JP2007123398A - Semiconductor light emitting element, method of manufacturing the same and lighting device using the same - Google Patents

Semiconductor light emitting element, method of manufacturing the same and lighting device using the same Download PDF

Info

Publication number
JP2007123398A
JP2007123398A JP2005311111A JP2005311111A JP2007123398A JP 2007123398 A JP2007123398 A JP 2007123398A JP 2005311111 A JP2005311111 A JP 2005311111A JP 2005311111 A JP2005311111 A JP 2005311111A JP 2007123398 A JP2007123398 A JP 2007123398A
Authority
JP
Japan
Prior art keywords
light emitting
layer
semiconductor layer
type
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005311111A
Other languages
Japanese (ja)
Other versions
JP4552828B2 (en
Inventor
Takayoshi Takano
隆好 高野
Nobuyuki Takakura
信之 高倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2005311111A priority Critical patent/JP4552828B2/en
Publication of JP2007123398A publication Critical patent/JP2007123398A/en
Application granted granted Critical
Publication of JP4552828B2 publication Critical patent/JP4552828B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor light emitting element formed of a plurality of nano-columns that can simultaneously emit lights in a plurality of wavelength areas without using phosphor and establish high light emitting efficiency. <P>SOLUTION: When growing a nano-column 10 on a substrate 1, (a) an amorphous, quadrangular pyramid-like GaN2a is grown at a lower temperature than usual. When increasing temperature up to the normal growth temperature, (b) the duration is made longer than usual to make the GaN2a polycrystalline and to form a nucleation layer 2 having a large variance in height. Then, the nano-column 10 is formed thereon by the normal method. Thus, the film thickness or composition of a light emitting layer 5 (especially quantum well) varies, so that different wavelengths can be assigned to the respective nano-columns 10 and light emission can be also realized in a plurality of wavelength areas without using phosphor. In addition, (f) electrodes 7 and 8 are uniformly formed on the structure, resulting in injecting current uniformly at the same time as well as permitting high light emitting efficiency. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体内で電子と正孔とを結合させて発光させる半導体発光素子およびそれを用いる照明装置ならびに半導体発光素子の製造方法に関し、特に前記半導体発光素子としては、ナノコラムと称される柱状結晶構造体を複数有して成るものに関する。   The present invention relates to a semiconductor light-emitting element that emits light by combining electrons and holes in a semiconductor, a lighting device using the same, and a method for manufacturing the semiconductor light-emitting element. In particular, the semiconductor light-emitting element has a columnar shape called a nanocolumn. The present invention relates to a structure having a plurality of crystal structures.

近年、窒化物半導体(以下、ナイトライドと呼ぶ。)を用いて、その中に発光層を形成し、外部から電流を注入して、この発光層内で電子と正孔とを結合させて発光させる発光素子の発展が目覚しい。また、上記発光素子から放出される光の一部で蛍光体を励起し、蛍光体で生じた光と発光素子からの光との混合で得られる白色光を光源として、照明装置へ応用することが注目されている。しかしながら、未だ高効率の要求を満たすものは得られていない。その理由として、特に蛍光体を用いて白色光を得る過程に注目すると、効率を低下させる要因が主に2つ存在するためである。   In recent years, using a nitride semiconductor (hereinafter referred to as nitride), a light emitting layer is formed therein, an electric current is injected from the outside, and electrons and holes are combined in the light emitting layer to emit light. The development of the light emitting element to be made is remarkable. In addition, the phosphor is excited by a part of the light emitted from the light emitting element, and the white light obtained by mixing the light generated from the phosphor and the light from the light emitting element is used as a light source to be applied to the lighting device. Is attracting attention. However, there is still no product that satisfies the high efficiency requirement. The reason for this is that there are mainly two factors that reduce the efficiency when focusing on the process of obtaining white light using a phosphor.

先ず第1は、波長変換することでエネルギーの一部が失われる(ストークスロス)ことである。詳しくは、発光素子から放出され、蛍光体に吸収された励起光は、発光素子から生じた光が持つエネルギーより低いエネルギーの光に波長変換され、再び外部に放出される。その時、発光素子からの励起光と蛍光体からの放出光とのそれぞれが持つエネルギーの差分だけ損失が生じ、効率を低下させることとなるからである。   First, a part of energy is lost (Stokes loss) by wavelength conversion. Specifically, the excitation light emitted from the light emitting element and absorbed by the phosphor is wavelength-converted to light having energy lower than that of the light generated from the light emitting element, and is emitted to the outside again. At that time, a loss is caused by the difference in energy between the excitation light from the light emitting element and the emission light from the phosphor, and the efficiency is lowered.

第2は、蛍光体での非発光再結合による効率低下(蛍光体の内部量子効率の低下)である。詳しくは、蛍光体内に存在する結晶欠陥は、非発光再結合中心として機能し、励起光によって蛍光体内に生成されたキャリアの一部が、発光に寄与せず、前記結晶欠陥で捕獲されてしまい、蛍光体の発光効率を低下させることとなるからである。   The second is a decrease in efficiency due to non-radiative recombination in the phosphor (decrease in internal quantum efficiency of the phosphor). Specifically, the crystal defects present in the phosphor function as non-radiative recombination centers, and some of the carriers generated in the phosphor by the excitation light do not contribute to light emission and are captured by the crystal defects. This is because the luminous efficiency of the phosphor is lowered.

したがって、蛍光体を用いて上述のような2段階を経ることで白色光を得る場合、著しく効率が低下することになり、発光素子の高効率化を阻んでいる。そこで、蛍光体を用いることなく、複数の波長で光を放出することが可能な半導体発光素子が注目されている。そのような半導体発光素子の製作が試みられた一例として、非特許文献1を挙げる。   Therefore, when white light is obtained through the above-described two steps using a phosphor, the efficiency is remarkably lowered, which prevents high efficiency of the light emitting element. Therefore, a semiconductor light emitting device capable of emitting light at a plurality of wavelengths without using a phosphor has been attracting attention. Non-patent document 1 is given as an example of an attempt to manufacture such a semiconductor light emitting device.

その従来技術によれば、MOCVD(有機金属気相成長)装置によって、サファイア基板上にn型GaN層を形成した後、異なる波長で青色および緑色のそれぞれに相当する2種類の波長で発光するように設計された二つの量子井戸を発光層内に形成し、その後p型GaN層を形成している。このような構造を採用することで、1つの発光素子で、前記青色および緑色を同時に発光することが可能となっている。
Y. D. Qi, H. Liang, W. Tang, Z. D. Lu, Kei May Lau「Dual Wavelength InGaN/GaN multi-quantum well LEDsgrown by metalorganic vapor phase epitaxy」(Journal of Crystal Growth 272 (2004)333-340)
According to the prior art, after an n-type GaN layer is formed on a sapphire substrate by an MOCVD (metal organic chemical vapor deposition) apparatus, light is emitted at two different wavelengths corresponding to blue and green at different wavelengths. Two quantum wells designed in (1) are formed in the light emitting layer, and then a p-type GaN layer is formed. By adopting such a structure, it is possible to simultaneously emit the blue and green light with one light emitting element.
YD Qi, H. Liang, W. Tang, ZD Lu, Kei May Lau `` Dual Wavelength InGaN / GaN multi-quantum well LEDs grown by metalorganic vapor phase epitaxy '' (Journal of Crystal Growth 272 (2004) 333-340)

