JP2007120615A - Fixed type constant velocity universal joint - Google Patents

Fixed type constant velocity universal joint Download PDF

Info

Publication number
JP2007120615A
JP2007120615A JP2005313229A JP2005313229A JP2007120615A JP 2007120615 A JP2007120615 A JP 2007120615A JP 2005313229 A JP2005313229 A JP 2005313229A JP 2005313229 A JP2005313229 A JP 2005313229A JP 2007120615 A JP2007120615 A JP 2007120615A
Authority
JP
Japan
Prior art keywords
inner ring
cage
ring
ball
spherical surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005313229A
Other languages
Japanese (ja)
Inventor
Keisuke Sone
啓助 曽根
Hirokazu Oba
浩量 大場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2005313229A priority Critical patent/JP2007120615A/en
Publication of JP2007120615A publication Critical patent/JP2007120615A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)
  • Automatic Assembly (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fixed type constant velocity universal joint having an inner ring, a cage and a torque transmitting ball formed in a temporarily assembled unit, the cage having a joint-corner-side end which is thin and liable to strength poverty but becomes thicker for more strength. <P>SOLUTION: In the fixed type constant velocity universal joint, the inner peripheral face of the cage 40 contacting the inner ring 20 consists of a spherical portion 46a located on the opening side of an outer ring 10 and a cylindrical porion 46b located on the corner side of the outer ring 10. The cylindrical portion 10b permits the axial movement of the inner ring 20 in a predetermined range, and when the inner ring 20 is at an axial-movement stroke end, the torque transmitting ball 30 is stored in a pocket 42 of the cage 40. An inner diameter B<SB>6</SB>of the cage 40, located on the outer ring corner side of the pocket 42, is set to be smaller than an cage inner diameter B<SB>5</SB>which restricts the axial-movement stroke end of the inner ring 20 and to be larger than a maximum diameter A<SB>2</SB>of a non-spherical portion of the inner ring 20. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は固定式等速自在継手に係り、特に、内輪、ケージおよびトルク伝達ボールをユニットハンドリング可能な仮組みユニットにして外輪に同軸方向から装入する固定式等速自在継手のケージ強度を向上させたものに関する。   The present invention relates to a fixed type constant velocity universal joint, and in particular, improves the cage strength of a fixed type constant velocity universal joint in which an inner ring, a cage and a torque transmitting ball are made into a temporary assembly unit capable of unit handling and are inserted into an outer ring from the same direction. About what

固定式等速自在継手は、連結した駆動側と従動側の二軸間で角度変位のみを許容するもので、自動車のドライブシャフトのアクスル連結部や、各種産業機械の動力伝達系において使用される。この固定式等速自在継手の種類として、従来、ゼッパ型等速自在継手やアンダーカットフリー型(以下UJ型という)等速自在継手が知られている。   Fixed type constant velocity universal joints allow only angular displacement between the connected drive side and driven side shafts, and are used in axle connection parts of automobile drive shafts and power transmission systems of various industrial machines. . As a type of the fixed type constant velocity universal joint, conventionally, a Zepper type constant velocity universal joint and an undercut free type (hereinafter referred to as UJ type) constant velocity universal joint are known.

固定式等速自在継手であるゼッパ型等速自在継手は、外輪、内輪、ボールおよびケージから成る。外輪の内球面と内輪の外球面には、複数の曲線状のボール溝が等間隔で形成される。ボールは外輪ボール溝と内輪ボール溝間に組込まれ、ケージは外輪と内輪間に組込まれる。UJ型等速自在継手は、ゼッパ型等速自在継手よりも高作動角を目的として開発されたもので、外輪の案内溝のボール中心軌跡が、上記ゼッパ型の子午線の円弧のうち、継手中心を通る軸直角断面より外輪の開口側の部分が継手軸と平行な直線となっている(特許文献1参照)。   A zeppa type constant velocity universal joint which is a fixed type constant velocity universal joint includes an outer ring, an inner ring, a ball and a cage. A plurality of curved ball grooves are formed at equal intervals on the inner spherical surface of the outer ring and the outer spherical surface of the inner ring. The ball is assembled between the outer ring ball groove and the inner ring ball groove, and the cage is assembled between the outer ring and the inner ring. The UJ type constant velocity universal joint was developed for the purpose of higher operating angle than the Zepper type constant velocity universal joint. The ball center locus of the guide groove of the outer ring is the center of the joint among the arcs of the Zepper type meridian. The section on the opening side of the outer ring is a straight line parallel to the joint axis from the cross section perpendicular to the axis passing through (see Patent Document 1).

このような固定式等速自在継手の外輪に対してケージを組み付ける場合、特許文献1に記載された固定式等速自在継手では、まずケージを外輪内に入れ、次に内輪をそのケージの内側を通過させて外輪内の、正規位置よりも奥側に置き、その状態で、トルク伝達ボール(以下、単に「ボール」という。)を内側からケージのポケットに入れ込み、その後、内輪を正規位置に戻し、最後に、内輪を軸方向で支持する部材を入れて外輪に固定する。
特開平6−193645号公報(図6〜図9)
When the cage is assembled to the outer ring of such a fixed type constant velocity universal joint, in the fixed type constant velocity universal joint described in Patent Document 1, the cage is first placed in the outer ring, and then the inner ring is placed inside the cage. Passing through the outer ring, place it on the back side of the normal position, and in that state, insert the torque transmission ball (hereinafter simply referred to as “ball”) into the cage pocket from the inside, and then place the inner ring in the normal position. Finally, a member that supports the inner ring in the axial direction is inserted and fixed to the outer ring.
JP-A-6-193645 (FIGS. 6 to 9)

特許文献1に記載された固定式等速自在継手は、その組立方法に起因して内輪のトラック溝が浅く、トルク負荷容量が小さくなる。つまり、外輪にケージを挿入した後、そのケージの内側に内輪を挿入し、内輪を外輪の底部まで押し込んだ状態にしてケージの内側からボールをポケット内に装入するのであるが、内輪を外輪の底部まで押し込むために、内輪の外径をケージの内径よりも小さく設定する必要がある。ここで、内輪に嵌着される中間軸の外径は規定値であることから、内輪の外径を小さくすると内輪のトラック溝が浅くなる。その結果、トルク負荷容量が小さくなるという問題が発生する。   The fixed type constant velocity universal joint described in Patent Document 1 has a shallow track groove in the inner ring due to its assembling method, and the torque load capacity becomes small. In other words, after inserting the cage into the outer ring, the inner ring is inserted inside the cage, the inner ring is pushed down to the bottom of the outer ring, and the ball is inserted into the pocket from the inside of the cage. In order to push down to the bottom of the inner ring, it is necessary to set the outer diameter of the inner ring smaller than the inner diameter of the cage. Here, since the outer diameter of the intermediate shaft fitted to the inner ring is a specified value, the track groove of the inner ring becomes shallower when the outer diameter of the inner ring is reduced. As a result, there arises a problem that the torque load capacity is reduced.

