JP2005209356A - Organic el element and color filter - Google Patents

Organic el element and color filter Download PDF

Info

Publication number
JP2005209356A
JP2005209356A JP2004011471A JP2004011471A JP2005209356A JP 2005209356 A JP2005209356 A JP 2005209356A JP 2004011471 A JP2004011471 A JP 2004011471A JP 2004011471 A JP2004011471 A JP 2004011471A JP 2005209356 A JP2005209356 A JP 2005209356A
Authority
JP
Japan
Prior art keywords
film
atoms
organic
layer
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004011471A
Other languages
Japanese (ja)
Other versions
JP4479249B2 (en
Inventor
Koji Takeshita
耕二 竹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2004011471A priority Critical patent/JP4479249B2/en
Publication of JP2005209356A publication Critical patent/JP2005209356A/en
Application granted granted Critical
Publication of JP4479249B2 publication Critical patent/JP4479249B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic EL element having a passivation film having water vapor barrier properties and transparency higher than those of silicon nitride (SiN<SB>x</SB>) single-layer film or usual silicon oxide nitride (SiO<SB>x</SB>N<SB>y</SB>) film, and to provide a color filter. <P>SOLUTION: The passivation film which is a film of the silicon oxide nitride (SiO<SB>x</SB>N<SB>y</SB>), in which ratio of nitrogen atoms (N) and oxygen atoms (O) is tiltingly varied in the depth direction of the film is formed between the color filter and a transparent electrode on a substrate. Preferably, the ratio of the nitrogen atoms (N) and the oxygen atoms (O) in the depth direction of the passivation film varies in a range of 0.4-0.9 in a value of the number of nitrogen atoms/(the number of oxygen atoms + the number of nitrogen atoms), and the ratio of the nitrogen atoms (N) and the oxygen atoms (O) varies in a range of 0.6-0.9 in a value of the number of nitrogen atoms/(the number of oxygen atoms + the number of nitrogen atoms). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、水蒸気や有機ガス等から保護するためのパッシベーション膜を有する有機エレクトロルミネッセンス素子(以下有機EL素子という)に関し、とくに膜中の酸素原子と窒素原子の割合を、深さ方向で傾斜的に変化させた特殊な窒化酸化珪素(SiOxNy)膜を利用したパッシベーション膜、および窒化酸化珪素(SiOxNy)膜と窒化珪素(SiNx)膜を積層した膜を利用した有機EL素子及びその製造に用いるカラーフィルターに関する。   The present invention relates to an organic electroluminescence element (hereinafter referred to as an organic EL element) having a passivation film for protecting it from water vapor, organic gas, etc., and in particular, the ratio of oxygen atoms and nitrogen atoms in the film is inclined in the depth direction. OLED device using a passivation film using a special silicon nitride oxide (SiOxNy) film changed to, and a film in which a silicon nitride oxide (SiOxNy) film and a silicon nitride (SiNx) film are laminated, and a color used for manufacturing the same Regarding filters.

有機EL素子は、電圧により発光する機能を有する有機材料を用いて、例えば透明基板の上に透明電極、有機発光層(正孔輸送層等含む)、金属電極等を積層するなどして構成される。   An organic EL element is composed of a transparent electrode, an organic light emitting layer (including a hole transport layer, etc.), a metal electrode, etc. on a transparent substrate using an organic material having a function of emitting light by voltage. The

しかし、有機EL素子は水分や有機ガスなどの影響を受けて、非発光部(ダークスポット)が拡大するなどの劣化を引き起こしやすいく、有機発光層や金属電極部分を如何に水分などから保護するかが課題となる。よって、有機EL素子は、水蒸気などのバリア性が高いガラス基板の上に形成し、ガラス製の封止缶で素子全体を覆うように封止し、場合によっては封止缶のなかに水分吸収剤を同封するなどの工夫がなされている。   However, organic EL elements are susceptible to deterioration such as expansion of non-light emitting parts (dark spots) due to the influence of moisture, organic gas, etc., and how to protect the organic light emitting layer and metal electrode part from moisture etc. Is a challenge. Therefore, the organic EL element is formed on a glass substrate having a high barrier property such as water vapor, and is sealed so as to cover the entire element with a glass sealing can. In some cases, moisture is absorbed in the sealing can. Some measures have been taken, such as encapsulating the agent.

一方、有機EL素子をカラーディスプレイパネルに利用する場合、各発光色例えば赤、緑、青などの発光色の有機発光材料を微細にパターンニングして塗り分ける技術が必要であり、低分子材料を用いて蒸着で有機発光材料を塗り分ける場合にはマスク蒸着などの技術が用いられるが、高精細な大画面のディスプレイを作るのは困難である。また、高分子材料を用いて印刷技術を利用して塗り分ける方法も考えられるが、現段階ではまだ実現していない。   On the other hand, when an organic EL element is used for a color display panel, it is necessary to have a technique for finely patterning and separately coating organic light-emitting materials of light emission colors such as red, green, and blue. A technique such as mask vapor deposition is used to separate the organic light-emitting material by vapor deposition, but it is difficult to produce a high-definition large-screen display. In addition, a method of painting using a polymer material by using a printing technique is also conceivable, but it has not been realized at this stage.

そこで、白色発光の有機発光材料とカラーフィルターを組合せることで、各発光色毎の塗り分けを回避してカラー化する方法が考案されている。この方法では、カラーフィルターおよびカラーフィルターを平坦化するためのオーバーコート樹脂から発生する水分および有機ガスなどを如何に遮断するかが課題となる。   In view of this, a method has been devised in which a white light emitting organic light emitting material and a color filter are combined to avoid coloration for each light emission color. In this method, how to block moisture, organic gas, and the like generated from the color filter and the overcoat resin for flattening the color filter becomes a problem.

そのための工夫として、カラーフィルターやオーバーコート層と透明電極の間に、水蒸気バリアー性の高い透明バリアー膜を形成することが考えられる。透明バリア膜としては、包装材料や包装容器等で酸化珪素(SiO)や酸化アルミ(Al)等がすでに実用化されているが、これらの水蒸気バリア値では、有機EL用のバリア性能を満たすことができない。そこで、酸化珪素(SiO)や酸化アルミ(Al)よりも水蒸気バリア性が高いといわれている窒化珪素膜(SiNx)や窒化酸化珪素膜(SiOxNy)を利用して、カラーフィルター等から発生する水分等を遮断する方法が考えられている(例えば特許文献1及び特許文献2参照)。
特開2002−100469公報 特開2002−134268公報
As a device for that, it is conceivable to form a transparent barrier film having a high water vapor barrier property between the color filter or overcoat layer and the transparent electrode. As the transparent barrier film, silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), and the like have already been put into practical use in packaging materials and packaging containers. However, with these water vapor barrier values, a barrier for organic EL is used. The performance cannot be satisfied. Therefore, a color filter or the like using a silicon nitride film (SiNx) or a silicon nitride oxide film (SiOxNy), which is said to have a water vapor barrier property higher than that of silicon oxide (SiO 2 ) or aluminum oxide (Al 2 O 3 ). There has been considered a method of blocking moisture generated from the water (see, for example, Patent Document 1 and Patent Document 2).
JP 2002-1000046 A JP 2002-134268 A

しかし、筆者らが鋭意実験を重ねた結果、窒化珪素(SiNx)の単層膜や通常の窒化酸化珪素(SiOxNy)膜では、有機EL素子のパッシベーション膜としては不十分であることがわかった。なぜなら、これらの膜では高い水蒸気バリア性と透明性を両立させることが難しいからである。   However, as a result of repeated experiments by the authors, it was found that a silicon nitride (SiNx) single layer film or a normal silicon nitride oxide (SiOxNy) film is insufficient as a passivation film for an organic EL element. This is because it is difficult for these films to achieve both high water vapor barrier properties and transparency.