しかしながら、上述の従来技術では、主に2つの課題が生じる。第1は、高い貫通転位密度による発光効率の低下である。詳しくは、上述の従来技術では、サファイア基板上に薄膜のGaNを下地として用いており、したがってGaNの結晶内部には少なくとも10cm−2程度の高密度の貫通転位が生じ、発光効率を低下させてしまう。特に、InGaNを用いて高効率な赤色を得ようとした場合、InGaNにおけるIn組成を増加させるに従い、結晶成長の難易度が高くなる。したがって、高品質なInGaNを形成するために、より高品質な下地結晶を得ることが必要不可欠となり、実現が困難になる。 However, the above-described conventional technique has two main problems. The first is a decrease in luminous efficiency due to a high threading dislocation density. Specifically, in the above-described prior art, a thin GaN layer is used as a base on a sapphire substrate, and therefore, threading dislocations with a high density of at least about 10 7 cm −2 are generated inside the GaN crystal, resulting in a decrease in luminous efficiency. I will let you. In particular, when trying to obtain a highly efficient red color using InGaN, the difficulty of crystal growth increases as the In composition in InGaN increases. Therefore, in order to form high-quality InGaN, it is indispensable to obtain a higher-quality base crystal, which is difficult to realize.

第2は、井戸層への不均一なキャリアの注入である。詳しくは、上述の従来技術では、電流に対して異なる波長で発光する量子井戸が1つの発光素子内に直列に配置されており、これに対してそれぞれの量子井戸で注入される電子と正孔との移動度は異なり、均一に両量子井戸内にキャリアを注入することが難しいためである。このため、電流注入量によってそれぞれの量子井戸内に注入されるキャリアの密度が変化してしまい、その結果として発光色が変化してしまう現象を引き起こす。したがって、発光素子の取り扱いが困難になる。   The second is non-uniform carrier injection into the well layer. Specifically, in the above-described prior art, quantum wells that emit light at different wavelengths with respect to current are arranged in series in one light-emitting element, and electrons and holes injected into each quantum well in contrast. This is because it is difficult to uniformly inject carriers into both quantum wells. For this reason, the density of carriers injected into each quantum well changes depending on the amount of current injection, and as a result, a phenomenon occurs in which the emission color changes. Therefore, handling of the light emitting element becomes difficult.

本発明の目的は、蛍光体を用いることなく複数の波長域で同時に発光させることができ、かつ各波長においても高い発光効率を実現することができる半導体発光素子およびそれを用いる照明装置ならびに半導体発光素子の製造方法を提供することである。   SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor light emitting element capable of simultaneously emitting light in a plurality of wavelength regions without using a phosphor and realizing high light emission efficiency at each wavelength, an illumination device using the same, and a semiconductor light emitting device. It is providing the manufacturing method of an element.

本発明の半導体発光素子は、基板上に、n型窒化物半導体層またはn型酸化物半導体層と、発光層と、p型窒化物半導体層またはp型酸化物半導体層とを順に積層した柱状結晶構造体を複数有して成る半導体発光素子において、前記複数の柱状結晶構造体は、それぞれの成長速度が異なることで、前記発光層の厚さが異なることを特徴とする。   The semiconductor light-emitting device of the present invention has a columnar shape in which an n-type nitride semiconductor layer or an n-type oxide semiconductor layer, a light-emitting layer, and a p-type nitride semiconductor layer or a p-type oxide semiconductor layer are sequentially stacked on a substrate. In the semiconductor light emitting device having a plurality of crystal structures, the plurality of columnar crystal structures are different in thickness of the light emitting layer due to different growth rates.

また、本発明の半導体発光素子の製造方法は、基板上に、n型窒化物半導体層またはn型酸化物半導体層と、発光層と、p型窒化物半導体層またはp型酸化物半導体層とを順に積層した柱状結晶構造体を複数有して成る半導体発光素子の製造方法において、前記基板上に前記柱状結晶構造体の種となる核形成層を堆積させる工程と、前記核形成層を熱処理して、核の高さにばらつきを持たせる工程と、前記柱状結晶構造体の各層を順に積層する工程とを含むことを特徴とする。   The method for manufacturing a semiconductor light emitting device of the present invention includes an n-type nitride semiconductor layer or an n-type oxide semiconductor layer, a light-emitting layer, a p-type nitride semiconductor layer or a p-type oxide semiconductor layer on a substrate. In a method for manufacturing a semiconductor light emitting device comprising a plurality of columnar crystal structures laminated in sequence, a step of depositing a nucleation layer serving as a seed of the columnar crystal structure on the substrate, and a heat treatment of the nucleation layer Then, the method includes a step of providing variation in the height of the nucleus, and a step of sequentially stacking the layers of the columnar crystal structure.

上記の構成によれば、基板上にn型窒化物半導体層またはn型酸化物半導体層と、発光層と、p型窒化物半導体層またはp型酸化物半導体層とを順に積層した柱状結晶構造体(ナノコラム)を複数有し、前記基板上にn型電極が、前記p型窒化物半導体層またはp型酸化物半導体層上にp型電極が、それぞれ形成されて成る半導体発光素子およびその製造方法において、低温でそのナノコラムの種となる核形成層を堆積後、熱処理を行うことで、核の高さのばらつきを大きくする。その後、前記柱状結晶構造体の各層を高温で順に積層すると、高い核の上に形成されるナノコラムの形成速度は優先的に高くなり、他方、低い核の上に形成されるナノコラムの形成速度は遅くなり、ナノコラム内部に形成される発光層(特に量子井戸)の膜厚、さらには組成を同様にばらつかせることができる。   According to said structure, the columnar crystal structure which laminated | stacked the n-type nitride semiconductor layer or n-type oxide semiconductor layer, the light emitting layer, and the p-type nitride semiconductor layer or the p-type oxide semiconductor layer in order on the board | substrate. Semiconductor light emitting device having a plurality of bodies (nanocolumns), an n-type electrode formed on the substrate, and a p-type electrode formed on the p-type nitride semiconductor layer or p-type oxide semiconductor layer In the method, the variation in the height of the nuclei is increased by performing a heat treatment after depositing a nucleation layer that becomes a seed of the nanocolumn at a low temperature. Thereafter, when the layers of the columnar crystal structure are sequentially stacked at a high temperature, the formation speed of nanocolumns formed on high nuclei is preferentially increased, while the formation speed of nanocolumns formed on low nuclei is The film thickness of the light emitting layer (especially the quantum well) formed inside the nanocolumn and the composition thereof can be similarly varied.

したがって、複数のナノコラムそれぞれに異なる波長を割当てることができ、蛍光体を用いることなく複数の波長域で同時に発光させることができる。また、前記構造上に一様に電極を形成することで、異なる発光波長を持つナノコラムに対して同時に均一に電流を注入することができ、それぞれの発光波長のままで、高い発光効率を実現することができる。   Therefore, different wavelengths can be assigned to each of the plurality of nanocolumns, and light can be emitted simultaneously in a plurality of wavelength regions without using a phosphor. In addition, by forming electrodes uniformly on the structure, it is possible to inject current uniformly into nanocolumns having different emission wavelengths at the same time, and achieve high emission efficiency while maintaining the respective emission wavelengths. be able to.

さらにまた、本発明の半導体発光素子は、少なくとも前記p型窒化物半導体層またはp型酸化物半導体層の部分に、隣接する柱状結晶構造体との間の空隙に充填される絶縁体を含むことを特徴とする。   Furthermore, the semiconductor light emitting device of the present invention includes an insulator filled in a gap between adjacent columnar crystal structures at least in the p-type nitride semiconductor layer or the p-type oxide semiconductor layer. It is characterized by.

