JP2007120546A - Fixed type constant velocity universal joint and its assembling method - Google Patents

Fixed type constant velocity universal joint and its assembling method Download PDF

Info

Publication number
JP2007120546A
JP2007120546A JP2005310308A JP2005310308A JP2007120546A JP 2007120546 A JP2007120546 A JP 2007120546A JP 2005310308 A JP2005310308 A JP 2005310308A JP 2005310308 A JP2005310308 A JP 2005310308A JP 2007120546 A JP2007120546 A JP 2007120546A
Authority
JP
Japan
Prior art keywords
inner ring
ball
cage
ring
constant velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005310308A
Other languages
Japanese (ja)
Inventor
Keisuke Sone
啓助 曽根
Hirokazu Oba
浩量 大場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2005310308A priority Critical patent/JP2007120546A/en
Publication of JP2007120546A publication Critical patent/JP2007120546A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Automatic Assembly (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an easy-to-assemble fixed type constant velocity universal joint having a great torque load capacity. <P>SOLUTION: On the corner-side inner face of an mouth portion 10a of an outer ring, a spherical supporting portion 18 is formed around a joint center O where the center lines of two connected axes of the joint cross each other. On an inner peripheral face 46 of a cage 40 contacting an inner ring 20, a spherical portion 46a and a cylindrical portion 46b are formed which is located on the opening side of the mouth portion of the outer ring and which is located on the corner side of the mouth portion of the outer ring, respectively. The axial length of the cylindrical portion 46a is set to allow the axial movement of the inner ring 20 over a predetermined range and to allow the storage of the circumscribed circle of a torque transmitting ball 30 in the outside contour of the cage 40 when the inner ring 20 is at an axially moving stroke end. At the front end of a shaft 50 which is inserted in an axial connection hole formed in the center of the inner ring 20 for transmitting torque to the inner ring 20, a supported face 50a is formed which has the same curvature as the spherical supporting portion 18 for slide contact with the spherical supporting portion 18 in all range of the operating angle of the joint. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は固定式等速自在継手とその組立方法に係り、特に、外輪マウス部の奥側内面に形成した球面支持部に、内輪にトルク伝達可能に連結したシャフト先端の被支持面を継手作動角の全範囲で摺接させるようにした固定式等速自在継手とその組立方法に関する。   The present invention relates to a fixed type constant velocity universal joint and a method for assembling the fixed type constant velocity universal joint. The present invention relates to a fixed type constant velocity universal joint that is slidably contacted in the entire range of corners and an assembling method thereof.

固定式等速自在継手は、連結した駆動側と従動側の二軸間で角度変位のみを許容するもので、自動車のドライブシャフトのアクスル連結部や、各種産業機械の動力伝達系において使用される。この固定式等速自在継手の種類として、従来、ゼッパ型等速自在継手やアンダーカットフリー型(以下UJ型という)等速自在継手が知られている。   Fixed type constant velocity universal joints allow only angular displacement between the connected drive side and driven side shafts, and are used in axle connection parts of automobile drive shafts and power transmission systems of various industrial machines. . As a type of the fixed type constant velocity universal joint, conventionally, a Zepper type constant velocity universal joint and an undercut free type (hereinafter referred to as UJ type) constant velocity universal joint are known.

固定式等速自在継手であるゼッパ型等速自在継手は、外輪、内輪、ボールおよびケージから成る。外輪の内球面と内輪の外球面には、複数の曲線状のボール溝が等間隔で形成される。ボールは外輪ボール溝と内輪ボール溝間に組込まれ、ケージは外輪と内輪間に組込まれる。UJ型等速自在継手は、ゼッパ型等速自在継手よりも高作動角を目的として開発されたもので、外輪のボール溝のボール中心軌跡が、上記ゼッパ型の子午線の円弧のうち、円弧中心を通る軸直角断面より外輪の開口側の部分が継手軸と平行な直線となっている(特許文献1参照)。   A zeppa type constant velocity universal joint which is a fixed type constant velocity universal joint includes an outer ring, an inner ring, a ball and a cage. A plurality of curved ball grooves are formed at equal intervals on the inner spherical surface of the outer ring and the outer spherical surface of the inner ring. The ball is assembled between the outer ring ball groove and the inner ring ball groove, and the cage is assembled between the outer ring and the inner ring. The UJ type constant velocity universal joint was developed for the purpose of higher operating angle than the Zepper type constant velocity universal joint, and the ball center locus of the ball groove of the outer ring is the center of the arc of the above Zepper type meridian. The section on the opening side of the outer ring is a straight line parallel to the joint axis from the cross section perpendicular to the axis passing through (see Patent Document 1).

このような固定式等速自在継手の外輪に対してケージを組み付ける場合、特許文献1に記載された固定式等速自在継手では、まずケージを外輪内に入れ、次に内輪をそのケージの内側を通過させて外輪内の、正規位置よりも奥側に置き、その状態で、トルク伝達ボール(以下、単に「ボール」という。)を内側からケージのポケットに入れ込み、その後、内輪を正規位置に戻し、最後に、内輪を軸方向で支持する部材を入れて外輪に固定する、というものである。   When the cage is assembled to the outer ring of such a fixed type constant velocity universal joint, in the fixed type constant velocity universal joint described in Patent Document 1, the cage is first placed in the outer ring, and then the inner ring is placed inside the cage. Passing through the outer ring, place it on the back side of the normal position, and in that state, insert the torque transmission ball (hereinafter simply referred to as “ball”) into the cage pocket from the inside, and then place the inner ring in the normal position. Finally, a member for supporting the inner ring in the axial direction is inserted and fixed to the outer ring.

特許文献2および特許文献3に記載された固定式等速自在継手は、外輪の大端面開口とは反対側のケージの内径部が内輪が同軸方向に通過できるような形状となっており、また、外輪の大端面開口とは反対側も内輪が同軸方向に通過できるように開口している。組立て方法は、外輪にケージを入れておき、ボールを内側からケージのポケットに入れて、その後、内輪を外輪の大端面開口側から外輪とケージを通過させて入れ、外輪の大端面開口とは反対側の開口部分に内輪を支持する部材を入れて外輪に固定する、というものである。
特開平6−193645号公報 特表2004−521295号公報 特開2004−116666号公報
The fixed type constant velocity universal joints described in Patent Document 2 and Patent Document 3 have a shape that allows the inner ring to pass in the coaxial direction through the inner diameter portion of the cage opposite to the large end face opening of the outer ring. The outer ring is also opened on the side opposite to the large end face opening so that the inner ring can pass in the coaxial direction. The assembly method is to put the cage in the outer ring, put the ball into the cage pocket from the inside, and then insert the inner ring through the outer ring and cage from the large end face opening side of the outer ring. A member that supports the inner ring is inserted into the opening portion on the opposite side and fixed to the outer ring.
JP-A-6-193645 JP-T-2004-521295 JP 2004-116666 A

特許文献1に記載された固定型等速自在継手は、その組立方法に起因して内輪のトラック溝が浅く、トルク負荷容量が小さくなる。つまり、外輪にケージを挿入した後、そのケージの内側に内輪を挿入して外輪の底部まで押し込むことができるように、内輪の外径をケージの内径よりも小さく設定する必要がある。ここで、内輪に嵌着される中間軸の外径は規定値であることから、内輪の外径を小さくすると内輪のトラック溝が浅くなる。その結果、トルク負荷容量が小さくなるという問題が発生する。   In the fixed type constant velocity universal joint described in Patent Document 1, the track groove of the inner ring is shallow due to the assembly method, and the torque load capacity is reduced. That is, after inserting the cage into the outer ring, it is necessary to set the outer diameter of the inner ring smaller than the inner diameter of the cage so that the inner ring can be inserted inside the cage and pushed into the bottom of the outer ring. Here, since the outer diameter of the intermediate shaft fitted to the inner ring is a specified value, the track groove of the inner ring becomes shallower when the outer diameter of the inner ring is reduced. As a result, there arises a problem that the torque load capacity is reduced.

また、特許文献1に記載された固定型等速自在継手では、外輪の底に配置された底部材の凹球面で内輪の外球面を軸方向に支持する構造となっている。このように内輪を軸方向に支持する底部材の凹球面が継手中心軸線を含む比較的狭い範囲に位置しているため、大作動角時の等速性を維持することが困難であり、振動や異音などといった問題や、底部材の凹球面と内輪の外球面との相対変位量が大きいことから発熱量や摩耗量が大きくなるといった問題がある。   Further, the fixed type constant velocity universal joint described in Patent Document 1 has a structure in which the outer spherical surface of the inner ring is supported in the axial direction by the concave spherical surface of the bottom member disposed on the bottom of the outer ring. Since the concave spherical surface of the bottom member supporting the inner ring in the axial direction is located in a relatively narrow range including the joint central axis, it is difficult to maintain constant velocity at a large operating angle, and vibration There is a problem that the amount of heat generation and wear increases due to a large relative displacement between the concave spherical surface of the bottom member and the outer spherical surface of the inner ring.

加えて、外輪およびケージの内側からボールを入れるという作業は煩雑で、組立工程における作業能率が悪い。   In addition, the work of putting the ball from the inside of the outer ring and the cage is complicated, and the work efficiency in the assembly process is poor.

特許文献2および特許文献3に記載された固定式等速自在継手でも、外輪およびケージの内側からボールを入れる作業は煩雑である。また、外輪の大端面開口とは反対側に内輪を通過させるための大きい開口が必要であるため、この部分の外径が大きくならざるを得ない。その結果、重量増となるばかりでなく、外径と内径の間が狭くなるため、たとえば駆動車輪用車輪軸受装置に適用する場合のホイールハブとの連結部(ステム軸)とこの中空状の外輪とを結合するための構造は、作り難い。しかも、外輪のホイール側つまり大端面の反対側は、車種によって形状が異なるものであるが、小さい径が必要となるときなどは適用が困難となる。   Even in the fixed type constant velocity universal joints described in Patent Document 2 and Patent Document 3, the work of putting the ball from the inner side of the outer ring and the cage is complicated. In addition, since a large opening for passing the inner ring is required on the side opposite to the large end face opening of the outer ring, the outer diameter of this portion must be increased. As a result, not only is the weight increased, but the gap between the outer diameter and the inner diameter is narrowed. For example, when applied to a wheel bearing device for a drive wheel, a connecting portion (stem shaft) with a wheel hub and the hollow outer ring It is difficult to make a structure to connect In addition, the wheel side of the outer ring, that is, the opposite side of the large end surface has a different shape depending on the vehicle type, but it is difficult to apply when a small diameter is required.