また、特許文献1に記載された固定式等速自在継手では、外輪の底に配置された底部材の凹球面で内輪の外球面を軸方向に支持する構造となっている。このように内輪を軸方向に支持する底部材の凹球面が継手中心軸線を含む比較的狭い範囲に位置しているため、大作動角時の等速性を維持することが困難であり、振動や異音などといった問題や、底部材の凹球面と内輪の外球面との相対変位量が大きいことから発熱量や摩耗量が大きくなるといった問題がある。加えて、外輪およびケージの内側からボールを入れるという作業は煩雑で、組立工程における作業能率が悪い。   Further, the fixed type constant velocity universal joint described in Patent Document 1 has a structure in which the outer spherical surface of the inner ring is supported in the axial direction by the concave spherical surface of the bottom member arranged on the bottom of the outer ring. Since the concave spherical surface of the bottom member supporting the inner ring in the axial direction is located in a relatively narrow range including the joint central axis, it is difficult to maintain constant velocity at a large operating angle, and vibration There is a problem that the amount of heat generation and wear increases due to a large relative displacement between the concave spherical surface of the bottom member and the outer spherical surface of the inner ring. In addition, the work of putting the ball from the inside of the outer ring and the cage is complicated, and the work efficiency in the assembly process is poor.

そこで、前記課題を解決するため、内輪、ケージおよびトルク伝達ボールを、ユニットハンドリング可能な仮組みユニットにした固定式等速自在継手が本願出願人によって提案されている(特願2005−57857号、特願2005−57864号)。この固定式等速自在継手では、ケージ内に内輪を装入後、ボールをケージ外側からポケットに装入して仮組みユニットを得る。この仮組みユニット状態において、ボールの頂部がケージのポケットから外径側にはみ出さないようにして、外輪に同軸方向から装入する。   Therefore, in order to solve the above problems, the present applicant has proposed a fixed type constant velocity universal joint in which an inner ring, a cage and a torque transmission ball are made into a temporarily assembled unit capable of unit handling (Japanese Patent Application No. 2005-57857, Japanese Patent Application No. 2005-57864). In this fixed type constant velocity universal joint, after inserting the inner ring into the cage, the ball is inserted into the pocket from the outside of the cage to obtain a temporary assembly unit. In this temporarily assembled unit state, the top of the ball is inserted into the outer ring from the coaxial direction so as not to protrude from the cage pocket to the outer diameter side.

かかる固定式等速自在継手では、仮組みユニットに既にボールが組込まれているので、内輪を外輪の底部まで押し込む必要がない。   In such a fixed type constant velocity universal joint, since the ball is already assembled in the temporary assembly unit, it is not necessary to push the inner ring down to the bottom of the outer ring.

しかし、提案された固定式等速自在継手の仮組みユニットにおいて、ボールの頂部がケージのポケットから外径側にはみ出さないようにするためには、内輪をケージに対して相対的に軸方向のストローク端まで寄せた状態にしなければならない。ケージの継手奥側端部の外径を一定とした場合、内輪のストロークを継手奥側に向けて深く設定すると、その分だけケージの継手奥側端部の肉厚が薄くなってしまう。すなわち、内輪のストロークを継手奥側に向けて深くするにつれてボールをポケット内に余裕をもって収容することができる反面、ケージの継手奥側端部の内径は大きくなってしまう。   However, in the proposed temporary assembly unit of the fixed type constant velocity universal joint, in order to prevent the top of the ball from protruding from the cage pocket to the outer diameter side, the inner ring is axially moved relative to the cage. Must be close to the stroke end. If the outer diameter of the inner joint end of the cage is constant, if the inner ring stroke is set deeper toward the inner joint side, the thickness of the inner joint end of the cage will be reduced by that amount. That is, as the stroke of the inner ring is deepened toward the joint back side, the ball can be accommodated in the pocket with a margin, while the inner diameter of the joint back side end portion of the cage increases.

また、提案された固定式等速自在継手では、外輪内に仮組みユニットを装入後、内輪を相対的にケージから引抜く方向に移動させてボールに正規位置を与えるため、ケージと内輪とが継手奥側では非接触となり、継手開口側のみの接触となる。継手の軸方向力は外輪開口側だけで内外輪とケージとの接触により支持されるから、外輪開口側内球面とケージ外球面との間の接触状況が厳しくなって継手の強度と耐久性が低下する。   In addition, in the proposed fixed constant velocity universal joint, the temporary assembly unit is inserted into the outer ring, and then the inner ring is moved in a direction that is relatively pulled out of the cage to give the ball a normal position. However, there is no contact on the joint back side, and contact is only on the joint opening side. Since the axial force of the joint is supported by the contact between the inner and outer rings and the cage only on the outer ring opening side, the contact situation between the outer ring opening side inner spherical surface and the cage outer spherical surface becomes severe, and the strength and durability of the joint are reduced. descend.

本発明の目的は、内輪、ケージおよびトルク伝達ボールをユニットハンドリング可能な仮組みユニットにした固定式等速自在継手において、薄肉で強度不足になりがちなケージの継手奥側端部を厚肉化してその強度アップを図ることにある。本発明の別の目的は、継手が高作動角をとった状態で継手奥側において内輪外球面がケージ内径面に当接してケージに作用する継手軸方向力の一部を内輪で支持することにより外輪開口側での外輪とケージ間の接触状況を緩和し継手の強度と耐久性を向上させることにある。   An object of the present invention is to increase the thickness of the inner end of the joint of the cage, which tends to be thin and insufficient in strength, in a fixed constant velocity universal joint in which the inner ring, the cage and the torque transmission ball are a temporary assembly unit capable of unit handling. The purpose is to increase the strength. Another object of the present invention is to support a portion of the joint axial force acting on the cage by the inner ring outer spherical surface abutting the cage inner diameter surface on the inner side of the joint with the joint having a high operating angle. Therefore, the contact state between the outer ring and the cage on the outer ring opening side is relaxed to improve the strength and durability of the joint.