また、本発明の半導体発光素子の製造方法は、前記柱状結晶構造体の各層を積層後に、少なくとも前記p型窒化物半導体層またはp型酸化物半導体層の部分に、隣接する柱状結晶構造体との間の空隙に絶縁体を充填する工程と、前記絶縁体から露出した前記p型窒化物半導体層またはp型酸化物半導体層の先端面に、連続してp型電極を形成する工程を行うことを特徴とする。   The method for manufacturing a semiconductor light-emitting device according to the present invention includes: a columnar crystal structure adjacent to at least a portion of the p-type nitride semiconductor layer or p-type oxide semiconductor layer after the layers of the columnar crystal structure are stacked; A step of filling the gap between the insulator and a step of continuously forming a p-type electrode on the tip surface of the p-type nitride semiconductor layer or the p-type oxide semiconductor layer exposed from the insulator. It is characterized by that.

上記の構成によれば、ナノコラムの先端側に設けるべきp型電極には、前記p型窒化物半導体層またはp型酸化物半導体層の連続膜を用いるのではなく、p型電極(該p型電極側を光取出し面とする場合の透明導電膜を含む)の連続膜を用いる。ただし、そのp型電極の形成にあたっては、少なくとも前記p型窒化物半導体層またはp型酸化物半導体層の部分に、隣接するナノコラム間の空隙に絶縁体を充填しておく。   According to the above configuration, the p-type electrode to be provided on the tip side of the nanocolumn is not a continuous film of the p-type nitride semiconductor layer or the p-type oxide semiconductor layer, but a p-type electrode (the p-type electrode). (Including a transparent conductive film when the electrode side is the light extraction surface). However, when forming the p-type electrode, at least the p-type nitride semiconductor layer or the p-type oxide semiconductor layer is filled with an insulator in the gap between adjacent nanocolumns.

したがって、通常の蒸着などの技術でp型電極を連続して形成しても、発光層を跨いで、n型窒化物半導体層またはn型酸化物半導体層と、p型窒化物半導体層またはp型酸化物半導体層とが該p型電極用の材料で短絡されてしまうことを防止することができる。これによって、ナノコラムが内部に貫通転位を持たないという利点を活かした高効率な半導体発光素子を実現することができる。   Therefore, even if the p-type electrode is continuously formed by a technique such as normal vapor deposition, the n-type nitride semiconductor layer or the n-type oxide semiconductor layer and the p-type nitride semiconductor layer or the p-type layer straddle the light emitting layer. It is possible to prevent the type oxide semiconductor layer from being short-circuited with the material for the p-type electrode. As a result, a highly efficient semiconductor light emitting device can be realized that takes advantage of the fact that the nanocolumn does not have threading dislocations inside.

さらにまた、本発明の照明装置は、前記の半導体発光素子を用いることを特徴とする。   Furthermore, the lighting device of the present invention is characterized by using the semiconductor light emitting element.

上記の構成によれば、蛍光体を用いることなく複数の波長域で同時に発光させることができるとともに、それぞれの発光波長のままで、高い発光効率を実現することができる半導体発光素子を用いることで、同じ光束(輝度、照度)を得るにも、小型で低消費電力な照明装置を実現することができる。   According to the above configuration, by using a semiconductor light emitting element that can simultaneously emit light in a plurality of wavelength regions without using a phosphor and can realize high light emission efficiency while maintaining the respective emission wavelengths. In order to obtain the same luminous flux (brightness and illuminance), a small and low power consumption lighting device can be realized.

本発明の半導体発光素子およびその製造方法は、以上のように、基板上にn型窒化物半導体層またはn型酸化物半導体層と、発光層と、p型窒化物半導体層またはp型酸化物半導体層とを順に積層した柱状結晶構造体(ナノコラム)を複数有し、前記基板上にn型電極が、前記p型窒化物半導体層またはp型酸化物半導体層上にp型電極が、それぞれ形成されて成る半導体発光素子およびその製造方法において、低温でそのナノコラムの種となる核形成層を堆積後、熱処理を行うことで、核の高さのばらつきを大きくし、その後、前記柱状結晶構造体の各層を高温で順に積層することで、ナノコラム内部に形成される発光層(特に量子井戸)の膜厚、さらには組成をばらつかせる。   As described above, the semiconductor light-emitting device and the method for manufacturing the same according to the present invention include an n-type nitride semiconductor layer or n-type oxide semiconductor layer, a light-emitting layer, and a p-type nitride semiconductor layer or p-type oxide on a substrate. A plurality of columnar crystal structures (nanocolumns) sequentially stacked with a semiconductor layer; an n-type electrode on the substrate; and a p-type electrode on the p-type nitride semiconductor layer or the p-type oxide semiconductor layer, respectively In the formed semiconductor light-emitting device and the method for manufacturing the same, the dispersion of the height of the nuclei is increased by performing a heat treatment after depositing a nucleation layer that becomes a seed of the nanocolumn at a low temperature, and then the columnar crystal structure By laminating each layer of the body in order at a high temperature, the film thickness and composition of the light emitting layer (particularly the quantum well) formed inside the nanocolumn can be varied.

それゆえ、複数のナノコラムそれぞれに異なる波長を割当てることができ、蛍光体を用いることなく複数の波長域で同時に発光させることができる。また、前記構造上に一様に電極を形成することで、異なる発光波長を持つナノコラムに対して同時に均一に電流を注入することができ、それぞれの発光波長のままで、高い発光効率を実現することができる。   Therefore, different wavelengths can be assigned to each of the plurality of nanocolumns, and light can be emitted simultaneously in a plurality of wavelength regions without using a phosphor. In addition, by forming electrodes uniformly on the structure, it is possible to inject current uniformly into nanocolumns having different emission wavelengths at the same time, and achieve high emission efficiency while maintaining the respective emission wavelengths. be able to.

さらにまた、本発明の照明装置は、以上のように、蛍光体を用いることなく複数の波長域で同時に発光させることができるとともに、それぞれの発光波長のままで、高い発光効率を実現することができる前記の半導体発光素子を用いる。   Furthermore, as described above, the illuminating device of the present invention can simultaneously emit light in a plurality of wavelength regions without using a phosphor, and can achieve high light emission efficiency while maintaining the respective emission wavelengths. The semiconductor light-emitting element that can be used is used.

それゆえ、同じ光束(輝度、照度)を得るにも、小型で低消費電力な照明装置を実現することができる。   Therefore, it is possible to realize a small-sized and low power consumption lighting device for obtaining the same luminous flux (brightness and illuminance).

図1は、本発明の実施の一形態に係る半導体発光素子である発光ダイオードの製造工程を模式的に示す断面図である。本実施の形態では、ナノコラム10の成長は、有機金属気相成長(MOCVD)によって行うことを前提としているが、ナノコラム10の成長方法はこれに限定されるものではなく、分子線エピタキシー(MBE)やハイドライド気相成長(HVPE)等の装置を用いてもナノコラムが作製可能であることは公知である。以下、特に断らない限り、MOCVD装置を用いるものとする。   FIG. 1 is a cross-sectional view schematically showing a manufacturing process of a light-emitting diode that is a semiconductor light-emitting element according to an embodiment of the present invention. In the present embodiment, it is assumed that the growth of the nanocolumn 10 is performed by metal organic chemical vapor deposition (MOCVD), but the growth method of the nanocolumn 10 is not limited to this, and molecular beam epitaxy (MBE). It is well known that nanocolumns can be produced even using an apparatus such as hydride vapor phase epitaxy (HVPE). Hereinafter, an MOCVD apparatus is used unless otherwise specified.