窒化珪素(SiNx)膜は通常茶褐色に着色するが、膜厚200nmを超えると可視光の全光線透過率が90%以下に下がり、膜厚が厚くなるほど低下する。カラーフィルターと透明電極の間に形成するパッシベーション膜は、有機ELディスプレイの光取出し側にあるため、透明性が高いことが要求され、少なくとも90%以上、望ましくは95%以上の可視光線透過率を必要とする。一方、水蒸気等のバリア性を高めるためには、当然のことながら膜厚が厚いほど良く、筆者らの実験の結果CVD成膜した窒化珪素膜の場合、有機EL素子のパッシベーション膜としてのバリア性を維持するには200nm以上が望ましいという結果であった。   The silicon nitride (SiNx) film is usually colored brownish brown, but when the film thickness exceeds 200 nm, the total light transmittance of visible light decreases to 90% or less and decreases as the film thickness increases. Since the passivation film formed between the color filter and the transparent electrode is on the light extraction side of the organic EL display, it needs to have high transparency, and has a visible light transmittance of at least 90%, preferably 95% or more. I need. On the other hand, in order to improve the barrier property such as water vapor, it is natural that the thicker the film, the better. In the case of the silicon nitride film formed by CVD as a result of the author's experiment, the barrier property as a passivation film of the organic EL element. It was a result that 200 nm or more is desirable in order to maintain.

よって、有機EL素子のパッシベーション層としての要求を満たすには、窒化珪素(SiNx)の単層膜では不十分であることがわかった。   Therefore, it has been found that a single layer film of silicon nitride (SiNx) is insufficient to satisfy the demand as a passivation layer of the organic EL element.

一方、窒化酸化珪素(SiOxNy)膜は、窒化珪素(SiNx)膜よりも透明性が高く、酸素原子(O)の割合が高くなるほど透明性が高くなるが、逆に水蒸気バリア性は窒化珪素(SiNx)膜よりも劣り、酸素原子(O)の割合が高くなるほどバリア性は低下する。よって、やはり通常の窒化酸化珪素(SiOxNy)膜では有機EL素子に必要な水蒸気バリア性と透明性を両立することは難しい。   On the other hand, the silicon nitride oxide (SiOxNy) film is more transparent than the silicon nitride (SiNx) film, and the higher the ratio of oxygen atoms (O), the higher the transparency. On the other hand, the water vapor barrier property is silicon nitride ( It is inferior to the SiNx) film, and the barrier property decreases as the proportion of oxygen atoms (O) increases. Therefore, it is difficult to achieve both the water vapor barrier property and the transparency required for the organic EL element with a normal silicon nitride oxide (SiOxNy) film.

そこで我々は、窒化酸化珪素(SiOxNy)膜中の深さ方向の酸素原子(O)と窒素原子(N)の割合を傾斜的に変化させることで、膜中の窒素原子(N)の割合が高い部分で水蒸気の透過を遮断し、残りの酸素原子(O)の割合の高い部分で水蒸気バリアを補いながら透明性を維持する膜組成を考案し、これによって、有機EL用のパッシベーション膜を提供することとした。   Therefore, we changed the ratio of oxygen atoms (O) and nitrogen atoms (N) in the depth direction in the silicon nitride oxide (SiOxNy) film so that the ratio of nitrogen atoms (N) in the film is changed. We devised a film composition that blocks water vapor permeation at the high part and maintains transparency while supplementing the water vapor barrier at the high part of the remaining oxygen atoms (O), thereby providing a passivation film for organic EL It was decided to.

また、傾斜膜の代わりに、水蒸気バリア性の高い窒化珪素(SiNx)膜と透明性の高い窒化酸化珪素(SiOxNy)膜を積層して組合せることで、高いバリア性を維持しつつ、透明性も確保できることから、当該積層膜からなる有機EL用のパッシベーション膜も提供する。   In addition, instead of the gradient film, a silicon nitride (SiNx) film having a high water vapor barrier property and a silicon nitride oxide (SiOxNy) film having a high transparency are laminated and combined to maintain transparency while maintaining high barrier properties. Therefore, a passivation film for organic EL composed of the laminated film is also provided.

上記目的を達成するため、請求項1に係わる発明は、窒化酸化珪素(SiOxNy)からなる膜であって、膜の深さ方向で窒素原子(N)と酸素原子(O)の比率が傾斜的に変化しているパッシベーション膜を有することを特徴とする有機EL素子である。   To achieve the above object, the invention according to claim 1 is a film made of silicon nitride oxide (SiOxNy), wherein the ratio of nitrogen atoms (N) to oxygen atoms (O) is inclined in the depth direction of the film. An organic EL element having a passivation film that changes to

また、請求項2に係わる発明は、当該パッシベーション膜の深さ方向での窒素原子(N)と酸素原子(O)の比率の変化が、N原子数/(O原子数+N原子数)の値で0.4から0.9の範囲で変化することを特徴とする請求項1記載の有機EL素子である。   In the invention according to claim 2, the change in the ratio of nitrogen atoms (N) to oxygen atoms (O) in the depth direction of the passivation film is a value of N atoms / (O atoms + N atoms). The organic EL element according to claim 1, wherein the organic EL element varies in a range of 0.4 to 0.9.

また、請求項3に係わる発明は、当該パッシベーション膜の深さ方向での窒素原子(N)と酸素原子(O)の比率の変化が、N原子数/(O原子数+N原子数)の値で0.6から0.9の範囲で変化することを特徴とする請求項1記載の有機EL素子である。   In the invention according to claim 3, the change in the ratio of nitrogen atoms (N) to oxygen atoms (O) in the depth direction of the passivation film is a value of N atoms / (O atoms + N atoms). The organic EL element according to claim 1, wherein the organic EL element varies in a range of 0.6 to 0.9.

また、請求項4に係わる発明は、当該パッシベーション膜の一部に、N原子数/(O原子数+N原子数)の値が0.90から0.99となる窒素高濃度層が存在することを特徴とする請求項1記載の有機EL素子である。   In the invention according to claim 4, a high nitrogen concentration layer having a value of N atom number / (O atom number + N atom number) of 0.90 to 0.99 exists in a part of the passivation film. The organic EL device according to claim 1.

また、請求項5に係わる発明は、当該パッシベーション膜の一部に、N原子数/(O原子数+N原子数)の値が0.90から0.99となる窒素高濃度層が存在し、当該窒素高濃度層を除く残りの層のN原子数/(O原子数+N原子数)の値は平均すると0.6以下であることを特徴とする請求項1記載の有機EL素子である。   Further, in the invention according to claim 5, a nitrogen high concentration layer having a value of N atom number / (O atom number + N atom number) of 0.90 to 0.99 exists in a part of the passivation film. 2. The organic EL device according to claim 1, wherein the average value of the number of N atoms / (number of O atoms + N atoms) of the remaining layers excluding the high nitrogen concentration layer is 0.6 or less.

また、請求項6に係わる発明は、N原子数/(O原子数+N原子数)の値が0.90から0.99となる窒素高濃度層の厚さが、50nmから100nmの範囲にあることを特徴とする請求項4乃至請求項5記載の有機EL素子である。   Further, in the invention according to claim 6, the thickness of the nitrogen high-concentration layer in which the value of N atom number / (O atom number + N atom number) is 0.90 to 0.99 is in the range of 50 nm to 100 nm. 6. The organic EL element according to claim 4, wherein the organic EL element is characterized in that

また、請求項7に係わる発明は、当該パッシベーション膜が窒化酸化珪素(SiOxNy)と窒化珪素(SiNx)との積層膜からなることを特徴とする有機EL素子である。   The invention according to claim 7 is an organic EL element characterized in that the passivation film comprises a laminated film of silicon nitride oxide (SiOxNy) and silicon nitride (SiNx).

また、請求項8に係わる発明は、窒化酸化珪素(SiOxNy)と窒化珪素(SiNx)との積層膜の内、窒化珪素(SiNx)膜層の厚さが、50nmから150nmの範囲にあることを特徴とする請求項7記載の有機EL素子である。   In the invention according to claim 8, the thickness of the silicon nitride (SiNx) film layer in the laminated film of silicon nitride oxide (SiOxNy) and silicon nitride (SiNx) is in the range of 50 nm to 150 nm. 8. The organic EL device according to claim 7, wherein the organic EL device is characterized in that:

また、請求項9に係わる発明は、パッシベーション膜が、基板上のカラーフィルター層と透明電極間に形成されていることを特徴とする請求項1乃至請求項8記載の有機EL素子である。   The invention according to claim 9 is the organic EL element according to claim 1, wherein the passivation film is formed between the color filter layer on the substrate and the transparent electrode.

また、請求項10に係わる発明は、パッシベーション膜が、少なくとも透明電極と金属電極間の層を包み込むように形成されていることを特徴とする請求項1乃至請求項8記載の有機EL素子である。   The invention according to claim 10 is the organic EL element according to any one of claims 1 to 8, wherein the passivation film is formed so as to enclose at least a layer between the transparent electrode and the metal electrode. .