本発明は、一端にて開口し内球面に軸方向に延びる複数のボール溝を形成した外輪と、外球面に軸方向に延びる複数のボール溝を形成した内輪と、対をなす外輪のボール溝と内輪のボール溝との間に組み込んだトルク伝達ボールと、外輪の内球面と内輪の外球面との間に介在してトルク伝達ボールをポケット内で軸方向に保持するケージとを具備し、内輪と接するケージの内周面が、外輪の開口側に位置する球面部と、外輪の奥側に位置する円筒部とからなり、前記円筒部は内輪の軸方向移動を所定範囲にわたって許容し、内輪が軸方向移動のストローク端にあるときトルク伝達ボールをケージのポケット内に収めるようにした固定式等速自在継手において、前記ケージの内径であって前記ポケットの外輪奥側に位置する内径を、前記内輪の軸方向移動のストローク端を規制するケージ内径よりも小さく、かつ、前記内輪の球欠部最大径よりも大きく設定したことを特徴とする。   The present invention provides an outer ring having a plurality of ball grooves that are open at one end and extend axially on an inner spherical surface, an inner ring that has a plurality of ball grooves extending axially on the outer spherical surface, and a ball groove of a pair of outer rings. A torque transmission ball incorporated between the inner ring and a ball groove of the inner ring, and a cage that is interposed between the inner spherical surface of the outer ring and the outer spherical surface of the inner ring and holds the torque transmission ball in the pocket in the axial direction. The inner peripheral surface of the cage in contact with the inner ring is composed of a spherical portion located on the opening side of the outer ring and a cylindrical portion located on the inner side of the outer ring, the cylindrical portion allows axial movement of the inner ring over a predetermined range, In the fixed type constant velocity universal joint in which the torque transmission ball is accommodated in the cage pocket when the inner ring is at the stroke end of the axial movement, the inner diameter located on the inner side of the outer ring of the pocket is the inner diameter of the cage. The inner ring Smaller than the cage inner diameter for regulating the stroke end of the movement, and characterized by being larger than the sagittal section the maximum diameter of the inner ring.

ケージの内径であってポケットの外輪奥側は、内輪ボール溝と対向する部位である。この部位はケージ内に内輪を装入する際に内輪の球欠部最大径の通過を許容する一方、内輪、ケージおよびトルク伝達ボールをユニットハンドリング可能な仮組みユニットとする場合に、内輪をケージに対してストローク端まで移動させた状態で内輪ボール溝と対向するが内輪外球面とは干渉しない部位である。ケージに対する内輪ストローク端は、ポケット相互間の柱部の延長上であって継手奥側端部内径に形成した突起によって規制する。このような型式の固定式等速自在継手において、前述のように、ポケットの外輪奥側に位置する内径を、内輪の軸方向移動のストローク端を規制するケージ内径(前記突起の内径)よりも小さく、かつ、内輪の球欠部最大径よりも大きく設定することで、薄肉で強度不足になりがちなケージの継手奥側端部を飛び石状ではあるが厚肉化してその強度アップを図ることができる。   The inner diameter of the cage and the back side of the outer ring of the pocket is a part facing the inner ring ball groove. This part allows the inner ring to pass through the maximum diameter of the ball notch when the inner ring is inserted into the cage. On the other hand, when the inner ring, the cage and the torque transmitting ball are used as a temporary assembly unit capable of unit handling, the inner ring is On the other hand, it is a portion that faces the inner ring ball groove while being moved to the stroke end but does not interfere with the outer ring spherical surface. The inner ring stroke end with respect to the cage is restricted by a protrusion formed on the inner diameter of the inner end of the joint on the extension of the column portion between the pockets. In this type of fixed type constant velocity universal joint, as described above, the inner diameter of the pocket located on the inner side of the outer ring is larger than the inner diameter of the cage that restricts the stroke end of the inner ring in the axial movement (the inner diameter of the protrusion). By setting it to be smaller and larger than the maximum diameter of the inner ring sphere, the inner end of the cage joint, which tends to be thin and insufficient in strength, is shaped like a stepping stone but thickened to increase its strength. Can do.

また本発明は、一端にて開口し内球面に軸方向に延びる複数のボール溝を形成した外輪と、外球面に軸方向に延びる複数のボール溝を形成した内輪と、対をなす外輪のボール溝と内輪のボール溝との間に組み込んだトルク伝達ボールと、外輪の内球面と内輪の外球面との間に介在してトルク伝達ボールをポケット内で軸方向に保持するケージとを具備し、内輪と接するケージの内周面が、外輪の開口側に位置する球面部と、外輪の奥側に位置する円筒部とからなり、前記円筒部は内輪の軸方向移動を所定範囲にわたって許容し、内輪が軸方向移動のストローク端にあるときトルク伝達ボールをケージのポケット内に収めるようにした固定式等速自在継手において、前記ケージの内径であって前記ポケットの外輪奥側に位置する内径を、前記内輪の球欠部最大径よりも小さい最小内径部にするとともに、前記最小内径部の外輪奥側に拡径段部を形成し、前記内輪をケージの軸線と垂直にしてケージ内に装入する際、内輪ボール溝の側面を前記拡径段部のラジアル面にあてがい、内輪の球面心とケージの軸線とをずらし、内輪軸線を内輪半径方向軸線回りに傾けながら内輪をケージ内に装入可能にしたことを特徴とする。   The present invention also provides an outer ring having a plurality of ball grooves that are open at one end and extend axially on the inner spherical surface, an inner ring that has a plurality of ball grooves extending axially on the outer spherical surface, and a pair of outer ring balls. A torque transmission ball incorporated between the groove and the ball groove of the inner ring, and a cage that is interposed between the inner spherical surface of the outer ring and the outer spherical surface of the inner ring and holds the torque transmission ball in the pocket in the axial direction. The inner peripheral surface of the cage in contact with the inner ring is composed of a spherical portion located on the opening side of the outer ring and a cylindrical portion located on the inner side of the outer ring, and the cylindrical portion allows axial movement of the inner ring over a predetermined range. In a fixed type constant velocity universal joint in which the torque transmission ball is accommodated in the cage pocket when the inner ring is at the stroke end of the axial movement, the inner diameter of the cage that is located on the back side of the outer ring of the pocket The above When the inner diameter of the inner ring is perpendicular to the axis of the cage and the inner ring is inserted into the cage. The inner ring ball groove side surface is applied to the radial surface of the diameter-enlarging step, the inner ring spherical center is shifted from the cage axis, and the inner ring can be inserted into the cage while the inner ring axis is tilted about the inner ring radial axis. It is characterized by that.