また、基板1には炭化ケイ素(SiC)を用いており、これによって青〜長波長側で発光する光を吸収させることなく、発光ダイオードの外部に取出すことができる。また、SiCは不純物を添加することで導電性を確保することができるので、n型電極8を直接基板1に形成することが可能である。しかしながら、基板1はSiCに限定されず、導電性を有し、かつ発光波長に対して透光性を持つものであればよい。たとえば、前記導電性を有し、かつ可視光域で透明となる窒化ガリウム、酸化ガリウムなどを用いることができる。   Further, silicon carbide (SiC) is used for the substrate 1, so that it can be taken out of the light emitting diode without absorbing light emitted from the blue to long wavelength side. Further, since SiC can ensure conductivity by adding impurities, the n-type electrode 8 can be directly formed on the substrate 1. However, the board | substrate 1 is not limited to SiC, What is necessary is just to have electroconductivity and translucency with respect to light emission wavelength. For example, gallium nitride, gallium oxide, or the like that has conductivity and is transparent in the visible light region can be used.

本実施の形態に係る発光ダイオードは、大略的に、n型の導電性基板1上に、n型ナノコラムGaN層3、発光層5およびp型ナノコラムGaN層4から成る前記ナノコラム10が形成され、そのp型ナノコラムGaN層4の先端にp型電極7が、基板1の裏面に前記n型電極8が形成されて成る。注目すべきは、本実施の形態では、ナノコラム10を成長させるにあたって、図1(b)で示すように、基板1上に、ばらつきの大きい核形成層2を形成することである。   In the light-emitting diode according to the present embodiment, the nanocolumn 10 composed of an n-type nanocolumn GaN layer 3, a light-emitting layer 5, and a p-type nanocolumn GaN layer 4 is formed on an n-type conductive substrate 1, A p-type electrode 7 is formed on the tip of the p-type nanocolumn GaN layer 4, and the n-type electrode 8 is formed on the back surface of the substrate 1. It should be noted that in the present embodiment, when the nanocolumn 10 is grown, as shown in FIG. 1B, the nucleation layer 2 having a large variation is formed on the substrate 1.

前記核形成層2の形成には、MOCVD反応炉の圧力を、たとえば76Torrの減圧に設定し、さらに基板温度を、通常のナノコラム10の成長温度よりも低い500℃に設定する。こうして、通常のGaNの成長条件とは異なる条件とすることで、GaN層は面方向への成長が少なくなり、非晶質で四角錘状に成長する。そして、キャリアガスとして水素ガス(H)、Ga原料であるトリメチルガリウム(Ga(CH)および窒素原料であるアンモニア(NH)を5分間供給することで、図1(a)で示すように、非晶質のGaN2aを、おおよそ25nmの厚さに形成する。その後、基板温度を通常のn型ナノコラムGaN層3の成長温度である1050℃程度まで上昇させ、非晶質のGaN2aを多結晶化する。この時、加熱時間を、上記の温度上昇に通常必要な時間が2分程度であるところ、たとえば30分程度に延長することで、非晶質のGaN2aを凝縮させ、前記図1(b)で示すように、高さのばらつきの大きい核形成層2を形成する。ばらつきの度合いの制御は、熱処理時間の長短を制御することで行うことができる。 For the formation of the nucleation layer 2, the pressure of the MOCVD reactor is set to a reduced pressure of, for example, 76 Torr, and the substrate temperature is set to 500 ° C. lower than the growth temperature of the normal nanocolumn 10. Thus, by setting the conditions different from the normal GaN growth conditions, the GaN layer grows in the plane direction and grows in an amorphous and quadrangular pyramid shape. Then, hydrogen gas (H 2 ) as a carrier gas, trimethyl gallium (Ga (CH 3 ) 3 ) as a Ga raw material, and ammonia (NH 3 ) as a nitrogen raw material are supplied for 5 minutes, so that in FIG. As shown, amorphous GaN 2a is formed to a thickness of approximately 25 nm. Thereafter, the substrate temperature is raised to about 1050 ° C., which is the normal growth temperature of the n-type nanocolumn GaN layer 3, and the amorphous GaN 2a is polycrystallized. At this time, the heating time is usually about 2 minutes for the above temperature rise, but for example, by extending it to about 30 minutes, the amorphous GaN 2a is condensed, and in FIG. As shown, the nucleation layer 2 having a large variation in height is formed. The degree of variation can be controlled by controlling the length of the heat treatment time.

続いて、上述のように形成された核形成層2の上に、通常通りの手法で、ナノコラム10を形成する。先ず、成長温度を1070℃、炉内圧力を76Torrに保つ。そして、前記水素ガス、トリメチルガリウムおよびアンモニアを供給しながら、シラン(SiH)を供給することで、Siを不純物として添加し、n型伝導性を有するn型ナノコラムGaN層3の成長を行う。この時、核形成層2の高さのばらつきを反映して、その上に形成されるナノコラム10の高さにばらつきが生じる。具体的には、高さの高い核の上に形成されるナノコラムの高さは高くなり、他方、高さの低い核の上のナノコラムの高さは低くなる。ただし、ナノコラム10の材料は、GaNに限定されるものではなく、たとえば、InN、InGaN,AlGaN、AlN、ZnO,MgZnO等も候補に挙げられる。 Subsequently, the nanocolumn 10 is formed on the nucleation layer 2 formed as described above by a usual method. First, the growth temperature is maintained at 1070 ° C. and the furnace pressure is maintained at 76 Torr. Then, by supplying silane (SiH 4 ) while supplying the hydrogen gas, trimethylgallium and ammonia, Si is added as an impurity, and the n-type nanocolumn GaN layer 3 having n-type conductivity is grown. At this time, the height of the nanocolumns 10 formed on the nucleation layer 2 varies depending on the height variation of the nucleation layer 2. Specifically, the height of nanocolumns formed on high nuclei is high, while the height of nanocolumns on low nuclei is low. However, the material of the nanocolumn 10 is not limited to GaN. For example, InN, InGaN, AlGaN, AlN, ZnO, MgZnO, and the like can be listed as candidates.

次に、成長温度を700℃まで下げ、柱状構造を維持したまま、前記水素ガス、トリメチルガリウムおよびアンモニアを供給しながら、トリメチルインジウム(In(CH)を供給することで、InGaN/GaN多重量子井戸構造から成る発光層5を形成する。井戸層の数は5つとした。この時、高さの高いナノコラムの成長速度は、高さの低いナノコラムの場合に比べて速くなるので、必然的に井戸層および障壁層の厚さが厚くなり、量子閉じ込めシュタルク効果の影響を受け、長波長側で発光する発光層を形成することが出来る。反対に高さの低いナノコラム上に形成された発光層では、前記井戸層および障壁層の厚さが薄くなり、量子効果により、短波長側で発光する発光層が形成される。 Next, the growth temperature is lowered to 700 ° C., and trimethylindium (In (CH 3 ) 3 ) is supplied while supplying the hydrogen gas, trimethylgallium and ammonia while maintaining the columnar structure, whereby InGaN / GaN. A light emitting layer 5 having a multiple quantum well structure is formed. The number of well layers was five. At this time, the growth rate of the nanocolumns with a high height is faster than that with the nanocolumns with a low height. Consequently, the thickness of the well layer and the barrier layer is inevitably increased, which is influenced by the quantum confined Stark effect. A light emitting layer that emits light on the long wavelength side can be formed. On the other hand, in the light emitting layer formed on the nanocolumn having a low height, the thickness of the well layer and the barrier layer is reduced, and the light emitting layer emitting light on the short wavelength side is formed by the quantum effect.