更に、請求項11に係わる発明は、請求項1乃至請求項8記載のパッシベーション膜が、基板上のカラーフィルター層と透明電極間に形成されていることを特徴とするカラーフィルターである。   The invention according to claim 11 is a color filter, wherein the passivation film according to claims 1 to 8 is formed between the color filter layer on the substrate and the transparent electrode.

有機EL素子またはカラーフィルターにSiOxNyのパッシベーション膜を形成することで、水蒸気やガスバリアー性に起因するダークスポット(DS)の拡大が抑制される。また、前記パッシベーション膜は、透明性も非常に良好である。従って、良好な特性を有する有機EL素子の提供が可能となる。   By forming a SiOxNy passivation film on the organic EL element or the color filter, expansion of dark spots (DS) due to water vapor and gas barrier properties is suppressed. Further, the passivation film has very good transparency. Therefore, it is possible to provide an organic EL element having good characteristics.

また、有機EL素子内の水蒸気は、カラーフィルター層又は樹脂層に由来するものが多いため、パッシベーション膜が、基板上のカラーフィルター層と透明電極間に形成されていることが有効である。   In addition, since water vapor in the organic EL element is mostly derived from the color filter layer or the resin layer, it is effective that the passivation film is formed between the color filter layer on the substrate and the transparent electrode.

本発明の実施の形態を具体的に説明する。   Embodiments of the present invention will be specifically described.

本発明におけるパッシベーション膜すなわち有機EL素子を水蒸気や有機ガス等から保護するためのパッシベーション膜は、膜の深さ方向で窒素原子(N)と酸素原子(O)の比率を傾斜的に変化させた窒化酸化珪素(SiOxNy)膜からなる。窒化酸化珪素(SiOxNy)膜はスパッタ法やCVD法等によって形成でき、本発明においても特に成膜方法は限定されないが、本発明の実施の形態においては、膜の表面平滑性や凹凸面への成膜性などの点で有利なCVD法での実施形態を示す。   The passivation film in the present invention, that is, the passivation film for protecting the organic EL element from water vapor, organic gas, etc., has the ratio of nitrogen atoms (N) and oxygen atoms (O) changed in a gradient manner in the depth direction of the film. It consists of a silicon nitride oxide (SiOxNy) film. A silicon nitride oxide (SiOxNy) film can be formed by a sputtering method, a CVD method, or the like, and the film forming method is not particularly limited in the present invention, but in the embodiment of the present invention, the surface smoothness of the film and the uneven surface An embodiment of a CVD method that is advantageous in terms of film forming property will be described.

CVD法で窒化酸化珪素(SiOxNy)膜を成膜する場合、シランガス(SiH)、酸化窒素ガス(NO)、窒素ガス(N)、アンモニア(NH)等を原料として成膜する方法が一般的であり、これらの各原料ガスの流量比を調整することで、膜中の窒素原子(N)と酸素原子(O)の比率を調整することができる。 In the case of forming a silicon nitride oxide (SiOxNy) film by a CVD method, the film is formed using silane gas (SiH 4 ), nitrogen oxide gas (N 2 O), nitrogen gas (N 2 ), ammonia (NH 3 ), or the like as a raw material. The method is general, and the ratio of nitrogen atoms (N) and oxygen atoms (O) in the film can be adjusted by adjusting the flow ratio of these source gases.

また、筆者らの実験により、成膜途中で各原料ガスの流量比を変化させることで、膜の深さ方向での窒素原子(N)と酸素原子(O)の比率を変化させることができることが確認された。例えば、酸化窒素ガス(NO)の流量比を成膜中に徐々に上げていくと、膜中の酸素原子(O)の比率が基板側から深さ方向に傾斜的に高くなり、アンモニアガス(NH)の流量比を成膜中に徐々に上げていくと、膜中の窒素原子(N)の比率が基板側から深さ方向に傾斜的に高くなることが確認された。 In addition, the ratio of nitrogen atoms (N) and oxygen atoms (O) in the depth direction of the film can be changed by changing the flow rate ratio of each source gas during the film formation by the authors' experiments. Was confirmed. For example, when the flow rate ratio of nitrogen oxide gas (N 2 O) is gradually increased during the film formation, the ratio of oxygen atoms (O) in the film becomes higher in the depth direction from the substrate side, and ammonia It was confirmed that when the flow rate ratio of the gas (NH 3 ) is gradually increased during film formation, the ratio of nitrogen atoms (N) in the film increases in a depth direction from the substrate side.

これを利用して、本発明におけるパッシベーション膜すなわち窒化酸化珪素(SiOxNy)傾斜膜は、例えば基板側の窒素(N)比率が高く徐々に窒素(N)比率を下げて酸素(O)比率を上げていく傾斜膜にする場合には、はじめアンモニアガス(NH)の流量比が高く酸化窒素ガス(NO)の流量比が低いガス流量比で成膜を開始し、徐々にその比率を逆転させながら成膜した。また、傾斜膜の途中に極端に窒素原子比率の高い層を一定の厚さで含む傾斜膜にする場合は、はじめ徐々に窒素原子(N)比率が高くなる方向にガス流量比を変化させ、最も窒素原子(N)比率が高くなるガス流量比たとえば酸化窒素ガス(NO)を完全に遮断した状態で一定時間成膜し、その後また徐々に窒素原子(N)比率が下がる方向にガス流量比を変化させることで、傾斜膜の途中に極端に高濃度な窒素の層を一定の厚さで含む傾斜膜を形成した。この場合、一定時間酸化窒素ガス(NO)を遮断しても成膜室内に残存するO原子の影響で、この間に成膜される膜も完全な窒化珪素(SiNx)になるわけではなく、わずかな酸素原子(O)の存在もみられ、よって高濃度窒素の窒化酸化珪素(SiOxNy)膜となる。 By utilizing this, the passivation film, that is, the silicon nitride oxide (SiOxNy) gradient film in the present invention has a high nitrogen (N) ratio on the substrate side, for example, and gradually decreases the nitrogen (N) ratio to increase the oxygen (O) ratio. In the case of an inclined film, the film formation is started at a gas flow rate ratio where the flow rate ratio of ammonia gas (NH 3 ) is high and the flow rate ratio of nitrogen oxide gas (N 2 O) is low, and the ratio is gradually increased. The film was formed while reversing. In addition, in the case of an inclined film including a layer having an extremely high nitrogen atom ratio with a certain thickness in the middle of the inclined film, the gas flow rate ratio is gradually changed in the direction in which the nitrogen atom (N) ratio gradually increases, Gas flow rate ratio with the highest nitrogen atom (N) ratio For example, a film is formed for a certain time in a state where nitrogen oxide gas (N 2 O) is completely shut off, and then the gas gradually decreases in the nitrogen atom (N) ratio. By changing the flow rate ratio, a gradient film including an extremely high concentration nitrogen layer with a constant thickness was formed in the middle of the gradient film. In this case, even if nitrogen oxide gas (N 2 O) is shut off for a certain period of time, the film formed during this time is not completely silicon nitride (SiNx) due to the influence of O atoms remaining in the film formation chamber. The presence of a few oxygen atoms (O) is also observed, so that a silicon nitride oxide (SiOxNy) film with a high concentration of nitrogen is formed.

本発明におけるパッシベーション膜を、窒化酸化珪素(SiOxNy)膜と窒化珪素(SiNx)膜の積層膜とする場合には、例えばはじめに窒化酸化珪素(SiOxNy)膜を形成し、後から窒化珪素(SiNx)膜を積層するとすれば、窒化酸化珪素(SiOxNy)膜の成膜が終わった時点で一旦成膜を中止し、一定時間成膜室内を真空排気し、完全に成膜室内のO成分を排除してからシランガス(SiH)、アンモニアガス(NH)、窒素ガス(N)のみで窒化珪素膜(SiNx)の成膜を行った。 When the passivation film in the present invention is a laminated film of a silicon nitride oxide (SiOxNy) film and a silicon nitride (SiNx) film, for example, a silicon nitride oxide (SiOxNy) film is first formed, and then silicon nitride (SiNx) is formed. If the films are stacked, the film formation is stopped once the silicon nitride oxide (SiOxNy) film is formed, and the film formation chamber is evacuated for a certain period of time to completely eliminate the O component in the film formation chamber. After that, a silicon nitride film (SiNx) was formed only with silane gas (SiH 4 ), ammonia gas (NH 3 ), and nitrogen gas (N 2 ).

