JP2007123174A - Organic electroluminescent element - Google Patents

Organic electroluminescent element Download PDF

Info

Publication number
JP2007123174A
JP2007123174A JP2005316777A JP2005316777A JP2007123174A JP 2007123174 A JP2007123174 A JP 2007123174A JP 2005316777 A JP2005316777 A JP 2005316777A JP 2005316777 A JP2005316777 A JP 2005316777A JP 2007123174 A JP2007123174 A JP 2007123174A
Authority
JP
Japan
Prior art keywords
organic
barrier layer
atomic
nitrogen concentration
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005316777A
Other languages
Japanese (ja)
Inventor
Yukito Aota
幸人 青田
Masahiro Kanai
正博 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005316777A priority Critical patent/JP2007123174A/en
Publication of JP2007123174A publication Critical patent/JP2007123174A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic EL element having a barrier layer capable of preventing intrusion of moisture or oxygen into an organic compound layer and effectively taking out the light emitted therefrom. <P>SOLUTION: The organic EL element is composed of an opaque electrode 2, the organic compound layer 6, a transparent electrode 7 and the barrier layer 8 covering those elements laminated on a glass substrate 1. The barrier layer 8 formed on the transparent electrode 7 is made to contain at least silicon, nitrogen, and hydrogen as main component, and oxygen as additive element, made to contain an area where density of nitrogen against that of silicon is 30 atomic% or higher and 70 atomic% or lower, and gradient of oxygen density is made to periodically change in film thickness direction. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、フラットパネルディスプレイ等に用いられる有機エレクトロルミネッセンス(EL)素子に関する。   The present invention relates to an organic electroluminescence (EL) element used for a flat panel display or the like.

従来、フラットパネルディスプレイとして、最も広範に用いられているのは液晶素子であるが、電界に対する応答速度が数十msec程度と遅く、動画像などを表示するには、この応答速度が問題となってくる。また、視野角依存性が大きいという問題も抱えている。   Conventionally, a liquid crystal element has been most widely used as a flat panel display, but the response speed to an electric field is as slow as several tens of msec, and this response speed is a problem for displaying moving images. Come. There is also a problem that viewing angle dependency is large.

上記の問題を解決するために、最近フラットパネル対応の自発光型デバイスである有機EL素子が注目されているが、有機EL素子は、水分や酸素により特性劣化を招き、また、有機化合物層と電極層の剥離が生じダークスポット発生の原因となっている。そこで、有機EL素子による省スペースのフラットパネルディスプレイを実現するため、水分や酸素の有機化合物層への浸入を防止するための高機能なバリア層が要求されている。   In order to solve the above problems, an organic EL element, which is a self-luminous device compatible with a flat panel, has recently attracted attention. However, the organic EL element causes deterioration in characteristics due to moisture and oxygen, and an organic compound layer and The electrode layer is peeled off, causing dark spots. Therefore, in order to realize a space-saving flat panel display using an organic EL element, a highly functional barrier layer for preventing infiltration of moisture and oxygen into the organic compound layer is required.

従来、透過率の高いバリア層は二酸化シリコン(SiO2)や、窒化シリコン(Si34)が蒸着や、スパッタ、CVDの方法で形成されている。 Conventionally, the barrier layer having a high transmittance is formed by vapor deposition, sputtering, or CVD using silicon dioxide (SiO 2 ) or silicon nitride (Si 3 N 4 ).

しかしながら、有機EL素子を構成する有機化合物層は、100℃を超える温度で結晶化を起こし、有機EL素子の特性劣化を招いてしまう。そのため、少なくとも不透明電極、有機化合物層、透明電極が積層され、その上に形成されるバリア層は、80℃以下の低温で形成することが要求される。   However, the organic compound layer constituting the organic EL element is crystallized at a temperature exceeding 100 ° C., resulting in deterioration of the characteristics of the organic EL element. Therefore, at least an opaque electrode, an organic compound layer, and a transparent electrode are laminated, and the barrier layer formed thereon is required to be formed at a low temperature of 80 ° C. or lower.

有機化合物層を含む積層膜上に形成されるスパッタを用いた二酸化シリコン膜や窒化シリコン膜は、有機EL素子の特性劣化を十分防湿する性能を有していない。それは、スパッタで形成されるこれらの膜は、硬く、カバレッジ性が悪く、成膜を行う電極表面粗さの影響を受け十分なカバレッジができない。さらに膜の内部応力により、クラックや欠陥を生じてしまうからである。   A silicon dioxide film or a silicon nitride film using sputtering formed on a laminated film including an organic compound layer does not have a performance of sufficiently preventing moisture from deteriorating the characteristics of the organic EL element. That is, these films formed by sputtering are hard and have poor coverage, and are not sufficiently covered by the influence of the surface roughness of the electrode on which the film is formed. Furthermore, cracks and defects are generated due to the internal stress of the film.