この固定式等速自在継手は、ケージの継手奥側端部を前述したものよりもさらに厚肉化するものである。すなわち、ケージの内径であってポケットの外輪奥側に位置する内径を、内輪の球欠部最大径よりも小さい最小内径部にするのである。ここまで小径厚肉化すると、従来の方法では内輪をケージ内に装入することができない。そこで、最小内径部の外輪奥側に拡径段部を形成し、この拡径段部に内輪をその軸線を直角にして置き、その球面心とケージ軸線とをずらし、かつ、このずらした状態で内輪の小径側すなわち継手奥側が前記最小内径部を乗り越え可能な位置を探り、その位置で内輪を半径方向軸線回りに傾けながら内輪をケージ内に装入する。この固定式等速自在継手はケージの継手奥側部をさらに厚肉化できるのでさらなる強度アップを図れるうえ、最小内径部を内輪外球面と同じ曲率の凹球面にした場合継手が作動角をとった状態で最小内径部を内輪外球面で支持することも可能となる。これにより、ケージに作用する継手軸方向力の一部を内輪で支持することができ、外輪開口側での外輪とケージ間の接触状況を緩和し継手の強度と耐久性を向上させることができる。   In this fixed type constant velocity universal joint, the joint inner end of the cage is made thicker than that described above. That is, the inner diameter of the cage, which is located on the back side of the outer ring of the pocket, is set to the minimum inner diameter part that is smaller than the maximum diameter of the spherical part of the inner ring. If the diameter is reduced so far, the inner ring cannot be inserted into the cage by the conventional method. Therefore, an enlarged diameter step is formed on the inner diameter part of the outer ring on the inner diameter side, and the inner ring is placed at a right angle on the enlarged diameter step, and the spherical center and the cage axis are shifted. Then, the position where the small diameter side of the inner ring, that is, the joint back side can get over the minimum inner diameter part is searched, and the inner ring is inserted into the cage while the inner ring is inclined around the radial axis at that position. This fixed type constant velocity universal joint can further increase the strength of the cage's inner joint, so that the strength of the cage can be further increased, and when the minimum inner diameter is a concave spherical surface with the same curvature as the inner ring outer spherical surface, the joint takes an operating angle. In this state, the minimum inner diameter portion can be supported by the inner ring outer spherical surface. As a result, a part of the axial force acting on the cage can be supported by the inner ring, the contact state between the outer ring and the cage on the outer ring opening side can be relaxed, and the strength and durability of the joint can be improved. .

本発明は、前述のように、ポケットの外輪奥側に位置する内径を、内輪の軸方向移動のストローク端を規制するケージ内径よりも小さく、かつ、内輪の球欠部最大径よりも大きく設定することで、薄肉で強度不足になりがちなケージの継手奥側端部を厚肉化してその強度アップを図ることができる。
また、ケージの内径であってポケットの外輪奥側に位置する内径を、内輪の球欠部最大径よりも小さい最小内径部にすることにより、ケージの継手奥側部をさらに厚肉化してさらなる強度アップを図ることができる。
また、最小内径部を内輪外球面と同じ曲率の凹球面にした場合継手が作動角をとった状態で最小内径部を内輪外球面で支持することにより、ケージに作用する継手軸方向力の一部を内輪で支持することができ、外輪開口側での外輪とケージ間の接触状況を緩和し継手の強度と耐久性を向上させることができる。
As described above, according to the present invention, the inner diameter of the pocket located on the inner side of the outer ring is set to be smaller than the inner diameter of the cage that regulates the stroke end of the inner ring in the axial direction movement and larger than the maximum diameter of the inner ring. By doing so, it is possible to increase the strength of the cage by increasing the thickness of the end portion on the back side of the joint, which tends to be thin and insufficient in strength.
In addition, the inner diameter of the cage, which is located on the back side of the outer ring of the pocket, is set to the minimum inner diameter part that is smaller than the maximum diameter of the inner ring. Strength can be increased.
Also, when the minimum inner diameter portion is a concave spherical surface having the same curvature as the inner ring outer spherical surface, the joint inner axial outer force is applied to the cage by supporting the minimum inner diameter portion with the inner ring outer spherical surface with the joint at an operating angle. The part can be supported by the inner ring, the contact state between the outer ring and the cage on the outer ring opening side can be relaxed, and the strength and durability of the joint can be improved.

その他、本発明によれば、内輪、ケージおよびトルク伝達ボールを、ユニットハンドリング可能な仮組みユニットにした固定式等速自在継手に特有の以下の効果も勿論得られる。すなわち、固定式等速自在継手の製造すなわち構成要素の組立てが容易となる。一つには、内輪、ケージおよびボールの仮組みユニットがユニットハンドリング可能であり、もう一つは、その仮組みユニットをつくるに際してボールをケージに外側から装入可能なため作業性がよいことによる。   In addition, according to the present invention, the following effects peculiar to the fixed type constant velocity universal joint in which the inner ring, the cage, and the torque transmission ball are made into a temporarily assembled unit capable of unit handling can be obtained. That is, it becomes easy to manufacture a fixed type constant velocity universal joint, that is, to assemble components. One is that the inner ring, cage and ball temporary assembly unit can be unit-handled, and the other is that when making the temporary assembly unit, the ball can be inserted into the cage from the outside, so workability is good. .

内輪とケージとボールをユニットハンドリング可能な仮組みユニットとし、この仮組みユニットと外輪の組み合わせで固定式等速自在継手を構成することで、外輪は用途に応じた種々形状とし、それらの外輪に対して共通の仮組みユニットを使用することができる。たとえば、車種等によって外輪外形やホイールとの連結軸の形状が異なる場合でも仮組みユニットだけは共通のものを使用することができるため、コスト低減に大いに寄与する。   A temporary assembly unit that can handle the inner ring, cage, and ball as a unit, and the combination of the temporary assembly unit and the outer ring constitutes a fixed constant velocity universal joint, so that the outer ring has various shapes according to the application. On the other hand, a common temporary assembly unit can be used. For example, even when the outer ring outer shape or the shape of the connecting shaft with the wheel differs depending on the vehicle type or the like, only the temporary assembly unit can be used, which greatly contributes to cost reduction.

以下、図面に従って本発明の実施の形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1にUJ(アンダーカットフリー)タイプの固定式等速自在継手の縦断面を示す。図示するように、この固定式等速自在継手は、外輪10、内輪20、ボール30、ケージ40およびシャフト50を主要な構成要素とする。外輪10はマウス部10aとステム部10bとからなる。ステム部10bは、この実施の形態では、セレーション部10b1とねじ部10b2とを有する。マウス部10aは、図2および図3に示すように、一端にて開口した椀状である。マウス部10aの内周面(以下、「内球面」という。)12は、継手の連結二軸であるステム部10bとシャフト50の中心軸が交差する点Oを中心とする部分球面である。この内球面12に、軸方向に延びる複数ここでは8本のボール溝14が円周方向に等間隔に形成される。マウス部10aの奥底には短円柱状に隆起した隆起部が形成される。この隆起部の頂面に、凹球面状の球面座18が形成される。球面座18の曲率中心は継手中心Oである。球面座18の周囲には環状空間19が形成される。ステム部10bは、この実施の形態では、セレーション部10b1とねじ部10b2を有する。   FIG. 1 shows a longitudinal section of a UJ (undercut free) type fixed constant velocity universal joint. As shown in the figure, the fixed type constant velocity universal joint includes an outer ring 10, an inner ring 20, a ball 30, a cage 40 and a shaft 50 as main components. The outer ring 10 includes a mouse portion 10a and a stem portion 10b. In this embodiment, the stem portion 10b has a serration portion 10b1 and a screw portion 10b2. As shown in FIGS. 2 and 3, the mouse portion 10 a has a bowl shape opened at one end. An inner peripheral surface (hereinafter referred to as “inner spherical surface”) 12 of the mouse portion 10 a is a partial spherical surface centered at a point O where the stem portion 10 b which is a coupling two axis of the joint and the central axis of the shaft 50 intersect. A plurality, here, eight ball grooves 14 extending in the axial direction are formed on the inner spherical surface 12 at equal intervals in the circumferential direction. A raised portion that is raised in a short columnar shape is formed at the bottom of the mouse portion 10a. A concave spherical surface seat 18 is formed on the top surface of the raised portion. The center of curvature of the spherical seat 18 is the joint center O. An annular space 19 is formed around the spherical seat 18. In this embodiment, the stem portion 10b has a serration portion 10b1 and a screw portion 10b2.

なお、球面座18の径をシャフト50の径よりも大きくし、この拡径した球面座18を含むステム部10bを、図1で破線Pにて示す面を境として外輪10と分離製作し、固定式等速自在継手の組立て最終段階で、ねじ等の結合手段で外輪10と一体化してもよい。このような分離型のステム部ないし拡径球面座18を使用すれば、外輪10内に装入した内輪20にシャフト50を差込む際、後述の図17のように内輪20を傾斜させずに済む。   In addition, the diameter of the spherical seat 18 is made larger than the diameter of the shaft 50, and the stem portion 10b including the expanded spherical seat 18 is manufactured separately from the outer ring 10 with the surface indicated by the broken line P in FIG. At the final stage of assembly of the fixed type constant velocity universal joint, it may be integrated with the outer ring 10 by a coupling means such as a screw. If such a separate stem portion or the expanded spherical seat 18 is used, when the shaft 50 is inserted into the inner ring 20 inserted into the outer ring 10, the inner ring 20 is not inclined as shown in FIG. That's it.

外輪10の開口側端面に、継手が最大作動角をとった時のシャフトとの干渉を避けるため、外側に開いたテーパ状の面取り16aが形成される。この面取り16aと外輪内球面12との間であってボール溝14相互間に円筒部16bが形成される。この円筒部16bは外輪10開口の最小内径を形成する。内輪20、ケージ40およびトルク伝達ボール30で構成される仮組みユニットを外輪10に同軸方向で装入する際、前記円筒部16bの内側を、仮組みユニットのケージ40のポケット42外縁が通過する。   In order to avoid interference with the shaft when the joint takes the maximum operating angle, a tapered chamfer 16a that opens to the outside is formed on the end surface of the outer ring 10 on the opening side. A cylindrical portion 16 b is formed between the chamfer 16 a and the outer ring inner spherical surface 12 and between the ball grooves 14. The cylindrical portion 16b forms the minimum inner diameter of the outer ring 10 opening. When the temporary assembly unit composed of the inner ring 20, the cage 40 and the torque transmission ball 30 is inserted into the outer ring 10 in the coaxial direction, the outer edge of the pocket 42 of the temporary assembly unit cage 40 passes through the inside of the cylindrical portion 16b. .

内輪20は図1および図4に示すように球状で、その部分球面状外周面(以下、「外球面」という。)22に、軸方向に延びる複数ここでは8本のボール溝24が円周方向に等間隔に形成してある。内輪20はスプライン孔26によってシャフト50とトルク伝達可能に結合する。図4において、符号A1およびA2は、それぞれ、内輪20の外球面22の外径および外球面22の中心横断面での最小投影径(球欠部最大径)を示す。 The inner ring 20 has a spherical shape as shown in FIGS. 1 and 4, and a plurality of, here, eight ball grooves 24 extending in the axial direction are formed on the partial spherical outer peripheral surface (hereinafter referred to as “outer spherical surface”) 22. It is formed at equal intervals in the direction. The inner ring 20 is coupled to the shaft 50 by a spline hole 26 so that torque can be transmitted. In FIG. 4, reference signs A 1 and A 2 indicate the outer diameter of the outer spherical surface 22 of the inner ring 20 and the minimum projected diameter (the maximum diameter of the spherical notch portion) in the central cross section of the outer spherical surface 22, respectively.

図1に示す固定式等速自在継手を組立てた状態において球面座18側に位置する内輪20のスプライン孔26の端部は球面座18の外径より大きくしてある。外輪10の球面座18および内輪20の外球面22には熱処理によって表面硬化層が設けてある。図1から分かるように、シャフト50の端面は内輪20の外球面22と実質的に同じ曲率半径の球面で、内輪20にシャフト50を組み付けた状態で両者は一つの球面を形成する。   In the state where the fixed type constant velocity universal joint shown in FIG. 1 is assembled, the end portion of the spline hole 26 of the inner ring 20 located on the spherical seat 18 side is made larger than the outer diameter of the spherical seat 18. The spherical seat 18 of the outer ring 10 and the outer spherical surface 22 of the inner ring 20 are provided with a hardened surface layer by heat treatment. As can be seen from FIG. 1, the end surface of the shaft 50 is a spherical surface having substantially the same radius of curvature as the outer spherical surface 22 of the inner ring 20, and both form one spherical surface when the shaft 50 is assembled to the inner ring 20.

