜を用いることで、前記2価イオン(特に、硫酸イオン)の濃度が実用上問題とならない程度に十分に低減された透過水を得ることができる。さらに、こうして得られる透過水では、その後の工程でも問題とならない程度に、2価イオン(特に、硫酸イオン)の濃度が低減されている。つまり、油田内に透過水を注入した際に、(1)原油中に含まれるBa2+またはSr2+と原水中に含まれる硫酸イオンとによりスケールが発生し、原油回収用の配管が閉塞すること;更に、(2)原油中に存在する硫酸イオン還元菌により硫化水素が発生し、原油品質が低下すること;を効果的に抑制することができる。また、一価イオンと二価イオンの混合溶液から二価イオン(特に、硫酸イオン)だけを選択的に分離することができるため、膜分離処理前後での浸透圧差が小さくなり、海水からの硫酸イオン除去に必要なエネルギーを大幅に減少させることができる。 Moreover, this composite semipermeable membrane is suitably used for obtaining water to be injected into the oil field from the subsea oil field for the purpose of improving the recovery rate of the crude oil. That is, by using this composite semipermeable membrane for membrane separation treatment of raw water (for example, seawater, surface water, etc.) containing divalent ions (particularly sulfate ions), the divalent ions (particularly sulfate ions) are used. Permeated water can be obtained in which the concentration of is sufficiently reduced to such an extent that it does not become a practical problem. Furthermore, in the permeated water obtained in this way, the concentration of divalent ions (particularly, sulfate ions) is reduced to such an extent that there is no problem in the subsequent steps. That is, when permeated water is injected into the oil field, (1) scale is generated by Ba 2+ or Sr 2+ contained in the crude oil and sulfate ions contained in the raw water, and the pipe for crude oil recovery is blocked. And (2) Hydrogen sulfide is generated by sulfate ion-reducing bacteria present in the crude oil and the quality of the crude oil is deteriorated. In addition, since only divalent ions (especially sulfate ions) can be selectively separated from the mixed solution of monovalent ions and divalent ions, the difference in osmotic pressure before and after membrane separation treatment is reduced, and sulfuric acid from seawater is reduced. The energy required for ion removal can be greatly reduced.
 本発明の複合半透膜は、プラスチックネットなどの原水流路材と、トリコットなどの透過水流路材と、必要に応じて耐圧性を高めるためのフィルムと共に、多数の孔を穿設した筒状の集水管の周りに巻回され、スパイラル型の複合半透膜エレメントとして好適に用いられる。さらに、このエレメントを直列または並列に接続して圧力容器に収納した複合半透膜モジュールとすることもできる。 The composite semipermeable membrane of the present invention has a cylindrical shape in which a large number of holes are perforated together with a raw water channel material such as a plastic net, a permeate channel material such as tricot, and a film for enhancing pressure resistance as required. It is wound around a water collecting pipe and is preferably used as a spiral composite semipermeable membrane element. Furthermore, a composite semipermeable membrane module in which these elements are connected in series or in parallel and accommodated in a pressure vessel can be obtained.
 また、上記の複合半透膜やそのエレメント、モジュールは、それらに原水を供給するポンプや、その原水を前処理する装置などと組み合わせて、流体分離装置を構成することができる。この分離装置を用いることにより、原水を飲料水などの透過水と膜を透過しなかった濃縮水とに分離して、目的にあった水を得ることができる。 Also, the above-described composite semipermeable membrane, its elements, and modules can be combined with a pump for supplying raw water to them, a device for pretreating the raw water, and the like to constitute a fluid separation device. By using this separation device, raw water can be separated into permeated water such as drinking water and concentrated water that has not permeated through the membrane, and water suitable for the purpose can be obtained.
 以下に実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものはない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
《特性評価1》
<MgSO除去率>
 複合半透膜に、温度25℃、pH7.5、MgSO濃度2000mg/Lに調整した塩水を操作圧力0.48MPaで供給して膜ろ過処理を行なった。供給水および透過水の電気伝導度を東亜電波工業株式会社製電気伝導度計で測定して、それぞれの実用塩分、すなわちMgSO濃度を得た。こうして得られたMgSO濃度および下記式に基づいて、MgSO除去率を算出した。
 MgSO除去率(%)={1-(透過液中のMgSO濃度)/(供給液中のMgSO濃度)}×100
<< Characteristic Evaluation 1 >>
<MgSO 4 removal rate>