また、プラズマCVDを用いた二酸化シリコン膜は、300℃を超える高温で形成することにより防湿性の高いバリア層が得られているが、100℃以下の温度では、十分な防湿性能を得られない。さらにプラズマCVDにより形成される窒化シリコン膜は、膜厚を厚くすると光の透過率が大きく低下し、さらに、膜応力により、クラックやカバレッジ性の低下が生じ、光取り出し面側のバリア層として不十分である。   In addition, a silicon dioxide film using plasma CVD is formed at a high temperature exceeding 300 ° C. to obtain a barrier layer having a high moisture resistance, but a sufficient moisture resistance cannot be obtained at a temperature of 100 ° C. or less. . Furthermore, when the thickness of the silicon nitride film formed by plasma CVD is increased, the light transmittance is greatly reduced. Further, the film stress causes cracks and a decrease in coverage, and it is not suitable as a barrier layer on the light extraction surface side. It is enough.

特許文献1には、ポリカーボネート基板に樹脂層をコーティングし、平坦化処理を行って、スパッタ法により酸化窒化シリコンの防湿用バリア膜を形成した有機EL素子について開示されている。また、特許文献2には、TFT等の半導体絶縁膜を用いた半導体装置及びその製造方法について開示されている。しかしながら、基板温度を350℃以上に加熱する方法では、有機化合物層が熱により変性、変質し、有機EL素子の特性劣化を引き起すことになる。また、酸化窒化シリコン膜は、膜中酸素量の増加により防湿性能が低下し、シリコン、窒素、酸素の総数に対する酸素濃度が50atomic%を超える酸化窒化シリコン膜は、有機EL素子の防湿性能としては不十分である。   Patent Document 1 discloses an organic EL element in which a polycarbonate substrate is coated with a resin layer, planarized, and a moisture barrier film made of silicon oxynitride is formed by sputtering. Patent Document 2 discloses a semiconductor device using a semiconductor insulating film such as a TFT and a manufacturing method thereof. However, in the method of heating the substrate temperature to 350 ° C. or higher, the organic compound layer is denatured and denatured by heat, causing deterioration of the characteristics of the organic EL element. In addition, the moisture proof performance of the silicon oxynitride film decreases due to an increase in the amount of oxygen in the film, and the silicon oxynitride film in which the oxygen concentration with respect to the total number of silicon, nitrogen, and oxygen exceeds 50 atomic% is the moisture proof performance of the organic EL element. It is insufficient.

特開2002−100469号公報JP 2002-1000046 A 特開2001−53286号公報JP 2001-53286 A

このように、特許文献1,2に開示されている方法においても、プラズマのイオン衝撃や熱に弱い有機EL素子のバリア層を形成することは困難である。   Thus, even in the methods disclosed in Patent Documents 1 and 2, it is difficult to form a barrier layer of an organic EL element that is weak against plasma ion bombardment and heat.

本発明が解決しようとする課題は、有機化合物層への水分や酸素の浸入を防止し、且つ有機化合物層から出る光を効率よく取り出すことの出来るバリア層を有する有機EL素子を提供することである。   The problem to be solved by the present invention is to provide an organic EL device having a barrier layer that prevents moisture and oxygen from entering the organic compound layer and can efficiently extract light emitted from the organic compound layer. is there.

本発明は、基板に積層された不透明電極と有機化合物層と透明電極及びそれらを覆うバリア層で少なくとも構成された有機EL素子において、
前記透明電極上に形成されるバリア層は、少なくともシリコン、窒素、水素を主成分とし、添加元素に酸素を含み、シリコンに対する窒素濃度が30以上70atomic%以下の領域を含み、且つ膜厚方向に周期的に窒素濃度勾配が形成されている事を特徴とする有機EL素子である。
The present invention relates to an organic EL device comprising at least an opaque electrode, an organic compound layer, a transparent electrode and a barrier layer covering them laminated on a substrate.
The barrier layer formed on the transparent electrode includes at least silicon, nitrogen, and hydrogen as main components, oxygen as an additive element, a region having a nitrogen concentration of 30 to 70 atomic% with respect to silicon, and in a film thickness direction. The organic EL device is characterized in that a nitrogen concentration gradient is periodically formed.

本発明において、前記バリア層は、VHFプラズマCVD法で形成されたものが好ましく用いられる。   In the present invention, the barrier layer is preferably formed by a VHF plasma CVD method.

本発明の有機EL素子は、有機化合物層からの光の透過率が高く、且つ防湿性能の高いバリア層で構成でき、素子劣化やダークスポットの発生を防止することができる。   The organic EL device of the present invention can be composed of a barrier layer having a high light transmittance from the organic compound layer and a high moisture-proof performance, and can prevent device deterioration and occurrence of dark spots.

以下に本発明を詳細に説明する。   The present invention is described in detail below.

図1及び2は本発明の有機EL素子の一例の概念図である。   1 and 2 are conceptual diagrams of an example of the organic EL element of the present invention.