本発明の主要な目的は、上述の問題点を解消し、組立てが簡単で、軽量コンパクトな固定式等速自在継手を提供することにある。   A main object of the present invention is to provide a fixed type constant velocity universal joint that solves the above-described problems, is easy to assemble, and is lightweight and compact.

前記課題を解決するため、請求項1の発明は、一端にて開口した椀状のマウス部の内球面に軸方向に延びる複数のボール溝を形成した外輪と、外球面に軸方向に延びる複数のボール溝を形成した内輪と、対をなす外輪のボール溝と内輪のボール溝との間に組み込んだトルク伝達ボールと、外輪の内球面と内輪の外球面との間に介在してトルク伝達ボールを軸方向に保持するケージとを具備した固定式等速自在継手において、前記外輪マウス部の奥側内面に、継手の連結二軸の中心線が交差する継手中心を中心とした球面支持部を形成し、内輪と接するケージの内周面に、外輪マウス部の開口側に位置する球面部と、外輪マウス部の奥側に位置する円筒部とを形成し、前記円筒部の軸長を、内輪の軸方向移動を所定範囲にわたって許容するとともに、内輪が軸方向移動のストローク端にあるときトルク伝達ボールの外接円をケージの外側輪郭内に収容可能な長さに設定し、かつ、内輪の中心に形成された軸方向の連結孔に挿入されて内輪とトルク伝達するシャフトの先端に、前記球面支持部と同曲率であって前記球面支持部と継手作動角の全範囲で摺接する被支持面を形成した固定式等速自在継手である。   In order to solve the above-mentioned problem, the invention of claim 1 is characterized in that an outer ring in which a plurality of ball grooves extending in the axial direction are formed on the inner spherical surface of the bowl-shaped mouth portion opened at one end, and a plurality of extending in the axial direction on the outer spherical surface. Torque transmission by interposing between the inner ring formed with the ball groove, the torque transmission ball incorporated between the ball groove of the outer ring and the ball groove of the inner ring, and the inner spherical surface of the outer ring and the outer spherical surface of the inner ring. In a fixed type constant velocity universal joint provided with a cage for holding a ball in an axial direction, a spherical support portion centering on a joint center where a center line of a joint two-axis of the joint intersects with an inner surface on the back side of the outer ring mouth portion. Formed on the inner peripheral surface of the cage in contact with the inner ring, a spherical portion located on the opening side of the outer ring mouse part and a cylindrical part located on the back side of the outer ring mouse part, and the axial length of the cylindrical part is , And allow the axial movement of the inner ring over a predetermined range Furthermore, when the inner ring is at the stroke end of the axial movement, the circumscribed circle of the torque transmitting ball is set to a length that can be accommodated in the outer contour of the cage, and the axial connection hole formed at the center of the inner ring A fixed type constant velocity universal joint in which a supported surface is formed at the tip of a shaft that is inserted and transmits torque to the inner ring, and has a curvature that is the same as that of the spherical support portion and that is in sliding contact with the spherical support portion over the entire range of joint operating angles. is there.

請求項2の発明は、請求項1の発明において、前記外輪マウス部の奥側内面における前記球面支持部の外縁部分に隣接して、前記内輪連結孔にシャフトを挿入する際に内輪を受止める受座を形成した固定式等速自在継手である。   According to a second aspect of the present invention, in the first aspect of the invention, the inner ring is received when the shaft is inserted into the inner ring connecting hole adjacent to the outer edge portion of the spherical support portion on the inner surface on the back side of the outer ring mouth portion. This is a fixed type constant velocity universal joint having a seat.

内輪を受止める受座を形成しない場合、内輪に治具係合部を形成して治具によってシャフト挿入時の内輪移動を拘束する必要があるが、治具係合部を形成するとその分だけ内輪軸長が長くなるし、加工コストも嵩む。勿論、治具による内輪拘束は作業性が悪く煩雑でもある。本発明では外輪に内輪受止め用受座を形成することによって前述した不都合をすべて解消する。   When the seat for receiving the inner ring is not formed, it is necessary to form a jig engaging part on the inner ring and restrain the movement of the inner ring when inserting the shaft by the jig. The inner ring shaft length becomes longer and the processing cost increases. Of course, the inner ring restraint by the jig is not easy to work and complicated. In the present invention, the above-mentioned inconveniences are all eliminated by forming an inner ring receiving seat on the outer ring.

請求項3の発明は、請求項1または2の発明において、シャフトの外周面に形成した環状溝に弾性的拡開力を有するサークリップを嵌合するとともに、内輪連結孔に前記サークリップが拡開して嵌合する拡径部を形成し、内輪に対するシャフトの挿入途中では前記サークリップを内輪連結孔の内周面に所定の摩擦力を伴って摺接させるとともに、前記内輪に対するシャフトの挿入完了位置では前記サークリップを前記拡径部で拡開させてシャフトを抜止めするようにした固定式等速自在継手である。   According to a third aspect of the invention, in the first or second aspect of the invention, a circlip having an elastic expansion force is fitted into an annular groove formed on the outer peripheral surface of the shaft, and the circlip is expanded in the inner ring connecting hole. An expanded diameter portion that opens and fits is formed, and the circlip is slidably contacted with the inner peripheral surface of the inner ring connecting hole with a predetermined frictional force while the shaft is being inserted into the inner ring, and the shaft is inserted into the inner ring. The fixed constant velocity universal joint is configured such that the circlip is expanded at the enlarged diameter portion to prevent the shaft from being pulled out at the completion position.

請求項4の発明は、請求項1から3のいずれかの発明において、前記拡径部の抜止め側の側面を、内輪の軸線に対して直角な直角面、または、サークリップに作用する軸力によってサークリップが拡開する方向に傾斜した傾斜面とした固定式等速自在継手である。   According to a fourth aspect of the present invention, in the invention according to any one of the first to third aspects, the side surface on the retaining side of the enlarged-diameter portion is a right-angled surface perpendicular to the axis of the inner ring or a shaft acting on the circlip. This is a fixed type constant velocity universal joint having an inclined surface inclined in a direction in which the circlip is expanded by force.

シャフトに引抜き方向の軸力が作用した場合、サークリップが内輪拡径部から抜け出ようとするが、拡径部のラジアル面を前述したような傾斜面にしておくことによりサークリップの抜け出し防止が確実になる。拡径部のラジアル面は垂直面としても十分な抜け出し防止効果が得られる。   When an axial force in the pulling direction is applied to the shaft, the circlip tends to come out of the inner ring diameter-enlarged portion, but the circlip is prevented from coming out by making the radial surface of the enlarged diameter portion inclined as described above. Be certain. Even if the radial surface of the enlarged diameter portion is a vertical surface, a sufficient escape prevention effect can be obtained.

請求項5の発明は、請求項1から4のいずれかの発明において、内輪、ケージおよびトルク伝達ボールを、ユニットハンドリングが可能な仮組みユニットとした固定式等速自在継手である。   A fifth aspect of the present invention is the fixed type constant velocity universal joint according to any one of the first to fourth aspects, wherein the inner ring, the cage and the torque transmission ball are a temporarily assembled unit capable of unit handling.

請求項6の発明は、請求項1から5のいずれかの発明において、ケージ内周面の前記円筒部に内径が内輪の外球面の外径より小さい突起を設け、前記突起によって内輪のストローク端を規定した固定式等速自在継手である。   According to a sixth aspect of the present invention, in the invention according to any one of the first to fifth aspects, a projection having an inner diameter smaller than the outer diameter of the outer spherical surface of the inner ring is provided on the cylindrical portion of the inner circumferential surface of the cage, and the stroke end of the inner ring is formed by the projection. Is a fixed type constant velocity universal joint.

請求項7の発明は、請求項1から6のいずれかの発明において、外輪マウス部の開口部の最小内径を、ケージの外球面とポケットの軸方向に向かい合った側壁とがなす角部の径より大きくした固定式等速自在継手である。   The invention of claim 7 is the invention according to any one of claims 1 to 6, wherein the minimum inner diameter of the opening of the outer ring mouth portion is the diameter of the corner formed by the outer spherical surface of the cage and the side wall facing the axial direction of the pocket. This is a larger fixed type constant velocity universal joint.

請求項8の発明は、請求項5から7のいずれかの発明において、前記仮組みユニットにおけるボールの外接円径を、ケージの外球面とポケットの軸方向に向かい合った側壁とがなす角部の径以下にした固定式等速自在継手である。   The invention of claim 8 is the invention according to any one of claims 5 to 7, wherein the circumscribed circle diameter of the ball in the temporary assembly unit is a corner portion formed by the outer spherical surface of the cage and the side wall facing the axial direction of the pocket. It is a fixed type constant velocity universal joint with a diameter or less.

請求項9の発明は、請求項5から8のいずれかの発明において、前記仮組みユニットにおける内輪のボール溝の底からケージの内球面とポケットの球面部側側壁とがなす角部までの距離を、ボール径より小さくした固定式等速自在継手である。   According to a ninth aspect of the present invention, in any one of the fifth to eighth aspects, the distance from the bottom of the ball groove of the inner ring to the corner formed by the inner spherical surface of the cage and the side wall of the spherical portion of the pocket in the temporary assembly unit. Is a fixed type constant velocity universal joint made smaller than the ball diameter.

請求項10の発明は、請求項1から9のいずれかの固定式等速自在継手を組立てる方法であって、内輪をケージに入れ、内輪のボール溝とケージのポケットの位相を合わせてケージの外側からポケットにボールを入れることにより、内輪、ケージおよびトルク伝達ボールの仮組みユニットを得、前記仮組みユニットを外輪に入れるようにした固定式等速自在継手の組立方法である。   The invention of claim 10 is a method for assembling the fixed type constant velocity universal joint according to any one of claims 1 to 9, wherein the inner ring is put in a cage, and the phase of the ball groove of the inner ring and the pocket of the cage is matched. This is a method of assembling a fixed type constant velocity universal joint in which a ball is inserted into a pocket from the outside to obtain a temporary assembly unit of an inner ring, a cage and a torque transmission ball, and the temporary assembly unit is inserted into an outer ring.

請求項11の発明は、請求項10の発明において、前記仮組みユニットにおける内輪と外輪のボール溝の位相をずらす工程と、前記仮組みユニットを外輪に同軸方向に入れる工程と、内輪と外輪のボール溝の位相を一致させる工程と、内輪を軸方向に移動させて内輪とボールに正規位置を占めさせる工程を具備する固定式等速自在継手の組立方法である。   The invention of claim 11 is the invention of claim 10, wherein the step of shifting the phase of the ball grooves of the inner ring and the outer ring in the temporary assembly unit, the step of inserting the temporary assembly unit into the outer ring in the coaxial direction, A method of assembling a fixed type constant velocity universal joint, comprising: a step of matching the phases of the ball grooves; and a step of causing the inner ring and the ball to occupy regular positions by moving the inner ring in the axial direction.