図1に示すように、外輪10のボール溝14の曲率中心O1と内輪20のボール溝24の曲率中心O2は、継手中心Oに対して軸方向に等距離fだけオフセットさせてある。したがって、対をなす内外輪10,20のボール溝14,24は外輪10の大端面側開口に向かって拡開したくさび形状を呈している。 As shown in FIG. 1, the center of curvature O 1 of the ball groove 14 of the outer ring 10 and the center of curvature O 2 of the ball groove 24 of the inner ring 20 are offset from the joint center O by an equal distance f in the axial direction. Therefore, the ball grooves 14 and 24 of the inner and outer rings 10 and 20 forming a pair have a wedge shape that expands toward the large end face side opening of the outer ring 10.

この実施の形態の固定式等速自在継手は、ボール溝14,24にアンダーカットがない(アンダーカットフリー)。すなわち、外輪10のボール溝14は、曲率中心O1を境にして小端面側に位置する円弧底14aと大端面側に位置する軸線と平行なストレート底14bとで構成される。同様に、内輪20のボール溝24は、曲率中心O2を境にして外輪10の大端面側に位置する円弧底24aと外輪10の小端面側に位置する軸線と平行なストレート底24bとで構成される。 The fixed type constant velocity universal joint of this embodiment has no undercut in the ball grooves 14 and 24 (undercut free). That is, the ball groove 14 of the outer ring 10 is composed of a circular arc bottom 14a parallel straight bottom 14b to the axis positioned on the large end face positioned on the small end face side to the center of curvature O 1 as a boundary. Similarly, the ball groove 24 of the inner ring 20 has an arc bottom 24a located on the large end face side of the outer ring 10 and a straight bottom 24b parallel to the axis located on the small end face side of the outer ring 10 with the center of curvature O 2 as a boundary. Composed.

ケージ40は外輪10の内球面12と内輪20の外球面22との間に介在する。ケージ40の円周方向に複数ここでは8個のポケット42が配設してある。ケージ40の外球面44は外輪10の内球面12と接する。図5(A)(B)および図6に示すように、ケージ40の外球面44とポケット42の軸方向に向かい合った側壁とがなす角部41,43の径B2は、ケージ40の外球面44の外径B1よりも小さい。径B2は外輪10の円筒部16bの内径C1より小さくしてある(B2<C1)。これはケージ40を同軸方向に入れ込むとき必要となる寸法関係である。 The cage 40 is interposed between the inner spherical surface 12 of the outer ring 10 and the outer spherical surface 22 of the inner ring 20. A plurality of, here, eight pockets 42 are arranged in the circumferential direction of the cage 40. The outer spherical surface 44 of the cage 40 is in contact with the inner spherical surface 12 of the outer ring 10. As shown in FIGS. 5A and 5B and FIG. 6, the diameter B 2 of the corner portions 41 and 43 formed by the outer spherical surface 44 of the cage 40 and the side wall facing the axial direction of the pocket 42 is the outside of the cage 40. It is smaller than the outer diameter B 1 of the spherical surface 44. Diameter B 2 is are smaller than the inner diameter C 1 of the cylindrical portion 16b of the outer ring 10 (B 2 <C 1). This is a dimensional relationship required when the cage 40 is inserted in the coaxial direction.

ここで、符号41で示す部分の径B2は少し大きくても同軸から少し傾ければ入るが、符号43で示す部分の径B2については上記寸法関係(B2<C1)が必要である。なお、ケージ40の角部41,43に面取りなど径B2を小さくするためのカットする部分を設けてもよい。径B2を小さくすることができれば外輪10の円筒部16bの内径C1も小さくでき、それによりケージ外球面を案内する外輪内球面の範囲を大端面方向に拡張できるため、軸方向すきまが少なくなり等速性、耐久性などがよくなる。 Here, although the diameter B 2 of the portion indicated by reference numeral 41 is a little larger, it can be entered if it is slightly inclined from the same axis, but the above-described dimensional relationship (B 2 <C 1 ) is required for the diameter B 2 of the portion indicated by reference numeral 43. is there. It is also possible to provide a portion to be cut to reduce the diameter B 2 such as chamfering the corners 41 and 43 of the cage 40. If the diameter B 2 can be reduced, the inner diameter C 1 of the cylindrical portion 16b of the outer ring 10 can also be reduced, and thereby the range of the inner ring spherical surface that guides the outer spherical surface of the cage can be expanded in the direction of the large end face. The speed, durability, etc. are improved.

図5(A)から分かるとおり、ケージ40の内周面46は、一点鎖線で示す軸方向中心(図1では継手中心Oと一致)にて互いに滑らかに連続した半径Bの球面部46aと、直径Bの円筒部46bとの組み合わせで構成される(2×B=B)。つまり、軸方向中心から外輪10の大端面側は内輪20の外球面22と接して内輪20を半径方向および軸方向に支持する球面部46aとなっており、軸方向中心から外輪10の小端面側は内輪外球面と接して内輪20を半径方向に支持する円筒部46bとなっている。円筒部46bは、組立ての過程で内輪20を正規位置から軸方向に後退させておくために必要となる(図8、図9参照)。 As can be seen from FIG. 5 (A), the inner circumferential surface 46 of the cage 40 has a spherical portion 46a of radius B 3 was smoothly continuous with each other at the axial center (in FIG. 1 coincide with the joint center O) as indicated by the dashed line consists of the combination of the cylindrical portion 46b of the diameter B 4 (2 × B 3 = B 4). That is, the large end surface side of the outer ring 10 from the center in the axial direction is a spherical surface portion 46a that contacts the outer spherical surface 22 of the inner ring 20 and supports the inner ring 20 in the radial direction and the axial direction, and the small end surface of the outer ring 10 from the axial center. The side is a cylindrical portion 46b that is in contact with the outer ring of the inner ring and supports the inner ring 20 in the radial direction. The cylindrical portion 46b is necessary to retract the inner ring 20 in the axial direction from the normal position during the assembly process (see FIGS. 8 and 9).

円筒部46bの端部に内径側に突出した突起48が設けてある。この突起48は、少なくとも図5(A)に示すように、ポケット相互間の柱部の延長線上にあればよい。突起48は、図8に示すように、内輪20、ボール30およびケージ40を仮組みユニットとしたとき、内輪20の脱落を防止するための、言い換えれば内輪20の軸方向移動のストローク端を規定するストッパーとして機能する(図8、図9(A)参照)。そのため突起48の内径B5は内輪20の外球面22の外径A1より小さく設定してある(B5<A1)。 A protrusion 48 protruding toward the inner diameter side is provided at the end of the cylindrical portion 46b. As shown in FIG. 5A, at least the protrusions 48 need only be on the extended lines of the pillars between the pockets. As shown in FIG. 8, the protrusion 48 defines the stroke end of the axial movement of the inner ring 20 in order to prevent the inner ring 20 from falling off when the inner ring 20, the ball 30 and the cage 40 are used as a temporary assembly unit. It functions as a stopper (see FIGS. 8 and 9A). Therefore, the inner diameter B 5 of the projection 48 is set smaller than the outer diameter A 1 of the outer spherical surface 22 of the inner ring 20 (B 5 <A 1 ).

突起48の相互間のケージ40内面、すなわちポケット42の継手奥側内面に、最小内径部49が形成される。この最小内径部49の内径Bは、突起48の内径より小さく、かつ、内輪の球欠部最大径Aよりも大きく設定している(A<B<B)。最小内径部はポケットと同数で形成され、平面視では矩形状領域を成す。 A minimum inner diameter portion 49 is formed on the inner surface of the cage 40 between the protrusions 48, that is, on the inner surface of the back side of the joint of the pocket 42. The inner diameter B 6 of the minimum inner diameter portion 49 is smaller than the inner diameter of the projection 48, and is set to be larger than the inner ring of the spherical segment portion maximum diameter A 2 (A 2 <B 6 <B 5). The minimum inner diameter portion is formed in the same number as the pocket, and forms a rectangular region in plan view.

外輪10のボール溝14と内輪20のボール溝24は対をなし、各対のボール溝14,24間にボール30が組み込んである。ケージ40の各ポケット42に一つのボール30が収容される。そして、ケージ40は、すべてのボール30を外輪10と内輪20のなす角度すなわち継手の作動角の二等分面上に位置させるように作用し、これにより、継手の等速性が維持される。   The ball groove 14 of the outer ring 10 and the ball groove 24 of the inner ring 20 make a pair, and a ball 30 is incorporated between each pair of ball grooves 14 and 24. One ball 30 is accommodated in each pocket 42 of the cage 40. The cage 40 acts so that all the balls 30 are positioned on the bisector of the angle formed by the outer ring 10 and the inner ring 20, that is, the operating angle of the joint, whereby the constant velocity of the joint is maintained. .

次に、上述の構成の固定式等速自在継手の製造方法、つまり、外輪10、内輪20、ボール30、ケージ40からなる構成要素の組立手順を説明する。   Next, a manufacturing method of the fixed type constant velocity universal joint having the above-described configuration, that is, an assembly procedure of components including the outer ring 10, the inner ring 20, the ball 30, and the cage 40 will be described.

まず、図7に示すように、内輪20をケージ40に、軸線を直交させて入れ込む。このとき、内輪20の外球面22の中心横断面での最小投影径A2(図4)とケージ40の突起48の内径B5(図8)との大小関係(A2<B5)を利用する。そして、内輪20を回して両者の軸線を一致させて同軸となす。なお、径差(B5−A2)が小さい場合は最初から同軸方向にかち込んでもよい。 First, as shown in FIG. 7, the inner ring 20 is inserted into the cage 40 with the axes orthogonal to each other. At this time, the magnitude relationship (A 2 <B 5 ) between the minimum projected diameter A 2 (FIG. 4) in the central cross section of the outer spherical surface 22 of the inner ring 20 and the inner diameter B 5 (FIG. 8) of the projection 48 of the cage 40 is expressed. Use. Then, the inner ring 20 is turned so that the two axes coincide with each other to be coaxial. If the diameter difference (B 5 -A 2 ) is small, it may be pushed in the same direction from the beginning.

内輪20をケージ40の円筒部46b内で軸方向に移動させて内輪20の外球面22をケージ40の突起48に接触させ、両者を図8に示す位置関係となす。このとき内輪20は、上述の突起48のストッパー機能により、外球面22がケージ40の突起48に当たった位置、つまり、正規位置から符号Xで示す距離だけ後退した位置で停止する。このとき、ポケット42の継手奥側に位置する最小内径部49は内輪20のボール溝24と対向するから、内輪20の外球面22との干渉は起こらない。   The inner ring 20 is moved in the axial direction within the cylindrical portion 46b of the cage 40, and the outer spherical surface 22 of the inner ring 20 is brought into contact with the projection 48 of the cage 40, so that both are in the positional relationship shown in FIG. At this time, the inner ring 20 stops at the position where the outer spherical surface 22 hits the protrusion 48 of the cage 40, that is, the position retracted by the distance indicated by the symbol X from the normal position by the stopper function of the protrusion 48 described above. At this time, since the smallest inner diameter portion 49 located on the joint back side of the pocket 42 faces the ball groove 24 of the inner ring 20, interference with the outer spherical surface 22 of the inner ring 20 does not occur.

図10に示すように、内輪20のボール溝24の位相とケージ40のポケット42の位相を合わせた状態で、外側からポケット42にボール30を入れる。ボール30を内輪20のボール溝24に突き当たるまで押し込む。この状態でボール30の頂部すなわち外接円径D1を、ケージ40のポケット42の角部41,43の径B2(図5(B)、図6)以下とする。 As shown in FIG. 10, the ball 30 is inserted into the pocket 42 from the outside in a state where the phase of the ball groove 24 of the inner ring 20 and the phase of the pocket 42 of the cage 40 are matched. The ball 30 is pushed in until it hits the ball groove 24 of the inner ring 20. The top or the circumscribed circle diameter D 1 of the ball 30 in this state, the diameter B 2 corners 41, 43 of the pocket 42 of the cage 40 (FIG. 5 (B), the Fig. 6) or less.

なお、図9(A)に符号D2で示す、内輪20のボール溝24の底からケージ40の球面部46aとポケット42の球面部側側壁とがなす角部までの距離が、ボール径より小さくなる寸法関係に設定しておくと、ボール30が内径側に脱落せず、ユニットハンドリングが可能となって取り扱いが非常に容易となる。かかる寸法関係は図8を参照して上に述べたケージ40の突起48の位置(X)に依存する。なお、通常、ボール30とポケット42の間には締めしろがあるため外径側へは脱落しにくくなっている。 Incidentally, denoted by reference numeral D 2 in FIG. 9 (A), the distance from the bottom of the ball groove 24 of the inner ring 20 to the corner portion formed between the spherical portion side wall of the spherical portion 46a and the pocket 42 of the cage 40, a ball diameter If the dimensional relationship is set to be small, the ball 30 does not fall off to the inner diameter side, unit handling is possible, and handling becomes very easy. Such a dimensional relationship depends on the position (X) of the protrusion 48 of the cage 40 described above with reference to FIG. Normally, there is an interference between the ball 30 and the pocket 42, so that it is difficult for the ball 30 and the pocket 42 to drop off.