次に、上記n型ナノコラム層3を形成する条件と同じにし、水素ガス、トリメチルガリウムおよびアンモニアを供給しながら、シクロペンタジエニルマグネシウム(Mg(C)を供給することで、Mgを不純物として添加し、p型伝導性を有するp型ナノコラムGaN層4の成長を行う。n型ナノコラム層と同様に、p型ナノコラム層の材料も、GaNに限定されるものではない。こうして、図1(c)で示すように、ナノコラム10を形成することができる。 Next, by supplying cyclopentadienylmagnesium (Mg (C 5 H 5 ) 2 ) while supplying hydrogen gas, trimethylgallium and ammonia under the same conditions as those for forming the n-type nanocolumn layer 3, Mg is added as an impurity to grow the p-type nanocolumn GaN layer 4 having p-type conductivity. Similar to the n-type nanocolumn layer, the material of the p-type nanocolumn layer is not limited to GaN. Thus, the nanocolumn 10 can be formed as shown in FIG.

続いて、図1(d)で示すように、隣接するナノコラム10間の隙間に、絶縁体6を埋め込む。絶縁体6としては、SOG(Spin on Glass)や液状のSiO等(以下、SOGで説明する)が充填される。前記SOGを回転塗布する際、これは液状であるので、各ナノコラム10間の隙間に侵入し、ナノコラム10の間隔、SOGの粘性などを制御することで、ナノコラム10のp型ナノコラムGaN層4より基板1側へ侵入させることは容易である。 Subsequently, as shown in FIG. 1D, the insulator 6 is embedded in the gap between the adjacent nanocolumns 10. The insulator 6 is filled with SOG (Spin on Glass), liquid SiO 2 or the like (hereinafter described as SOG). When the SOG is spin-coated, it is in a liquid state, so that it penetrates into the gaps between the nanocolumns 10 and controls the spacing between the nanocolumns 10, the viscosity of the SOG, etc. It is easy to enter the substrate 1 side.

この後、SOGを400℃で焼成して固化し、バッファードフッ酸を用いて、ナノコラム10のp型ナノコラムGaN層4のみが露出するようにSOGを全面エッチングすると、図1(e)で示すように、少なくともp型ナノコラムGaN層4と発光層5とをカバーする形で、絶縁体6であるSOG埋込層が形成される。   Thereafter, the SOG is solidified by baking at 400 ° C., and the SOG is etched on the entire surface using buffered hydrofluoric acid so that only the p-type nanocolumn GaN layer 4 of the nanocolumn 10 is exposed, as shown in FIG. As described above, the SOG buried layer as the insulator 6 is formed so as to cover at least the p-type nanocolumn GaN layer 4 and the light emitting layer 5.

そして、この上に、図1(f)で示すように、たとえばNi/Auから成り、ナノコラム10の先端のp型ナノコラムGaN層4とオーミックコンタクトすることができる透明電極が、蒸着などで連続形成されてp型電極7となり、基板1の裏面には、たとえばTi/Auから成り、SiCから成る該基板1とオーミックコンタクトすることができるn型電極8が蒸着などで連続形成されて、本実施の形態の発光ダイオードの構造が完成する。   Further, as shown in FIG. 1 (f), a transparent electrode made of, for example, Ni / Au and capable of making ohmic contact with the p-type nanocolumn GaN layer 4 at the tip of the nanocolumn 10 is continuously formed by vapor deposition or the like. The p-type electrode 7 is formed, and an n-type electrode 8 made of, for example, Ti / Au and capable of being in ohmic contact with the substrate 1 is continuously formed on the back surface of the substrate 1 by vapor deposition or the like. The structure of the light emitting diode of the form is completed.

このように作製することで、ナノコラム10の内部に形成される発光層5(特に量子井戸)の膜厚、さらには組成をばらつかせることができ、複数のナノコラム10は、赤、緑、青のうちの一つの光を放射する単色光源となり、蛍光体を用いることなく、複数の波長域で同時に発光させることができる。また、前記構造上に一様に電極7,8を形成することで、異なる発光波長を持つナノコラム10に対して同時に均一に電流を注入することができ、それぞれの発光波長のままで、高い発光効率を実現することができる。   By manufacturing in this way, the film thickness of the light emitting layer 5 (especially quantum well) formed in the nanocolumn 10 and also the composition can be varied, and the plurality of nanocolumns 10 can be red, green, blue. It becomes a monochromatic light source which radiates | emits one of these, and can be light-emitted simultaneously in a several wavelength range, without using fluorescent substance. Further, by forming the electrodes 7 and 8 uniformly on the structure, it is possible to inject current uniformly into the nanocolumns 10 having different emission wavelengths at the same time. Efficiency can be realized.

さらにまた、上述のように高さの異なるナノコラム10を成長させるにあたって、核形成層2を形成し、その熱処理の時間を調整するだけであるので、既存の製造設備をそのまま流用して作製することができる。   Furthermore, when growing the nanocolumns 10 having different heights as described above, the nucleation layer 2 is formed and only the heat treatment time is adjusted, so that the existing manufacturing equipment is used as it is. Can do.

ここで、p型ナノコラムGaN層4上にp型電極7を形成するにあたって、たとえば文献1(文献1:菊池、野村、岸野「窒化物半導体ナノコラム結晶を用いた新しい機能性デバイス材料の開発」(応用物理学会2004年秋季大会予稿集第1分冊4P−W−1))に記載されているように、ナノコラム径を広げながらp型ナノコラムGaN層をエピタキシャル成長させた上に、p型電極を形成すると、その径を広げ、隣接するナノコラムと接合した部分で、面方位の異なる結晶が混在して成長し、たとえナノコラム内に貫通転位が無くとも、その径を広げた部分に多数の貫通転位が発生してしまい、その貫通転位で、発光層で発生した光の多くが吸収されてしまう。   Here, when forming the p-type electrode 7 on the p-type nanocolumn GaN layer 4, for example, Reference 1 (Reference 1: Kikuchi, Nomura, Kishino “Development of a new functional device material using a nitride semiconductor nanocolumn crystal” ( When the p-type electrode is formed after epitaxially growing the p-type nanocolumn GaN layer while expanding the nanocolumn diameter, as described in the 2004 Fall Meeting of the Japan Society of Applied Physics (1st volume 4P-W-1)) When the diameter of the nanocolumns is increased and crystals with different plane orientations are mixed and grown, even if there are no threading dislocations in the nanocolumns, a large number of threading dislocations are generated in the expanded part. Therefore, much of the light generated in the light emitting layer is absorbed by the threading dislocation.