本発明におけるパッシベーション膜を、カラーフィルター層またはカラーフィルタ層の上に平坦化のために任意に設けられるオーバーコート樹脂と透明電極(陽極)の間に形成する場合、あらかじめガラス基板上にカラーフィルターとオーバーコート樹脂を形成した基板を用いて、オーバーコート樹脂層の上にCVD法で窒化酸化珪素(SiOxNy)傾斜膜または窒化珪素(SiNx)と窒化酸化珪素(SiOxNy)の積層膜を形成し、その上に順次透明電極(陽極)、有機発光層(正孔輸送層、発光層)、金属電極(陰極)を形成し、最後に封止ガラスで封止して素子化した。   When the passivation film in the present invention is formed between a color filter layer or an overcoat resin optionally provided for planarization on the color filter layer and a transparent electrode (anode), a color filter and Using the substrate on which the overcoat resin is formed, a silicon nitride oxide (SiOxNy) gradient film or a laminated film of silicon nitride (SiNx) and silicon nitride oxide (SiOxNy) is formed on the overcoat resin layer by a CVD method. A transparent electrode (anode), an organic light emitting layer (hole transporting layer, light emitting layer), and a metal electrode (cathode) were sequentially formed thereon, and finally sealed with sealing glass to form an element.

また、本発明におけるパッシベーション膜で、透明電極(陽極)から金属電極(陰極)までの有機EL層全体を包み込むように保護する場合には、上記のようにオーバーコート樹脂層の上にCVD法でパッシベーション膜を形成し、その上に順次透明電極(陽極)、有機発光層(正孔輸送層、発光層)、金属電極(陰極)を形成し、その上に再度CVD法で窒化酸化珪素(SiOxNy)傾斜膜または窒化珪素(SiNx)と窒化酸化珪素(SiOxNy)の積層膜を形成して、金属電極(陰極)の上からも有機EL素子全体を覆うようして、パッシベーション膜が封止膜を兼ねるようにした。   Further, in the case of protecting the entire organic EL layer from the transparent electrode (anode) to the metal electrode (cathode) with the passivation film in the present invention, the CVD method is applied on the overcoat resin layer as described above. A passivation film is formed, and a transparent electrode (anode), an organic light emitting layer (hole transport layer, light emitting layer), and a metal electrode (cathode) are sequentially formed thereon, and silicon nitride oxide (SiOxNy) is again formed thereon by a CVD method. ) A tilted film or a laminated film of silicon nitride (SiNx) and silicon nitride oxide (SiOxNy) is formed, and the passivation film covers the entire organic EL element from above the metal electrode (cathode). I tried to double up.

以下、本発明の実施例について具体的に説明するが、本発明はこれに限定される物ではない。   Examples of the present invention will be specifically described below, but the present invention is not limited thereto.

各実施例および比較例のパッシベーション膜ともに、それらのパッシベーション膜を含む有機EL素子にして、非発光部分(ダークスッポトの拡大を観察することで、そのパッシベーション性能を評価した。   Each of the passivation films of each Example and Comparative Example was an organic EL element including those passivation films, and the passivation performance was evaluated by observing the non-light-emitting portion (the expansion of dark spots).

有機EL素子は次のようにして作成した。   The organic EL element was produced as follows.

まず、ガラス基板1の上にフォトリソグラフ法を用いてカラーフィルター2およびオーバーコート樹脂層3を形成し、超音波洗浄後230℃で1時間加熱乾燥させた。これにCVD法で各実施例および比較例に基づくパッシベーション膜4の成膜を行い、その上にITO膜をスパッタリング法で成膜し、エッチングによりパターンニングして透明電極(陽極)5を形成した。この上に蒸着法により有機発光層6としての正孔輸送層と発光層、および陰極7を順次形成した。正孔輸送材料としてはα−ナフチルフェニルジアミン(α−NPD)を、発光層材料としてはトリス(8−キノリノール)アルミニウム(Alq)を、金属電極(陰極)材料としてカルシウムおよび銀を用いた。最後にガラス性封止缶9を陰極の上から被せて、UV硬化型の接着性樹脂を用いて密着封止した。封止缶と陰極との空間には乾燥剤8を封入した。   First, the color filter 2 and the overcoat resin layer 3 were formed on the glass substrate 1 by using a photolithographic method, followed by heating and drying at 230 ° C. for 1 hour after ultrasonic cleaning. A passivation film 4 based on each of the examples and comparative examples was formed thereon by CVD, and an ITO film was formed thereon by sputtering and patterned by etching to form a transparent electrode (anode) 5. . A hole transport layer and a light emitting layer as the organic light emitting layer 6 and a cathode 7 were sequentially formed thereon by vapor deposition. Α-naphthylphenyldiamine (α-NPD) was used as the hole transport material, tris (8-quinolinol) aluminum (Alq) was used as the light emitting layer material, and calcium and silver were used as the metal electrode (cathode) material. Finally, a glass sealing can 9 was placed on the cathode and sealed with UV curable adhesive resin. A desiccant 8 was sealed in the space between the sealing can and the cathode.

ただし、実施例7においては、封止缶のかわりにパッシベーション膜を陰極の上から成膜して素子全体を覆うよおうにして膜封止を行った。   However, in Example 7, a passivation film was formed on the cathode instead of the sealing can, and film sealing was performed so as to cover the entire element.

オーバーコート樹脂層と透明電極(陽極)の間のパッシベーション膜をプラズマCVD装置を用いて下記条件で成膜した。下記条件において、NHのガス流量は成膜開始時300SCCMで、成膜時間の3分間をかけて0SCCMになるように徐々に下げてゆき、NOガス流量は成膜開始時に30SCCMで、成膜時間の3分間をかけて270SCCMになるように徐々に上げていったことを意味する。 A passivation film between the overcoat resin layer and the transparent electrode (anode) was formed using a plasma CVD apparatus under the following conditions. Under the following conditions, the NH 3 gas flow rate is 300 SCCM at the start of film formation and gradually decreases to 0 SCCM over 3 minutes of the film formation time, and the N 2 O gas flow rate is 30 SCCM at the start of film formation. It means that it was gradually increased to 270 SCCM over 3 minutes of film formation time.

これにより、窒素原子(N)と酸素原子(O)の比率の傾斜は、N原子数/(O原子数+N原子数)の値で0.4から0.9の範囲で変化する。膜の総厚さは300nmである。   Thereby, the inclination of the ratio of nitrogen atom (N) to oxygen atom (O) changes in the range of 0.4 to 0.9 as a value of N atom number / (O atom number + N atom number). The total thickness of the film is 300 nm.

SiHガス流量 100SCCM
NHガス流量 300SCCM→0SCCM
Oガス流量 30SCCM→270SCCM
ガス流量 2000SCCM
成膜温度 230℃
圧力 120pa
RF電力 1000W
成膜時間 3分
SiH 4 gas flow rate 100SCCM
NH 3 gas flow rate 300SCCM → 0SCCM
N 2 O gas flow rate 30SCCM → 270SCCM
N 2 gas flow rate 2000SCCM
Deposition temperature 230 ° C
Pressure 120pa
RF power 1000W
Deposition time 3 minutes

オーバーコート樹脂層と透明電極(陽極)の間のパッシベーション膜をプラズマCVD装置を用いて下記条件で成膜した。下記条件において、NHのガス流量は成膜開始時300SCCMで、成膜時間の3分間をかけて100SCCMになるように徐々に下げてゆき、NOガス流量は成膜開始時に30SCCMで、成膜時間の3分間をかけて170SCCMになるように徐々に上げていったことを意味する。 A passivation film between the overcoat resin layer and the transparent electrode (anode) was formed using a plasma CVD apparatus under the following conditions. Under the following conditions, the NH 3 gas flow rate is 300 SCCM at the start of film formation and gradually decreased to 100 SCCM over 3 minutes of the film formation time, and the N 2 O gas flow rate is 30 SCCM at the start of film formation. It means that it was gradually increased to 170 SCCM over 3 minutes of film formation time.

これにより、窒素原子(N)と酸素原子(O)の比率の傾斜は、N原子数/(O原子数+N原子数)の値で0.6から0.9の範囲で変化する。膜の総厚さは300nmである。   As a result, the slope of the ratio of nitrogen atoms (N) to oxygen atoms (O) changes in the range of 0.6 to 0.9 as a value of N atoms / (O atoms + N atoms). The total thickness of the film is 300 nm.