請求項12の発明は、請求項11の発明において、シャフトの外周面に形成した環状溝に弾性的拡開力を有するサークリップを嵌合するとともに、内輪連結孔に前記サークリップが拡開して嵌合する拡径部を形成し、内輪に対するシャフトの挿入途中で前記サークリップを内輪連結孔の内周面に所定の摩擦力を伴って摺接させるとともに、前記シャフトの挿入に伴う内輪の移動を受座で阻止するようにした固定式等速自在継手の組立方法である。   According to a twelfth aspect of the present invention, in the eleventh aspect of the invention, a circlip having an elastic expansion force is fitted into an annular groove formed on the outer peripheral surface of the shaft, and the circlip is expanded in the inner ring connecting hole. The circlip is slid in contact with the inner peripheral surface of the inner ring connecting hole with a predetermined friction force during the insertion of the shaft into the inner ring, and the inner ring of the inner ring accompanying the insertion of the shaft is formed. This is a method of assembling a fixed type constant velocity universal joint in which movement is prevented by a seat.

請求項13の発明は、請求項12の発明において、前記シャフトに作用させた引抜力を前記摩擦力を介して内輪に伝達することによって内輪を軸方向に移動させて内輪とボールに正規位置を占めさせるようにした固定式等速自在継手の組立方法である。   According to a thirteenth aspect of the present invention, in the invention of the twelfth aspect, the pulling force applied to the shaft is transmitted to the inner ring through the frictional force to move the inner ring in the axial direction, thereby positioning the inner ring and the ball in a normal position. This is a method for assembling a fixed type constant velocity universal joint.

請求項14の発明は、請求項12または13の発明において、シャフトに引抜力を作用させて内輪とボールに正規位置を占めさせた後、シャフトを傾斜させて外輪マウス部開口側に露出した内輪の片側端面を治具で押えて内輪を傾動不能にした状態でシャフトを挿入し、前記内輪に対するシャフトの挿入完了位置で前記サークリップを前記拡径部で拡開させてシャフトを抜止めする固定式等速自在継手の組立方法である。   The invention according to claim 14 is the invention according to claim 12 or 13, wherein after the pulling force is applied to the shaft to occupy the normal position on the inner ring and the ball, the shaft is inclined to be exposed to the outer ring mouth portion opening side. The shaft is inserted in a state where the inner ring cannot be tilted by pressing one end face of the inner ring with a jig, and the circlip is expanded at the enlarged-diameter portion at the position where the shaft is completely inserted into the inner ring, thereby fixing the shaft. This is an assembly method of a constant velocity universal joint.

本発明によれば、固定式等速自在継手の組立すなわち構成要素の組立てが容易となる。一つには、内輪とケージとボールの仮組みユニットがユニットハンドリング可能であり、もう一つは、その仮組みユニットをつくるに際して外側からボールを入れるため作業性がよいことによる。   According to the present invention, assembly of a fixed type constant velocity universal joint, that is, assembly of components is facilitated. One is that the temporary assembly unit of the inner ring, the cage and the ball can be unit-handled, and the other is that the workability is good because the ball is inserted from the outside when making the temporary assembly unit.

また、本発明の固定式等速自在継手は、仮組みユニットを外輪の大端面にある開口から入れ込むため、特許文献2,3のものに比べて、外輪の大端面とは反対側を閉塞構造(カップ状外輪)とするか、あるいは開口構造とした場合でもその内径を小さくすることができる。したがって、この部分の外径を小さくすることができ、軽量化および車種による外形形状の変化への対応が容易となる。また、同部の厚肉化によりホイールハブとの連結部の設計が容易となる。   In addition, the fixed type constant velocity universal joint of the present invention inserts the temporary assembly unit from the opening on the large end surface of the outer ring, and therefore closes the side opposite to the large end surface of the outer ring as compared with those of Patent Documents 2 and 3. Even in the case of a structure (cup-shaped outer ring) or an opening structure, the inner diameter can be reduced. Therefore, the outer diameter of this portion can be reduced, and it becomes easy to reduce the weight and respond to changes in the outer shape depending on the vehicle type. Moreover, the design of the connection part with a wheel hub becomes easy by thickening of the part.

内輪とケージとボールをユニットハンドリング可能な仮組みユニットとし、この仮組みユニットと外輪との組み合わせで固定式等速自在継手を構成することで、外輪は用途に応じた種々形状とし、それらの外輪に対して共通の仮組みユニットを使用することができる。たとえば、車種等によって外輪外形やホイールとの連結軸の形状が異なる場合でも、仮組みユニットだけは共通のものを使用することができるため、コスト低減に大いに寄与する。   A temporary assembly unit that can handle the inner ring, cage, and ball as a unit, and a combination of the temporary assembly unit and the outer ring to form a fixed type constant velocity universal joint, the outer ring has various shapes according to the application. A common temporary assembly unit can be used. For example, even if the outer ring outer shape or the shape of the connecting shaft with the wheel differs depending on the vehicle type or the like, only the temporary assembly unit can be used, which greatly contributes to cost reduction.

外輪マウス部奥側内面の球面支持部が、外輪マウス部内球面と連続した球面であるため、これらを共通の工作機械による一つの工程で同時に形成することができ、外輪製作コストを低減できる。   Since the spherical support portion on the inner surface on the inner side of the outer ring mouse portion is a spherical surface that is continuous with the inner spherical surface of the outer ring mouse portion, these can be formed simultaneously in a single process using a common machine tool, and the outer ring manufacturing cost can be reduced.

シャフトの先端被支持面が外輪マウス部奥側内面の球面支持部に対して継手作動角の全範囲で連続的に摺接するから、内輪がシャフトを介して外輪球面支持部により軸方向に安定的かつ円滑に支持される結果、振動や異音の発生が抑制され等速性が維持されるのは勿論のこと、内輪外球面での発熱量や摩耗量が少なくなり十分なトルク負荷容量が得られる。   Since the tip supported surface of the shaft is continuously slidably contacted with the spherical support portion on the inner surface of the outer ring mouth portion in the full range of joint operating angles, the inner ring is stabilized in the axial direction by the outer ring spherical support portion via the shaft. As a result of smooth support, the occurrence of vibrations and abnormal noise is suppressed and constant speed is maintained, as well as the amount of heat generation and wear on the outer ring of the inner ring is reduced, and sufficient torque load capacity is obtained. It is done.

外輪マウス部の奥側内面は外輪内球面と同じ球面支持部であるから、内輪を支持するための別部材や凹部を外輪マウス部の奥側に別設しなくてもよいため、その分、継手の軸方向長さを節約して継手重量とコストを削減することができる。   Since the inner surface of the outer ring mouse part is the same spherical surface support part as the outer ring inner spherical surface, it is not necessary to separately provide another member or recess for supporting the inner ring on the inner side of the outer ring mouse part. The axial length of the joint can be saved to reduce the joint weight and cost.

シャフトないし内輪を傾斜させ、かつ、内輪の傾動を拘束した状態で内輪連結孔にシャフトを押し込むようにしたので、内輪を軸方向不動に拘束するため、内輪に治具係合部などを形成する必要がなく、その分、内輪の製作コストを低減可能である。   Since the shaft or inner ring is tilted and the shaft is pushed into the inner ring connecting hole in a state where the tilt of the inner ring is restrained, a jig engaging portion or the like is formed on the inner ring to restrain the inner ring in the axial direction. There is no need, and the production cost of the inner ring can be reduced accordingly.

以下、図面に従って本発明の実施の形態を説明する。図1にUJ(アンダーカットフリー)タイプの固定式等速自在継手の縦断面を示す。図示するように、この固定式等速自在継手は、外輪10、内輪20、ボール30、ケージ40およびシャフト50を主要な構成要素とする。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a longitudinal section of a UJ (undercut free) type fixed constant velocity universal joint. As shown in the figure, the fixed type constant velocity universal joint includes an outer ring 10, an inner ring 20, a ball 30, a cage 40 and a shaft 50 as main components.

外輪10はマウス部10aとステム部10bとからなる。ステム部10bは、この実施の形態では、セレーション部10b1とねじ部10b2を有する。マウス部10aは、図2および図3に示すように一端にて開口した椀状で、その内周面(以下、「内球面」という。)は、継手の連結二軸、すなわちステム部10bとシャフト50の中心線が交差する継手中心Oを中心とする半径Rの内球面12とされる。この内球面12に軸方向に延びる複数(ここでは8本)のボール溝14が円周方向等間隔に形成してある。マウス部10aの奥側内面に、図1のように、凹球面状の球面支持部18が形成される。この球面支持部18は、継手中心Oを中心とする半径Rの凹球面である。したがって、外輪内球面12と球面支持部18は同じ球面であり、工作機械による一工程で形成可能である。球面支持部18に対して、内輪20の中心の連結孔としてのスプライン孔26にトルク伝達可能に挿入されたシャフト50の先端被支持面50aが、継手作動角の全範囲で摺接する。外輪マウス部10aの内面には、球面支持部18の外縁部分に隣接し、かつ、外輪内球面12ないしボール溝14の奥側端部と隣接する環状の凹部19が形成される。この凹部19の内面に、外輪軸線と垂直を成す受座19aが成形される。なお、外輪10の球面支持部18およびシャフト50の先端被支持面50aには、耐摩耗性を向上させるため熱処理による表面硬化層が設けられる。   The outer ring 10 includes a mouse portion 10a and a stem portion 10b. In this embodiment, the stem portion 10b has a serration portion 10b1 and a screw portion 10b2. As shown in FIGS. 2 and 3, the mouse portion 10a has a bowl-like shape opened at one end, and its inner peripheral surface (hereinafter referred to as “inner spherical surface”) is connected to two joints of the joint, that is, the stem portion 10b. The inner spherical surface 12 has a radius R centering on the joint center O where the center line of the shaft 50 intersects. A plurality (eight in this case) of ball grooves 14 extending in the axial direction are formed on the inner spherical surface 12 at equal intervals in the circumferential direction. As shown in FIG. 1, a concave spherical support 18 is formed on the inner surface of the mouse portion 10a. The spherical support portion 18 is a concave spherical surface having a radius R with the joint center O as the center. Therefore, the outer ring inner spherical surface 12 and the spherical support portion 18 are the same spherical surface and can be formed in one step by a machine tool. The tip supported surface 50a of the shaft 50 inserted into the spline hole 26 serving as a connecting hole at the center of the inner ring 20 is in sliding contact with the spherical support portion 18 over the entire range of joint operating angles. An annular recess 19 is formed on the inner surface of the outer ring mouth portion 10a adjacent to the outer edge portion of the spherical support portion 18 and adjacent to the outer ring inner spherical surface 12 or the rear end portion of the ball groove 14. A seat 19 a that is perpendicular to the outer ring axis is formed on the inner surface of the recess 19. The spherical support 18 of the outer ring 10 and the tip supported surface 50a of the shaft 50 are provided with a hardened surface layer by heat treatment in order to improve wear resistance.

外輪10のマウス部10a開口側縁部には、図2に示すように、内輪20に結合するシャフト50の最大作動角時にシャフト50と当接する面取り16aが周方向に連続して形成される。この面取り16aと、マウス部10aの内球面12の開口側との間に、図2および図3に示すように、円筒部16bが形成される。この円筒部16bは、マウス部10a開口の最小内径Cを形成し、外輪中心を挟んで対向する反対側の円筒部16bとの相互間距離が最小内径Cとなる。 As shown in FIG. 2, a chamfer 16 a that contacts the shaft 50 at the maximum operating angle of the shaft 50 coupled to the inner ring 20 is continuously formed in the peripheral edge of the outer ring 10 on the opening side edge of the mouse portion 10 a. As shown in FIGS. 2 and 3, a cylindrical portion 16b is formed between the chamfer 16a and the opening side of the inner spherical surface 12 of the mouse portion 10a. The cylindrical portion 16b forms a minimum inner diameter C 1 of the mouth section 10a opening, mutual distance between the opposite side of the cylindrical portion 16b which face each other across the outer ring center is minimized inside diameter C 1.

内輪20は図1および図4に示すように球状で、その部分球面状外周面(以下、「外球面」という。)22に、軸方向に延びる複数ここでは8本のボール溝24が円周方向等間隔に形成してある。図4において、符号A1およびA2は、それぞれ、内輪20の外球面22の外径および外球面22の中心横断面での最小投影径を示す。内輪20は、連結孔としての貫通スプライン孔26によって、シャフト50とトルク伝達可能に結合する。シャフト50の先端は、外輪マウス部10aの球面支持部18と同曲率である凸球面の被支持面50aとされる。シャフト50の先端はスプライン孔26を貫通して内輪20の反対側に突出する。スプライン孔26の出口側内周縁に、スプライン孔26の内径より大きくスプライン孔26の歯底に達する拡径部20dが形成される。拡径部20dのラジアル面は、機械加工の容易性を考慮して、内輪20の軸線と垂直な垂直面20d1で構成される(図1拡大図(I)参照)。ただし、必要に応じて拡径部20dのラジアル面を傾斜面20d2としてもよい(図1拡大図(II)参照)。この傾斜面20d2の傾斜方向は、サークリップ52に作用する軸力によって、サークリップ52が拡開する傾斜方向である(θ<90°)。シャフト50のスプライン部50bの軸線方向中間位置に、環状溝27が形成される。この環状溝27に、弾性的拡開力を有する円形断面または矩形断面のサークリップ52が嵌合される。環状溝27とサークリップ52との間の隙間はできるだけ小さくする。スプライン部50bの基端側にテーパ段部50cが形成される。このテーパ段部50cは、スプライン孔26に対するシャフト50の挿入完了状態で内輪20側のテーパ段部20aと当接する(図1参照)。 The inner ring 20 has a spherical shape as shown in FIGS. 1 and 4, and a plurality of, here, eight ball grooves 24 extending in the axial direction are formed on the partial spherical outer peripheral surface (hereinafter referred to as “outer spherical surface”) 22. They are formed at equal intervals in the direction. In FIG. 4, reference signs A 1 and A 2 indicate the outer diameter of the outer spherical surface 22 of the inner ring 20 and the minimum projected diameter on the central cross section of the outer spherical surface 22, respectively. The inner ring 20 is coupled to the shaft 50 through a through spline hole 26 as a connection hole so that torque can be transmitted. The tip of the shaft 50 is a convex spherical supported surface 50a having the same curvature as the spherical support portion 18 of the outer ring mouse portion 10a. The tip of the shaft 50 penetrates the spline hole 26 and projects to the opposite side of the inner ring 20. An enlarged diameter portion 20 d that is larger than the inner diameter of the spline hole 26 and reaches the tooth bottom of the spline hole 26 is formed on the inner peripheral edge of the spline hole 26. The radial surface of the enlarged diameter portion 20d is configured by a vertical surface 20d1 perpendicular to the axis of the inner ring 20 in consideration of ease of machining (see enlarged view (I) in FIG. 1). However, the radial surface of the enlarged diameter portion 20d may be the inclined surface 20d2 as necessary (see the enlarged view (II) in FIG. 1). The inclination direction of the inclined surface 20d2 is an inclination direction in which the circlip 52 is expanded by an axial force acting on the circlip 52 (θ <90 °). An annular groove 27 is formed at an intermediate position in the axial direction of the spline portion 50 b of the shaft 50. The circular groove 27 is fitted with a circlip 52 having a circular or rectangular cross section having an elastic spreading force. The gap between the annular groove 27 and the circlip 52 is made as small as possible. A tapered step portion 50c is formed on the proximal end side of the spline portion 50b. The taper step portion 50c contacts the taper step portion 20a on the inner ring 20 side when the shaft 50 is completely inserted into the spline hole 26 (see FIG. 1).

図1に示すように、外輪10のボール溝14の曲率中心O1と内輪20のボール溝24の曲率中心O2は、継手中心Oに対して軸方向に等距離fだけオフセットさせてある。したがって、対をなす内外輪10、20のボール溝14、24は外輪10の大端面側開口に向かって拡開したくさび形状を呈する。 As shown in FIG. 1, the center of curvature O 1 of the ball groove 14 of the outer ring 10 and the center of curvature O 2 of the ball groove 24 of the inner ring 20 are offset from the joint center O by an equal distance f in the axial direction. Therefore, the ball grooves 14 and 24 of the inner and outer rings 10 and 20 that form a pair have a wedge shape that expands toward the large end face side opening of the outer ring 10.

この実施の形態の固定式等速自在継手は、ボール溝14、24にアンダーカットがない(アンダーカットフリー)。すなわち、外輪10のボール溝14は、曲率中心O1を境にして小端面側に位置する円弧底14aと大端面側に位置する軸線と平行なストレート底14bとで構成される。同様に、内輪20のボール溝24は、曲率中心O2を境にして外輪10の大端面側に位置する円弧底24aと外輪10の小端面側に位置する軸線と平行なストレート底24bとで構成される。 The fixed type constant velocity universal joint of this embodiment has no undercut in the ball grooves 14 and 24 (undercut free). That is, the ball groove 14 of the outer ring 10 is composed of a circular arc bottom 14a parallel straight bottom 14b to the axis positioned on the large end face positioned on the small end face side to the center of curvature O 1 as a boundary. Similarly, the ball groove 24 of the inner ring 20 has an arc bottom 24a located on the large end face side of the outer ring 10 and a straight bottom 24b parallel to the axis located on the small end face side of the outer ring 10 with the center of curvature O 2 as a boundary. Composed.

ケージ40は外輪10の内球面12と内輪20の外球面22との間に介在する。ケージ40の円周方向に複数ここでは8個のポケット42が配設してある。ポケット42の形状は概略矩形であるが、円周方向対向面はボール30の曲率とほぼ等しい円弧面とされる。ケージ40の外球面44は外輪10の内球面12と接する。図5および図6に示すように、ケージ40の外球面44と、ポケット42の軸方向に向かい合った側壁とがなす角部41、43の径B2は、ケージ40の外球面44の外径B1よりも小さい。径B2は外輪10の円筒部16bの内径Cより小さくしてある(B2<C)。これはケージ40を外輪10と同軸方向に装入するとき必要となる寸法関係である。ただし、この寸法関係が僅差でC<B2のように逆転した場合でも、ケージ40を外輪10に焼嵌めするか、かち込むなどすれば、入れることも不可能ではない。 The cage 40 is interposed between the inner spherical surface 12 of the outer ring 10 and the outer spherical surface 22 of the inner ring 20. A plurality of, here, eight pockets 42 are arranged in the circumferential direction of the cage 40. The pocket 42 has a substantially rectangular shape, but the circumferentially opposed surface is an arc surface substantially equal to the curvature of the ball 30. The outer spherical surface 44 of the cage 40 is in contact with the inner spherical surface 12 of the outer ring 10. As shown in FIGS. 5 and 6, the diameter B 2 of the corners 41 and 43 formed by the outer spherical surface 44 of the cage 40 and the side walls facing the axial direction of the pocket 42 is the outer diameter of the outer spherical surface 44 of the cage 40. smaller than B 1. Diameter B 2 is are smaller than the inner diameter C 1 of the cylindrical portion 16b of the outer ring 10 (B 2 <C 1). This is a dimensional relationship required when the cage 40 is inserted coaxially with the outer ring 10. However, even if the dimensional relationship is slightly reversed such as C 1 <B 2 , it is not impossible to insert the cage 40 by shrink fitting or pinching it to the outer ring 10.

ここで、図5(B)の符号41で示す部分の径B2(ケージ挿入側の径)は少し大きくてもシャフト50を同軸から少し傾ければ入るが、符号43で示す部分の径B2(ケージ挿入側と反対側の径)については上記寸法関係(B2<C)が必要である。なお、ケージ40の角部41、43に面取りなど径B2を小さくするためのカットする部分を設けてもよい。径B2を小さくすることができれば外輪10の円筒部16bの内径Cも小さくでき、それによりケージ外球面44を案内する外輪内球面12の範囲を開口側に拡大できるため、軸方向すきまが少なくなり等速性、耐久性などがよくなる。 Here, even if the diameter B 2 (diameter on the cage insertion side) of the portion indicated by reference numeral 41 in FIG. 5B is slightly larger, it can be entered by slightly tilting the shaft 50 from the same axis, but the diameter B of the portion indicated by reference numeral 43. 2 (diameter opposite to the cage insertion side) requires the above dimensional relationship (B 2 <C 1 ). It is also possible to provide a portion to be cut to reduce the diameter B 2 such as chamfering the corners 41 and 43 of the cage 40. If the diameter B 2 can be reduced, the inner diameter C 1 of the cylindrical portion 16b of the outer ring 10 can also be reduced, and thereby the range of the outer ring inner spherical surface 12 that guides the cage outer spherical surface 44 can be expanded to the opening side. It becomes less and is constant speed, durability, etc.

図5から分かるとおり、ケージ40の内周面46は、軸方向中心(図1では継手中心Oと一致)にて互いに滑らかに連続した球面部46aと円筒部46bとの組み合わせで構成される。つまり、軸方向中心から外輪10の大端面側は内輪20の外球面22と接して内輪20を半径方向および軸方向に支持する球面部46aとなっており、軸方向中心から外輪10の小端面側は内輪外球面22と接して内輪20を半径方向に支持する円筒部46bとなっている。円筒部46bは、組立ての過程で内輪20を正規位置から軸方向に後退させておくために必要となる(図8参照)。したがって、正規位置で内輪20を半径方向に支持する狭い範囲以外については、精度はラフでよい。図8では、球面部46aの内径をB、円筒部46bの内径をBで示す。 As can be seen from FIG. 5, the inner peripheral surface 46 of the cage 40 is configured by a combination of a spherical portion 46 a and a cylindrical portion 46 b that are smoothly continuous with each other at the axial center (coincident with the joint center O in FIG. 1). That is, the large end surface side of the outer ring 10 from the center in the axial direction is a spherical surface portion 46a that contacts the outer spherical surface 22 of the inner ring 20 and supports the inner ring 20 in the radial direction and the axial direction, and the small end surface of the outer ring 10 from the axial center. The side is a cylindrical portion 46b that contacts the inner ring outer spherical surface 22 and supports the inner ring 20 in the radial direction. The cylindrical portion 46b is necessary for retracting the inner ring 20 from the normal position in the axial direction during the assembly process (see FIG. 8). Accordingly, the accuracy may be rough except for a narrow range in which the inner ring 20 is supported in the radial direction at the normal position. In FIG. 8, the inner diameter of the spherical surface portion 46a is indicated by B 3 , and the inner diameter of the cylindrical portion 46b is indicated by B 4 .

ケージ円筒部46bの端部に内径側に突出した突起48が設けてある。この突起48は、図8に示すように、内輪20、ボール30およびケージ40を仮組みユニットとしたとき、内輪20の脱落を防止するための、言い換えれば内輪20の軸方向移動のストローク端を規定するストッパーとして機能する(図8、図9参照)。そのため突起48の内径B5は内輪20の外球面22の外径A1より小さく設定してある。 A protrusion 48 protruding toward the inner diameter side is provided at the end of the cage cylindrical portion 46b. As shown in FIG. 8, when the inner ring 20, the ball 30 and the cage 40 are used as a temporary assembly unit, the projection 48 is used to prevent the inner ring 20 from falling off, in other words, the stroke end of the inner ring 20 moving in the axial direction. It functions as a prescribed stopper (see FIGS. 8 and 9). Therefore, the inner diameter B 5 of the protrusion 48 is set smaller than the outer diameter A 1 of the outer spherical surface 22 of the inner ring 20.

外輪10のボール溝14と内輪20のボール溝24は対をなし、各対のボール溝14、24間にボール30が組み込んである。ケージ40の各ポケット42に一つのボール30が収容される。そして、ケージ40は、すべてのボール30を外輪10と内輪20のなす角度すなわち継手の作動角の二等分面上に位置させるように作用し、これにより、継手の等速性が維持される。   The ball groove 14 of the outer ring 10 and the ball groove 24 of the inner ring 20 make a pair, and a ball 30 is incorporated between each pair of ball grooves 14, 24. One ball 30 is accommodated in each pocket 42 of the cage 40. The cage 40 acts so that all the balls 30 are positioned on the bisector of the angle formed by the outer ring 10 and the inner ring 20, that is, the operating angle of the joint, whereby the constant velocity of the joint is maintained. .

次に、上述の構成の固定式等速自在継手の組立方法、つまり、外輪10、内輪20、ボール30およびケージ40からなる構成要素の組立て手順を説明する。まず、図7に示すように、内輪20をケージ40に、軸線を直交させて装入する。このとき、内輪20の外球面22の中心横断面での最小投影径A2(図4)とケージ40の突起48の内径B5(図8)との大小関係(A2<B5)を利用する。そして、内輪20を回して両者の軸線を一致させて同軸となす。なお、径差(B5−A2)が小さい場合は最初から同軸方向にかち込んでもよい。 Next, a method for assembling the fixed type constant velocity universal joint having the above-described configuration, that is, a procedure for assembling the components including the outer ring 10, the inner ring 20, the ball 30, and the cage 40 will be described. First, as shown in FIG. 7, the inner ring 20 is inserted into the cage 40 with the axes orthogonal to each other. At this time, the magnitude relationship (A 2 <B 5 ) between the minimum projected diameter A 2 (FIG. 4) in the central cross section of the outer spherical surface 22 of the inner ring 20 and the inner diameter B 5 (FIG. 8) of the projection 48 of the cage 40 is expressed. Use. Then, the inner ring 20 is turned so that the two axes coincide with each other to be coaxial. If the diameter difference (B 5 -A 2 ) is small, it may be pushed in the same direction from the beginning.

内輪20をケージ40の円筒部46b内で軸方向に移動させて内輪20の外球面22をケージ40の突起48に接触させ、両者を図8に示す位置関係となす。このとき内輪20は、上述の突起48のストッパー機能により、外球面22がケージ40の突起48に当たった位置、つまり、正規位置から符号Xで示す距離だけ後退した位置で停止する。   The inner ring 20 is moved in the axial direction within the cylindrical portion 46b of the cage 40, and the outer spherical surface 22 of the inner ring 20 is brought into contact with the projection 48 of the cage 40, so that both are in the positional relationship shown in FIG. At this time, the inner ring 20 stops at the position where the outer spherical surface 22 hits the protrusion 48 of the cage 40, that is, the position retracted by the distance indicated by the symbol X from the normal position by the stopper function of the protrusion 48 described above.

図9および図10に示すように、内輪20のボール溝24の位相とケージ40のポケット42の位相を合わせた状態で、外側からポケット42にボール30を入れる。ボール30を内輪20のボール溝24に突き当たるまで押し込み、ボール外接円径Dがケージ40のポケット42の角部41、43の径B2(図5、図6)以下となるようにする。言い換えれば、内輪20が軸方向移動のストローク端にあるときボール外接円がケージ40の外側輪郭内に収まるようにする。 As shown in FIGS. 9 and 10, the ball 30 is inserted into the pocket 42 from the outside in a state where the phase of the ball groove 24 of the inner ring 20 and the phase of the pocket 42 of the cage 40 are matched. Push the ball 30 to abut against the ball grooves 24 of the inner ring 20, ball circumscribed circle diameter D 1 is the diameter B 2 (FIG. 5, FIG. 6) of the corner 41, 43 of the pocket 42 of the cage 40 to be equal to or less than. In other words, when the inner ring 20 is at the stroke end of the axial movement, the circumscribed circle of the ball is set within the outer contour of the cage 40.

なお、ボールを8個にすると、7個以下のボールを使用するものに比べ、ボール径に対してボールPCDが大きいため、ケージ外球面からのボールの飛び出し量が小さく、内輪、ケージ、ボールからなる仮組みユニットにおいてボールを押し込んだ状態を得るのに半径方向のボールの押し込み量が小さくてすむ。また、ボール径に対してボールPCDが大きいことから、内輪内部にセレーションを確保しやすく、しかも、内輪の、外輪大端面とは反対側に球面部分を確保しやすい。   When eight balls are used, the ball PCD is larger than the ball diameter compared to those using seven or fewer balls, so that the amount of ball jumping out from the outer spherical surface of the cage is small. In order to obtain a state where the ball is pushed in the temporary assembly unit, the pushing amount of the ball in the radial direction can be small. In addition, since the ball PCD is large with respect to the ball diameter, it is easy to ensure serration inside the inner ring, and it is easy to secure a spherical surface portion on the opposite side of the inner ring from the large end surface of the outer ring.

このとき、図9に符号D2で示す、内輪20のボール溝24の底からケージ40の球面部46aとポケット42の球面部側側壁とがなす角部までの距離が、ボール径より小さくなる寸法関係に設定しておくと、ボール30が内径側に脱落せず、ユニットハンドリングが可能となって取り扱いが非常に容易となる。そして、かかる寸法関係は図8を参照して上に述べたケージ40の突起48の位置(X)に依存する。なお、通常、ボール30とポケット42の間には締めしろがあるため外径側へは脱落しにくくなっている。 At this time, indicated at D 2 in FIG. 9, the distance from the bottom of the ball groove 24 of the inner ring 20 to the corner portion formed between the spherical portion side wall of the spherical portion 46a and the pocket 42 of the cage 40 is smaller than the ball diameter When the dimensions are set, the ball 30 does not fall off to the inner diameter side, unit handling is possible, and handling becomes very easy. The dimensional relationship depends on the position (X) of the protrusion 48 of the cage 40 described above with reference to FIG. Normally, there is an interference between the ball 30 and the pocket 42, so that it is difficult for the ball 30 and the pocket 42 to drop off.

次に、図11に示すように、内輪20、ケージ40およびボール30の仮組みユニットを外輪10の開口から挿入する。この挿入は、図12に示すように、隣接するボール間の角度をαとすると、外輪10のボール溝14と内輪20のボール溝24の位相をα/2だけずらした状態で行う。その結果、ケージ40の外球面44が外輪10の内球面12に当接し、その時点で内輪20の端面20bが外輪10の受座19aに当接し、図11に示す状態となる。   Next, as shown in FIG. 11, the temporary assembly unit of the inner ring 20, the cage 40 and the ball 30 is inserted from the opening of the outer ring 10. As shown in FIG. 12, this insertion is performed with the phase of the ball groove 14 of the outer ring 10 and the ball groove 24 of the inner ring 20 being shifted by α / 2, where α is the angle between adjacent balls. As a result, the outer spherical surface 44 of the cage 40 comes into contact with the inner spherical surface 12 of the outer ring 10, and at that time, the end surface 20b of the inner ring 20 comes into contact with the seat 19a of the outer ring 10, resulting in the state shown in FIG.

なお、仮組みユニットのボール30は、外輪10の円筒部16bを通過するときにケージ40の外側輪郭内に収まっていればよく、ここを通過した後は外輪10の内球面12に沿って半径方向外側に移動することができる。ここで、内輪20の端面20b周縁部が当たる外輪10の受座19aの軸方向位置は、より開口側にある方が、継手の軸方向コンパクト化を図る上で有利である。そこで、ボール30が外輪円筒部16bを通過した後、ケージ40の外球面44が外輪10の内球面12に当たる前に内輪20の端面20b周縁部が外輪10の受座19aに当たり、内輪20のそれ以上の移動が阻止される結果、ケージ40がさらに外輪マウス部10aの奥側に進むにつれてボール30が半径方向外側に飛び出すようにすれば、受座19aをより大端面側に位置させることができる。   The ball 30 of the temporary assembly unit only needs to be within the outer contour of the cage 40 when passing through the cylindrical portion 16b of the outer ring 10, and after passing through this, the radius along the inner spherical surface 12 of the outer ring 10 is sufficient. Can move outward in the direction. Here, the axial position of the seat 19a of the outer ring 10 with which the peripheral edge of the end face 20b of the inner ring 20 abuts is more advantageous in reducing the axial size of the joint. Therefore, after the ball 30 passes through the outer ring cylindrical portion 16b and before the outer spherical surface 44 of the cage 40 hits the inner spherical surface 12 of the outer ring 10, the peripheral surface of the end surface 20b of the inner ring 20 hits the seat 19a of the outer ring 10, and that of the inner ring 20 As a result of preventing the above movement, if the ball 30 jumps outward in the radial direction as the cage 40 further advances to the inner side of the outer ring mouth portion 10a, the seat 19a can be positioned on the larger end face side. .

次に、図13に示すように、外輪10と内輪20の軸線を整合させた状態で、矢印A方向で内輪20のスプライン孔26にシャフト50を挿入する。この際、シャフト50に取付けられたサークリップ52が内輪20のスプライン孔26と摺接して内輪20を継手奥側に押すが、内輪20は受座19aに受止められているので移動しない。シャフト50を内輪20のスプライン孔26に最後まで挿入すると、シャフト50の先端被支持面50aが球面支持部18に当接する。   Next, as shown in FIG. 13, the shaft 50 is inserted into the spline hole 26 of the inner ring 20 in the direction of arrow A with the axes of the outer ring 10 and the inner ring 20 aligned. At this time, the circlip 52 attached to the shaft 50 is in sliding contact with the spline hole 26 of the inner ring 20 and pushes the inner ring 20 to the inner side of the joint, but the inner ring 20 does not move because it is received by the seat 19a. When the shaft 50 is fully inserted into the spline hole 26 of the inner ring 20, the tip supported surface 50 a of the shaft 50 comes into contact with the spherical surface support portion 18.

この状態から、図12と図14に示すように、仮組みユニット(20、30、40)と外輪10の位相をα/2ずらして内外輪10、20のボール溝14、24の位相を一致させる。ボール溝14、24の位相を一致させた状態で、図13の矢印B方向(引抜き方向)にシャフト50を移動させる。この際、シャフト50の環状溝に嵌合したサークリップが、内輪20の連結孔の内周面に所定の摩擦力を伴って摺接しているため、内輪20もシャフト50に引張られて矢印B方向で外輪10の開口側に移動する。この内輪20の移動によって内輪20の外球面22がケージ40の球面部46aに当接する。また、内輪20の軸方向移動に伴ってボール30が半径方向外側に移動し、内輪20とボール30が正規位置を占めるに至る。   From this state, as shown in FIGS. 12 and 14, the phases of the temporary assembly units (20, 30, 40) and the outer ring 10 are shifted by α / 2 to match the phases of the ball grooves 14, 24 of the inner and outer rings 10, 20. Let With the phases of the ball grooves 14 and 24 matched, the shaft 50 is moved in the direction of arrow B (drawing direction) in FIG. At this time, since the circlip fitted in the annular groove of the shaft 50 is in sliding contact with the inner peripheral surface of the connecting hole of the inner ring 20 with a predetermined frictional force, the inner ring 20 is also pulled by the shaft 50 and the arrow B It moves to the opening side of the outer ring 10 in the direction. Due to the movement of the inner ring 20, the outer spherical surface 22 of the inner ring 20 comes into contact with the spherical portion 46 a of the cage 40. Further, as the inner ring 20 moves in the axial direction, the ball 30 moves outward in the radial direction, and the inner ring 20 and the ball 30 occupy the normal position.

次に、図15に示すように、シャフト50と内輪20を外輪10に対して大きく傾斜させる。これにより、内輪20の片側端面が外輪マウス部10aの開口側にはみ出す。この状態では、内輪外球面22が片側ではケージ内周面46の球面部46aに当接して継手の内外方向に拘束された状態となるが、反対側では内輪外球面22がケージ内周面46の円筒部46bに当接し、継手の外側方向の移動は拘束されるが、内側(奥側)方向の移動はフリーの状態になる。   Next, as shown in FIG. 15, the shaft 50 and the inner ring 20 are largely inclined with respect to the outer ring 10. Thereby, the one end surface of the inner ring 20 protrudes to the opening side of the outer ring mouse part 10a. In this state, the inner ring outer spherical surface 22 is in contact with the spherical portion 46a of the cage inner peripheral surface 46 on one side and is restrained in the inner and outer directions of the joint, but on the opposite side, the inner ring outer spherical surface 22 is in the cage inner peripheral surface 46. The movement of the joint in the outer direction is restrained, but the movement in the inner (back side) direction is free.

したがって、図15の状態で、仮に内輪20をまったく拘束することなくシャフト50をスプライン孔26に挿入すると、サークリップ52による摩擦力により、内輪20の反対側だけが継手奥側に傾動しようとする。この結果、内輪20がシャフト50に対して傾斜し、両者のスプライン嵌合面においてこじりが生じ、シャフト50の挿入が不可能になる。   Therefore, in the state of FIG. 15, if the shaft 50 is inserted into the spline hole 26 without restraining the inner ring 20 at all, only the opposite side of the inner ring 20 tends to tilt toward the joint back side due to the frictional force of the circlip 52. . As a result, the inner ring 20 is inclined with respect to the shaft 50, and the spline fitting surfaces of both the inner ring 20 are twisted, making it impossible to insert the shaft 50.

本発明はこのようなこじり現象を防止するため、図15に示すように外輪10を収容して位置決め可能な有底円筒状のメインブロック60と鈎状のサブブロック61を用いる。ステム部10bをメインブロック60の底部の穴60aに挿入して外輪10をメインブロック60内に収容する。外輪10の開口側外周面をメインブロック60の内周面に当接させて外輪10を位置決めする。メインブロック60の開口側にサブブロック61をボルトやねじを使用して着脱自在に取付ける。サブブロック61のアーム部62の先端側側面63を内輪20の片側端面に押付ける。このアーム部62の押付けにより、内輪20の外球面22がケージ球面部46aに押付けられ、アーム部62の平らな側面63による規制と相俟って、内輪20の傾動が阻止される。このようにして内輪20の傾動を阻止した状態で、シャフト50を内輪20のスプライン孔26に矢印C方向に挿入すると、内輪20を傾動させずに、すなわち、シャフト50とのスプライン嵌合面でこじりを生ずることなく、シャフト50を挿入することができる。この際、サークリップ52は内輪20のスプライン孔26の内周面を摺動する。   In order to prevent such a twisting phenomenon, the present invention uses a bottomed cylindrical main block 60 and a bowl-shaped sub-block 61 which can accommodate and position the outer ring 10 as shown in FIG. The stem 10 b is inserted into the hole 60 a at the bottom of the main block 60, and the outer ring 10 is accommodated in the main block 60. The outer ring 10 is positioned by bringing the outer circumferential surface of the outer ring 10 into contact with the inner circumferential surface of the main block 60. The sub block 61 is detachably attached to the opening side of the main block 60 using bolts or screws. The front end side surface 63 of the arm portion 62 of the sub block 61 is pressed against one end surface of the inner ring 20. By pressing the arm portion 62, the outer spherical surface 22 of the inner ring 20 is pressed against the cage spherical surface portion 46a, and the tilting of the inner ring 20 is prevented in combination with the restriction by the flat side surface 63 of the arm portion 62. When the shaft 50 is inserted in the direction of the arrow C in the spline hole 26 of the inner ring 20 with the inner ring 20 prevented from tilting in this way, the inner ring 20 is not tilted, that is, on the spline fitting surface with the shaft 50. The shaft 50 can be inserted without twisting. At this time, the circlip 52 slides on the inner peripheral surface of the spline hole 26 of the inner ring 20.

シャフト50を最後まで挿入してその先端被支持面50aが外輪マウス部10aの内周面(内球面12と球面支持部18)に当接すると、同時に、シャフト50のテーパ段部50cが内輪20のテーパ段部20aに当接し、かつ、サークリップ52が拡径部20dに到達して弾性的に拡開する(図1拡大図(I)(II)参照)。拡開したサークリップ52は、内輪20とシャフト50の両スプライン歯の重合部分に位置し、環状溝27に嵌合したまま、拡径部20dの垂直面20d1(または傾斜面20d2)に拘束される。したがって、この状態ではシャフト50は内輪20から抜き差し不能となる。なお、シャフト50に引抜き方向の軸力が作用した場合、サークリップ52が内輪拡径部20dから抜け出ようとする傾向がある。このため、拡径部20dのラジアル面は傾斜面20d2にしておくとサークリップ52の抜け出し防止が確実になる。拡径部20dのラジアル面は必ずしも傾斜面20d2である必要はないが、少なくとも垂直面20d1とする必要がある。傾斜面20d2を反対側に傾斜した面にするとサークリップ52が抜けやすくなる。   When the shaft 50 is inserted to the end and the tip supported surface 50a abuts on the inner peripheral surface (the inner spherical surface 12 and the spherical support portion 18) of the outer ring mouth portion 10a, at the same time, the taper step portion 50c of the shaft 50 becomes the inner ring 20. And the circlip 52 reaches the enlarged diameter portion 20d and elastically expands (see enlarged views (I) and (II) in FIG. 1). The expanded circlip 52 is located at the overlapping portion of both the spline teeth of the inner ring 20 and the shaft 50 and is restrained by the vertical surface 20d1 (or the inclined surface 20d2) of the expanded diameter portion 20d while being fitted in the annular groove 27. The Therefore, in this state, the shaft 50 cannot be inserted and removed from the inner ring 20. When an axial force in the pulling direction is applied to the shaft 50, the circlip 52 tends to come out from the inner ring enlarged diameter portion 20d. For this reason, if the radial surface of the enlarged diameter portion 20d is the inclined surface 20d2, the circlip 52 can be prevented from coming out. The radial surface of the enlarged diameter portion 20d is not necessarily the inclined surface 20d2, but at least the vertical surface 20d1 is necessary. If the inclined surface 20d2 is inclined to the opposite side, the circlip 52 can be easily removed.

次に、サブブロック61をメインブロック60から取外し、次いで外輪10をメインブロック60から取出す。しかる後、シャフト50を図16で矢印D方向に動かし、図1のようにシャフト50をステム部10bと同軸状態に戻し、これで固定式等速自在継手の組立てを完了する。   Next, the sub block 61 is removed from the main block 60, and then the outer ring 10 is taken out from the main block 60. Thereafter, the shaft 50 is moved in the direction of arrow D in FIG. 16, and the shaft 50 is returned to the coaxial state with the stem portion 10b as shown in FIG. 1, thereby completing the assembly of the fixed type constant velocity universal joint.

本発明の固定式等速自在継手は、図1のように、外輪10に設けた球面支持部18でシャフト50の先端被支持面50aひいては内輪20の外球面22を軸方向に支持するとともに、内輪20の外球面22をケージ40の内径部46a、46bで半径方向に支持した構造であるため、外球面22での発熱量や摩耗量を少なくでき、十分なトルク負荷容量を確保することができ、振動や異音の発生を防止し、等速性を維持することができる。   As shown in FIG. 1, the fixed type constant velocity universal joint of the present invention supports the tip supported surface 50a of the shaft 50 and the outer spherical surface 22 of the inner ring 20 in the axial direction by the spherical surface supporting portion 18 provided on the outer ring 10. Since the outer spherical surface 22 of the inner ring 20 is supported in the radial direction by the inner diameter portions 46a and 46b of the cage 40, the amount of heat generation and wear on the outer spherical surface 22 can be reduced, and sufficient torque load capacity can be secured. It is possible to prevent the occurrence of vibrations and abnormal noise and maintain the constant velocity.

なお、本発明は以上説明し、かつ、図示した実施の形態に限定されるものではなく、特許請求の範囲から逸脱することなく種々の改変態様が可能である。たとえば、図示した実施の形態は8個のトルク伝達ボールを用いたものを例示したが、6個のトルク伝達ボールを用いることも可能である。   The present invention is not limited to the embodiments described and illustrated above, and various modifications can be made without departing from the scope of the claims. For example, although the illustrated embodiment exemplifies one using eight torque transmitting balls, it is also possible to use six torque transmitting balls.

また、固定式等速自在継手の組立て方法としては、前述のように内輪20、ボール30およびケージ40を仮組みユニットにして組立てる方法の他、外輪10のマウス部10aとステム部10bを分離し中空状の外輪マウスとすれば、外輪10にケージ40を同軸方向で装入し、その後、内輪20およびボール30を組み付ける方法でも組立て可能である。さらに、前述のように外輪に対してケージを同軸方向で入れ込む他、外輪に対してケージの軸線を垂直にして入れ込む組立て方法にも本発明を適用可能である。   As a method for assembling the fixed type constant velocity universal joint, as described above, the inner ring 20, the ball 30 and the cage 40 are assembled as a temporary assembly unit, and the mouse part 10a and the stem part 10b of the outer ring 10 are separated. If it is a hollow outer ring mouse, it can also be assembled by inserting the cage 40 into the outer ring 10 in the coaxial direction and then assembling the inner ring 20 and the ball 30. Furthermore, as described above, the present invention can be applied to an assembling method in which the cage is inserted into the outer ring in a coaxial direction, and the cage is inserted perpendicularly to the outer ring.

本発明の実施の形態を示す固定式等速自在継手の縦断面図。The longitudinal cross-sectional view of the fixed type constant velocity universal joint which shows embodiment of this invention. 外輪の要部縦断面図。The principal part longitudinal cross-sectional view of an outer ring | wheel. 外輪の開口側の側面図。The side view of the opening side of an outer ring | wheel. 内輪の端面図。The end view of an inner ring. ケージの縦断面図。The longitudinal cross-sectional view of a cage. ケージの側面図。A side view of the cage. 内輪をケージに組み込む過程を示す説明図。Explanatory drawing which shows the process in which an inner ring | wheel is integrated in a cage. 内輪とケージの位置関係を示す要部縦断面図。The principal part longitudinal cross-sectional view which shows the positional relationship of an inner ring | wheel and a cage. 内輪とケージのサブアセンブリにボールを組み込んで仮組みユニットとなす過程を示す縦断面図。The longitudinal cross-sectional view which shows the process in which a ball | bowl is integrated in the subassembly of an inner ring | wheel and a cage, and it is set as a temporary assembly unit. 図9のサブアセンブリの右側面図。FIG. 10 is a right side view of the subassembly of FIG. 9. 内輪、ケージおよびボールの仮組みユニットを、外輪に組み込む過程を示す要部縦断面図。The principal part longitudinal cross-sectional view which shows the process in which the inner assembly of an inner ring | wheel, a cage, and a ball | bowl is assembled in an outer ring | wheel. 仮組みユニットをボール溝の位相を半ピッチずらして外輪に組み込んだ状態の端面図。FIG. 5 is an end view of the temporarily assembled unit assembled in the outer ring with the phase of the ball groove shifted by a half pitch. 外輪内の仮組みユニットにシャフトを挿入した状態の縦断面図。The longitudinal cross-sectional view of the state which inserted the shaft in the temporary assembly unit in an outer ring | wheel. 内外輪のボール溝の位相を一致させた状態の図12と類似の端面図。FIG. 13 is an end view similar to FIG. 12 in a state where the phases of the ball grooves of the inner and outer rings are matched. シャフトを傾斜させた状態で内輪を治具によって傾動不能にし内輪に挿入する状態を示す縦断面図。The longitudinal cross-sectional view which shows the state which makes an inner ring inclineable with a jig | tool, and inserts in an inner ring in the state which inclined the shaft. シャフトを内輪に挿入して内輪に連結した状態の縦断面図。The longitudinal cross-sectional view of the state which inserted the shaft in the inner ring and connected with the inner ring.

符号の説明Explanation of symbols

10 外輪
10a マウス部
10b ステム部
10b1 セレーション部
10b2 ねじ部
12 内球面
14、24 ボール溝
14a 円弧底
14b ストレート底
16a 面取り
16b 円筒部
17 突縁
18 球面支持部
19 凹部
19a 受座
20 内輪
20a テーパ段部
20b 端面
20d 拡径部
20d1 垂直面
20d2 傾斜面
22 外球面
24 ボール溝
24a 円弧底
24b ストレート底
26 スプライン孔
27 環状溝
29 凹部
30 ボール
40 ケージ
41、43 角部
42 ポケット
44 外球面
46a 内球部
46b 円筒部
48 突起
50 シャフト
50a 先端被支持面
50b スプライン部
50c テーパ段部
52 サークリップ
60 メインブロック
60a 穴
61 サブブロック
62 アーム部
63 先端側側面
DESCRIPTION OF SYMBOLS 10 Outer ring 10a Mouse | mouth part 10b Stem part 10b1 Serration part 10b2 Thread part 12 Inner spherical surface 14, 24 Ball groove 14a Arc bottom 14b Straight bottom 16a Chamfer 16b Cylindrical part 17 Projection edge 18 Spherical support part 19 Recess 19a Seat 20 Inner ring 20a Tapered step Portion 20b end surface 20d expanded diameter portion 20d1 vertical surface 20d2 inclined surface 22 outer spherical surface 24 ball groove 24a arc bottom 24b straight bottom 26 spline hole 27 annular groove 29 recess 30 ball 40 cage 41, 43 corner 42 pocket 44 outer spherical surface 46a inner sphere Portion 46b cylindrical portion 48 protrusion 50 shaft 50a tip supported surface 50b spline portion 50c taper step portion 52 circlip 60 main block 60a hole 61 sub block 62 arm portion 63 tip side surface

Claims (14)

一端にて開口した椀状のマウス部の内球面に軸方向に延びる複数のボール溝を形成した外輪と、外球面に軸方向に延びる複数のボール溝を形成した内輪と、対をなす外輪のボール溝と内輪のボール溝との間に組み込んだトルク伝達ボールと、外輪の内球面と内輪の外球面との間に介在してトルク伝達ボールを軸方向に保持するケージとを具備した固定式等速自在継手において、
前記外輪マウス部の奥側内面に、継手の連結二軸の中心線が交差する継手中心を中心とした球面支持部を形成し、
内輪と接するケージの内周面に、外輪マウス部の開口側に位置する球面部と、外輪マウス部の奥側に位置する円筒部とを形成し、前記円筒部の軸長を、内輪の軸方向移動を所定範囲にわたって許容するとともに、内輪が軸方向移動のストローク端にあるときトルク伝達ボールの外接円をケージの外側輪郭内に収容可能な長さに設定し、かつ、
内輪の中心に形成された軸方向の連結孔に挿入されて内輪とトルク伝達するシャフトの先端に、前記球面支持部と同曲率であって前記球面支持部と継手作動角の全範囲で摺接する被支持面を形成した固定式等速自在継手。
An outer ring in which a plurality of ball grooves extending in the axial direction are formed on the inner spherical surface of the bowl-shaped mouth portion opened at one end, an inner ring in which a plurality of ball grooves extending in the axial direction are formed on the outer spherical surface, and a pair of outer rings A fixed type equipped with a torque transmission ball incorporated between the ball groove and the ball groove of the inner ring, and a cage that is interposed between the inner spherical surface of the outer ring and the outer spherical surface of the inner ring and holds the torque transmission ball in the axial direction. In constant velocity universal joints,
On the inner surface on the back side of the outer ring mouse part, a spherical support part is formed around the joint center where the center line of the coupling two axes of the joint intersects.
A spherical portion located on the opening side of the outer ring mouse portion and a cylindrical portion located on the back side of the outer ring mouse portion are formed on the inner peripheral surface of the cage in contact with the inner ring, and the axial length of the cylindrical portion is defined as the axis of the inner ring. Set the length to allow the circumscribed circle of the torque transmitting ball to be accommodated in the outer contour of the cage when the inner ring is at the end of the axial movement stroke,
The shaft is inserted into an axial connecting hole formed at the center of the inner ring and transmits torque to the inner ring, and is in sliding contact with the spherical support portion over the entire range of joint operating angles with the same curvature as the spherical support portion. Fixed type constant velocity universal joint with a supported surface.
前記外輪マウス部の奥側内面における前記球面支持部の外縁部分に隣接して、前記内輪連結孔にシャフトを挿入する際に内輪を受止める受座を形成した請求項1の固定式等速自在継手。   The fixed type constant velocity universal according to claim 1, wherein a receiving seat for receiving the inner ring when the shaft is inserted into the inner ring connecting hole is formed adjacent to the outer edge portion of the spherical support portion on the inner surface of the outer ring mouth portion. Fittings. シャフトの外周面に形成した環状溝に弾性的拡開力を有するサークリップを嵌合するとともに、内輪連結孔に前記サークリップが拡開して嵌合する拡径部を形成し、内輪に対するシャフトの挿入途中では前記サークリップを内輪連結孔の内周面に所定の摩擦力を伴って摺接させるとともに、前記内輪に対するシャフトの挿入完了位置では前記サークリップを前記拡径部で拡開させてシャフトを抜止めするようにした請求項1または2の固定式等速自在継手。   A circlip having an elastic expansion force is fitted into an annular groove formed on the outer peripheral surface of the shaft, and a diameter-expanded portion is formed in the inner ring connecting hole so that the circlip is expanded and fitted. During the insertion of the circlip, the circlip is brought into sliding contact with the inner peripheral surface of the inner ring connecting hole with a predetermined frictional force, and the circlip is expanded at the enlarged diameter portion at the insertion completion position of the shaft with respect to the inner ring. The fixed type constant velocity universal joint according to claim 1 or 2, wherein the shaft is prevented from being pulled out. 前記拡径部の抜止め側の側面を、内輪の軸線に対して直角な直角面、または、サークリップに作用する軸力によってサークリップが拡開する方向に傾斜した傾斜面とした請求項1から3のいずれかの固定式等速自在継手。   The side surface on the retaining side of the enlarged-diameter portion is a right-angled surface perpendicular to the axis of the inner ring, or an inclined surface inclined in a direction in which the circlip expands due to an axial force acting on the circlip. To 3 fixed constant velocity universal joints. 内輪、ケージおよびトルク伝達ボールを、ユニットハンドリングが可能な仮組みユニットとした請求項1から4のいずれかの固定式等速自在継手。   The fixed type constant velocity universal joint according to any one of claims 1 to 4, wherein the inner ring, the cage and the torque transmission ball are temporary assembled units capable of unit handling. ケージ内周面の前記円筒部に内径が内輪の外球面の外径より小さい突起を設け、前記突起によって内輪のストローク端を規定した請求項1から5のいずれかの固定式等速自在継手。   6. The fixed type constant velocity universal joint according to claim 1, wherein a projection having an inner diameter smaller than the outer diameter of the outer spherical surface of the inner ring is provided on the cylindrical portion of the inner circumferential surface of the cage, and the stroke end of the inner ring is defined by the projection. 外輪マウス部の開口部の最小内径を、ケージの外球面とポケットの軸方向に向かい合った側壁とがなす角部の径より大きくした請求項1から6のいずれかの固定式等速自在継手。   The fixed constant velocity universal joint according to any one of claims 1 to 6, wherein a minimum inner diameter of the opening of the outer ring mouse portion is larger than a diameter of a corner portion formed by an outer spherical surface of the cage and a side wall facing the axial direction of the pocket. 前記仮組みユニットにおけるボールの外接円径を、ケージの外球面とポケットの軸方向に向かい合った側壁とがなす角部の径以下にした請求項5から7のいずれかの固定式等速自在継手。   The fixed constant velocity universal joint according to any one of claims 5 to 7, wherein a circumscribed circle diameter of the ball in the temporary assembly unit is equal to or less than a diameter of a corner portion formed by an outer spherical surface of the cage and a side wall facing the axial direction of the pocket. . 前記仮組みユニットにおける内輪のボール溝の底からケージの内球面とポケットの球面部側側壁とがなす角部までの距離を、ボール径より小さくした請求項5から8のいずれかの固定式等速自在継手。   The fixed type according to any one of claims 5 to 8, wherein the distance from the bottom of the ball groove of the inner ring in the temporary assembly unit to the corner formed by the inner spherical surface of the cage and the spherical side wall of the pocket is smaller than the ball diameter. Fast universal joint. 請求項1から9のいずれかの固定式等速自在継手を組立てる方法であって、内輪をケージに入れ、内輪のボール溝とケージのポケットの位相を合わせてケージの外側からポケットにボールを入れることにより、内輪、ケージおよびトルク伝達ボールの仮組みユニットを得、前記仮組みユニットを外輪に入れるようにした固定式等速自在継手の組立方法。   A method for assembling a fixed type constant velocity universal joint according to any one of claims 1 to 9, wherein an inner ring is put in a cage, and a ball groove of the inner ring and a pocket of the cage are matched, and a ball is put into the pocket from the outside of the cage. Thus, a method for assembling a fixed type constant velocity universal joint in which a temporary assembly unit of an inner ring, a cage and a torque transmission ball is obtained and the temporary assembly unit is put in an outer ring. 前記仮組みユニットにおける内輪と外輪のボール溝の位相をずらす工程と、前記仮組みユニットを外輪に同軸方向に入れる工程と、内輪と外輪のボール溝の位相を一致させる工程と、内輪を軸方向に移動させて内輪とボールに正規位置を占めさせる工程を具備する請求項10の固定式等速自在継手の組立方法。   A step of shifting the phases of the ball grooves of the inner ring and the outer ring in the temporary assembly unit, a step of coaxially placing the temporary assembly unit in the outer ring, a step of matching the phases of the ball grooves of the inner ring and the outer ring, and an axial direction of the inner ring The method for assembling a fixed type constant velocity universal joint according to claim 10, further comprising the step of moving the inner ring and the ball to occupy regular positions. シャフトの外周面に形成した環状溝に弾性的拡開力を有するサークリップを嵌合するとともに、内輪連結孔に前記サークリップが拡開して嵌合する拡径部を形成し、内輪に対するシャフトの挿入途中で前記サークリップを内輪連結孔の内周面に所定の摩擦力を伴って摺接させるとともに、前記シャフトの挿入に伴う内輪の移動を受座で阻止するようにした請求項11の固定式等速自在継手の組立方法。   A circlip having an elastic expansion force is fitted into an annular groove formed on the outer peripheral surface of the shaft, and a diameter-expanded portion is formed in the inner ring connecting hole so that the circlip is expanded and fitted. The circlip is slidably brought into contact with the inner peripheral surface of the inner ring connecting hole with a predetermined friction force during the insertion of the inner ring, and the movement of the inner ring accompanying the insertion of the shaft is prevented by a seat. Assembly method for fixed constant velocity universal joints. 前記シャフトに作用させた引抜力を前記摩擦力を介して内輪に伝達することによって内輪を軸方向に移動させて内輪とボールに正規位置を占めさせるようにした請求項12の固定式等速自在継手の組立方法。   The fixed constant velocity universal according to claim 12, wherein the pulling force applied to the shaft is transmitted to the inner ring through the frictional force so that the inner ring is moved in the axial direction so that the inner ring and the ball occupy regular positions. How to assemble a joint. シャフトに引抜力を作用させて内輪とボールに正規位置を占めさせた後、シャフトを傾斜させて外輪マウス部開口側に露出した内輪の片側端面を治具で押えて内輪を傾動不能にした状態でシャフトを挿入し、前記内輪に対するシャフトの挿入完了位置で前記サークリップを前記拡径部で拡開させてシャフトを抜止めする請求項12または13の固定式等速自在継手の組立方法。   After the pulling force is applied to the shaft and the inner ring and the ball occupy the normal position, the shaft is tilted and the inner ring exposed to the opening side of the outer ring mouse part is pressed with a jig so that the inner ring cannot be tilted. 14. The method of assembling a fixed type constant velocity universal joint according to claim 12 or 13, wherein the shaft is inserted, and the circlip is expanded at the enlarged diameter portion at a position where the shaft is completely inserted into the inner ring to prevent the shaft from being removed.
JP2005310308A 2005-10-25 2005-10-25 Fixed type constant velocity universal joint and its assembling method Withdrawn JP2007120546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005310308A JP2007120546A (en) 2005-10-25 2005-10-25 Fixed type constant velocity universal joint and its assembling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005310308A JP2007120546A (en) 2005-10-25 2005-10-25 Fixed type constant velocity universal joint and its assembling method

Publications (1)

Publication Number Publication Date
JP2007120546A true JP2007120546A (en) 2007-05-17

Family

ID=38144617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005310308A Withdrawn JP2007120546A (en) 2005-10-25 2005-10-25 Fixed type constant velocity universal joint and its assembling method

Country Status (1)

Country Link
JP (1) JP2007120546A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011038719A1 (en) * 2009-09-30 2011-04-07 Neumayer Tekfor Holding Gmbh Sliding joint
WO2018168642A1 (en) * 2017-03-17 2018-09-20 Ntn株式会社 Fixed-type constant velocity universal joint

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011038719A1 (en) * 2009-09-30 2011-04-07 Neumayer Tekfor Holding Gmbh Sliding joint
WO2018168642A1 (en) * 2017-03-17 2018-09-20 Ntn株式会社 Fixed-type constant velocity universal joint
JP2018155321A (en) * 2017-03-17 2018-10-04 Ntn株式会社 Stationary constant velocity universal joint
CN110431323A (en) * 2017-03-17 2019-11-08 Ntn株式会社 Fixed-type constant-velocity Hooks coupling universal coupling
EP3597950A4 (en) * 2017-03-17 2020-12-16 NTN Corporation Fixed-type constant velocity universal joint
US11359676B2 (en) 2017-03-17 2022-06-14 Ntn Corporation Fixed-type constant velocity universal joint
CN110431323B (en) * 2017-03-17 2022-07-15 Ntn株式会社 Fixed constant velocity universal joint

Similar Documents

Publication Publication Date Title
US5221233A (en) Constant velocity fixed joint with alternate sequential running grooves
KR100605393B1 (en) Constant velocity universal joint
JP3060340B2 (en) Rotary constant velocity joint
JP2007170628A (en) Constant velocity universal joint and its inward member
US5067929A (en) Constant velocity ratio universal joint
US8510955B2 (en) Inner joint part for a constant velocity universal joint and process of producing same
JP2006242263A (en) Fixed constant velocity universal joint and its manufacturing method
JP2007120546A (en) Fixed type constant velocity universal joint and its assembling method
JP2007100806A (en) Fixed type constant velocity universal joint
US4377385A (en) Homokinetic universal joint
JP2009079684A (en) Fixed type constant velocity universal joint
JP4219530B2 (en) Fixed type constant velocity universal joint
JP2008286330A (en) Tripod-type constant velocity universal joint
JP2007120615A (en) Fixed type constant velocity universal joint
JP2007100938A (en) Fixed type constant velocity universal joint
JP2006242264A (en) Fixed constant velocity universal joint and its manufacturing method
US20050003896A1 (en) Arrangement of a running roller on a coupling journal of a moveable shaft coupling
JP2007078124A (en) Fixed type constant velocity universal joint
JP2007232192A (en) Fixed type constant velocity universal joint
JP2009074594A (en) Sliding type constant velocity universal joint
JP4255678B2 (en) Tripod type constant velocity universal joint
JP2007078123A (en) Fixed type constant velocity universal joint
JP4168007B2 (en) motor
JP2008281182A (en) Tripod type constant velocity universal joint
JP2009127637A (en) Constant velocity universal joint

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090106