これに対して、上述のように絶縁体6を埋め込むことで、通常の蒸着などの技術でp型電極7を連続して形成しても、発光層5を跨いで、n型ナノコラムGaN層3とp型ナノコラムGaN4とが該p型電極7用の材料で短絡されてしまうことを防止することができ、貫通転位のないナノコラム10の利点を生かした高効率な発光を行うことができる。絶縁体6は、ナノコラム10の全長に亘って(基端部側まで)充填されている必要はなく、少なくともp型ナノコラムGaN層4の一部が塞がっていて、p型電極7の金属がn型ナノコラムGaN層3に侵入できなければよい。   On the other hand, by embedding the insulator 6 as described above, the n-type nanocolumn GaN layer 3 straddles the light emitting layer 5 even if the p-type electrode 7 is continuously formed by a technique such as ordinary vapor deposition. And the p-type nanocolumn GaN4 can be prevented from being short-circuited by the material for the p-type electrode 7, and high-efficiency light emission can be performed taking advantage of the nanocolumn 10 without threading dislocations. The insulator 6 does not need to be filled over the entire length of the nanocolumn 10 (up to the base end side), at least a part of the p-type nanocolumn GaN layer 4 is blocked, and the metal of the p-type electrode 7 is n It is sufficient that the mold nanocolumn GaN layer 3 cannot be penetrated.

上述のように構成される発光ダイオードを照明装置に用いることで、蛍光体を用いることなく、複数の波長域で同時に発光させることができ、同じ光束(輝度、照度)を得るにも、小型で低消費電力な照明装置を実現することができる。また、上記発光ダイオードは、従来の発光ダイオードと同様に配線することができるので、照明装置に大きな変更を要求することなく、素子を交換するだけで、高効率な照明装置を実現することができる。   By using the light emitting diode configured as described above for the lighting device, it is possible to emit light simultaneously in a plurality of wavelength regions without using a phosphor, and to obtain the same luminous flux (luminance, illuminance), it is small. A lighting device with low power consumption can be realized. In addition, since the light-emitting diode can be wired in the same manner as a conventional light-emitting diode, a highly efficient lighting device can be realized by simply exchanging elements without requiring a large change in the lighting device. .

上述の実施の形態は、窒化物半導体で説明しているけれども、本発明は、酸化物半導体にも適用することができる。酸化物半導体であるZnOは、発光素子として非常に優れた特性を有している。励起子の結合エネルギが60meVと、GaNの2〜3倍であり、内部量子効率がGaNに比べて高くなる可能性がある上、屈折率は約2であり、GaNの屈折率2.5に比べて小さく、光取出しの点で圧倒的に有利である。また材料自身が安価であることも商業ベースで考えると魅力的である。   Although the above embodiment has been described using a nitride semiconductor, the present invention can also be applied to an oxide semiconductor. ZnO which is an oxide semiconductor has extremely excellent characteristics as a light-emitting element. The exciton binding energy is 60 meV, 2 to 3 times that of GaN, the internal quantum efficiency may be higher than that of GaN, and the refractive index is about 2. It is small compared to the above, and is overwhelmingly advantageous in terms of light extraction. It is also attractive from a commercial basis that the materials themselves are inexpensive.

したがって、上述の実施の形態は、窒化物半導体であるGaN系ナノコラムについて述べているが、結晶構造上、よく似ている酸化物半導体であるZnOについても、全く同じ構造の半導体発光素子を、同様に作製することができる。詳述すれば、以下のとおりである。   Therefore, although the above-described embodiment describes a GaN-based nanocolumn that is a nitride semiconductor, the same structure of a semiconductor light-emitting element is similarly applied to ZnO that is an oxide semiconductor that is similar in crystal structure. Can be produced. The details are as follows.

GaNとZnOとは、共に六方晶系の結晶構造を持ち、結晶の格子定数も近い。バンドギャップも、GaNの3.4に対して、ZnOは3.3と、これもまた近い。両方とも直接遷移型半導体である。したがってGaNでナノコラムが形成されるのであれば、ZnOでもナノコラムが形成できる。実際、文献2では、MOCVD法を用いて、サファイア基板上にZnOのナノコラム(同文献ではナノロッドと呼んでいる)を形成している(文献2:W.I.Park, Y.H.Jun, S.W.Jung and Gyu-Chul Yi Appl.Phys.Lett. 964(2003))。   Both GaN and ZnO have a hexagonal crystal structure, and the lattice constants of the crystals are close. The band gap is also close to 3.4 for GaN and 3.3 for ZnO. Both are direct transition semiconductors. Therefore, if a nanocolumn is formed of GaN, a nanocolumn can be formed of ZnO. In fact, in Document 2, ZnO nanocolumns (called nanorods in this document) are formed on a sapphire substrate using MOCVD (Reference 2: WIPark, YHJun, SWJung and Gyu-Chul). Yi Appl. Phys. Lett. 964 (2003)).

本発明の実施の一形態に係る半導体発光素子である発光ダイオードの製造工程を模式的に示す断面図である。It is sectional drawing which shows typically the manufacturing process of the light emitting diode which is a semiconductor light-emitting device concerning one Embodiment of this invention.

符号の説明Explanation of symbols

1 n型の導電性基板
2 核形成層
2a 非晶質のGaN
3 n型ナノコラムGaN層
4 p型ナノコラムGaN層
5 発光層
6 絶縁体
7 p型電極
8 n型電極
10 ナノコラム
1 n-type conductive substrate 2 nucleation layer 2a amorphous GaN
3 n-type nanocolumn GaN layer 4 p-type nanocolumn GaN layer 5 light emitting layer 6 insulator 7 p-type electrode 8 n-type electrode 10 nanocolumn

Claims (5)

基板上に、n型窒化物半導体層またはn型酸化物半導体層と、発光層と、p型窒化物半導体層またはp型酸化物半導体層とを順に積層した柱状結晶構造体を複数有して成る半導体発光素子において、
前記複数の柱状結晶構造体は、それぞれの成長速度が異なることで、前記発光層の厚さが異なることを特徴とする半導体発光素子。
A plurality of columnar crystal structures in which an n-type nitride semiconductor layer or an n-type oxide semiconductor layer, a light emitting layer, and a p-type nitride semiconductor layer or a p-type oxide semiconductor layer are sequentially stacked on a substrate; In a semiconductor light emitting device comprising:
The plurality of columnar crystal structures have different growth rates, and thus the thickness of the light emitting layer is different.
少なくとも前記p型窒化物半導体層またはp型酸化物半導体層の部分に、隣接する柱状結晶構造体との間の空隙に充填される絶縁体を含むことを特徴とする請求項1記載の半導体発光素子。   2. The semiconductor light emitting device according to claim 1, wherein at least a portion of the p-type nitride semiconductor layer or the p-type oxide semiconductor layer includes an insulator filled in a gap between adjacent columnar crystal structures. element. 前記請求項1または2記載の半導体発光素子を用いることを特徴とする照明装置。   An illumination device using the semiconductor light emitting device according to claim 1. 基板上に、n型窒化物半導体層またはn型酸化物半導体層と、発光層と、p型窒化物半導体層またはp型酸化物半導体層とを順に積層した柱状結晶構造体を複数有して成る半導体発光素子の製造方法において、
前記基板上に前記柱状結晶構造体の種となる核形成層を堆積させる工程と、
前記核形成層を熱処理して、核の高さにばらつきを持たせる工程と、
前記柱状結晶構造体の各層を順に積層する工程とを含むことを特徴とする半導体発光素子の製造方法。
A plurality of columnar crystal structures in which an n-type nitride semiconductor layer or an n-type oxide semiconductor layer, a light emitting layer, and a p-type nitride semiconductor layer or a p-type oxide semiconductor layer are sequentially stacked on a substrate; In a method for manufacturing a semiconductor light emitting device comprising:
Depositing a nucleation layer to be a seed of the columnar crystal structure on the substrate;
Heat treating the nucleation layer to vary the height of the nuclei; and
And a step of sequentially stacking the layers of the columnar crystal structure.
前記柱状結晶構造体の各層を積層後に、少なくとも前記p型窒化物半導体層またはp型酸化物半導体層の部分に、隣接する柱状結晶構造体との間の空隙に絶縁体を充填する工程と、
前記絶縁体から露出した前記p型窒化物半導体層またはp型酸化物半導体層の先端面に、連続してp型電極を形成する工程を行うことを特徴とする請求項4記載の半導体発光素子の製造方法。
After laminating each layer of the columnar crystal structure, filling a gap between the columnar crystal structure and an insulator in at least a portion of the p-type nitride semiconductor layer or p-type oxide semiconductor layer;
5. The semiconductor light emitting device according to claim 4, wherein a step of continuously forming a p-type electrode on a tip surface of the p-type nitride semiconductor layer or the p-type oxide semiconductor layer exposed from the insulator is performed. Manufacturing method.
JP2005311111A 2005-10-26 2005-10-26 Manufacturing method of semiconductor light emitting device Expired - Fee Related JP4552828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005311111A JP4552828B2 (en) 2005-10-26 2005-10-26 Manufacturing method of semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005311111A JP4552828B2 (en) 2005-10-26 2005-10-26 Manufacturing method of semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2007123398A true JP2007123398A (en) 2007-05-17
JP4552828B2 JP4552828B2 (en) 2010-09-29