The composite semipermeable membrane was subjected to membrane filtration treatment by supplying salt water adjusted to a temperature of 25 ° C., pH 7.5, and MgSO 4 concentration of 2000 mg / L at an operating pressure of 0.48 MPa. The electric conductivity of the feed water and the permeated water was measured with an electric conductivity meter manufactured by Toa Denpa Kogyo Co., Ltd. to obtain the respective practical salinities, that is, MgSO 4 concentrations. Based on the MgSO 4 concentration thus obtained and the following formula, the MgSO 4 removal rate was calculated.
MgSO 4 removal rate (%) = {1- / ( MgSO 4 concentration in the feed solution) (MgSO 4 concentration in the permeate)} × 100
<NaCl除去率>
 複合半透膜に、温度25℃、pH7.5、NaCl濃度500ppmに調整した評価水を操作圧力0.48MPaで供給して膜ろ過処理を行なった。供給水および透過水の電気伝導度を東亜電波工業株式会社製電気伝導度計で測定して、それぞれの実用塩分、すなわちNaCl濃度を得た。こうして得られたNaCl濃度および下記式に基づいて、NaCl除去率を算出した。
 NaCl除去率(%)=100×{1-(透過水中のNaCl濃度/供給水中のNaCl濃度)}
<NaCl removal rate>
The composite semipermeable membrane was subjected to membrane filtration treatment by supplying evaluation water adjusted to a temperature of 25 ° C., pH 7.5, and NaCl concentration of 500 ppm at an operating pressure of 0.48 MPa. The electric conductivity of the supplied water and the permeated water was measured with an electric conductivity meter manufactured by Toa Denpa Kogyo Co., Ltd. to obtain the respective practical salinities, that is, NaCl concentrations. Based on the NaCl concentration thus obtained and the following equation, the NaCl removal rate was calculated.
NaCl removal rate (%) = 100 × {1− (NaCl concentration in permeated water / NaCl concentration in feed water)}
<膜透過流束>
 前項の試験において、供給水(MgSO水溶液またはNaCl水溶液)の膜透過水量を測定し、膜面1平方メートル当たり、1日の透水量(立方メートル)に換算した値を膜透過流束(m/m/日)とした。
<Membrane permeation flux>
In the test of the preceding paragraph, the amount of the permeated water of the feed water (MgSO 4 aqueous solution or NaCl aqueous solution) was measured, and the value converted into the daily water permeation amount (cubic meter) per square meter of the membrane surface was measured as the membrane permeation flux (m 3 / m 2 / day).
<2価イオン選択性>
 前項の試験において求めた、MgSO除去率およびNaCl除去率を用いて、下記式に基づいて、2価イオン選択性を求めた。
 2価イオン選択性=(MgSO除去率)/(NaCl除去率)
<Divalent ion selectivity>
The divalent ion selectivity was determined based on the following formula using the MgSO 4 removal rate and the NaCl removal rate obtained in the previous test.
Divalent ion selectivity = (MgSO 4 removal rate) / (NaCl removal rate)
<分離機能層を構成するピペラジンとトリメシン酸クロリドの存在比>
 複合半透膜から基材を剥離し、多孔性支持層と分離機能層の積層体とした後、ジクロロメタンで多孔性支持層を溶解させることで、分離機能層を得た。得られた分離機能層を強アルカリ重水溶液にて加熱することにより加水分解し、加水分解後の重水溶液をろ過してH-NMR測定した。測定で得られたデータを解析し、ピークの面積値からピペラジンとトリメシン酸クロリドの存在比を算出した。
<Abundance ratio of piperazine and trimesic acid chloride constituting separation functional layer>
After separating the base material from the composite semipermeable membrane to obtain a laminate of the porous support layer and the separation functional layer, the separation layer was obtained by dissolving the porous support layer with dichloromethane. The obtained separation functional layer was hydrolyzed by heating with a strong alkaline heavy aqueous solution, and the hydrolyzed aqueous solution was filtered and subjected to 1 H-NMR measurement. The data obtained by the measurement was analyzed, and the abundance ratio of piperazine and trimesic acid chloride was calculated from the peak area value.
<ゼータ電位>
 複合半透膜を超純水で洗浄し、平板試料用セルに、複合半透膜の分離機能層面がモニター粒子溶液に接するようにセットし、大塚電子株式会社製電気泳動光散乱光度計(ELS-8000)により測定した。モニター粒子溶液としては、pH6、pH9にそれぞれ調整した10mM-NaCl水溶液にポリスチレンラテックスのモニター粒子を分散させた測定液を用いた。
<Zeta potential>
The composite semipermeable membrane is washed with ultrapure water, set in a flat sample cell so that the separation functional layer surface of the composite semipermeable membrane is in contact with the monitor particle solution, and an electrophoretic light scattering photometer (ELS) manufactured by Otsuka Electronics Co., Ltd. -8000). As the monitor particle solution, a measurement solution in which polystyrene latex monitor particles were dispersed in a 10 mM NaCl aqueous solution adjusted to pH 6 and pH 9 was used.
<分離機能層の厚み>
 複合半透膜をPVAで包埋した後、四酸化オスミウムで染色して測定サンプルとした。
 得られたサンプルをTEMトモグラフィーを用いて撮影し、得られた3D画像を解析ソフトにより解析した。TEMトモグラフィー分析には、日本電子製電界放出型分析電子顕微鏡JEM2100Fを用いた。30万倍の倍率での取得画像を用いて、分離機能層の厚みを50箇所の点について解析を行った。0.1ナノメートル以上の精度で上記の測定および解析を行い、平均厚みを式1より有効数字2桁で算出した。
 分離機能層の厚み=測定厚みの和/標本数  ・・・(式1)
<Thickness of separation functional layer>
The composite semipermeable membrane was embedded with PVA and then stained with osmium tetroxide to obtain a measurement sample.
The obtained sample was photographed using TEM tomography, and the obtained 3D image was analyzed by analysis software. For TEM tomography analysis, JEOL field emission analytical electron microscope JEM2100F was used. Using the acquired image at a magnification of 300,000 times, the thickness of the separation functional layer was analyzed at 50 points. The above measurement and analysis were performed with an accuracy of 0.1 nanometer or more, and the average thickness was calculated from Formula 1 with two significant digits.
Thickness of separation functional layer = sum of measured thickness / number of samples (Equation 1)
<複合半透膜の作製>
(実施例1)
 抄紙法で製造されたポリエステル繊維からなる不織布(通気度1.0cc/cm/sec)上に、ポリスルホンの15重量%ジメチルホルムアミド(DMF)溶液を室温(25℃)で塗布厚み180μmでキャストした後、ただちに純水中に5分間浸漬することによって基材上に多孔性支持層を形成し、支持膜を作製した。
 次に、この支持膜をピペラジンが1.0重量%、ドデシルジフェニルエーテルジスルホン酸ナトリウムが100ppm、リン酸三ナトリウムが1.0重量%となるように溶解した水溶液に10秒間浸漬した後、エアーノズルから窒素を吹き付け余分な水溶液を除去し、さらにn-デカン(SP値=15.8、logP=4.7)にトリメシン酸クロリドが0.20重量%となるように溶解した溶液を、多孔性支持層の表面全体に均一塗布した(塗布温度20℃)。1分間静置した後、膜面に2流体(純水とエアー)を吹き付けて、表面の溶液を除去した。その後、80℃の純水で洗浄し、複合半透膜を得た。このようにして得られた複合半透膜を評価したところ、膜性能は、表1に示す値であった。
<Production of composite semipermeable membrane>
(Example 1)
A 15% by weight dimethylformamide (DMF) solution of polysulfone was cast at a room temperature (25 ° C.) at a coating thickness of 180 μm on a non-woven fabric (air permeability 1.0 cc / cm 2 / sec) made of polyester fiber manufactured by a papermaking method. Thereafter, the substrate was immediately immersed in pure water for 5 minutes to form a porous support layer on the substrate, thereby preparing a support film.
Next, the support membrane was immersed for 10 seconds in an aqueous solution in which piperazine was 1.0 wt%, sodium dodecyl diphenyl ether disulfonate 100 ppm, and trisodium phosphate 1.0 wt%, and then from an air nozzle. A solution in which trimesic acid chloride was dissolved in n-decane (SP value = 15.8, logP = 4.7) so that the content of trimesic acid chloride was 0.20% by weight was removed by blowing nitrogen. It was uniformly applied to the entire surface of the layer (application temperature 20 ° C.). After standing for 1 minute, two fluids (pure water and air) were sprayed onto the film surface to remove the surface solution. Then, it wash | cleaned with the pure water of 80 degreeC, and obtained the composite semipermeable membrane. When the composite semipermeable membrane obtained in this way was evaluated, the membrane performance was the value shown in Table 1.
(実施例2~10、比較例1~3)
 実施例1において、ピペラジン濃度、トリメシン酸クロリド濃度、リン酸三ナトリウム濃度、ドデシルジフェニルエーテルジスルホン酸ナトリウム濃度、トリメシン酸クロリドを溶解する溶媒を表1に示す値にした以外は実施例1と同様の方法で複合半透膜を作製した。得られた複合半透膜の膜性能を表1に示す。
(Examples 2 to 10, Comparative Examples 1 to 3)
In Example 1, the same method as in Example 1 except that the piperazine concentration, trimesic acid chloride concentration, trisodium phosphate concentration, sodium dodecyl diphenyl ether disulfonate concentration, and the solvent for dissolving trimesic acid chloride were changed to the values shown in Table 1. A composite semipermeable membrane was prepared. Table 1 shows the membrane performance of the obtained composite semipermeable membrane.
(実施例11、12)
 実施例1において、トリメシン酸クロリドの溶液塗布温度を表2に示す値にした以外は実施例1と同様の方法で複合半透膜を作製した。得られた複合半透膜の膜性能を表2に示す。
(Examples 11 and 12)
A composite semipermeable membrane was produced in the same manner as in Example 1 except that the solution application temperature of trimesic acid chloride was changed to the value shown in Table 2 in Example 1. Table 2 shows the membrane performance of the obtained composite semipermeable membrane.
(実施例13、比較例4)
 実施例1において、2流体でトリメシン酸クロリド溶液を除去した後、表2に示す濃度のピペラジン水溶液に2分間浸漬させた。その後、80℃の純水で洗浄し、複合半透膜を得た。このようにして得られた複合半透膜を評価したところ、膜性能は、表2に示す値であった。
(Example 13, Comparative Example 4)
In Example 1, after removing the trimesic acid chloride solution with two fluids, it was immersed in an aqueous piperazine solution having the concentration shown in Table 2 for 2 minutes. Then, it wash | cleaned with the pure water of 80 degreeC, and obtained the composite semipermeable membrane. When the composite semipermeable membrane obtained in this way was evaluated, the membrane performance was the value shown in Table 2.
(実施例14)
 実施例1で得た膜に対し、ポリビニルアルコール(ケン化度88%、平均重合度500)0.2重量%、グルタルアルデヒド0.065重量%、酸触媒として硫酸を0.04モル/リットル含む水溶液を膜表面に塗布し、熱風乾燥機にて65℃で2分間乾燥し、架橋した。その後、未架橋物や酸触媒を除去するため70℃の熱水で洗浄を行い、イソプロピルアルコールを10重量%含む水溶液に10分間接触させた後、十分に水洗を行い、複合半透膜を得た。この膜の評価結果を表3に示す。
(Example 14)
The film obtained in Example 1 contains 0.2% by weight of polyvinyl alcohol (saponification degree 88%, average polymerization degree 500), glutaraldehyde 0.065% by weight, and sulfuric acid 0.04 mol / liter as an acid catalyst. The aqueous solution was applied to the film surface, dried at 65 ° C. for 2 minutes with a hot air dryer, and crosslinked. Thereafter, in order to remove the uncrosslinked product and the acid catalyst, washing is performed with hot water at 70 ° C., and after contact with an aqueous solution containing 10% by weight of isopropyl alcohol for 10 minutes, sufficient washing is performed to obtain a composite semipermeable membrane. It was. The evaluation results of this film are shown in Table 3.
(実施例15)
 実施例1で得た膜に対し、ポリビニルアルコール(ケン化度98%、平均重合度1000)0.2重量%を含む水溶液(イソプロパノール:水=3:7)を膜表面に塗布後、熱風乾燥機にて90℃で2分間乾燥させて保護層を形成し、複合半透膜を得た。この膜の評価結果を表3に示す。
(Example 15)
An aqueous solution (isopropanol: water = 3: 7) containing 0.2% by weight of polyvinyl alcohol (saponification degree 98%, average polymerization degree 1000) was applied to the film surface obtained in Example 1 and then dried with hot air. A protective layer was formed by drying at 90 ° C. for 2 minutes using a machine to obtain a composite semipermeable membrane. The evaluation results of this film are shown in Table 3.
(実施例16)
 実施例1で得た膜に対し、ポリビニルアルコール(ケン化度88%、平均重合度500)0.2重量%、有機チタン化合物(チタンラクテート)0.04重量%を含む水溶液を膜表面に塗布後、熱風乾燥機にて40℃で12時間乾燥し、ポリビニルアルコールを架橋した。その後、未架橋物や有機チタン化合物を除去するため70℃の熱水で洗浄を行い、イソプロピルアルコールを10重量%含む水溶液に10分間接触させた後、十分に水洗を行い、複合半透膜を得た。この膜の評価結果を表3に示す。
(Example 16)
An aqueous solution containing 0.2% by weight of polyvinyl alcohol (saponification degree 88%, average polymerization degree 500) and 0.04% by weight of an organic titanium compound (titanium lactate) was applied to the surface of the film obtained in Example 1. Then, it dried at 40 degreeC with the hot air dryer for 12 hours, and bridge | crosslinked polyvinyl alcohol. Thereafter, in order to remove the uncrosslinked product and the organotitanium compound, washing is performed with hot water at 70 ° C., and after contact with an aqueous solution containing 10% by weight of isopropyl alcohol for 10 minutes, sufficient washing with water is performed to form a composite semipermeable membrane. Obtained. The evaluation results of this film are shown in Table 3.
(実施例17)
 実施例4で得た膜に対し、実施例14と同様の方法で保護層を形成し、複合半透膜を得た。この膜の評価結果を表3に示す。
(Example 17)
A protective layer was formed on the membrane obtained in Example 4 in the same manner as in Example 14 to obtain a composite semipermeable membrane. The evaluation results of this film are shown in Table 3.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例1~13より、NMRによって測定したポリアミド分離機能層中のピペラジンとトリメシン酸クロリドの存在比が1.2以上1.8以下の範囲にあることで、2価イオンの選択除去性が2以上と高いことがわかる。実施例11、12より、トリメシン酸クロリド溶液の塗布温度を低くすることで、透水性を高めることができる。また、実施例14~17より、ポリアミド分離機能層上に保護層を形成することで、2価イオン除去率を高めることができる。 From Examples 1 to 13, when the abundance ratio of piperazine and trimesic acid chloride in the polyamide separation functional layer measured by NMR is in the range of 1.2 to 1.8, the selective removal of divalent ions is 2 It turns out that it is high above. From Examples 11 and 12, the water permeability can be increased by lowering the coating temperature of the trimesic acid chloride solution. Further, from Examples 14 to 17, the divalent ion removal rate can be increased by forming a protective layer on the polyamide separation functional layer.