図1に示した有機EL素子では、ガラス基板1上に不透明電極である正孔注入電極2を形成し、その上に正孔注入輸送層3、発光層4、電子注入輸送層5の有機化合物層6を形成する。さらに、その上に透明電極である電子注入電極7が形成され、これらを覆うようにバリア層8が形成される。また、不透明電極2の下層はTFTを形成することが少なくない。   In the organic EL device shown in FIG. 1, a hole injection electrode 2 which is an opaque electrode is formed on a glass substrate 1, and an organic compound of a hole injection transport layer 3, a light emitting layer 4 and an electron injection transport layer 5 is formed thereon. Layer 6 is formed. Further, an electron injection electrode 7 which is a transparent electrode is formed thereon, and a barrier layer 8 is formed so as to cover them. In addition, the lower layer of the opaque electrode 2 often forms a TFT.

本発明の有機EL素子の透明電極7には、ITO,IZOが好ましく用いられるが、ITOにタングステンやZnが含まれる場合もある。   ITO and IZO are preferably used for the transparent electrode 7 of the organic EL element of the present invention, but ITO may contain tungsten or Zn.

バリア層8は、発光層4から出る光の光取り出し面側の透明電極7上に、不透明電極2、有機化合物層6、透明電極7をほぼ覆うようにプラズマCVD法により形成される。プラズマCVDの励起周波数を30MHz以上100MHz以下のVHF帯を用いることで、プラズマのイオン衝撃を弱め素子の熱ダメージを抑えるとともに、緻密で欠陥の無い酸化窒化シリコン膜及び窒化シリコン膜を形成することができる。   The barrier layer 8 is formed on the transparent electrode 7 on the light extraction surface side of the light emitted from the light emitting layer 4 by a plasma CVD method so as to substantially cover the opaque electrode 2, the organic compound layer 6, and the transparent electrode 7. By using a VHF band with an excitation frequency of plasma CVD of 30 MHz or more and 100 MHz or less, plasma ion bombardment can be weakened and thermal damage to the element can be suppressed, and a dense and defect-free silicon oxynitride film and silicon nitride film can be formed. it can.

有機EL素子は有機化合物層6と両電極2,7との密着性が弱いため、バリア層8は、透明電極7表面の凹凸のカバレッジ性の高さと防湿性、低応力の膜質が求められる。   Since the organic EL element has poor adhesion between the organic compound layer 6 and the electrodes 2 and 7, the barrier layer 8 is required to have high uneven coverage on the surface of the transparent electrode 7, moisture resistance, and low stress film quality.

後述する表1に示した結果より、窒化シリコン膜の窒素濃度を30以上70atomic%以下の範囲に減少させるとカバレッジ性と防湿性が改善できることがわかった。これは、シリコンに対する窒素濃度を低下させる事で、窒化膜が金属の性質に近くなり、柔軟性、カバレッジ性が改善すると考えられる。   From the results shown in Table 1 to be described later, it was found that the coverage and moisture resistance can be improved by reducing the nitrogen concentration of the silicon nitride film to a range of 30 to 70 atomic%. This is considered to be that by reducing the nitrogen concentration with respect to silicon, the nitride film is close to the nature of metal, and the flexibility and coverage are improved.

しかし、低応力で、高い光の透過率を求めるには、低窒素濃度の窒化シリコン層では光の透過率を満足できない。そこで低窒素濃度の窒化シリコン層と、窒化シリコン層又は酸化窒化シリコン層の窒素濃度を高めたり低くしたりして窒素濃度勾配を周期的に形成したバリア膜が有効である。   However, in order to obtain a high light transmittance with a low stress, a silicon nitride layer having a low nitrogen concentration cannot satisfy the light transmittance. Therefore, a low nitrogen concentration silicon nitride layer and a barrier film in which a nitrogen concentration gradient is periodically formed by increasing or decreasing the nitrogen concentration of the silicon nitride layer or the silicon oxynitride layer are effective.

本発明の有機EL素子では、シリコンに対する窒素濃度が30以上70atomic%以下の領域を含み、且つ膜厚方向に周期的に窒素濃度勾配を形成することにより、バリア膜8中の内部応力を緩和し、且つ防湿性能、光透過率の高い膜を形成した。   In the organic EL device of the present invention, the internal stress in the barrier film 8 is reduced by forming a nitrogen concentration gradient periodically in the film thickness direction, including a region where the nitrogen concentration relative to silicon is 30 or more and 70 atomic% or less. In addition, a film having high moisture resistance and high light transmittance was formed.

具体的な代表例として以下2つのパターンを示す。   The following two patterns are shown as specific representative examples.

有機EL素子1のバリア層8は、ITOの表面から約500Åの膜厚の範囲はシリコンに対する窒素濃度を50以上110atomic%以下まで徐々に増加させた窒化シリコン層を形成する。その後、5000Åの膜厚の範囲は窒素濃度を110atomic%で一定に形成する。その後、約500Åの膜厚の範囲は、窒素濃度を50atomic%まで徐々に減少させ、その後、1000Åを一定にする。その後、500Åは、窒素濃度のみを110atomic%まで徐々に増加させ、さらにその後、約5000Åの膜厚の範囲は窒素濃度を110atomic%に維持して形成する。   The barrier layer 8 of the organic EL element 1 forms a silicon nitride layer in which the nitrogen concentration with respect to silicon is gradually increased to 50 or more and 110 atomic% or less in the range of about 500 mm from the surface of ITO. Thereafter, the thickness of 5000 mm is formed constant at a nitrogen concentration of 110 atomic%. Thereafter, in the film thickness range of about 500 mm, the nitrogen concentration is gradually reduced to 50 atomic%, and then 1000 mm is made constant. Thereafter, for 500%, only the nitrogen concentration is gradually increased to 110 atomic%, and thereafter, a film thickness range of about 5000% is formed while maintaining the nitrogen concentration at 110 atomic%.

有機EL素子2では、バリア層8は、ITOの表面から約5000Åの膜厚の範囲はシリコンに対する酸素濃度が30atomic%、シリコンに対する窒素濃度が110atomic%である。そしてその後の約500Åの膜厚の範囲は、酸素濃度が0atomic%で、窒素濃度を70atomic%に徐々に減少させている。その後、1000Åは、酸素濃度を0atomic%に、窒素濃度を70atomic%に維持する。その後、約500Åの膜厚の範囲は、酸素濃度を30atomic%、窒素濃度を110atomic%に増加させる。これを再度繰り返し、さらにその後、約3000Åの膜厚の範囲はこれを維持し形成する。   In the organic EL element 2, the barrier layer 8 has an oxygen concentration of 30 atomic% with respect to silicon and a nitrogen concentration of 110 atomic% with respect to silicon within a range of about 5000 mm from the surface of ITO. In the subsequent film thickness range of about 500 mm, the oxygen concentration is 0 atomic% and the nitrogen concentration is gradually reduced to 70 atomic%. Thereafter, for 1000 liters, the oxygen concentration is maintained at 0 atomic% and the nitrogen concentration is maintained at 70 atomic%. Thereafter, in the film thickness range of about 500 mm, the oxygen concentration is increased to 30 atomic% and the nitrogen concentration is increased to 110 atomic%. This is repeated again, and thereafter, a film thickness range of about 3000 mm is maintained and formed.

この時の窒素濃度勾配は、アンモニアの流量を変化させて形成した。また、シランガス流量を変化させたり、プラズマ電力の制御でも可能である。   The nitrogen concentration gradient at this time was formed by changing the flow rate of ammonia. It is also possible to change the silane gas flow rate or control the plasma power.

このようなバリア層8の一部にシリコンに対する窒素濃度が30以上70atomic%以下の領域を含み、且つ膜厚方向に周期的に窒素濃度勾配を形成した有機EL素子は、次の効果がある。即ちこの有機EL素子は防湿性能が高いばかりか、屈折率の異なる膜の積層で生じる光の反射を抑え、光の透過率を改善できる。   An organic EL element in which a part of the barrier layer 8 includes a region having a nitrogen concentration of 30 to 70 atomic% with respect to silicon and has a nitrogen concentration gradient periodically in the film thickness direction has the following effects. That is, this organic EL element has not only high moisture proof performance, but also can suppress light reflection caused by lamination of films having different refractive indexes and improve light transmittance.

本発明の有機EL素子に用いたバリア層は、ボトムエミッション素子に於いても有効である。   The barrier layer used in the organic EL device of the present invention is also effective in the bottom emission device.

以下、本発明の実施例について説明する。   Examples of the present invention will be described below.

[実施例1]
本発明のバリア層のカバレッジ性を含む透湿性について次のように測定した。
[Example 1]
The moisture permeability including the coverage of the barrier layer of the present invention was measured as follows.

幅1μm、深さ1μm、斜面の角度55°のスリットを形成したシリコンウエハにカルシウムを1000Å成膜した。このシリコンウエハを用い、その上にバリア膜を形成し、121℃、2×105Pa、100%RHの条件でプレッシャークッカーにより加速試験を行った。その後、リング照明を照射し、光学顕微鏡で観察し、黒点に見える欠陥数をカウントした。 1000 calcium films were formed on a silicon wafer on which slits having a width of 1 μm, a depth of 1 μm, and a slope angle of 55 ° were formed. Using this silicon wafer, a barrier film was formed thereon, and an acceleration test was performed by a pressure cooker under the conditions of 121 ° C., 2 × 10 5 Pa, and 100% RH. Then, the ring illumination was irradiated, it observed with the optical microscope, and the number of defects which looked at a black spot was counted.

窒化シリコン膜の条件はシラン流量50sccm、アンモニア流量を0以上1000sccm以下で可変した。堆積膜形成装置は、高周波電極とそれに対向する基板ホルダー兼接地電極で構成され、その基板ホルダーに先ほどのカルシウムを成膜したシリコンウエハ基板をセットし、さらに、窒素ガスをフローし放電炉の圧力を100Paに維持した。その後、一旦真空容器を1×10-5Paに真空引きした後、モノシランガス、アンモニアガスをフローし、反応空間圧力を100Paに制御した。そして、電力密度150mW/cm2の60MHz高周波電力を高周波電極に供給し、膜厚が約6000Åの窒化シリコン膜を堆積形成した。 The conditions of the silicon nitride film were varied such that the silane flow rate was 50 sccm and the ammonia flow rate was 0 or more and 1000 sccm or less. The deposited film forming device is composed of a high-frequency electrode and a substrate holder / ground electrode facing it, and the silicon wafer substrate on which calcium is deposited is set in the substrate holder, and further, nitrogen gas is flowed to discharge the pressure of the discharge furnace. Was maintained at 100 Pa. Thereafter, the vacuum vessel was once evacuated to 1 × 10 −5 Pa, and then monosilane gas and ammonia gas were flowed to control the reaction space pressure to 100 Pa. Then, 60 MHz high frequency power having a power density of 150 mW / cm 2 was supplied to the high frequency electrode, and a silicon nitride film having a thickness of about 6000 mm was deposited.

そのサンプルを、2×105Pa、121℃、RH100%の環境のプレッシャークッカー装置に20時間放置し、透湿量をシリコンウエハに形成したカルシウムの反射率の変化により評価した。 The sample was allowed to stand for 20 hours in a pressure cooker apparatus having an environment of 2 × 10 5 Pa, 121 ° C., and RH 100%, and the moisture permeability was evaluated by the change in the reflectance of calcium formed on the silicon wafer.

その結果、表1に示すように、黒点に見える欠陥は、シリコンに対する窒素濃度が0atomic%で6個、30以上70atomic%以下で0個、90atomic%で5個、さらに、110atomic%では、14個発生していた。このことから、窒素濃度が30以上70atomic%以下では、カバレッジ性及び防湿性の高い結果となっている。   As a result, as shown in Table 1, the number of defects that appear as black spots is 6 when the nitrogen concentration relative to silicon is 0 atomic%, 0 when 30 or more and 70 atomic% or less, 5 when 90 atomic%, or 14 when 110 atomic%. It has occurred. From this, when the nitrogen concentration is 30 or more and 70 atomic% or less, the results are high in coverage and moisture resistance.

[実施例2]
実施例2では、実施例1の結果から、良好な結果を得た窒素濃度30以上70atomic%以下の条件を用いて、有機EL素子の透明電極上に図2に示す窒素濃度勾配のバリア層を形成して、素子の特性評価を行った。
[Example 2]
In Example 2, the barrier layer having the nitrogen concentration gradient shown in FIG. 2 is formed on the transparent electrode of the organic EL element using the nitrogen concentration of 30 to 70 atomic%, which is a good result from the result of Example 1. After forming, the characteristics of the device were evaluated.

まず、ガラス基板上にクロム電極を形成し、その上に有機化合物層を蒸着により形成し、その上層の透明電極はITOをスパッタにより150nm成膜し、さらにこれらの有機化合物層、透明電極を覆うようにバリア層をプラズマCVDで次のように形成した。   First, a chromium electrode is formed on a glass substrate, an organic compound layer is formed thereon by vapor deposition, and a transparent electrode of the upper layer is formed by sputtering ITO to a thickness of 150 nm, and further covers the organic compound layer and the transparent electrode. Thus, the barrier layer was formed by plasma CVD as follows.

堆積膜形成装置の放電炉は80℃で保温した。この放電炉の基板ホルダーに有機EL素子をセットし、さらに、窒素ガスをフローし、放電炉の圧力を100Paに維持し、80℃で10分加熱した。その後、一旦真空容器を1×10-5Paに真空引きした後、モノシランガスを50sccm、アンモニアを20以上500sccm以下、一酸化二窒素ガスを0以上80sccm以下の範囲で変化させてフローし、反応空間圧力を100Paに制御した。そして、電力密度150mW/cm2の60MHz高周波電力を高周波電極に供給し、有機EL素子上に窒化シリコン膜を堆積形成した。 The discharge furnace of the deposited film forming apparatus was kept at 80 ° C. An organic EL element was set on the substrate holder of the discharge furnace, and further nitrogen gas was flowed to maintain the pressure of the discharge furnace at 100 Pa and heated at 80 ° C. for 10 minutes. After that, the vacuum vessel is once evacuated to 1 × 10 −5 Pa, and then flows by changing the monosilane gas in the range of 50 sccm, ammonia in the range of 20 to 500 sccm, and dinitrogen monoxide gas in the range of 0 to 80 sccm. The pressure was controlled at 100 Pa. Then, 60 MHz high frequency power having a power density of 150 mW / cm 2 was supplied to the high frequency electrode, and a silicon nitride film was deposited on the organic EL element.

プラズマ励起周波数は、30MHz以上100MHz以下のVHF帯が好ましいが、27MHzや105MHzであっても良い。また、電力密度は500mW/cm2以下が好ましい。 The plasma excitation frequency is preferably in the VHF band of 30 MHz to 100 MHz, but may be 27 MHz or 105 MHz. The power density is preferably 500 mW / cm 2 or less.

バリア層の組成は図2に示す窒素濃度勾配になるように、次のように形成した。   The barrier layer was formed as follows so that the nitrogen concentration gradient shown in FIG.

有機EL素子1のバリア層は、ITOの表面から約1000Åの膜厚の範囲はシリコンに対する窒素濃度を50atomic%から110atomic%に上昇させる。その後、約5000Åの膜厚の範囲は、酸素濃度30atomic%、窒素濃度を110atomic%で形成する。その後、約1000Åの膜厚の範囲で酸素濃度0atomic%、窒素濃度を50atomic%に減少させ、その後、約6000Åの膜厚の範囲はこれを維持する。その後、約500Åの膜厚の範囲は、窒素濃度を110atomic%に増加させ、さらにその後、約5000Åの膜厚の範囲はこれを維持し形成する。   The barrier layer of the organic EL element 1 increases the nitrogen concentration with respect to silicon from 50 atomic% to 110 atomic% in the range of about 1000 mm from the surface of ITO. Thereafter, a film thickness range of about 5000 mm is formed with an oxygen concentration of 30 atomic% and a nitrogen concentration of 110 atomic%. Thereafter, the oxygen concentration is reduced to 0 atomic% and the nitrogen concentration is reduced to 50 atomic% in a film thickness range of about 1000 mm, and thereafter the film thickness range of about 6000 mm is maintained. Thereafter, the film thickness range of about 500 mm increases the nitrogen concentration to 110 atomic%, and thereafter, the film thickness range of about 5000 mm maintains and forms this.

この有機EL素子1を、気温60℃、相対湿度95%の環境に放置した。100時間、240時間、500時間後のVI特性、輝度特性を測定した。同時に、ガラス基板で封止し、その内部に酸化カルシウムを挿入した有機EL素子を作製し、室内放置と比較した。その結果を図7、図8に示す。その結果、駆動電圧、輝度の変動は殆ど無く、劣化は見られなかった。さらに、Φ1μm以上のダークスポットも、生じていなかった。   The organic EL element 1 was left in an environment with a temperature of 60 ° C. and a relative humidity of 95%. The VI characteristics and luminance characteristics after 100 hours, 240 hours and 500 hours were measured. At the same time, an organic EL element sealed with a glass substrate and having calcium oxide inserted therein was produced, and compared with being left indoors. The results are shown in FIGS. As a result, there were almost no fluctuations in driving voltage and luminance, and no deterioration was observed. Furthermore, dark spots with a diameter of Φ1 μm or more were not generated.

[実施例3]
次に、実施例3では、実施例2と同様にして、図3に示す窒素濃度勾配のバリア層の有機EL素子2を形成し、加速試験後のVI特性、輝度を測定した。さらに、ダークスポットの状況を確認した。
[Example 3]
Next, in Example 3, the organic EL element 2 of the barrier layer having the nitrogen concentration gradient shown in FIG. 3 was formed in the same manner as in Example 2, and the VI characteristics and luminance after the acceleration test were measured. Furthermore, the situation of the dark spot was confirmed.

有機EL素子2では、バリア層は、ITOの表面から約5000Åの膜厚の範囲はシリコンに対する酸素濃度を約30atomic%、窒素濃度を110atomic%で形成した。その後、約500Åの膜厚の範囲は、酸素濃度を0atomic%、窒素濃度を70atomic%に徐々に減少させ、さらに6000Åの膜厚の範囲は、それを維持した。その後、約500Åの膜厚の範囲は、窒素濃度を110atomic%に増加させ形成した。   In the organic EL element 2, the barrier layer was formed with an oxygen concentration of about 30 atomic% and a nitrogen concentration of 110 atomic% with respect to silicon in a range of about 5000 mm from the surface of ITO. Thereafter, in the film thickness range of about 500 mm, the oxygen concentration was gradually decreased to 0 atomic% and the nitrogen concentration was decreased to 70 atomic%, and the film thickness range of 6000 mm was maintained. Thereafter, a film thickness range of about 500 mm was formed by increasing the nitrogen concentration to 110 atomic%.

この有機EL素子2を、気温60℃、相対湿度95%の環境に放置した。100時間、240時間、500時間後のVI特性を測定した。その結果を図7、図8に示す。その結果、VI特性、輝度特性に、大きな差は見られなかった。また、Φ1μm以上のダークスポットも、生じていなかった。   The organic EL element 2 was left in an environment with a temperature of 60 ° C. and a relative humidity of 95%. The VI characteristics after 100 hours, 240 hours and 500 hours were measured. The results are shown in FIGS. As a result, there was no significant difference in VI characteristics and luminance characteristics. In addition, dark spots of Φ1 μm or more were not generated.

このように、窒素濃度が30以上70atomic%以下の膜厚範囲を約0.6μm以上にすると防湿性が高く出来、さらに窒素濃度が70atomic%以上のバリア層と組み合わせて窒素濃度勾配を連続的、周期的に変化させる事で透過率が向上できる。   Thus, when the film thickness range of the nitrogen concentration of 30 or more and 70 atomic% or less is about 0.6 μm or more, moisture resistance can be improved, and the nitrogen concentration gradient is continuously combined with the barrier layer of nitrogen concentration of 70 atomic% or more. By changing it periodically, the transmittance can be improved.

図4から6は、窒素濃度を連続的かつ周期的に変化させた模式図で、窒素濃度が30以上70atomic%以下の領域を約0.6μm設けてバリア層を構成するものである。これらのバリア層も、防湿効果と光透過率に対して有効である。   4 to 6 are schematic diagrams in which the nitrogen concentration is continuously and periodically changed. The barrier layer is configured by providing approximately 0.6 μm of a region having a nitrogen concentration of 30 to 70 atomic%. These barrier layers are also effective for the moisture-proof effect and light transmittance.

Figure 2007123174
Figure 2007123174

本発明の有機EL素子のバリア層を形成した一実施形態の模式的断面図である。It is typical sectional drawing of one Embodiment in which the barrier layer of the organic EL element of this invention was formed. 本発明の有機EL素子のバリア層における窒素濃度勾配を表す一実施形態の模式図である。It is a schematic diagram of one Embodiment showing the nitrogen concentration gradient in the barrier layer of the organic EL element of this invention. 本発明の有機EL素子のバリア層における窒素濃度勾配を表す一実施形態の模式図である。It is a schematic diagram of one Embodiment showing the nitrogen concentration gradient in the barrier layer of the organic EL element of this invention. 本発明の有機EL素子のバリア層における窒素濃度勾配を表す模式図である。It is a schematic diagram showing the nitrogen concentration gradient in the barrier layer of the organic EL element of this invention. 本発明の有機EL素子のバリア層における窒素濃度勾配を表す模式図である。It is a schematic diagram showing the nitrogen concentration gradient in the barrier layer of the organic EL element of this invention. 本発明の有機EL素子のバリア層における窒素濃度勾配を表す模式図である。It is a schematic diagram showing the nitrogen concentration gradient in the barrier layer of the organic EL element of this invention. 本発明の有機EL素子の耐久試験に於ける駆動電圧変動のグラフである。It is a graph of the drive voltage fluctuation | variation in the durability test of the organic EL element of this invention. 本発明の有機EL素子の耐久試験に於ける輝度変化のグラフである。It is a graph of the brightness | luminance change in the durability test of the organic EL element of this invention.

符号の説明Explanation of symbols

1 ガラス基板
2 不透明電極(正孔注入電極)
3 正孔注入輸送層
4 発光層
5 電子輸送層
6 有機化合物層
7 透明電極(電子注入電極)
8 バリア層
9 保護ガラス
10 接着剤(物)
1 Glass substrate 2 Opaque electrode (hole injection electrode)
3 hole injection transport layer 4 light emitting layer 5 electron transport layer 6 organic compound layer 7 transparent electrode (electron injection electrode)
8 Barrier layer 9 Protective glass 10 Adhesive (thing)

Claims (2)

基板に積層された不透明電極と有機化合物層と透明電極及びそれらを覆うバリア層で少なくとも構成された有機エレクトロルミネッセンス素子において、
前記透明電極上に形成されるバリア層は、少なくともシリコン、窒素、水素を主成分とし、添加元素に酸素を含み、シリコンに対する窒素濃度が30以上70atomic%以下の領域を含み、且つ膜厚方向に周期的に窒素濃度勾配が形成されている事を特徴とする有機エレクトロルミネッセンス素子。
In an organic electroluminescence device comprising at least an opaque electrode, an organic compound layer, a transparent electrode and a barrier layer covering them laminated on a substrate,
The barrier layer formed on the transparent electrode includes at least silicon, nitrogen, and hydrogen as main components, oxygen as an additive element, a region having a nitrogen concentration of 30 to 70 atomic% with respect to silicon, and in a film thickness direction. An organic electroluminescence device characterized in that a nitrogen concentration gradient is periodically formed.
前記バリア層は、VHFプラズマCVD法で形成された事を特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。   2. The organic electroluminescence device according to claim 1, wherein the barrier layer is formed by a VHF plasma CVD method.
JP2005316777A 2005-10-31 2005-10-31 Organic electroluminescent element Pending JP2007123174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005316777A JP2007123174A (en) 2005-10-31 2005-10-31 Organic electroluminescent element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005316777A JP2007123174A (en) 2005-10-31 2005-10-31 Organic electroluminescent element

Publications (1)

Publication Number Publication Date
JP2007123174A true JP2007123174A (en) 2007-05-17

Family

ID=38146779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005316777A Pending JP2007123174A (en) 2005-10-31 2005-10-31 Organic electroluminescent element

Country Status (1)

Country Link
JP (1) JP2007123174A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010035337A1 (en) * 2008-09-26 2010-04-01 富士電機ホールディングス株式会社 Organic el device and method for manufacturing same
US20120315465A1 (en) * 2010-02-07 2012-12-13 Taishi Kawasaki Laminated polyester film
WO2013161603A1 (en) * 2012-04-24 2013-10-31 コニカミノルタ株式会社 Transparent electrode, electronic device, and transparent electrode manufacturing method
JP2016523442A (en) * 2013-06-29 2016-08-08 アイクストロン、エスイー High performance coating deposition method and encapsulated electronic device
US11765927B2 (en) 2018-11-12 2023-09-19 Canon Kabushiki Kaisha Semiconductor device, method of manufacturing the same, display device, photoelectric conversion device, electronic device, illumination device, and mobile object

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001028447A (en) * 1992-04-06 2001-01-30 Semiconductor Energy Lab Co Ltd Insulation gate type semiconductor device
JP2002198364A (en) * 2000-12-25 2002-07-12 Semiconductor Energy Lab Co Ltd Manufacturing method of semiconductor device
JP2003086352A (en) * 2001-09-10 2003-03-20 Semiconductor Energy Lab Co Ltd Light emitting device and electronic device
JP2004335127A (en) * 2003-04-30 2004-11-25 Shimadzu Corp Film forming device of protection film for organic electroluminescent element, its manufacturing method and organic el element
JP2005209356A (en) * 2004-01-20 2005-08-04 Toppan Printing Co Ltd Organic el element and color filter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001028447A (en) * 1992-04-06 2001-01-30 Semiconductor Energy Lab Co Ltd Insulation gate type semiconductor device
JP2002198364A (en) * 2000-12-25 2002-07-12 Semiconductor Energy Lab Co Ltd Manufacturing method of semiconductor device
JP2003086352A (en) * 2001-09-10 2003-03-20 Semiconductor Energy Lab Co Ltd Light emitting device and electronic device
JP2004335127A (en) * 2003-04-30 2004-11-25 Shimadzu Corp Film forming device of protection film for organic electroluminescent element, its manufacturing method and organic el element
JP2005209356A (en) * 2004-01-20 2005-08-04 Toppan Printing Co Ltd Organic el element and color filter

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010035337A1 (en) * 2008-09-26 2010-04-01 富士電機ホールディングス株式会社 Organic el device and method for manufacturing same
US8487299B2 (en) 2008-09-26 2013-07-16 Sharp Kabushiki Kaisha Organic EL device and method of manufacturing same
US20120315465A1 (en) * 2010-02-07 2012-12-13 Taishi Kawasaki Laminated polyester film
WO2013161603A1 (en) * 2012-04-24 2013-10-31 コニカミノルタ株式会社 Transparent electrode, electronic device, and transparent electrode manufacturing method
JPWO2013161603A1 (en) * 2012-04-24 2015-12-24 コニカミノルタ株式会社 Transparent electrode, electronic device, and method of manufacturing transparent electrode
US9876189B2 (en) 2012-04-24 2018-01-23 Konica Minolta, Inc. Transparent electrode, electronic device, and transparent electrode manufacturing method
JP2016523442A (en) * 2013-06-29 2016-08-08 アイクストロン、エスイー High performance coating deposition method and encapsulated electronic device
US11765927B2 (en) 2018-11-12 2023-09-19 Canon Kabushiki Kaisha Semiconductor device, method of manufacturing the same, display device, photoelectric conversion device, electronic device, illumination device, and mobile object

Similar Documents

Publication Publication Date Title
KR102209665B1 (en) Semiconductor device and manufacturing method thereof
KR101745290B1 (en) Ag ALLOY FILM FOR REFLECTIVE ELECTRODES, AND REFLECTIVE ELECTRODE
JP4537434B2 (en) Zinc oxide thin film, transparent conductive film using the same, and display element
US20060068227A1 (en) Ag-based reflection film and method for preparing the same
JP4533392B2 (en) Organic light emitting device
TW200913344A (en) Method for applying a thin-film encapsulation layer assembly to an organic device, and an organic device provided with a thin-film encapsulation layer assembly preferably applied with such a method
JP5378354B2 (en) Organic EL device and manufacturing method thereof
TW200913773A (en) LLT barrier layer for top emission display device, method and apparatus
TWI450650B (en) Flexible base and flexible electronic device
JP5241173B2 (en) Manufacturing method of organic EL element
JP2008108985A (en) Method of manufacturing semiconductor element
US7247074B2 (en) Organic electroluminescent element and process for its manufacture
JP2007123174A (en) Organic electroluminescent element
JP2005285659A (en) Organic electroluminescence device and its manufacturing method
JP4479249B2 (en) Manufacturing method of organic EL element
US20140349432A1 (en) Method for manufacturing organic electroluminescent element
JP2007123173A (en) Organic electroluminescent element
JP2007194191A (en) Organic el element
JP2005203321A (en) Protective film and organic el device
JP6614551B2 (en) Method for manufacturing intermediate material for electronic device, method for manufacturing electronic device, and intermediate material for electronic device
JP2004014287A (en) Ito film, its manufacturing method and organic el element
JP2010106344A (en) Method of vapor-depositing protective layer on transparent base material and film deposition apparatus
JP4543691B2 (en) Organic electroluminescence device and method for producing the same
JP4640978B2 (en) Organic EL display
JP2004314626A (en) Protecting film and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110405