Family

ID=38146940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005311111A Expired - Fee Related JP4552828B2 (en) 2005-10-26 2005-10-26 Manufacturing method of semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP4552828B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009082982A1 (en) * 2007-12-27 2009-07-09 Shenzhen Fangda Semiconductor Co., Ltd A method of increasing chip luminous efficiency and a manufacturing method of sapphire pattern substrate
WO2009113651A1 (en) 2008-03-14 2009-09-17 パナソニック電工株式会社 Compound semiconductor light-emitting element and illumination device using the same, and method for manufacturing compound semiconductor light-emitting element
WO2009137556A2 (en) * 2008-05-06 2009-11-12 Kyma Technologies, Inc. Group iii nitride templates and related heterostructures, devices, and methods for making them
WO2009145131A1 (en) 2008-05-26 2009-12-03 パナソニック電工株式会社 Compound semiconductor light emitting element, illuminating apparatus using compound semiconductor light emitting element, and method for manufacturing compound semiconductor light emitting element
WO2010044129A1 (en) * 2008-10-17 2010-04-22 国立大学法人北海道大学 Semiconductor light-emitting element array and manufacturing method thereof
CN102197299A (en) * 2008-10-29 2011-09-21 松下电工株式会社 Detecting element, detector, and oxygen concentration analyzer
JP2011530164A (en) * 2008-08-01 2011-12-15 エルジー シルトロン インコーポレイテッド Semiconductor device, light emitting device, and manufacturing method thereof
WO2012030360A1 (en) * 2010-08-30 2012-03-08 Invenlux Corporation Light-emitting devices with two-dimensional composition-fluctuation active-region and method for fabricating the same
CN103325893A (en) * 2013-06-25 2013-09-25 清华大学 GaN-base LED epitaxial wafer based on non-single-crystal substrate
JP2014075459A (en) * 2012-10-04 2014-04-24 Nano Material Kenkyusho:Kk Semiconductor device
KR20140119704A (en) * 2012-01-20 2014-10-10 오스람 옵토 세미컨덕터스 게엠베하 Light-emitting diode chip
US9287445B2 (en) 2012-12-14 2016-03-15 Samsung Electronics Co., Ltd. Nano-structured light-emitting devices
US9450018B2 (en) 2014-02-05 2016-09-20 Samsung Electronics Co., Ltd. Light-emitting device and light-emitting device package
JP2017501565A (en) * 2013-11-13 2017-01-12 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Semiconductor layer sequence and method for manufacturing semiconductor layer sequence
CN108389941A (en) * 2018-04-08 2018-08-10 中国科学院半导体研究所 It is aobvious to refer to adjustable unstressed configuration powder Single chip white light LED component and preparation method thereof
CN112687777A (en) * 2020-12-18 2021-04-20 华灿光电(苏州)有限公司 Light emitting diode epitaxial wafer and preparation method thereof
US11329190B2 (en) 2019-03-26 2022-05-10 Seiko Epson Corporation Light emitting device and projector
US11626533B2 (en) 2019-03-26 2023-04-11 Seiko Epson Corporation Light emitting device and projector

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160054073A (en) 2014-11-05 2016-05-16 삼성전자주식회사 Display device and display panel
CN106531851B (en) * 2016-10-24 2018-09-14 华南理工大学 One kind being grown in LiGaO2Non-polar GaN nano-pillar on substrate and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06244457A (en) * 1993-02-16 1994-09-02 Nisshin Steel Co Ltd Manufacture of light emitting diode
JPH10233559A (en) * 1997-02-20 1998-09-02 Canon Inc Semiconductor laser device and its manufacture as well as optical communication system using the same
WO2004055900A1 (en) * 2002-12-16 2004-07-01 Japan Science And Technology Agency Semiconductor multilayer structure having inhomogeneous quantum dots, light-emitting diode using same, semiconductor laser diode, semiconductor optical amplifier, and method for manufacturing them
JP2005228936A (en) * 2004-02-13 2005-08-25 Dongguk Univ Light-emitting diode and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06244457A (en) * 1993-02-16 1994-09-02 Nisshin Steel Co Ltd Manufacture of light emitting diode
JPH10233559A (en) * 1997-02-20 1998-09-02 Canon Inc Semiconductor laser device and its manufacture as well as optical communication system using the same
WO2004055900A1 (en) * 2002-12-16 2004-07-01 Japan Science And Technology Agency Semiconductor multilayer structure having inhomogeneous quantum dots, light-emitting diode using same, semiconductor laser diode, semiconductor optical amplifier, and method for manufacturing them
JP2005228936A (en) * 2004-02-13 2005-08-25 Dongguk Univ Light-emitting diode and its manufacturing method