《特性評価2》
 複合半透膜に、温度25℃、pH7.5に調整した海水(TDS(Total Dissolved Solids)濃度約3.5%)を操作圧力1.0MPaで供給して膜ろ過処理を行ない、透過水、供給水の水質を測定することにより、下記式から、イオン除去率、TDS除去率、膜透過流束を次の式から求めた。
 なお、イオン除去率の測定に於いて、原水および透過水中の溶質濃度のうち、陽イオンおよび陰イオン濃度の測定はイオンクロマトグラフ法で行った。装置は、日本ダイオネクス株式会社製イオンクロマトグラフを使用した。また、TDS除去率の測定では、透過水および供給水の電気伝導度を東亜電波工業株式会社製電気伝導度計で測定して、TDS濃度を求めた。
 イオン除去率(%)=100×{1-(透過水中の各イオン濃度/供給水中の各イオン濃度)}
 TDS除去率(%)=100×{1-(透過水中のTDS濃度/供給水中のTDS濃度)}
 また、膜面1平方メートルあたり、1日あたりの透水量(立方メートル)でもって、膜透過流束(m/m/d)を表した。
<< Characteristic Evaluation 2 >>
Seawater (TDS (Total Dissolved Solids concentration: about 3.5%)) adjusted to a temperature of 25 ° C. and pH 7.5 was supplied to the composite semipermeable membrane at an operating pressure of 1.0 MPa to perform membrane filtration treatment, By measuring the water quality of the feed water, the ion removal rate, TDS removal rate, and membrane permeation flux were determined from the following formulas from the following formulas.
In the measurement of the ion removal rate, among the solute concentrations in the raw water and the permeated water, the cation and anion concentrations were measured by ion chromatography. The apparatus used was an ion chromatograph manufactured by Nippon Dionex Co., Ltd. Moreover, in the measurement of the TDS removal rate, the electric conductivity of the permeated water and the supplied water was measured with an electric conductivity meter manufactured by Toa Radio Industry Co., Ltd., and the TDS concentration was determined.
Ion removal rate (%) = 100 × {1- (each ion concentration in permeated water / each ion concentration in feed water)}
TDS removal rate (%) = 100 × {1− (TDS concentration in permeated water / TDS concentration in feed water)}
In addition, the membrane permeation flux (m 3 / m 2 / d) was expressed by the amount of water per day (cubic meter) per square meter of membrane surface.
(実施例18)
 実施例3で得た複合半透膜の特性評価2における評価結果を表4に示す。
(Example 18)
Table 4 shows the evaluation results in the characteristic evaluation 2 of the composite semipermeable membrane obtained in Example 3.
(実施例19)
 実施例4で得た複合半透膜の特性評価2における評価結果を表4に示す。
(Example 19)
Table 4 shows the evaluation results in the characteristic evaluation 2 of the composite semipermeable membrane obtained in Example 4.
(実施例20)
 実施例17で得た複合半透膜の特性評価2における評価結果を表4に示す。
(Example 20)
Table 4 shows the evaluation results in the characteristic evaluation 2 of the composite semipermeable membrane obtained in Example 17.
(比較例5)
 比較例2で得た複合半透膜の特性評価2における評価結果を表4に示す。
(Comparative Example 5)
Table 4 shows the evaluation results in the characteristic evaluation 2 of the composite semipermeable membrane obtained in Comparative Example 2.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表4より、本発明の複合半透膜は、硫酸イオンやカルシウムイオン、マグネシウムイオンといった2価イオンの除去率が高いことがわかる。よって、スケール成分を十分に除去できる。 Table 4 shows that the composite semipermeable membrane of the present invention has a high removal rate of divalent ions such as sulfate ions, calcium ions, and magnesium ions. Therefore, the scale component can be sufficiently removed.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2012年12月27日出願の日本特許出願(特願2012-285566)、2013年5月31日出願の日本特許出願(特願2013-115031)および2013年5月31日出願の日本特許出願(特願2013-115033)に基づくものであり、その内容はここに参照として取り込まれる。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. The present application is a Japanese patent application filed on December 27, 2012 (Japanese Patent Application No. 2012-285666), a Japanese patent application filed on May 31, 2013 (Japanese Patent Application No. 2013-115031) and an application filed on May 31, 2013. This is based on a Japanese patent application (Japanese Patent Application No. 2013-115033), the contents of which are incorporated herein by reference.

Claims (13)

  1.  基材および前記基材上に設けられた多孔性支持層を備える支持膜と、前記多孔性支持層上に形成されたポリアミド分離機能層と、を備える複合半透膜であって、前記ポリアミド分離機能層が脂肪族多官能アミンと多官能酸ハロゲン化物から得られるポリアミドによって形成され、前記脂肪族多官能アミンと前記多官能酸ハロゲン化物の存在比(モル比)が下式の関係にある複合半透膜。
     1.2≦脂肪族多官能アミンのモル数/多官能酸ハロゲン化物のモル数≦1.8
    A composite semipermeable membrane comprising a base material and a support membrane comprising a porous support layer provided on the base material, and a polyamide separation functional layer formed on the porous support layer, wherein the polyamide separation A functional layer is formed of a polyamide obtained from an aliphatic polyfunctional amine and a polyfunctional acid halide, and the abundance ratio (molar ratio) of the aliphatic polyfunctional amine and the polyfunctional acid halide is in the relationship of the following formula: Semipermeable membrane.
    1.2 ≦ number of moles of aliphatic polyfunctional amine / number of moles of polyfunctional acid halide ≦ 1.8
  2.  前記存在比が1.3以上1.7以下である、請求項1に記載の複合半透膜。 The composite semipermeable membrane according to claim 1, wherein the abundance ratio is 1.3 or more and 1.7 or less.
  3.  前記存在比が1.35以上1.65以下である、請求項2に記載の複合半透膜。 The composite semipermeable membrane according to claim 2, wherein the abundance ratio is 1.35 or more and 1.65 or less.
  4.  前記存在比が1.4以上1.6以下である、請求項3に記載の複合半透膜。 The composite semipermeable membrane according to claim 3, wherein the abundance ratio is 1.4 or more and 1.6 or less.
  5.  前記ポリアミド分離機能層は第二級アミンを含み、かつ、前記ポリアミド分離機能層のpH6とpH9におけるゼータ電位差が12mV以上である、請求項1~請求項4のいずれか1項に記載の複合半透膜。 The composite half layer according to any one of claims 1 to 4, wherein the polyamide separation functional layer contains a secondary amine, and the difference in zeta potential between pH 6 and pH 9 of the polyamide separation functional layer is 12 mV or more. Permeable membrane.
  6.  前記ポリアミドは界面重縮合によって得られる、請求項1~請求項5のいずれか1項に記載の複合半透膜。 The composite semipermeable membrane according to any one of claims 1 to 5, wherein the polyamide is obtained by interfacial polycondensation.
  7.  前記脂肪族多官能アミンが2官能である、請求項1~請求項6のいずれか1項に記載の複合半透膜。 The composite semipermeable membrane according to any one of claims 1 to 6, wherein the aliphatic polyfunctional amine is bifunctional.
  8.  前記多官能酸ハロゲン化物が2官能または3官能の酸ハロゲン化物、またはそれらの混合物である、請求項1~請求項7のいずれか1項に記載の複合半透膜。 The composite semipermeable membrane according to any one of claims 1 to 7, wherein the polyfunctional acid halide is a bifunctional or trifunctional acid halide, or a mixture thereof.
  9.  前記脂肪族多官能アミンがピペラジンであり、前記多官能酸ハロゲン化物がトリメシン酸クロリドである、請求項1~請求項8のいずれか1項に記載の複合半透膜。 The composite semipermeable membrane according to any one of claims 1 to 8, wherein the aliphatic polyfunctional amine is piperazine and the polyfunctional acid halide is trimesic acid chloride.
  10.  前記ポリアミド分離機能層上に直接又は他の層を介して、ポリマー成分を含有する保護層が設けられている、請求項1~請求項9のいずれか1項に記載の複合半透膜。 The composite semipermeable membrane according to any one of claims 1 to 9, wherein a protective layer containing a polymer component is provided on the polyamide separation functional layer directly or via another layer.
  11.  前記ポリマー成分が親水性ポリマーの架橋体である、請求項10に記載の複合半透膜。 The composite semipermeable membrane according to claim 10, wherein the polymer component is a crosslinked polymer of a hydrophilic polymer.
  12.  前記架橋体は、多価アルデヒドを含有する、請求項11に記載の複合半透膜。 The composite semipermeable membrane according to claim 11, wherein the crosslinked product contains a polyvalent aldehyde.
  13.  前記架橋体がポリビニルアルコールとグルタルアルデヒドの反応物を含む、請求項12に記載の複合半透膜。 The composite semipermeable membrane according to claim 12, wherein the crosslinked product contains a reaction product of polyvinyl alcohol and glutaraldehyde.
PCT/JP2013/084984 2012-12-27 2013-12-26 Composite semipermeable membrane WO2014104241A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014500199A JP6269474B2 (en) 2012-12-27 2013-12-26 Composite semipermeable membrane