SiHガス流量 100SCCM
NHガス流量 300SCCM→100SCCM
Oガス流量 30SCCM→170SCCM
ガス流量 2000SCCM
成膜温度 230℃
圧力 120pa
RF電力 1000W
成膜時間 3分
SiH 4 gas flow rate 100SCCM
NH 3 gas flow rate 300SCCM → 100SCCM
N 2 O gas flow rate 30SCCM → 170SCCM
N 2 gas flow rate 2000SCCM
Deposition temperature 230 ° C
Pressure 120pa
RF power 1000W
Deposition time 3 minutes

オーバーコート樹脂層と透明電極(陽極)の間のパッシベーション膜をプラズマCVD装置を用いて下記条件で成膜した。下記条件において、NHのガス流量は成膜開始時に0SCCMで、2分30秒かけて300SCCMになるように徐々に上げてゆき最後の30秒を300SCCMで保持し、NOガス流量は成膜開始時に270SCCMで、2分30秒かけて0SCCMになるように徐々に下げていき、最後の30秒を0SCCMで保持したことを意味する。 A passivation film between the overcoat resin layer and the transparent electrode (anode) was formed using a plasma CVD apparatus under the following conditions. Under the following conditions, the NH 3 gas flow rate is 0 SCCM at the start of film formation, gradually increases to 300 SCCM over 2 minutes and 30 seconds, and the last 30 seconds are held at 300 SCCM. The N 2 O gas flow rate is It means that the film was gradually lowered to 0 SCCM over 2 minutes and 30 seconds at 270 SCCM at the start of the film, and the last 30 seconds were held at 0 SCCM.

これにより、膜中に高濃度窒素層が50μmの厚さで存在し、高濃度窒素層のN原子数/(O原子数+N原子数)の値は0.9から0.99の範囲にあり、残りの部分では窒素原子(N)と酸素原子(O)の比率の傾斜は、N原子数/(O原子数+N原子数)の値で0.4から0.9の範囲で変化し、その平均値は0.65となる。膜の総厚さは300nmである。   As a result, a high concentration nitrogen layer exists in the film with a thickness of 50 μm, and the value of the number of N atoms / (number of O atoms + N atoms) of the high concentration nitrogen layer is in the range of 0.9 to 0.99. In the remaining portion, the slope of the ratio of nitrogen atom (N) to oxygen atom (O) varies in the range of 0.4 to 0.9 in terms of N atom number / (O atom number + N atom number), The average value is 0.65. The total thickness of the film is 300 nm.

SiHガス流量 100SCCM
NHガス流量 0SCCM→300SCCM(30秒保持)
Oガス流量 270SCCM→0SCCM(30秒保持)
ガス流量 2000SCCM
成膜温度 230℃
圧力 120pa
RF電力 1000W
成膜時間 3分
SiH 4 gas flow rate 100SCCM
NH 3 gas flow rate 0 SCCM → 300 SCCM (hold for 30 seconds)
N 2 O gas flow rate 270 SCCM → 0 SCCM (hold for 30 seconds)
N 2 gas flow rate 2000SCCM
Deposition temperature 230 ° C
Pressure 120pa
RF power 1000W
Deposition time 3 minutes

オーバーコート樹脂層と透明電極(陽極)の間のパッシベーション膜をプラズマCVD装置を用いて下記条件で成膜した。下記条件において、NHのガス流量は成膜開始時に0SCCMで、2分かけて300SCCMになるように徐々に上げてゆき最後の1分を300SCCMで保持し、NOガス流量は成膜開始時に270SCCMで、2分かけて0SCCMになるように徐々に下げていき、最後の1分を0SCCMで保持したことを意味する。 A passivation film between the overcoat resin layer and the transparent electrode (anode) was formed using a plasma CVD apparatus under the following conditions. Under the following conditions, the NH 3 gas flow rate is 0 SCCM at the start of film formation, gradually increased to 300 SCCM over 2 minutes, and the last 1 minute is held at 300 SCCM, and the N 2 O gas flow rate is started. Sometimes it is 270 SCCM, it is gradually lowered to 0 SCCM over 2 minutes, and the last 1 minute is held at 0 SCCM.

これにより、膜中に高濃度窒素層が100μmの厚さで存在し、高濃度窒素層のN原子数/(O原子数+N原子数)の値は0.9から0.99の範囲にあり、残りの部分では窒素原子(N)と酸素原子(O)の比率の傾斜は、N原子数/(O原子数+N原子数)の値で0.4から0.9の範囲で変化し、その平均値は0.65となる。膜の総厚さは300nmである。   As a result, a high concentration nitrogen layer exists in the film with a thickness of 100 μm, and the value of the number of N atoms / (number of O atoms + N atoms) of the high concentration nitrogen layer is in the range of 0.9 to 0.99. In the remaining portion, the slope of the ratio of nitrogen atom (N) to oxygen atom (O) varies in the range of 0.4 to 0.9 in terms of N atom number / (O atom number + N atom number), The average value is 0.65. The total thickness of the film is 300 nm.

SiHガス流量 100SCCM
NHガス流量 0SCCM→300SCCM(1分保持)
Oガス流量 270SCCM→0SCCM(1分保持)
ガス流量 2000SCCM
成膜温度 230℃
圧力 120pa
RF電力 1000W
成膜時間 3分
SiH 4 gas flow rate 100SCCM
NH 3 gas flow rate 0 SCCM → 300 SCCM (1 minute hold)
N 2 O gas flow rate 270 SCCM → 0 SCCM (1 minute hold)
N 2 gas flow rate 2000SCCM
Deposition temperature 230 ° C
Pressure 120pa
RF power 1000W
Deposition time 3 minutes

オーバーコート樹脂層と透明電極(陽極)の間のパッシベーション膜をプラズマCVD装置を用いて下記条件で成膜した。下記条件において、NHのガス流量は成膜開始時に0SCCMで、2分かけて300SCCMになるように徐々に上げてゆき最後の1分を300SCCMで保持し、NOガス流量は成膜開始時に270SCCMで1分保持し、1分かけて0SCCMになるように徐々に下げていき、最後の1分を0SCCMで保持したことを意味する。 A passivation film between the overcoat resin layer and the transparent electrode (anode) was formed using a plasma CVD apparatus under the following conditions. Under the following conditions, the NH 3 gas flow rate is 0 SCCM at the start of film formation, gradually increased to 300 SCCM over 2 minutes, and the last 1 minute is held at 300 SCCM, and the N 2 O gas flow rate is started. Sometimes it means holding at 270 SCCM for 1 minute, gradually lowering to 0 SCCM over 1 minute, and holding the last 1 minute at 0 SCCM.

これにより、膜中に高濃度窒素層が100nmの厚さで存在し、高濃度窒素層のN原子数/(O原子数+N原子数)の値は0.9から0.99の範囲にあり、残りの部分では窒素原子(N)と酸素原子(O)の比率の傾斜は、N原子数/(O原子数+N原子数)の値で0.4から0.9の範囲で変化し、その平均値は0.5となる。膜の総厚さは300nmである。   Thereby, a high concentration nitrogen layer exists in the film with a thickness of 100 nm, and the value of the number of N atoms / (number of O atoms + N atoms) of the high concentration nitrogen layer is in the range of 0.9 to 0.99. In the remaining portion, the slope of the ratio of nitrogen atom (N) to oxygen atom (O) varies in the range of 0.4 to 0.9 in terms of N atom number / (O atom number + N atom number), The average value is 0.5. The total thickness of the film is 300 nm.

SiHガス流量 100SCCM
NHガス流量 0SCCM→300SCCM(1分保持)
Oガス流量 270SCCM(1分保持)→0SCCM(1分保持)
ガス流量 2000SCCM
成膜温度 230℃
圧力 120pa
RF電力 1000W
成膜時間 3分
SiH 4 gas flow rate 100SCCM
NH 3 gas flow rate 0 SCCM → 300 SCCM (1 minute hold)
N 2 O gas flow rate 270 SCCM (1 minute hold) → 0 SCCM (1 minute hold)
N 2 gas flow rate 2000SCCM
Deposition temperature 230 ° C
Pressure 120pa
RF power 1000W
Deposition time 3 minutes

オーバーコート樹脂層と透明電極(陽極)の間のパッシベーション膜をプラズマCVD装置を用いて下記条件で2回に分けて成膜した。   A passivation film between the overcoat resin layer and the transparent electrode (anode) was formed twice using the plasma CVD apparatus under the following conditions.

これにより、厚さ200nmの窒化酸化珪素(SiOxNy)膜と厚さ100nmの窒化珪素(SiNx)膜との積層膜が形成された。
(1回目)
SiHガス流量 100SCCM
NHガス流量 0SCCM
Oガス流量 270SCCM
ガス流量 2000SCCM
成膜温度 230℃
圧力 120pa
RF電力 1000W
成膜時間 2分
(2回目)
SiHガス流量 100SCCM
NHガス流量 300SCCM
Oガス流量 0SCCM
ガス流量 2000SCCM
成膜温度 230℃
圧力 120pa
RF電力 1000W
成膜時間 2分
As a result, a laminated film of a silicon nitride oxide (SiOxNy) film having a thickness of 200 nm and a silicon nitride (SiNx) film having a thickness of 100 nm was formed.
(First time)
SiH 4 gas flow rate 100SCCM
NH 3 gas flow rate 0SCCM
N 2 O gas flow rate 270 SCCM
N 2 gas flow rate 2000SCCM
Deposition temperature 230 ° C
Pressure 120pa
RF power 1000W
Deposition time 2 minutes (second time)
SiH 4 gas flow rate 100SCCM
NH 3 gas flow rate 300SCCM
N 2 O gas flow rate 0 SCCM
N 2 gas flow rate 2000SCCM
Deposition temperature 230 ° C
Pressure 120pa
RF power 1000W
Deposition time 2 minutes

オーバーコート樹脂層と透明電極(陽極)の間のパッシベーション膜をプラズマCVD装置を用いて実施例1と同じ条件で成膜し、さらに金属電極(陰極)の上にも同じ条件で成膜時間のみ30分にして成膜した。   A passivation film between the overcoat resin layer and the transparent electrode (anode) was formed under the same conditions as in Example 1 using a plasma CVD apparatus, and only on the metal electrode (cathode) under the same conditions as the film formation time. The film was formed in 30 minutes.

これにより、パッシベーション膜で透明電極(陽極)から金属電極(陰極)までの素子全体を覆うよおうにして成膜でき、封止缶を使わずに膜封止することができた。金属電極上のパッシベーション膜の厚さは3μmであった。
<比較例1>
オーバーコート樹脂層と透明電極(陽極)の間のパッシベーション膜をプラズマCVD装置を用いて下記条件で成膜した。
As a result, the entire device from the transparent electrode (anode) to the metal electrode (cathode) was covered with the passivation film, and the film could be sealed without using a sealing can. The thickness of the passivation film on the metal electrode was 3 μm.
<Comparative Example 1>
A passivation film between the overcoat resin layer and the transparent electrode (anode) was formed using a plasma CVD apparatus under the following conditions.

これにより、厚さ300nmの窒化酸化珪素(SiOxNy)単層膜が形成された。   Thereby, a silicon nitride oxide (SiOxNy) single layer film having a thickness of 300 nm was formed.

SiHガス流量 100SCCM
NHガス流量 0SCCM
Oガス流量 270SCCM
ガス流量 2000SCCM
成膜温度 230℃
圧力 120pa
RF電力 1000W
成膜時間 3分
<比較例2>
オーバーコート樹脂層と透明電極(陽極)の間のパッシベーション膜をプラズマCVD装置を用いて下記条件で成膜した。
SiH 4 gas flow rate 100SCCM
NH 3 gas flow rate 0SCCM
N 2 O gas flow rate 270 SCCM
N 2 gas flow rate 2000SCCM
Deposition temperature 230 ° C
Pressure 120pa
RF power 1000W
Deposition time 3 minutes <Comparative Example 2>
A passivation film between the overcoat resin layer and the transparent electrode (anode) was formed using a plasma CVD apparatus under the following conditions.

これにより、厚さ300nmの窒化珪素(SiNx)単層膜が形成された。   As a result, a silicon nitride (SiNx) single layer film having a thickness of 300 nm was formed.

SiHガス流量 100SCCM
NHガス流量 300SCCM
Oガス流量 0SCCM
ガス流量 2000SCCM
成膜温度 230℃
圧力 120pa
RF電力 1000W
成膜時間 3分
上記各実施例及び比較例のパッシベーション膜を有する有機EL素子を、60℃湿度90%の促進条件下で保存試験を行い、非発光部(ダークスポット)の拡大を観察して、ガラス基板上に直接形成した有機EL素子と比較して評価した。その結果を表1に示す。
SiH 4 gas flow rate 100SCCM
NH 3 gas flow rate 300SCCM
N 2 O gas flow rate 0 SCCM
N 2 gas flow rate 2000SCCM
Deposition temperature 230 ° C
Pressure 120pa
RF power 1000W
Film formation time: 3 minutes An organic EL device having the passivation film of each of the above examples and comparative examples was subjected to a storage test under an accelerated condition of 60 ° C. and humidity of 90%, and the enlargement of the non-light emitting portion (dark spot) was observed. Evaluation was made in comparison with an organic EL device directly formed on a glass substrate. The results are shown in Table 1.

また、各パッシベーション層の可視領域での光線透過率(400nm〜700nm)の測定結果も合わせて示した。   In addition, measurement results of light transmittance (400 nm to 700 nm) in the visible region of each passivation layer are also shown.

Figure 2005209356
DS:ダークスポット PV:パッシベーション層
CF:カラーフィルター OC:オーバーコート層
参考例2はオーバーコート(以下OCと表記する)層と透明電極(陽極)の間にパッシベーション層を形成せずに素子化したサンプルであるが、表1に示すように60℃、90%環境下でのダークスポット(以下DSと表記する)の状況を観察すると、当初発光していた素子も100時間経過後にはDSの拡大が進んで発光しなくなった。参考例3のように、カラーフィルター(以下CFと表記する)とOCがない場合には、パッシベーション層がなくてもDSの拡大がほとんどみられないことから、CFやOCからの水分や有機ガスがEL素子のDS拡大に強く影響することが示唆される。
Figure 2005209356
DS: Dark spot PV: Passivation layer CF: Color filter OC: Overcoat layer In Reference Example 2, an element was formed without forming a passivation layer between the overcoat (hereinafter referred to as OC) layer and the transparent electrode (anode). Although it is a sample, as shown in Table 1, when the state of a dark spot (hereinafter referred to as DS) in an environment of 60 ° C. and 90% is observed, the element that originally emitted light also expanded DS after 100 hours. Ceased to emit light. As in Reference Example 3, when there is no color filter (hereinafter referred to as CF) and OC, there is almost no DS expansion even without a passivation layer, so moisture and organic gas from CF and OC It is suggested that strongly affects the DS expansion of the EL element.

そして、実施例1〜7、比較例1、2及び参考例1の結果から、OC層と透明電極の間に、SiOx、SiOxNy、SiNxなどのパッシベーション膜を形成することで、パッシベーション層がない場合に比べてDSの拡大が抑制されることもわかる。しかし、パッシベーション膜の種類によって、DS拡大の抑制効果に大きな差があり、SiNx>SiOxNy>SiOxの順でDS拡大抑制効果が高い。すなわち、パッシベーション膜の水蒸気やガスバリアー性に大きく起因している。   And from the results of Examples 1 to 7, Comparative Examples 1 and 2, and Reference Example 1, there is no passivation layer by forming a passivation film such as SiOx, SiOxNy, or SiNx between the OC layer and the transparent electrode. It can also be seen that the expansion of the DS is suppressed compared to. However, there is a large difference in the DS expansion suppression effect depending on the type of passivation film, and the DS expansion suppression effect is higher in the order of SiNx> SiOxNy> SiOx. That is, it is largely due to the water vapor and gas barrier properties of the passivation film.

参考例2のように、SiOx膜では他の膜に比べてDS拡大の進行が速く、500時間後には非発光となった。比較例1のように、SiOxNy膜の場合には、SiOx膜よりはDS拡大は抑制されるが、500時間後で初期の約30倍とかなりDSの拡大がみられ、有機EL素子のパッシベーション膜としては不十分である。   As in Reference Example 2, the progress of DS expansion was faster in the SiOx film than in the other films, and no light was emitted after 500 hours. As in Comparative Example 1, in the case of the SiOxNy film, the DS expansion is suppressed as compared with the SiOx film, but after about 500 hours, the DS expansion is considerably about 30 times the initial value, and the passivation film of the organic EL element is observed. Is insufficient.

一方、有機ELパネルディスプレイにおいては、パッシベーション膜を通して光を取出すことから、パッシベーション膜には透明性も要求され、望ましくは可視光域の光線透過率が95%以上、少なくとも90%以上は必要である。比較例2のように、SiNx膜はDS拡大抑制効果としては十分だが、光線透過率が89%と不足である。   On the other hand, in the organic EL panel display, since light is taken out through the passivation film, the passivation film is also required to have transparency, and preferably has a light transmittance of 95% or more, preferably at least 90% or more in the visible light region. . As in Comparative Example 2, the SiNx film is sufficient as an effect of suppressing the DS expansion, but the light transmittance is insufficient at 89%.

しかし、実施例1から実施例7のように、SiOxNyのN/O比傾斜膜にすることで、DS拡大抑制の点からも透明性の点からも、有機EL素子のパッシベーション膜として、非常に良好な膜となる。その理由としては、膜の深さ方向でN/Oの比率を変化させることで、膜中にNの比率の高い層が存在することになり、その部分でバリア性を確保し、その他の部分では徐々にO比率が高くなるから透明性を確保できことが考えられる。   However, as in Example 1 to Example 7, by using a SiOxNy N / O ratio gradient film, it is very useful as a passivation film of an organic EL element from the viewpoint of DS expansion suppression and transparency. It becomes a good film. The reason is that by changing the N / O ratio in the depth direction of the film, a layer with a high N ratio exists in the film, and the barrier property is secured in that part, and other parts Then, since O ratio becomes high gradually, it can be considered that transparency can be secured.

N/O比率を変化させる範囲は、なるべくN比率の高い範囲で変化させた方が、DS抑制の点で良好であり、N原子数/(O原子数+N原子数)の値で0.4〜0.9の範囲で変化させた実施例1よりも0.6〜0.9の範囲で変化させた実施例2の方が良好であった。   The range in which the N / O ratio is changed is better in terms of DS suppression when the N ratio is as high as possible. The value of N atom number / (O atom number + N atom number) is 0.4. Example 2 varied in the range of 0.6 to 0.9 was better than Example 1 varied in the range of -0.9.

また、実施例3〜5の結果から、N原子数/(O原子数+N原子数)の値が0.90〜0.99の高窒素原子層を傾斜膜に含むようにすることで、この層で水蒸気等を高度に遮断し、残りの層はO原子の比率をなるべく高くして透明性も確保できる。高窒素原子層の厚みが厚くなるほど透明性は低下するが、DS抑制効果は高くなり、厚さとしては100nm程度が好ましかった。   In addition, from the results of Examples 3 to 5, the inclined film includes a high nitrogen atom layer having a value of N atom number / (O atom number + N atom number) of 0.90 to 0.99. Water vapor and the like are highly blocked by the layers, and the remaining layers can ensure transparency by increasing the ratio of O atoms as much as possible. As the thickness of the high nitrogen atom layer increases, the transparency decreases, but the DS suppression effect increases, and the thickness is preferably about 100 nm.

実施例の説明図である。It is explanatory drawing of an Example.

符号の説明Explanation of symbols

1 ガラス基板
2 カラーフィルター層
3 オーバーコート樹脂層
4 パッシベーション膜
5 透明電極(陽極)
6 有機発光層
7 陰極
8 乾燥剤
9 封止缶
1 Glass substrate 2 Color filter layer 3 Overcoat resin layer 4 Passivation film 5 Transparent electrode (anode)
6 Organic light emitting layer 7 Cathode 8 Desiccant 9 Sealing can

Claims (11)

窒化酸化珪素(SiOxNy)からなる膜であって、膜の深さ方向で窒素原子(N)と酸素原子(O)の比率が傾斜的に変化しているパッシベーション膜を有することを特徴とする有機EL素子。   An organic film comprising a silicon nitride oxide (SiOxNy) film having a passivation film in which the ratio of nitrogen atoms (N) to oxygen atoms (O) changes in an inclined manner in the depth direction of the film EL element. 当該パッシベーション膜の深さ方向での窒素原子(N)と酸素原子(O)の比率の変化が、N原子数/(O原子数+N原子数)の値で0.4から0.9の範囲で変化することを特徴とする請求項1記載の有機EL素子。   The change in the ratio of nitrogen atoms (N) and oxygen atoms (O) in the depth direction of the passivation film is in the range of 0.4 to 0.9 in terms of N atoms / (O atoms + N atoms). The organic EL element according to claim 1, wherein 当該パッシベーション膜の深さ方向での窒素原子(N)と酸素原子(O)の比率の変化が、N原子数/(O原子数+N原子数)の値で0.6から0.9の範囲で変化することを特徴とする請求項1記載の有機EL素子。   The change in the ratio of nitrogen atoms (N) to oxygen atoms (O) in the depth direction of the passivation film is in the range of 0.6 to 0.9 in terms of N atoms / (O atoms + N atoms). The organic EL element according to claim 1, wherein 当該パッシベーション膜の一部に、N原子数/(O原子数+N原子数)の値が0.90から0.99となる窒素高濃度層が存在することを特徴とする請求項1記載の有機EL素子。   2. The organic layer according to claim 1, wherein a part of the passivation film includes a high nitrogen concentration layer having a value of N atom number / (O atom number + N atom number) of 0.90 to 0.99. EL element. 当該パッシベーション膜の一部に、N原子数/(O原子数+N原子数)の値が0.90から0.99となる窒素高濃度層が存在し、当該窒素高濃度層を除く残りの層のN原子数/(O原子数+N原子数)の値は平均すると0.6以下であることを特徴とする請求項1記載の有機EL素子。   A part of the passivation film includes a nitrogen high-concentration layer in which the value of the number of N atoms / (the number of O atoms + N atoms) is 0.90 to 0.99, and the remaining layers excluding the nitrogen high-concentration layer 2. The organic EL device according to claim 1, wherein the average number of N atoms / (number of O atoms + N atoms) is 0.6 or less on average. N原子数/(O原子数+N原子数)の値が0.90から0.99となる窒素高濃度層の厚さが、50nmから100nmの範囲にあることを特徴とする請求項4乃至請求項5記載の有機EL素子。   The thickness of the high-concentration nitrogen layer having a value of N atom number / (O atom number + N atom number) of 0.90 to 0.99 is in the range of 50 nm to 100 nm. Item 6. An organic EL device according to Item 5. 当該パッシベーション膜が窒化酸化珪素(SiOxNy)と窒化珪素(SiNx)との積層膜からなることを特徴とする有機EL素子。   An organic EL element, wherein the passivation film is a laminated film of silicon nitride oxide (SiOxNy) and silicon nitride (SiNx). 窒化酸化珪素(SiOxNy)と窒化珪素(SiNx)との積層膜の内、窒化珪素(SiNx)膜層の厚さが、50nmから150nmの範囲にあることを特徴とする請求項7記載の有機EL素子。   8. The organic EL according to claim 7, wherein the thickness of the silicon nitride (SiNx) film layer in the laminated film of silicon nitride oxide (SiOxNy) and silicon nitride (SiNx) is in the range of 50 nm to 150 nm. element. パッシベーション膜が、基板上のカラーフィルター層と透明電極間に形成されていることを特徴とする請求項1乃至請求項8記載の有機EL素子。   9. The organic EL device according to claim 1, wherein a passivation film is formed between the color filter layer on the substrate and the transparent electrode. パッシベーション膜が、少なくとも透明電極と金属電極間の層を包み込むように形成されていることを特徴とする請求項1乃至請求項8記載の有機EL素子。   9. The organic EL element according to claim 1, wherein the passivation film is formed so as to enclose at least a layer between the transparent electrode and the metal electrode. 請求項1乃至請求項8記載のパッシベーション膜が、基板上のカラーフィルター層と透明電極間に形成されていることを特徴とするカラーフィルター。   9. A color filter, wherein the passivation film according to claim 1 is formed between a color filter layer on a substrate and a transparent electrode.
JP2004011471A 2004-01-20 2004-01-20 Manufacturing method of organic EL element Expired - Lifetime JP4479249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004011471A JP4479249B2 (en) 2004-01-20 2004-01-20 Manufacturing method of organic EL element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004011471A JP4479249B2 (en) 2004-01-20 2004-01-20 Manufacturing method of organic EL element

Publications (2)

Publication Number Publication Date
JP2005209356A true JP2005209356A (en) 2005-08-04
JP4479249B2 JP4479249B2 (en) 2010-06-09

Family

ID=34898150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004011471A Expired - Lifetime JP4479249B2 (en) 2004-01-20 2004-01-20 Manufacturing method of organic EL element

Country Status (1)