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009082982A1 (en) * 2007-12-27 2009-07-09 Shenzhen Fangda Semiconductor Co., Ltd A method of increasing chip luminous efficiency and a manufacturing method of sapphire pattern substrate
WO2009113651A1 (en) 2008-03-14 2009-09-17 パナソニック電工株式会社 Compound semiconductor light-emitting element and illumination device using the same, and method for manufacturing compound semiconductor light-emitting element
US8263990B2 (en) 2008-03-14 2012-09-11 Panasonic Corporation Compound semiconductor light-emitting element and illumination device using the same, and method for manufacturing compound semiconductor light-emitting element
JP2010010657A (en) * 2008-03-14 2010-01-14 Panasonic Electric Works Co Ltd Compound semiconductor light-emitting element and illumination device using the same, and method for manufacturing compound semiconductor light-emitting element
EP2254164A4 (en) * 2008-03-14 2011-06-29 Panasonic Elec Works Co Ltd Compound semiconductor light-emitting element and illumination device using the same, and method for manufacturing compound semiconductor light-emitting element
EP2254164A1 (en) * 2008-03-14 2010-11-24 Panasonic Electric Works Co., Ltd Compound semiconductor light-emitting element and illumination device using the same, and method for manufacturing compound semiconductor light-emitting element
CN102083743A (en) * 2008-05-06 2011-06-01 Kyma技术有限公司 Group III nitride templates and related heterostructures, devices, and methods for making them
WO2009137556A2 (en) * 2008-05-06 2009-11-12 Kyma Technologies, Inc. Group iii nitride templates and related heterostructures, devices, and methods for making them
JP2011524322A (en) * 2008-05-06 2011-09-01 キマ テクノロジーズ, インコーポレイテッド Group III nitride template and related heterostructures, devices and methods for constructing the same
WO2009137556A3 (en) * 2008-05-06 2010-02-25 Kyma Technologies, Inc. Group iii nitride templates and related heterostructures, devices, and methods for making them
EP2290710A1 (en) * 2008-05-26 2011-03-02 Panasonic Electric Works Co., Ltd. Compound semiconductor light emitting element, illuminating apparatus using compound semiconductor light emitting element, and method for manufacturing compound semiconductor light emitting element
US8247791B2 (en) 2008-05-26 2012-08-21 Panasonic Corporation Compound semiconductor light emitting element, illuminating apparatus using compound semiconductor light emitting element, and method for manufacturing compound semiconductor light emitting element
EP2290710A4 (en) * 2008-05-26 2011-06-29 Panasonic Elec Works Co Ltd Compound semiconductor light emitting element, illuminating apparatus using compound semiconductor light emitting element, and method for manufacturing compound semiconductor light emitting element
JP2009283876A (en) * 2008-05-26 2009-12-03 Panasonic Electric Works Co Ltd Compound semiconductor light emitting element, illuminating apparatus using it and method for manufacturing compound semiconductor light emitting element
KR101196579B1 (en) 2008-05-26 2012-11-02 파나소닉 주식회사 Compound semiconductor light emitting element, illuminating apparatus using compound semiconductor light emitting element, and method for manufacturing compound semiconductor light emitting element
WO2009145131A1 (en) 2008-05-26 2009-12-03 パナソニック電工株式会社 Compound semiconductor light emitting element, illuminating apparatus using compound semiconductor light emitting element, and method for manufacturing compound semiconductor light emitting element
JP2011530164A (en) * 2008-08-01 2011-12-15 エルジー シルトロン インコーポレイテッド Semiconductor device, light emitting device, and manufacturing method thereof
US9425352B2 (en) 2008-08-01 2016-08-23 Lg Siltron Inc. Semiconductor device, light emitting device and method of manufacturing same
RU2469435C1 (en) * 2008-10-17 2012-12-10 Нэшнл Юниверсити Корпорейшн Хоккайдо Юниверсити Array of semiconductor light-emitting elements and method of making said element
JP5211352B2 (en) * 2008-10-17 2013-06-12 国立大学法人北海道大学 Semiconductor light-emitting element array and manufacturing method thereof
US8519378B2 (en) 2008-10-17 2013-08-27 National University Corporation Hokkaido University Semiconductor light-emitting element array including a semiconductor rod
WO2010044129A1 (en) * 2008-10-17 2010-04-22 国立大学法人北海道大学 Semiconductor light-emitting element array and manufacturing method thereof
CN102197299A (en) * 2008-10-29 2011-09-21 松下电工株式会社 Detecting element, detector, and oxygen concentration analyzer
WO2012030360A1 (en) * 2010-08-30 2012-03-08 Invenlux Corporation Light-emitting devices with two-dimensional composition-fluctuation active-region and method for fabricating the same
KR101961980B1 (en) 2012-01-20 2019-03-25 오스람 옵토 세미컨덕터스 게엠베하 Light-emitting diode chip
KR20140119704A (en) * 2012-01-20 2014-10-10 오스람 옵토 세미컨덕터스 게엠베하 Light-emitting diode chip
JP2014075459A (en) * 2012-10-04 2014-04-24 Nano Material Kenkyusho:Kk Semiconductor device
US9525100B2 (en) 2012-12-14 2016-12-20 Samsung Electronics Co., Ltd. Nano-structured light-emitting devices
US9287445B2 (en) 2012-12-14 2016-03-15 Samsung Electronics Co., Ltd. Nano-structured light-emitting devices
CN103325893A (en) * 2013-06-25 2013-09-25 清华大学 GaN-base LED epitaxial wafer based on non-single-crystal substrate
JP2017501565A (en) * 2013-11-13 2017-01-12 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Semiconductor layer sequence and method for manufacturing semiconductor layer sequence
US9450018B2 (en) 2014-02-05 2016-09-20 Samsung Electronics Co., Ltd. Light-emitting device and light-emitting device package
CN108389941A (en) * 2018-04-08 2018-08-10 中国科学院半导体研究所 It is aobvious to refer to adjustable unstressed configuration powder Single chip white light LED component and preparation method thereof
US11329190B2 (en) 2019-03-26 2022-05-10 Seiko Epson Corporation Light emitting device and projector
US11626533B2 (en) 2019-03-26 2023-04-11 Seiko Epson Corporation Light emitting device and projector
CN112687777A (en) * 2020-12-18 2021-04-20 华灿光电(苏州)有限公司 Light emitting diode epitaxial wafer and preparation method thereof
CN112687777B (en) * 2020-12-18 2021-12-03 华灿光电(苏州)有限公司 Light emitting diode epitaxial wafer and preparation method thereof

Also Published As

Publication number Publication date
JP4552828B2 (en) 2010-09-29

Similar Documents

Publication Publication Date Title
JP4552828B2 (en) Manufacturing method of semiconductor light emitting device
JP4160000B2 (en) Light emitting diode and manufacturing method thereof
JP4525500B2 (en) Semiconductor light emitting element, lighting device using the same, and method for manufacturing semiconductor light emitting element
JP4997621B2 (en) Semiconductor light emitting device and lighting device using the same
JP5807015B2 (en) Method for manufacturing light emitting device
JP3660801B2 (en) GaN-based semiconductor light emitting device
US20080191191A1 (en) Light Emitting Diode of a Nanorod Array Structure Having a Nitride-Based Multi Quantum Well
CN100392881C (en) GaN-based LED extension sheet and its preparation method
JP5279006B2 (en) Nitride semiconductor light emitting device
JP4852755B2 (en) Method for manufacturing compound semiconductor device
JP2010098336A (en) GaN SEMICONDUCTOR LIGHT-EMITTING ELEMENT AND MANUFACTURING METHOD THEREOF
KR102094471B1 (en) Method for growing nitride semiconductor layer and Nitride semiconductor formed therefrom
JP4586934B2 (en) Semiconductor light emitting element and lighting device using the same
CN110828623A (en) Light-emitting diode preparation method and light-emitting diode
JP4586935B2 (en) Manufacturing method of semiconductor light emitting device
CN100440553C (en) GaN-based LED extension sheet and its preparation method
JP2010258097A (en) Method of manufacturing nitride semiconductor layer, method of manufacturing nitride semiconductor light emitting device, and nitride semiconductor light emitting device
US20110133158A1 (en) Method for fabricating ingan-based multi-quantum well layers
TWI289937B (en) White light LED
KR102099877B1 (en) Method for fabricating nitride semiconductor device
JPH11354843A (en) Fabrication of group iii nitride quantum dot structure and use thereof
KR20080030042A (en) Light emitting diode of a nanorod array structure having a nitride-baseed multi quantum well
CN107546305A (en) A kind of GaN base light emitting epitaxial structure
JP5946333B2 (en) Group III nitride semiconductor device and manufacturing method thereof
KR101180414B1 (en) Substrate structure for high-efficiency light emitting diodes and method of growing epitaxial base-layers thereon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees