JP2006242264A - Fixed constant velocity universal joint and its manufacturing method - Google Patents

Fixed constant velocity universal joint and its manufacturing method Download PDF

Info

Publication number
JP2006242264A
JP2006242264A JP2005057864A JP2005057864A JP2006242264A JP 2006242264 A JP2006242264 A JP 2006242264A JP 2005057864 A JP2005057864 A JP 2005057864A JP 2005057864 A JP2005057864 A JP 2005057864A JP 2006242264 A JP2006242264 A JP 2006242264A
Authority
JP
Japan
Prior art keywords
inner ring
cage
ball
spherical surface
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005057864A
Other languages
Japanese (ja)
Inventor
Keisuke Sone
啓助 曽根
Hirokazu Oba
浩量 大場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2005057864A priority Critical patent/JP2006242264A/en
Publication of JP2006242264A publication Critical patent/JP2006242264A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2300/00Special features for couplings or clutches
    • F16D2300/12Mounting or assembling

Landscapes

  • Automatic Assembly (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light and compact fixed constant velocity universal joint easy to assemble. <P>SOLUTION: The fixed constant velocity universal joint comprises an outer ring 10 having a plurality of ball grooves 14 formed in a cylindrical inner spherical surface 12 opened at both ends and extending to the axial direction, an inner ring 20 having a plurality of ball grooves 24 formed in an outer spherical surface 22 and extending to the axial direction, torque transmission balls 30 assembled between the ball grooves of the outer ring and the inner ring, and a cage 40 laid between the inner spherical surface 12 of the outer ring and the outer spherical surface 22 of the inner ring for holding the torque transmission balls 30 at preset spaces in the circumferential direction. The outer spherical surface 22 of the inner ring 20 is supported by members 50, 50' fixed to the outer ring 10. The inner peripheral face of the cage 40 in contact with the inner ring 20 consists of a spherical portion 46a located on the large end face side of the outer ring 10 and a cylindrical portion 46b located on the small end face side of the outer ring 10. The cylindrical portion 46b allows the axial movement of the inner ring 20 in a predetermined range so that the circumscribed circle of the torque transmission ball 30 is set in the outside contour of the cage 40 when the inner ring 20 is located at an axial movement stroke end. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明の固定型等速自在継手は、連結した駆動側と従動側の二軸間で角度変位のみを許容するタイプであって、自動車や各種産業機械の動力伝達系において使用される。   The fixed type constant velocity universal joint according to the present invention is a type that allows only angular displacement between two connected driving and driven shafts, and is used in power transmission systems of automobiles and various industrial machines.

特許文献1に記載された固定式等速自在継手は、まずケージを外輪内に入れ、次に内輪をそのケージの内側を通過させて外輪内の、正規位置よりも奥側に置き、その状態で、トルク伝達ボール(以下、単に「ボール」という。)を内側からケージのポケットに入れ込み、その後、内輪を正規位置に戻し、最後に、内輪を軸方向で支持する部材を入れて外輪に固定する、というものである。   In the fixed type constant velocity universal joint described in Patent Document 1, the cage is first put in the outer ring, then the inner ring is passed through the inside of the cage and placed in the outer ring at the back side from the normal position. Then, a torque transmission ball (hereinafter simply referred to as “ball”) is inserted into the cage pocket from the inside, then the inner ring is returned to the normal position, and finally the member that supports the inner ring in the axial direction is inserted and fixed to the outer ring. Is to do.

特許文献2および特許文献3に記載された固定式等速自在継手は、外輪の小端面側のケージの内径部が内輪が同軸方向に通過できるような形状となっており、また、外輪の小端面側も内輪が同軸方向に通過できるように開口している。組み立て方法は、外輪にケージを入れておき、ボールを内側からケージのポケットに入れて、その後、内輪を外輪の大端面側から外輪とケージを通過させて入れ、外輪の小端面側の開口部分に内輪を支持する部材を入れて外輪に固定する、というものである。
特開平6−193645号公報 特表2004−521295号公報 特開2004−116666号公報
The fixed type constant velocity universal joints described in Patent Document 2 and Patent Document 3 are shaped so that the inner ring portion of the inner ring can pass in the coaxial direction on the small end face side of the outer ring. The end face side is also opened so that the inner ring can pass in the same direction. The assembly method is to put the cage in the outer ring, put the ball into the cage pocket from the inside, and then insert the inner ring through the outer ring and the cage from the large end face side of the outer ring, and open the small end face side of the outer ring A member for supporting the inner ring is inserted into the outer ring and fixed to the outer ring.
JP-A-6-193645 JP-T-2004-521295 JP 2004-116666 A

特許文献1に記載された記載された固定型等速自在継手では、その組立方法に起因して内輪のトラック溝が浅く、トルク負荷容量が小さい。つまり、外輪にケージを挿入した後、そのケージの内側に継手内輪を挿入して外輪の底部まで押し込むことができるように、内輪の外径をケージの内径よりも小さく設定する必要がある。ここで、内輪に嵌着される中間軸の外径は規定値であることから、内輪の外径を小さくすると内輪のトラック溝が浅くなる。その結果、トルク負荷容量が小さくなるという問題が発生する。   In the fixed type constant velocity universal joint described in Patent Document 1, due to the assembly method, the track groove of the inner ring is shallow and the torque load capacity is small. That is, after inserting the cage into the outer ring, it is necessary to set the outer diameter of the inner ring smaller than the inner diameter of the cage so that the joint inner ring can be inserted inside the cage and pushed into the bottom of the outer ring. Here, since the outer diameter of the intermediate shaft fitted to the inner ring is a specified value, the track groove of the inner ring becomes shallower when the outer diameter of the inner ring is reduced. As a result, there arises a problem that the torque load capacity is reduced.

また、特許文献1に記載された固定型等速自在継手では、外輪の底に配置された底部材の凹球面で内輪の外球面を軸方向に支持する構造となっている。このように内輪を軸方向に支持する底部材の凹球面が継手中心軸線を含む比較的狭い範囲に位置しているため、大作動角時の等速性を維持することが困難であり、振動や異音などといった問題や、底部材の凹球面と内輪の外球面との相対変位量が大きいことから発熱量や摩耗量が大きくなるといった問題がある。   Further, the fixed type constant velocity universal joint described in Patent Document 1 has a structure in which the outer spherical surface of the inner ring is supported in the axial direction by the concave spherical surface of the bottom member disposed on the bottom of the outer ring. Since the concave spherical surface of the bottom member supporting the inner ring in the axial direction is located in a relatively narrow range including the joint central axis, it is difficult to maintain constant velocity at a large operating angle, and vibration There is a problem that the amount of heat generation and wear increases due to a large relative displacement between the concave spherical surface of the bottom member and the outer spherical surface of the inner ring.

加えて、外輪およびケージの内側からボールを入れるという作業は煩雑で、製造工程における作業能率が悪い。   In addition, the operation of putting a ball from the inside of the outer ring and the cage is complicated and the work efficiency in the manufacturing process is poor.

特許文献2および特許文献3に記載された固定式等速自在継手でも、外輪およびケージの内側からボールを入れる作業は煩雑である。また、外輪の小端面側に内輪を通過させるための大きい開口が必要であるため、この部分の外径が大きくならざるを得ない。その結果、重量増となるばかりでなく、外径と内径との間が狭くなるため、たとえば駆動車輪用車輪軸受装置に適用する場合、ホイールハブとの連結部(ステム軸)とこの外輪とを結合するための構造が作り難い。しかも、外輪のホイール側つまり小端面側は、車種によって形状が異なるものであるが、小さい径が必要となるときなどは適用が困難となる。   Even in the fixed type constant velocity universal joints described in Patent Document 2 and Patent Document 3, the work of putting the ball from the inner side of the outer ring and the cage is complicated. Further, since a large opening for passing the inner ring is required on the small end face side of the outer ring, the outer diameter of this portion must be increased. As a result, not only does the weight increase, but the gap between the outer diameter and the inner diameter becomes narrow. For example, when applied to a wheel bearing device for a drive wheel, the connecting portion (stem shaft) with the wheel hub and the outer ring It is difficult to make a structure for bonding. Moreover, the wheel side of the outer ring, that is, the small end surface side, has a different shape depending on the vehicle type, but is difficult to apply when a small diameter is required.

本発明の主要な目的は、上述の問題点を解消し、組立てが簡単で、軽量コンパクトな固定式等速自在継手を提供することにある。   A main object of the present invention is to provide a fixed type constant velocity universal joint that solves the above-described problems, is easy to assemble, and is lightweight and compact.

本発明の固定式等速自在継手は、両端にて開口した筒状で内球面に軸方向に延びる複数のボール溝を形成した外輪と、外球面に軸方向に延びる複数のボール溝を形成した内輪と、対をなす外輪のボール溝と内輪のボール溝との間に組み込んだトルク伝達ボールと、外輪の内球面と内輪の外球面との間に介在してトルク伝達ボールを軸方向に保持するケージとを具備し、内輪の外球面を外輪に固定した部材によって受けるようにした固定式等速自在等速自在継手において、内輪と接するケージの内周面が、外輪の大端面側に位置する球面部と、外輪の小端面側に位置する円筒部とからなり、前記円筒部は内輪の軸方向移動を所定範囲にわたって許容し、内輪が軸方向移動のストローク端にあるときトルク伝達ボールの外接円がケージの外側輪郭内におさまるようにしたことを特徴とするものである。   The fixed type constant velocity universal joint of the present invention is formed in an outer ring in which a plurality of ball grooves extending in the axial direction are formed on the inner spherical surface and a plurality of ball grooves extending in the axial direction are formed on the outer spherical surface. A torque transmission ball built in between the inner ring, the ball groove of the outer ring and the ball groove of the inner ring, and the inner ring is interposed between the inner spherical surface of the outer ring and the outer spherical surface of the inner ring to hold the torque transmission ball in the axial direction. In a fixed type constant velocity constant velocity universal joint that is received by a member fixed to the outer ring, the inner peripheral surface of the cage that is in contact with the inner ring is located on the large end surface side of the outer ring. And a cylindrical portion located on the small end surface side of the outer ring, the cylindrical portion allows axial movement of the inner ring over a predetermined range, and when the inner ring is at the stroke end of axial movement, The circumscribed circle is the outer contour of the cage It is characterized in that it has to fit into.

上述の構成からなるため、本発明の固定式等速自在継手は次のような組立て方法が可能となる。すなわち、請求項10に記載のように、請求項1ないし9のいずれかの固定式等速自在継手を製造する方法であって、内輪をケージに入れ、内輪のボール溝とケージのポケットの位相を合わせてケージの外側からポケットにボールを入れることにより、内輪とケージとボールの仮組みユニットを得、前記仮組みユニットを外輪に入れる。さらに、前記仮組みユニットにおける内輪と外輪のボール溝の位相をずらす工程と、前記仮組みユニットを外輪に同軸方向に入れる工程と、内輪と外輪のボール溝の位相を一致させる工程と、内輪を軸方向に移動させて内輪とボールに正規位置を占めさせる工程を具備することができる。最後に、内輪の外球面を受ける部材を外輪に固定する。   Since it consists of the above-mentioned composition, the fixed type constant velocity universal joint of the present invention can be assembled as follows. A method for manufacturing a fixed type constant velocity universal joint according to any one of claims 1 to 9, wherein the inner ring is placed in a cage, and the phase between the ball groove of the inner ring and the pocket of the cage is defined. Are put together into the pocket from the outside of the cage to obtain a temporary assembly unit of the inner ring, the cage and the ball, and the temporary assembly unit is put into the outer ring. A step of shifting the phase of the ball grooves of the inner ring and the outer ring in the temporary assembly unit, a step of coaxially placing the temporary assembly unit in the outer ring, a step of matching the phases of the ball grooves of the inner ring and the outer ring, A step of causing the inner ring and the ball to occupy a normal position by moving in the axial direction can be provided. Finally, a member that receives the outer spherical surface of the inner ring is fixed to the outer ring.

本発明によれば、固定式等速自在継手の製造すなわち構成要素の組み立てが容易となる。一つには、内輪とケージとボールの仮組みユニットがユニットハンドリング可能であり、もう一つは、その仮組みユニットをつくるに際して外側からボールを入れるため作業性がよいことによる。   According to the present invention, it is easy to manufacture a fixed type constant velocity universal joint, that is, to assemble components. One is that the temporary assembly unit of the inner ring, the cage and the ball can be unit-handled, and the other is that the workability is good because the ball is inserted from the outside when making the temporary assembly unit.

また、本発明の固定式等速自在継手は、仮組みユニットを外輪の大端面側開口から入れ込むため、外輪の小端面側開口が特許文献2,3のものに比べ小さくてすむ。したがって、この部分の外径を小さくすることができ、軽量化および車種による外形形状の変化への対応が容易となる。また、同部の厚肉化によりホイールハブとの連結部の設計が容易となる。   In the fixed type constant velocity universal joint of the present invention, since the temporary assembly unit is inserted from the large end face side opening of the outer ring, the small end face side opening of the outer ring can be smaller than those of Patent Documents 2 and 3. Therefore, the outer diameter of this portion can be reduced, and it becomes easy to reduce the weight and respond to changes in the outer shape depending on the vehicle type. Moreover, the design of the connection part with a wheel hub becomes easy by thickening of the part.

内輪とケージとボールをユニットハンドリング可能な仮組みユニットとし、この仮組みユニットと外輪の組み合わせで固定式等速自在継手を構成することで、外輪は用途に応じた種々形状とし、それらの外輪に対して共通の仮組みユニットを使用することができる。たとえば、車種等によって外輪外形やホイールとの連結軸の形状が異なる場合でも仮組みユニットだけは共通のものを使用することができるため、コスト低減に大いに寄与する。   The inner ring, cage, and ball are used as a temporary assembly unit that can be unit-handled, and the combination of this temporary assembly unit and the outer ring constitutes a fixed type constant velocity universal joint. On the other hand, a common temporary assembly unit can be used. For example, even when the outer ring outer shape or the shape of the connecting shaft with the wheel differs depending on the vehicle type or the like, only the temporary assembly unit can be used, which greatly contributes to cost reduction.

トルク伝達ボールを8個とすると、7個以下のトルク伝達ボールを使用するものに比べて、ボール径に対してボールPCDが大きいため、ケージ外球面からのボールの飛び出し量が小さく、内輪、ケージ、ボールからなる仮組みユニットにおいてボールを押し込んだ状態を得るのに半径方向のボールの押し込み量が小さくてすむ。また、ボール径に対してボールPCDが大きいことから、内輪内部にセレーションを確保しやすく、しかも、内輪の、外輪小端面側に球面を確保しやすい。   If eight torque transmission balls are used, the ball PCD is larger than the ball diameter compared to those using seven or less torque transmission balls. In order to obtain a state where the ball is pushed in the temporarily assembled unit composed of the balls, the pushing amount of the balls in the radial direction can be small. Further, since the ball PCD is larger than the ball diameter, it is easy to ensure serration inside the inner ring, and it is easy to ensure a spherical surface on the outer ring small end face side of the inner ring.

以下、図面に従って本発明の実施の形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1にUJ(アンダーカットフリー)タイプの固定式等速自在継手の縦断面を示す。図示するように、この固定式等速自在継手は、外輪10と内輪20とトルク伝達ボール(以下、単に「ボール」という。)30とケージ40とステム50を主要な構成要素として成り立っている。   FIG. 1 shows a longitudinal section of a UJ (undercut free) type fixed constant velocity universal joint. As shown in the figure, this fixed type constant velocity universal joint includes an outer ring 10, an inner ring 20, a torque transmission ball (hereinafter simply referred to as “ball”) 30, a cage 40 and a stem 50 as main components.

外輪10は図2に示すように両端にて開口した筒状で、同図の右側の端面を大端面、左側の端面を小端面と呼ぶこととする。外輪10の大端面側の開口には面取り16aと内径C1の円筒部16bが設けてある。外輪10の内周面(以下、内球面という。)12は部分球面状で、軸方向に延びる複数ここでは8本のボール溝14が円周方向に等間隔に形成してある(図3)。外輪10の小端面側の開口は小径部18aと大径部18cからなる段付き円筒形状である。 As shown in FIG. 2, the outer ring 10 has a cylindrical shape opened at both ends, and the right end face in the figure is called a large end face and the left end face is called a small end face. The opening of the large end face of the outer ring 10 the cylindrical portion 16b of the chamfer 16a and the inner diameter C 1 is provided. An inner peripheral surface (hereinafter referred to as an inner spherical surface) 12 of the outer ring 10 is a partial spherical surface, and a plurality of, here, eight ball grooves 14 extending in the axial direction are formed at equal intervals in the circumferential direction (FIG. 3). . The opening on the small end face side of the outer ring 10 has a stepped cylindrical shape composed of a small diameter portion 18a and a large diameter portion 18c.

この実施の形態では外輪10はステム50と一体化している。一体化する前の外輪10とステム50を示す図16からよく分かるとおり、ステム50の一端側にある外輪10との接続部には、軸端側から順に小径部52と大径部58が配設してある。小径部52の端面には凹球面状の球面座54が形成してあり、外周面には塑性結合のためのセレーション状突起56が設けてある。大径部58は外輪10の小端面側開口の大径部18cに圧入するための圧入部となる。この部分の圧入によって外輪10とステム50の間のシールがなされる。大径部58の軸端側端面57を外輪10の大径部18cの肩面18bに突き当てて軸方向の位置決めをする。なお、塑性接合などで軸方向に位置決めを行うときは突き当て用の肩面18bは必要ない。大径部58の反軸端側端面59は抜け止めされる面となる。つまり、図1に符号19で示すように外輪10の小端面側開口の端部を塑性変形させてこの端面59に被せることにより軸方向の抜け止めをする。   In this embodiment, the outer ring 10 is integrated with the stem 50. As can be clearly seen from FIG. 16 showing the outer ring 10 and the stem 50 before being integrated, a small diameter portion 52 and a large diameter portion 58 are arranged in order from the shaft end side at the connection portion between the outer ring 10 on one end side of the stem 50. It is set up. A concave spherical spherical seat 54 is formed on the end surface of the small diameter portion 52, and a serrated projection 56 for plastic coupling is provided on the outer peripheral surface. The large-diameter portion 58 serves as a press-fitting portion for press-fitting into the large-diameter portion 18 c of the small end face side opening of the outer ring 10. The seal between the outer ring 10 and the stem 50 is made by press-fitting this portion. The end surface 57 on the shaft end side of the large diameter portion 58 is abutted against the shoulder surface 18b of the large diameter portion 18c of the outer ring 10 to perform positioning in the axial direction. When positioning in the axial direction by plastic bonding or the like, the abutting shoulder surface 18b is not necessary. The end surface 59 on the opposite axis end side of the large diameter portion 58 is a surface that is prevented from coming off. That is, as indicated by reference numeral 19 in FIG. 1, the end of the small end face side opening of the outer ring 10 is plastically deformed and placed on this end face 59 to prevent axial removal.

内輪20は図1および図4に示すように球状で、その部分球面状外周面(以下、外球面という)22に、軸方向に延びる複数ここでは8本のボール溝24が円周方向に等間隔に形成してある。内輪20はセレーション孔26によって回転軸(図示せず)とトルク伝達可能に結合する。図4において、符号A1およびA2は、それぞれ、内輪20の外球面22の外径および外球面22の中心横断面での最小投影径を示す。外輪10の小端面側開口の小径部18aの内径C2(図2)は内輪20の外球面22の外径A1より小さい。 The inner ring 20 has a spherical shape as shown in FIGS. 1 and 4, and a plurality of, here, eight ball grooves 24 extending in the axial direction are formed on a partial spherical outer peripheral surface (hereinafter referred to as an outer spherical surface) 22 in the circumferential direction. It is formed at intervals. The inner ring 20 is coupled to a rotating shaft (not shown) by a serration hole 26 so that torque can be transmitted. In FIG. 4, reference signs A 1 and A 2 indicate the outer diameter of the outer spherical surface 22 of the inner ring 20 and the minimum projected diameter on the central cross section of the outer spherical surface 22, respectively. The inner diameter C 2 (FIG. 2) of the small-diameter portion 18 a of the small-end surface side opening of the outer ring 10 is smaller than the outer diameter A 1 of the outer spherical surface 22 of the inner ring 20.

図1に示すように、外輪10のボール溝14の曲率中心O1と内輪20のボール溝24の曲率中心O2は、継手中心Oに対して軸方向に等距離fだけオフセットさせてある。したがって、対をなす内外輪10,20のボール溝14,24は外輪10の大端面側開口に向かって拡開したくさび形状を呈している。 As shown in FIG. 1, the center of curvature O 1 of the ball groove 14 of the outer ring 10 and the center of curvature O 2 of the ball groove 24 of the inner ring 20 are offset from the joint center O by an equal distance f in the axial direction. Therefore, the ball grooves 14 and 24 of the inner and outer rings 10 and 20 forming a pair have a wedge shape that expands toward the large end face side opening of the outer ring 10.

この実施の形態の固定式等速自在継手は、ボール溝14,24にアンダーカットがない(アンダーカットフリー)。すなわち、外輪10のボール溝14は、曲率中心O1を境にして小端面側に位置する円弧底14aと大端面側に位置する軸線と平行なストレート底14bとで構成される。同様に、内輪20のボール溝24は、曲率中心O2を境にして外輪10の大端面側に位置する円弧底24aと外輪10の小端面側に位置する軸線と平行なストレート底24bとで構成される。 The fixed type constant velocity universal joint of this embodiment has no undercut in the ball grooves 14 and 24 (undercut free). That is, the ball groove 14 of the outer ring 10 is composed of a circular arc bottom 14a parallel straight bottom 14b to the axis positioned on the large end face positioned on the small end face side to the center of curvature O 1 as a boundary. Similarly, the ball groove 24 of the inner ring 20 has an arc bottom 24a located on the large end face side of the outer ring 10 and a straight bottom 24b parallel to the axis located on the small end face side of the outer ring 10 with the center of curvature O 2 as a boundary. Composed.

ケージ40は外輪10の内球面12と内輪20の外球面22との間に介在している。ケージ40の円周方向に複数ここでは8個のポケット42が配設してある。ケージ40の外球面44は外輪10の内球面12と接する。図5および図6に示すように、ケージ40の外球面44とポケット42の軸方向に向かい合った側壁とがなす角部41,43の径B2はケージ40の外球面44の外径B1よりも小さい。径B2は外輪10の円筒部16bの内径C1より小さくしてある(B2<C1)。これはケージ40を同軸方向に入れ込むとき必要となる寸法関係である。もっとも、6個ボールでボール径が大きくなれば円筒部16bがなくても上記関係を満足できる。したがって、外輪10の円筒部16bは必須ではない。 The cage 40 is interposed between the inner spherical surface 12 of the outer ring 10 and the outer spherical surface 22 of the inner ring 20. A plurality of, here, eight pockets 42 are arranged in the circumferential direction of the cage 40. The outer spherical surface 44 of the cage 40 is in contact with the inner spherical surface 12 of the outer ring 10. As shown in FIGS. 5 and 6, the diameter B 2 of the corners 41, 43 formed by the outer spherical surface 44 of the cage 40 and the side wall facing the axial direction of the pocket 42 is the outer diameter B 1 of the outer spherical surface 44 of the cage 40. Smaller than. Diameter B 2 is are smaller than the inner diameter C 1 of the cylindrical portion 16b of the outer ring 10 (B 2 <C 1). This is a dimensional relationship required when the cage 40 is inserted in the coaxial direction. However, if the ball diameter is increased with six balls, the above relationship can be satisfied without the cylindrical portion 16b. Therefore, the cylindrical portion 16b of the outer ring 10 is not essential.

ここで、符号41で示す部分の径B2は少し大きくても同軸から少し傾ければ入るが、符号43で示す部分の径B2については上記寸法関係(B2<C1)が必要である。なお、ケージ40の角部41,43に面取りなど径B2を小さくするためのカットする部分を設けてもよい。径B2を小さくすることができれば外輪10の円筒部16bの内径C1も小さくでき、それによりケージ外球面を案内する外輪内球面の範囲を大端面方向に広くできるため、軸方向すきまが少なくなり等速性、耐久性などがよくなる。 Here, although the diameter B 2 of the portion indicated by reference numeral 41 is a little larger, it can be entered if it is slightly inclined from the same axis, but the above-described dimensional relationship (B 2 <C 1 ) is required for the diameter B 2 of the portion indicated by reference numeral 43. is there. It is also possible to provide a portion to be cut to reduce the diameter B 2 such as chamfering the corners 41 and 43 of the cage 40. If the diameter B 2 can be reduced, the inner diameter C 1 of the cylindrical portion 16b of the outer ring 10 can also be reduced, and thereby the range of the outer ring inner spherical surface that guides the cage outer spherical surface can be widened in the direction of the large end face, so that there is little axial clearance. The speed, durability, etc. are improved.

図5から分かるとおり、ケージ40の内周面は、軸方向中心(図1では継手中心Oと一致)にて互いに滑らかに連続した内球面46aと円筒面46bとの組み合わせで構成されている。つまり、軸方向中心から外輪10の大端面側は内輪20の外球面22と接して内輪20を半径方向および軸方向に支持する内球面46aとなっており、軸方向中心から外輪10の小端面側は内輪外球面と接して内輪20を半径方向に支持する円筒面46bとなっている。円筒面46bは、組み立ての過程で内輪20を正規位置から軸方向に後退させておくために必要となる(図8参照)。したがって、正規位置で内輪20を半径方向に支持する狭い範囲以外については、精度はラフでよい。   As can be seen from FIG. 5, the inner peripheral surface of the cage 40 is composed of a combination of an inner spherical surface 46 a and a cylindrical surface 46 b that are smoothly continuous with each other at the axial center (coincident with the joint center O in FIG. 1). That is, the large end surface side of the outer ring 10 from the axial center is an inner spherical surface 46a that contacts the outer spherical surface 22 of the inner ring 20 and supports the inner ring 20 in the radial direction and the axial direction, and the small end surface of the outer ring 10 from the axial center. The side is a cylindrical surface 46b that is in contact with the outer ring spherical surface and supports the inner ring 20 in the radial direction. The cylindrical surface 46b is required to retract the inner ring 20 from the normal position in the axial direction during the assembly process (see FIG. 8). Accordingly, the accuracy may be rough except for a narrow range in which the inner ring 20 is supported in the radial direction at the normal position.

円筒面46bの端部に内径側に突出した突起48が設けてある。この突起48は、図8に示すように、内輪20、ボール30、ケージ40を仮組みユニットとしたとき、内輪20の脱落を防止するための、言い換えれば内輪20の軸方向移動のストローク端を規定するストッパーとして機能する(図8、図9参照)。そのため突起48の内径B5は内輪20の外球面22の外径A1より小さく設定してある。 A protrusion 48 protruding toward the inner diameter side is provided at the end of the cylindrical surface 46b. As shown in FIG. 8, when the inner ring 20, the ball 30 and the cage 40 are used as a temporary assembly unit, the protrusion 48 is used to prevent the inner ring 20 from falling off, in other words, the stroke end of the axial movement of the inner ring 20. It functions as a prescribed stopper (see FIGS. 8 and 9). Therefore, the inner diameter B 5 of the protrusion 48 is set smaller than the outer diameter A 1 of the outer spherical surface 22 of the inner ring 20.

外輪10のボール溝14と内輪20のボール溝24は対をなし、各対のボール溝14,24間にボール30が組み込んである。ケージ40の各ポケット42に一つのボール30が収容される。そして、ケージ40は、すべてのボール30を外輪10と内輪20のなす角度すなわち継手の作動角の二等分面上に位置させるように作用し、これにより、継手の等速性が維持される。   The ball groove 14 of the outer ring 10 and the ball groove 24 of the inner ring 20 make a pair, and a ball 30 is incorporated between each pair of ball grooves 14 and 24. One ball 30 is accommodated in each pocket 42 of the cage 40. The cage 40 acts so that all the balls 30 are positioned on the bisector of the angle formed by the outer ring 10 and the inner ring 20, that is, the operating angle of the joint, whereby the constant velocity of the joint is maintained. .

ステム50の球面座54の曲率半径は内輪20の外球面22の曲率半径とほぼ等しい。そして、図1に示す固定式等速自在継手を組み立てた状態では、球面座54と内輪20の外球面22が接する。ステム50の球面座54および内輪20の外球面22には熱処理によって表面硬化層が設けてある。   The radius of curvature of the spherical seat 54 of the stem 50 is substantially equal to the radius of curvature of the outer spherical surface 22 of the inner ring 20. In the state where the fixed type constant velocity universal joint shown in FIG. 1 is assembled, the spherical seat 54 and the outer spherical surface 22 of the inner ring 20 are in contact with each other. The spherical seat 54 of the stem 50 and the outer spherical surface 22 of the inner ring 20 are provided with a hardened surface layer by heat treatment.

次に、上述の構成の固定式等速自在継手の製造方法、つまり、外輪10、内輪20、ボール30、ケージ40、ステム50からなる構成要素の組立手順を説明する。   Next, a manufacturing method of the fixed type constant velocity universal joint having the above-described configuration, that is, an assembly procedure of components including the outer ring 10, the inner ring 20, the ball 30, the cage 40, and the stem 50 will be described.

まず、図7に示すように、内輪20をケージ40に、軸線を直交させて入れ込む。このとき、内輪20の外球面22の中心横断面での最小投影径A2(図4)とケージ40の突起48の内径B5(図8)との大小関係(A2<B5)を利用する。そして、内輪20を回して両者の軸線を一致させて同軸となす。なお、径差(B5−A2)が小さい場合は最初から同軸方向にかち込んでもよい。 First, as shown in FIG. 7, the inner ring 20 is inserted into the cage 40 with the axes orthogonal to each other. At this time, the magnitude relationship (A 2 <B 5 ) between the minimum projected diameter A 2 (FIG. 4) in the central cross section of the outer spherical surface 22 of the inner ring 20 and the inner diameter B 5 (FIG. 8) of the projection 48 of the cage 40 is expressed. Use. Then, the inner ring 20 is turned so that the two axes coincide with each other to be coaxial. If the diameter difference (B 5 -A 2 ) is small, it may be pushed in the same direction from the beginning.

内輪20をケージ40の円筒部46b内で軸方向に移動させて内輪20の外球面22をケージ40の突起48に接触させ、両者を図8に示す位置関係となす。このとき内輪20は、上述の突起48のストッパー機能により、外球面22がケージ40の突起48に当たった位置、つまり、正規位置から符号B6で示す距離だけ後退した位置で停止する。 The inner ring 20 is moved in the axial direction within the cylindrical portion 46b of the cage 40, and the outer spherical surface 22 of the inner ring 20 is brought into contact with the projection 48 of the cage 40, so that both are in the positional relationship shown in FIG. In this case the inner ring 20, the stopper function of the projections 48 described above, the outer spherical surface 22 is positioned to hit the protrusions 48 of the cage 40, that is, stops at a position retracted by the distance indicated by a symbol B 6 from the normal position.

図9および図10に示すように、内輪20のボール溝24の位相とケージ40のポケット42の位相を合わせた状態で、外側からポケット42にボール30を入れる。ボール30を内輪20のボール溝24に突き当たるまで押し込み、ボール外接円径D1がケージ40のポケット42の角部41,43の径B2(図5、図6)以下となるようにする。言い換えれば、内輪20が軸方向移動のストローク端にあるときボール外接円がケージ40の外側輪郭内におさまるようにする。 As shown in FIGS. 9 and 10, the ball 30 is inserted into the pocket 42 from the outside in a state where the phase of the ball groove 24 of the inner ring 20 and the phase of the pocket 42 of the cage 40 are matched. The ball 30 is pushed in until it hits the ball groove 24 of the inner ring 20 so that the ball circumscribed circle diameter D 1 is less than the diameter B 2 (FIGS. 5 and 6) of the corner portions 41 and 43 of the pocket 42 of the cage 40. In other words, the ball circumscribed circle is set within the outer contour of the cage 40 when the inner ring 20 is at the stroke end of the axial movement.

このとき、図9に符号D2で示す、内輪20のボール溝24の底からケージ40の球面部46aとポケット42の球面部側側壁とがなす角部までの距離がボール径より小さくなる寸法関係に設定しておくと、ボール30が内径側に脱落せず、ユニットハンドリングが可能となって取り扱いが非常に容易となる。そして、かかる寸法関係は図8を参照して上に述べたケージ40の突起48の位置(B6)に依存する。なお、通常、ボール30とポケット42の間には締めしろがあるため外径側へは脱落しにくくなっている。 At this time, indicated at D 2 in FIG. 9, the distance from the bottom of the ball groove 24 of the inner ring 20 to the corner portion formed between the spherical portion side wall of the spherical portion 46a and the pocket 42 of the cage 40 is smaller than the ball diameter dimension If the relationship is set, the ball 30 does not fall off to the inner diameter side, unit handling is possible, and handling becomes very easy. The dimensional relationship depends on the position (B 6 ) of the protrusion 48 of the cage 40 described above with reference to FIG. Normally, there is an interference between the ball 30 and the pocket 42, so that it is difficult for the ball 30 and the pocket 42 to drop off.

次に、図11に示すように、内輪20、ケージ40、ボール30の仮組みユニットを外輪10の大端面側開口から挿入し、ケージ40の外球面44を外輪10の内球面に当てる(図12)。このとき、図13に示すように、隣接するボール間の角度をαとすると、外輪10のボール溝14と内輪20のボール溝24の位相をα/2だけずらしておく。   Next, as shown in FIG. 11, the temporary assembly unit of the inner ring 20, the cage 40, and the ball 30 is inserted from the large end surface side opening of the outer ring 10, and the outer spherical surface 44 of the cage 40 is applied to the inner spherical surface of the outer ring 10 (see FIG. 11). 12). At this time, as shown in FIG. 13, when the angle between adjacent balls is α, the phases of the ball groove 14 of the outer ring 10 and the ball groove 24 of the inner ring 20 are shifted by α / 2.

なお、仮組みユニットのボールは、外輪10の円筒部16bを通過するときにケージ40の外側輪郭内におさまっていればよく、ここを通過した後は外輪10の内球面12に沿って半径方向外側に移動できる。ここで、内輪20の外球面22が外輪10の底部に当たる接触部の軸方向位置は、より大端面側にある方が、継手の軸方向コンパクト化を図る上で有利である。そこで、ボールが外輪円筒部16bを通過した後、ケージ40の外球面44が外輪10の内球面12に当たる前に先に内輪20の外球面22が外輪10の底部に当たり、内輪のそれ以上の移動が阻止される結果、ケージがさらに外輪マウス部の奥側に進むにつれてボールが半径方向外側に飛び出すようにすれば、前記接触部をより大端面側に位置させることができる。   The balls of the temporarily assembled unit only have to be within the outer contour of the cage 40 when passing through the cylindrical portion 16b of the outer ring 10, and after passing through this, the radial direction along the inner spherical surface 12 of the outer ring 10 Can move outward. Here, the axial position of the contact portion where the outer spherical surface 22 of the inner ring 20 hits the bottom of the outer ring 10 is more advantageous in reducing the axial size of the joint if it is on the larger end face side. Therefore, after the ball has passed through the outer ring cylindrical portion 16b, before the outer spherical surface 44 of the cage 40 hits the inner spherical surface 12 of the outer ring 10, the outer spherical surface 22 of the inner ring 20 hits the bottom of the outer ring 10 and the inner ring moves further. As a result, the contact portion can be positioned on the larger end face side if the ball jumps radially outward as the cage further advances to the inner side of the outer ring mouth portion.

次に、図14および図15に示すように、仮組みユニット(20,30,40)と外輪10の位相をα/2角ずらして内外輪10,20のボール溝14,24の位相を一致させる。そして、内輪20を外輪10の大端面側に軸方向に押し込み、内輪20の外球面22をケージ40の内球面26aに当接させる。このとき、内輪20の押し込みに従ってボール30が半径方向に移動し、内輪20とボール30が正規位置を占めるに至る(図16)。なお、次に述べるステム50の挿入時に球面座54を内輪20の外球面22に当てて内輪20を押し込むようにしてもよい。   Next, as shown in FIGS. 14 and 15, the phases of the temporary assembly units (20, 30, 40) and the outer ring 10 are shifted by α / 2 to match the phases of the ball grooves 14, 24 of the inner / outer rings 10, 20. Let Then, the inner ring 20 is pushed axially into the large end face side of the outer ring 10, and the outer spherical surface 22 of the inner ring 20 is brought into contact with the inner spherical surface 26 a of the cage 40. At this time, the ball 30 moves in the radial direction as the inner ring 20 is pushed, and the inner ring 20 and the ball 30 occupy the normal position (FIG. 16). Note that the inner ring 20 may be pushed in by placing the spherical seat 54 against the outer spherical surface 22 of the inner ring 20 when the stem 50 described below is inserted.

最後に、図16に示すように、ステム50の円筒部52を外輪10の小端面側開口に挿入し、球面座54を内輪20の外球面22に当接させる(図1参照)。それと同時に、ステム50のセレーション状突起56を外輪10の小径部18aに食い込ませて塑性結合させる。この塑性結合部でトルク伝達が可能となる。図1に符号19で示すように、外輪10の大径部18cの内径端部を塑性変形させてステム50の抜け止めをする。これにより、図1の固定式等速自在継手の組立が完了する。   Finally, as shown in FIG. 16, the cylindrical portion 52 of the stem 50 is inserted into the small end face side opening of the outer ring 10, and the spherical seat 54 is brought into contact with the outer spherical surface 22 of the inner ring 20 (see FIG. 1). At the same time, the serrated projections 56 of the stem 50 are bitten into the small diameter portion 18a of the outer ring 10 and are plastically coupled. Torque transmission is possible at this plastic joint. As shown by reference numeral 19 in FIG. 1, the inner diameter end portion of the large diameter portion 18c of the outer ring 10 is plastically deformed to prevent the stem 50 from coming off. Thereby, the assembly of the fixed type constant velocity universal joint of FIG. 1 is completed.

図17に示す実施の形態は、外輪10´の小端面側開口に内輪20の外球面22を受ける球面座54´をもったプレート50´を取り付けたものである。この場合、外輪10´の小端面側開口の内周面にセレーション11が設けてあり、図示しない回転軸とトルク伝達可能に結合するようになっている。   In the embodiment shown in FIG. 17, a plate 50 ′ having a spherical seat 54 ′ that receives the outer spherical surface 22 of the inner ring 20 is attached to the small end face side opening of the outer ring 10 ′. In this case, a serration 11 is provided on the inner peripheral surface of the opening on the small end face side of the outer ring 10 ', and is coupled to a rotating shaft (not shown) so as to be able to transmit torque.

いずれの実施の形態でも、外輪10,10´の小端面側に設けた球面座54,54´で内輪20の外球面22を軸方向に支持させるとともに、内輪20の外球面22をケージ40の円筒面46bで半径方向に支持させた構造であるため、外球面22での発熱量や摩耗量を少なくでき、十分なトルク負荷容量を確保することができ、振動や異音の発生を防止し、等速性を維持することができる。   In any embodiment, the outer spherical surface 22 of the inner ring 20 is supported in the axial direction by the spherical seats 54, 54 ′ provided on the small end face side of the outer ring 10, 10 ′, and the outer spherical surface 22 of the inner ring 20 is supported by the cage 40. Since the structure is supported in the radial direction by the cylindrical surface 46b, the amount of heat generation and wear on the outer spherical surface 22 can be reduced, a sufficient torque load capacity can be secured, and the occurrence of vibrations and noises can be prevented. , Constant velocity can be maintained.

なお、本発明は以上説明し、かつ、図示した実施の形態に限定されるものではなく、特許請求の範囲に悖ることなく種々の改変態様が可能である。たとえば、図示した実施の形態は8個のトルク伝達ボールを用いたものを例示したが、6個のトルク伝達ボールを用いることも可能である。   Note that the present invention is not limited to the embodiment described and illustrated above, and various modifications can be made without departing from the scope of the claims. For example, although the illustrated embodiment exemplifies one using eight torque transmitting balls, it is also possible to use six torque transmitting balls.

本発明の実施の形態を示す固定式等速自在継手の縦断面図である。It is a longitudinal cross-sectional view of the fixed type constant velocity universal joint which shows embodiment of this invention. 外輪の縦断面図である。It is a longitudinal cross-sectional view of an outer ring. 図2の外輪の右側面図である。FIG. 3 is a right side view of the outer ring in FIG. 2. 内輪の端面図であるIt is an end view of an inner ring ケージの縦断面図である。It is a longitudinal cross-sectional view of a cage. 図5のケージの左側面図である。FIG. 6 is a left side view of the cage of FIG. 5. 内輪をケージに組み込む過程を示す説明図である。It is explanatory drawing which shows the process in which an inner ring | wheel is integrated in a cage. 内輪とケージの位置関係を示す要部縦断面図である。It is a principal part longitudinal cross-sectional view which shows the positional relationship of an inner ring | wheel and a cage. 内輪とケージのサブアセンブリにボールを組み込む過程を示す縦断面図である。It is a longitudinal cross-sectional view which shows the process in which a ball | bowl is integrated in the subassembly of an inner ring | wheel and a cage. 図9のサブアセンブリの右側面図である。FIG. 10 is a right side view of the subassembly of FIG. 9. 内輪とケージとボールの仮組みユニットを外輪に組み込む過程を示す縦断面図である。It is a longitudinal cross-sectional view which shows the process of incorporating the temporary assembly unit of an inner ring | wheel, a cage, and a ball | bowl in an outer ring | wheel. 図11の仮組みユニットの縦断面図である。It is a longitudinal cross-sectional view of the temporary assembly unit of FIG. 図12の仮組みユニットの右側面図である。It is a right view of the temporary assembly unit of FIG. 図12の仮組みユニットの内外輪のボール溝の位相を合わせた状態の縦断面図である。It is a longitudinal cross-sectional view of the state which match | combined the phase of the ball groove of the inner and outer ring | wheel of the temporary assembly unit of FIG. 図14の仮組みユニットの右側面図である。It is a right view of the temporary assembly unit of FIG. 図14の仮組みユニットとステムを組み付ける過程を示す縦断面図である。It is a longitudinal cross-sectional view which shows the process of assembling the temporary assembly unit and stem of FIG. 別の実施の形態を示す固定式等速自在継手の縦断面図である。It is a longitudinal cross-sectional view of the fixed type constant velocity universal joint which shows another embodiment.

符号の説明Explanation of symbols

10 外輪
12 内球面
14 ボール溝
14a 円弧部
14b ストレート部
16a 大端面側開口の面取り
16b 円筒部
18a 小端面側開口の小径部
18b 肩面
18c 小端面側開口の大径部
20 内輪
22 外球面
24 ボール溝
24a 円弧部
24b ストレート部
26 スプライン孔
30 トルク伝達ボール
40 ケージ
42 ポケット
44 外球面
46a 内球面
46b 円筒面
48 突起
50 ステム
52 小径部
54 球面座
56 セレーション状突起
58 大径部
DESCRIPTION OF SYMBOLS 10 Outer ring 12 Inner spherical surface 14 Ball groove 14a Arc part 14b Straight part 16a Chamfering of large end surface side opening 16b Cylindrical part 18a Small diameter part of small end surface side opening 18b Shoulder surface 18c Large diameter part of small end surface side opening 20 Inner ring 22 Outer spherical surface 24 Ball groove 24a Arc portion 24b Straight portion 26 Spline hole 30 Torque transmission ball 40 Cage 42 Pocket 44 Outer spherical surface 46a Inner spherical surface 46b Cylindrical surface 48 Projection 50 Stem 52 Small diameter portion 54 Spherical seat 56 Serration-shaped projection 58 Large diameter portion

Claims (12)

両端にて開口した筒状で内球面に軸方向に延びる複数のボール溝を形成した外輪と、外球面に軸方向に延びる複数のボール溝を形成した内輪と、対をなす外輪のボール溝と内輪のボール溝との間に組み込んだトルク伝達ボールと、外輪の内球面と内輪の外球面との間に介在してトルク伝達ボールを軸方向に保持するケージとを具備し、内輪の外球面を外輪に固定した部材によって受けるようにした固定式等速自在等速自在継手において、内輪と接するケージの内周面が、外輪の大端面側に位置する球面部と、外輪の小端面側に位置する円筒部とからなり、前記円筒部は内輪の軸方向移動を所定範囲にわたって許容し、内輪が軸方向移動のストローク端にあるときトルク伝達ボールの外接円がケージの外側輪郭内におさまるようにしたことを特徴とする固定式等速自在継手。   An outer ring in which a plurality of ball grooves extending in the axial direction on the inner spherical surface are formed in a cylindrical shape opened at both ends, an inner ring in which a plurality of ball grooves extending in the axial direction are formed in the outer spherical surface, and a ball groove of a pair of outer rings A torque transmission ball incorporated between the inner ring and a cage for holding the torque transmission ball in an axial direction between the inner spherical surface of the outer ring and the outer spherical surface of the inner ring; In a fixed type constant velocity constant velocity universal joint that is received by a member fixed to the outer ring, the inner peripheral surface of the cage in contact with the inner ring is on the spherical surface portion located on the large end face side of the outer ring and the small end face side of the outer ring. The cylindrical portion allows axial movement of the inner ring over a predetermined range, and when the inner ring is at the stroke end of the axial movement, the circumscribed circle of the torque transmitting ball fits within the outer contour of the cage. Specially Fixed type constant velocity universal joint to be. 内輪とケージとトルク伝達ボールをユニットハンドリング可能な仮組みユニットとしたことを特徴とする請求項1の固定式等速自在継手。   2. The fixed type constant velocity universal joint according to claim 1, wherein the inner ring, the cage, and the torque transmission ball are a temporarily assembled unit capable of unit handling. ケージの前記円筒部に内径が内輪の外球面の外径より小さい突起を設け、前記突起によって前記内輪のストローク端を規定したことを特徴とする請求項1または2の固定式等速自在継手。   3. The fixed type constant velocity universal joint according to claim 1, wherein a projection having an inner diameter smaller than the outer diameter of the outer spherical surface of the inner ring is provided on the cylindrical portion of the cage, and the stroke end of the inner ring is defined by the projection. 外輪マウス部の開口部の最小内径が、ケージの外球面とポケットの軸方向に向かい合った側壁とがなす角部の径より大きいことを特徴とする請求項1ないし3のいずれかの固定式等速自在継手。   The fixed type according to any one of claims 1 to 3, wherein the minimum inner diameter of the opening of the outer ring mouse portion is larger than the diameter of the corner portion formed by the outer spherical surface of the cage and the side wall facing the axial direction of the pocket. Fast universal joint. 前記仮組みユニットにおけるボールの外接円径がケージの外球面とポケットの軸方向に向かい合った側壁とがなす角部の径以下であることを特徴とする請求項1ないし4のいずれかの固定式等速自在継手。   The fixed type according to any one of claims 1 to 4, wherein a circumscribed circle diameter of the ball in the temporarily assembled unit is equal to or less than a diameter of a corner portion formed by an outer spherical surface of the cage and a side wall facing the axial direction of the pocket. Constant velocity universal joint. 前記仮組みユニットにおける内輪のボール溝の底からケージの内球面とポケットの球面部側側壁とがなす角部までの距離がボール径より小さいことを特徴とする請求項1ないし5のいずれかの固定式等速自在継手。   The distance from the bottom of the ball groove of the inner ring in the temporary assembly unit to the corner formed by the inner spherical surface of the cage and the side wall of the spherical portion of the pocket is smaller than the ball diameter. Fixed constant velocity universal joint. 内輪の外球面を受ける支持部を、外輪の小端面側開口に固定したプレートによって形成したことを特徴とする請求項1ないし6のいずれかの等速自在継手。   The constant velocity universal joint according to any one of claims 1 to 6, wherein the support portion for receiving the outer spherical surface of the inner ring is formed by a plate fixed to the small end face side opening of the outer ring. 内輪の外球面を受ける支持部を、外輪の小端面側開口に固定した軸部材によって形成したことを特徴とする請求項1ないし6のいずれかの等速自在継手。   The constant velocity universal joint according to any one of claims 1 to 6, wherein the support portion that receives the outer spherical surface of the inner ring is formed by a shaft member fixed to the small end face side opening of the outer ring. トルク伝達ボールの数が8であることを特徴とする請求項1ないし8のいずれかの固定式等速自在継手。   9. The fixed type constant velocity universal joint according to claim 1, wherein the number of torque transmitting balls is eight. 請求項1ないし9のいずれかの固定式等速自在継手を製造する方法であって、内輪をケージに入れ、内輪のボール溝とケージのポケットの位相を合わせてケージの外側からポケットにボールを入れることにより、内輪とケージとボールの仮組みユニットを得、前記仮組みユニットを外輪に入れるようにしたことを特徴とする固定式等速自在継手の製造方法。   A method of manufacturing a fixed type constant velocity universal joint according to any one of claims 1 to 9, wherein an inner ring is placed in a cage, and a ball groove on the inner ring and a pocket of the cage are aligned to place a ball in the pocket from the outside of the cage. A method of manufacturing a fixed type constant velocity universal joint, characterized in that a temporary assembly unit of an inner ring, a cage and a ball is obtained by inserting the temporary assembly unit into an outer ring. 前記仮組みユニットにおける内輪と外輪のボール溝の位相をずらす工程と、前記仮組みユニットを外輪に同軸方向に入れる工程と、内輪と外輪のボール溝の位相を一致させる工程と、内輪を軸方向に移動させて内輪とボールに正規位置を占めさせる工程を具備する請求項10の等速自在継手の製造方法。   A step of shifting the phases of the ball grooves of the inner ring and the outer ring in the temporary assembly unit, a step of coaxially placing the temporary assembly unit in the outer ring, a step of matching the phases of the ball grooves of the inner ring and the outer ring, and an axial direction of the inner ring The method for manufacturing a constant velocity universal joint according to claim 10, further comprising the step of moving the inner ring and the ball to occupy regular positions. 内輪の外球面を受ける支持部を形成する部材を外輪に固定する工程を具備する請求項11の等速自在継手の製造方法。   The method for manufacturing a constant velocity universal joint according to claim 11, further comprising a step of fixing a member forming a support portion that receives the outer spherical surface of the inner ring to the outer ring.
JP2005057864A 2005-03-02 2005-03-02 Fixed constant velocity universal joint and its manufacturing method Withdrawn JP2006242264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005057864A JP2006242264A (en) 2005-03-02 2005-03-02 Fixed constant velocity universal joint and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005057864A JP2006242264A (en) 2005-03-02 2005-03-02 Fixed constant velocity universal joint and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006242264A true JP2006242264A (en) 2006-09-14

Family

ID=37048888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005057864A Withdrawn JP2006242264A (en) 2005-03-02 2005-03-02 Fixed constant velocity universal joint and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006242264A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168642A1 (en) * 2017-03-17 2018-09-20 Ntn株式会社 Fixed-type constant velocity universal joint

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168642A1 (en) * 2017-03-17 2018-09-20 Ntn株式会社 Fixed-type constant velocity universal joint
JP2018155321A (en) * 2017-03-17 2018-10-04 Ntn株式会社 Stationary constant velocity universal joint
CN110431323A (en) * 2017-03-17 2019-11-08 Ntn株式会社 Fixed-type constant-velocity Hooks coupling universal coupling
CN110431323B (en) * 2017-03-17 2022-07-15 Ntn株式会社 Fixed constant velocity universal joint

Similar Documents

Publication Publication Date Title
CN102575720B (en) Fixed type constant velocity universal joint
JP2006266329A (en) Fixed type constant velocity universal joint
JP2006242263A (en) Fixed constant velocity universal joint and its manufacturing method
JP2006242264A (en) Fixed constant velocity universal joint and its manufacturing method
JP2009079684A (en) Fixed type constant velocity universal joint
JP2008286330A (en) Tripod-type constant velocity universal joint
JP2007120546A (en) Fixed type constant velocity universal joint and its assembling method
JP2007232192A (en) Fixed type constant velocity universal joint
JP2007120615A (en) Fixed type constant velocity universal joint
JP2009074594A (en) Sliding type constant velocity universal joint
JP2007078081A (en) Sliding type constant velocity universal joint and its manufacturing method
JP2008019961A (en) Fixed constant velocity universal joint
JP2007100938A (en) Fixed type constant velocity universal joint
JP2007078124A (en) Fixed type constant velocity universal joint
WO2017141731A1 (en) Stationary constant-velocity universal joint
JP2007078123A (en) Fixed type constant velocity universal joint
JP2006275239A (en) Shaft fitting structure of constant velocity joint
JP2008281182A (en) Tripod type constant velocity universal joint
JP2009014179A (en) Tripod-type constant velocity universal joint
JP2003176833A (en) Double offset type uniform universal joint
JP5398968B2 (en) Fixed constant velocity universal joint
JP4624892B2 (en) Constant velocity universal joint
JP2011069404A (en) Fixed type constant velocity universal joint
JP2009121667A (en) Sliding type constant velocity universal joint
JP2008261390A (en) Fixed constant velocity universal joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080121

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080610