Country Link
JP (1) JP4479249B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007115544A (en) * 2005-10-20 2007-05-10 Fuji Electric Holdings Co Ltd Organic el element
JP2007123174A (en) * 2005-10-31 2007-05-17 Canon Inc Organic electroluminescent element
JP2007123173A (en) * 2005-10-31 2007-05-17 Canon Inc Organic electroluminescent element
WO2009028485A1 (en) * 2007-08-31 2009-03-05 Tokyo Electron Limited Organic electronic device, organic electronic device manufacturing method, organic electronic device manufacturing apparatus, substrate processing system, protection film structure and storage medium with control program stored therein
JP2009196155A (en) * 2008-02-20 2009-09-03 Dainippon Printing Co Ltd Gas barrier film and preparation method and preparation equipment of gas barrier membrane
JP2009252739A (en) * 2008-04-10 2009-10-29 Samsung Electronics Co Ltd Gradient composition encapsulation thin film and method of manufacturing the same
WO2010035337A1 (en) * 2008-09-26 2010-04-01 富士電機ホールディングス株式会社 Organic el device and method for manufacturing same
JP2011082109A (en) * 2009-10-09 2011-04-21 Dainippon Printing Co Ltd Organic electroluminescent element and its manufacturing method
JP2011146226A (en) * 2010-01-14 2011-07-28 Konica Minolta Holdings Inc Barrier film and organic electronic device
JP2011146144A (en) * 2010-01-12 2011-07-28 Konica Minolta Holdings Inc Light emitting element
JP5172961B2 (en) * 2008-08-26 2013-03-27 シャープ株式会社 Organic EL device and manufacturing method thereof
CN104157790A (en) * 2014-06-30 2014-11-19 上海天马有机发光显示技术有限公司 Organic light-emitting film packaging structure, and device, apparatus and manufacturing method thereof
CN102077686B (en) * 2009-06-29 2015-04-22 夏普株式会社 Sealing film for organic EL element, organic EL element, and organic EL display
KR20150135521A (en) * 2013-03-29 2015-12-02 린텍 가부시키가이샤 Gas barrier laminate, member for electronic device, and electronic device
WO2016046914A1 (en) * 2014-09-24 2016-03-31 パイオニア株式会社 Light emitting device
WO2019114648A1 (en) * 2017-12-15 2019-06-20 Boe Technology Group Co., Ltd. Encapsulation structure, encapsulating method, electroluminescent apparatus, and display apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000340799A (en) * 1999-03-23 2000-12-08 Semiconductor Energy Lab Co Ltd Semiconductor device and preparation thereof
JP2003133062A (en) * 2001-10-30 2003-05-09 Idemitsu Kosan Co Ltd Organic electroluminescence emitting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000340799A (en) * 1999-03-23 2000-12-08 Semiconductor Energy Lab Co Ltd Semiconductor device and preparation thereof
JP2003133062A (en) * 2001-10-30 2003-05-09 Idemitsu Kosan Co Ltd Organic electroluminescence emitting device

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007115544A (en) * 2005-10-20 2007-05-10 Fuji Electric Holdings Co Ltd Organic el element
JP2007123174A (en) * 2005-10-31 2007-05-17 Canon Inc Organic electroluminescent element
JP2007123173A (en) * 2005-10-31 2007-05-17 Canon Inc Organic electroluminescent element
WO2009028485A1 (en) * 2007-08-31 2009-03-05 Tokyo Electron Limited Organic electronic device, organic electronic device manufacturing method, organic electronic device manufacturing apparatus, substrate processing system, protection film structure and storage medium with control program stored therein
JP5410978B2 (en) * 2007-08-31 2014-02-05 東京エレクトロン株式会社 Organic electronic device manufacturing method and storage medium storing control program
JP2009196155A (en) * 2008-02-20 2009-09-03 Dainippon Printing Co Ltd Gas barrier film and preparation method and preparation equipment of gas barrier membrane
JP2009252739A (en) * 2008-04-10 2009-10-29 Samsung Electronics Co Ltd Gradient composition encapsulation thin film and method of manufacturing the same
JP5172961B2 (en) * 2008-08-26 2013-03-27 シャープ株式会社 Organic EL device and manufacturing method thereof
US8492751B2 (en) 2008-08-26 2013-07-23 Sharp Kabushiki Kaisha Organic EL device and process for manufacturing same
WO2010035337A1 (en) * 2008-09-26 2010-04-01 富士電機ホールディングス株式会社 Organic el device and method for manufacturing same
JP5378354B2 (en) * 2008-09-26 2013-12-25 シャープ株式会社 Organic EL device and manufacturing method thereof
US8487299B2 (en) 2008-09-26 2013-07-16 Sharp Kabushiki Kaisha Organic EL device and method of manufacturing same
TWI486092B (en) * 2008-09-26 2015-05-21 Sharp Kk Organic el device and method of manufacturing same
CN102077686B (en) * 2009-06-29 2015-04-22 夏普株式会社 Sealing film for organic EL element, organic EL element, and organic EL display
JP2011082109A (en) * 2009-10-09 2011-04-21 Dainippon Printing Co Ltd Organic electroluminescent element and its manufacturing method
JP2011146144A (en) * 2010-01-12 2011-07-28 Konica Minolta Holdings Inc Light emitting element
JP2011146226A (en) * 2010-01-14 2011-07-28 Konica Minolta Holdings Inc Barrier film and organic electronic device
KR20150135521A (en) * 2013-03-29 2015-12-02 린텍 가부시키가이샤 Gas barrier laminate, member for electronic device, and electronic device
KR102267093B1 (en) * 2013-03-29 2021-06-18 린텍 가부시키가이샤 Gas barrier laminate, member for electronic device, and electronic device
CN104157790A (en) * 2014-06-30 2014-11-19 上海天马有机发光显示技术有限公司 Organic light-emitting film packaging structure, and device, apparatus and manufacturing method thereof
WO2016046914A1 (en) * 2014-09-24 2016-03-31 パイオニア株式会社 Light emitting device
WO2019114648A1 (en) * 2017-12-15 2019-06-20 Boe Technology Group Co., Ltd. Encapsulation structure, encapsulating method, electroluminescent apparatus, and display apparatus
CN109935717A (en) * 2017-12-15 2019-06-25 京东方科技集团股份有限公司 Encapsulating structure and packaging method, electroluminescent device, display device
CN109935717B (en) * 2017-12-15 2021-05-25 京东方科技集团股份有限公司 Packaging structure, packaging method, electroluminescent device and display device
US11302890B2 (en) 2017-12-15 2022-04-12 Boe Technology Group Co., Ltd. Encapsulation structure with sub-film layers and encapsulating method thereoff

Also Published As

Publication number Publication date
JP4479249B2 (en) 2010-06-09

Similar Documents

Publication Publication Date Title
JP4479249B2 (en) Manufacturing method of organic EL element
KR101366449B1 (en) Optical semiconductor device and manufaturing method thereof
US6710542B2 (en) Organic light emitting device with improved moisture seal
US7621794B2 (en) Method of encapsulating an organic light-emitting device
TWI399999B (en) Organic electroluminescence display device and manufacturing method thereof
JP4795779B2 (en) Organic electroluminescence display panel
US20090079328A1 (en) Thin film encapsulation containing zinc oxide
JP2008153004A (en) Organic electroluminescent element
JP2000223264A (en) Organic electroluminescent element and manufacture thereof
WO2005105428A1 (en) Multilayer body, light-emitting device and use thereof
US20190221771A1 (en) Buffer layer for organic light emitting devices and method of making the same
Lee et al. Interface studies of Aluminum, 8-hydroxyquinolatolithium (Liq) and Alq3 for inverted OLED application
Tsai et al. Flexible fluorescent white organic light emitting diodes with ALD encapsulation
US8928217B2 (en) Organic light emitting display device and manufacturing method thereof
JP2005203321A (en) Protective film and organic el device
JP2007123174A (en) Organic electroluminescent element
KR101801545B1 (en) Deposition method of passivation film for light emitting diode
JP2015080855A (en) Sealing film, method for producing the same and functional element sealed with sealing film
CN103427035A (en) Organic electroluminescence device and method for manufacturing same
Kim et al. Thin film passivation characteristics in OLED using in-situ passivation
KR102102913B1 (en) Method for Manufacturing Organic Emitting Display Device and Display Device Applying the Same
KR101616929B1 (en) Method for manufacturing organic light emitting display device
EP1388178A2 (en) A method of providing a layer including a metal or silicon or germanium and oxygen on a surface
JP6926381B2 (en) Protective film deposition method for light emitting elements
KR101809885B1 (en) Deposition method of passivation film for light emitting diode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4479249

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4