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2012-285566 2012-12-27
JP2012285566 2012-12-27
JP2013115031 2013-05-31
JP2013-115033 2013-05-31
JP2013115033 2013-05-31
JP2013-115031 2013-05-31

Publications (1)

Publication Number Publication Date
WO2014104241A1 true WO2014104241A1 (en) 2014-07-03

Family

ID=51021315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084984 WO2014104241A1 (en) 2012-12-27 2013-12-26 Composite semipermeable membrane

Country Status (2)

Country Link
JP (1) JP6269474B2 (en)
WO (1) WO2014104241A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016052669A1 (en) * 2014-09-30 2016-04-07 東レ株式会社 Composite semipermeable membrane
JP2016118463A (en) * 2014-12-22 2016-06-30 株式会社澤本商事 Evaluation method of modified treatment water
KR20170041737A (en) * 2014-08-08 2017-04-17 도레이 카부시키가이샤 Solvent-resistant separation membrane
EP3329986A4 (en) * 2015-07-31 2019-04-03 Toray Industries, Inc. Separation membrane, separation membrane element, water purifier and method for producing separation membrane
JPWO2018198679A1 (en) * 2017-04-28 2020-02-27 東レ株式会社 Composite semipermeable membrane and method for producing the same
WO2021085600A1 (en) * 2019-10-31 2021-05-06 東レ株式会社 Composite semipermeable membrane and manufacturing method therefor
CN114669198A (en) * 2022-03-31 2022-06-28 北京碧水源分离膜科技有限公司 Post-treatment method for reverse osmosis membrane humectant

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56500062A (en) * 1979-01-10 1981-01-22
JP2010137192A (en) * 2008-12-15 2010-06-24 Toray Ind Inc Composite nano-filter membrane
JP2012519593A (en) * 2010-04-30 2012-08-30 ウンジン ケミカル カンパニー,リミテッド Forward osmosis membrane for seawater fresh water and method for producing the same
JP2012250192A (en) * 2011-06-03 2012-12-20 Nitto Denko Corp Composite semipermeable membrane and manufacturing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002095940A (en) * 2000-09-21 2002-04-02 Nitto Denko Corp Composite reverse osmosis membrane, method for manufacturing the same, and method for using the same
JP3885565B2 (en) * 2001-11-20 2007-02-21 東レ株式会社 Composite semipermeable membrane and method for producing the same
JP2008080187A (en) * 2006-09-26 2008-04-10 Toray Ind Inc Composite semipermeable membrane and use thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56500062A (en) * 1979-01-10 1981-01-22
JP2010137192A (en) * 2008-12-15 2010-06-24 Toray Ind Inc Composite nano-filter membrane
JP2012519593A (en) * 2010-04-30 2012-08-30 ウンジン ケミカル カンパニー,リミテッド Forward osmosis membrane for seawater fresh water and method for producing the same
JP2012250192A (en) * 2011-06-03 2012-12-20 Nitto Denko Corp Composite semipermeable membrane and manufacturing method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANG JING ET AL.: "Preparation of polypiperazine-amide composite nanofiltration membrane through Interfacial polymerization", HUAXUE YANJIU YU YINGYONG, vol. 22, no. 4, April 2010 (2010-04-01), pages 456 - 460 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170041737A (en) * 2014-08-08 2017-04-17 도레이 카부시키가이샤 Solvent-resistant separation membrane
JPWO2016021731A1 (en) * 2014-08-08 2017-07-13 東レ株式会社 Solvent-resistant separation membrane
KR102262062B1 (en) * 2014-08-08 2021-06-08 도레이 카부시키가이샤 Solvent-resistant separation membrane
WO2016052669A1 (en) * 2014-09-30 2016-04-07 東レ株式会社 Composite semipermeable membrane
JP2016118463A (en) * 2014-12-22 2016-06-30 株式会社澤本商事 Evaluation method of modified treatment water
EP3329986A4 (en) * 2015-07-31 2019-04-03 Toray Industries, Inc. Separation membrane, separation membrane element, water purifier and method for producing separation membrane
US11167249B2 (en) 2015-07-31 2021-11-09 Toray Industries, Inc. Separation membrane, separation membrane element, water purifier, and method for producing separation membrane
JPWO2018198679A1 (en) * 2017-04-28 2020-02-27 東レ株式会社 Composite semipermeable membrane and method for producing the same
JP7010216B2 (en) 2017-04-28 2022-01-26 東レ株式会社 Composite semipermeable membrane and its manufacturing method
WO2021085600A1 (en) * 2019-10-31 2021-05-06 東レ株式会社 Composite semipermeable membrane and manufacturing method therefor
CN114669198A (en) * 2022-03-31 2022-06-28 北京碧水源分离膜科技有限公司 Post-treatment method for reverse osmosis membrane humectant

Also Published As

Publication number Publication date
JPWO2014104241A1 (en) 2017-01-19
JP6269474B2 (en) 2018-01-31

Similar Documents

Publication Publication Date Title
JP6269474B2 (en) Composite semipermeable membrane
JP6772840B2 (en) Separation membrane, separation membrane element, water purifier and method for manufacturing separation membrane
JP5978998B2 (en) Composite semipermeable membrane, composite semipermeable membrane element, and method for producing composite semipermeable membrane
JP5262668B2 (en) Composite nanofiltration membrane
EP2902095B1 (en) Composite semipermeable membrane
US20140339152A1 (en) Composite semipermeable membrane and method of manufacturing same
JP6052172B2 (en) Manufacturing method of composite semipermeable membrane
JP6237232B2 (en) Composite semipermeable membrane
JPWO2014192883A1 (en) Composite semipermeable membrane
JP2018039003A (en) Composite semipermeable membrane and production method of the same
WO2014133133A1 (en) Composite semipermeable membrane
US11045771B2 (en) Composite semipermeable membrane and method for producing same
JP2014065004A (en) Composite semipermeable membrane
JP2014233652A (en) Composite semipermeable membrane
JP2018187533A (en) Composite semipermeable membrane
JP7167442B2 (en) Composite semipermeable membrane and manufacturing method thereof
JP6237233B2 (en) Composite semipermeable membrane and composite semipermeable membrane element
WO2016052669A1 (en) Composite semipermeable membrane
WO2016052427A1 (en) Composite semipermeable membrane and method for producing same, and spiral separation membrane element
JP2016190213A (en) Composite semipermeable membrane
WO2021085600A1 (en) Composite semipermeable membrane and manufacturing method therefor
JP2012143750A (en) Method for producing composite semi-permeable membrane
JP7342528B2 (en) Composite semipermeable membrane and method for manufacturing composite semipermeable membrane
JP2014144441A (en) Composite semipermeable membrane
JP5961931B2 (en) Manufacturing method of composite semipermeable membrane

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014500199

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13869470

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13869470

Country of ref document: EP

Kind code of ref document: A1