次に、図11に示すように、内輪20、ケージ40、ボール30の仮組みユニットを外輪10の開口から挿入する。この挿入は、図12に示すように、隣接するボール間の角度をαとすると、外輪10のボール溝14と内輪20のボール溝24の位相をα/2だけずらした状態で行う。その結果、ケージ40の外球面44が外輪10の内球面12に当接し、その時点で内輪20の外球面22が外輪10の底の環状空間19を占め、図13および図14に示す状態となる。   Next, as shown in FIG. 11, the temporary assembly unit of the inner ring 20, the cage 40, and the ball 30 is inserted from the opening of the outer ring 10. As shown in FIG. 12, this insertion is performed with the phase of the ball groove 14 of the outer ring 10 and the ball groove 24 of the inner ring 20 being shifted by α / 2, where α is the angle between adjacent balls. As a result, the outer spherical surface 44 of the cage 40 abuts on the inner spherical surface 12 of the outer ring 10, and at that time, the outer spherical surface 22 of the inner ring 20 occupies the annular space 19 at the bottom of the outer ring 10, as shown in FIGS. 13 and 14. Become.

仮組みユニットのボール30は、ボール頂部が外輪10の円筒部16bを通過できればよく、ここを通過した後は、外輪10の内球面12に沿って半径方向外側に移動できる。   The ball 30 of the temporarily assembled unit only needs to be able to pass the cylindrical portion 16b of the outer ring 10 at the top of the ball, and after passing through this, the ball 30 can move radially outward along the inner spherical surface 12 of the outer ring 10.

ここで、内輪20の外球面22が外輪10の底部に当たる接触部の軸方向位置は、より大端面側にある方が、継手の軸方向コンパクト化を図る上で有利であり、また、球面座18と環状空間19の底部との段差が少なくてすむため加工上も有利である。そこで、ボールが外輪円筒部16bを通過した後、ケージ40の外球面44が外輪10の内球面12に当たる前に先に内輪20の外球面22が外輪10の底部に当たり、内輪のそれ以上の移動が阻止される結果、ケージがさらに外輪マウス部の奥側に進むにつれてボールが半径方向外側に飛び出すようにすれば、前記接触部をより大端面側に位置させることができる。   Here, the axial position of the contact portion where the outer spherical surface 22 of the inner ring 20 is in contact with the bottom of the outer ring 10 is more advantageous in terms of reducing the axial size of the joint. Since there is little difference in level between 18 and the bottom of the annular space 19, it is advantageous in processing. Therefore, after the ball has passed through the outer ring cylindrical portion 16b, before the outer spherical surface 44 of the cage 40 hits the inner spherical surface 12 of the outer ring 10, the outer spherical surface 22 of the inner ring 20 hits the bottom of the outer ring 10 and the inner ring moves further. As a result, the contact portion can be positioned on the larger end face side if the ball jumps radially outward as the cage further advances to the inner side of the outer ring mouth portion.

次に、図15に示すように、仮組みユニット(20,30,40)と外輪10の位相をα/2角ずらして内外輪10,20のボール溝14,24の位相を一致させる。そして、図16に示すように、内輪20のスプライン孔26に形成したクリップ溝27に治具54を引っ掛けて内輪20を外輪10の開口側に向けて軸方向に移動させ、内輪20の外球面22をケージ40の球面部46aに当接させる。このとき、内輪20の軸方向移動に伴ってボール30が半径方向外側に移動し、内輪20とボール30が正規位置を占めるに至る。   Next, as shown in FIG. 15, the phases of the temporarily assembled units (20, 30, 40) and the outer ring 10 are shifted by α / 2 angles to match the phases of the ball grooves 14, 24 of the inner / outer rings 10, 20. Then, as shown in FIG. 16, a jig 54 is hooked on the clip groove 27 formed in the spline hole 26 of the inner ring 20 to move the inner ring 20 in the axial direction toward the opening side of the outer ring 10. 22 is brought into contact with the spherical surface portion 46 a of the cage 40. At this time, the ball 30 moves radially outward as the inner ring 20 moves in the axial direction, and the inner ring 20 and the ball 30 occupy the normal position.

次に、図17に示すように、外輪10に対して内輪20を傾けて内輪20の外球面22を外輪10の球面座18に接触させた状態で、内輪20のスプライン孔26にシャフト50を挿入してクリップ52で抜け止めをする。このとき内輪20を傾けておくのは、同軸状態では内輪20が環状空間19に逃げ込んでしまうからである。そして、シャフト50を外輪10と同軸に戻すことにより固定式等速自在継手が完成する(図1)。   Next, as shown in FIG. 17, the shaft 50 is inserted into the spline hole 26 of the inner ring 20 while the inner ring 20 is inclined with respect to the outer ring 10 and the outer spherical surface 22 of the inner ring 20 is in contact with the spherical seat 18 of the outer ring 10. Insert and prevent the clip 52 from coming off. The reason why the inner ring 20 is tilted at this time is that the inner ring 20 escapes into the annular space 19 in the coaxial state. Then, the fixed constant velocity universal joint is completed by returning the shaft 50 to the same axis as the outer ring 10 (FIG. 1).

図18および図19に示す実施の形態では内輪20’につば28が設けてある。つば28は外輪10の開口側に位置し、治具56を引っ掛けるための凹部29を有する。治具56を利用して、内輪20を外輪10の開口側に向けて軸方向に引き出し、そのままの状態で、内輪20のスプライン孔26にシャフト50を押し込み、クリップ52で抜け止めをする。   In the embodiment shown in FIGS. 18 and 19, a collar 28 is provided on the inner ring 20 '. The collar 28 is positioned on the opening side of the outer ring 10 and has a recess 29 for hooking the jig 56. Using the jig 56, the inner ring 20 is pulled in the axial direction toward the opening side of the outer ring 10, and the shaft 50 is pushed into the spline hole 26 of the inner ring 20 as it is and the clip 52 prevents the inner ring 20 from coming off.

いずれの実施の形態でも、外輪10に設けた球面座18で内輪20,20’の外球面22を軸方向に支持させるとともに、内輪20,20’の外球面22をケージ40の円筒部46bで半径方向に支持させた構造であるため、十分なトルク負荷容量を確保することができ、振動や異音の発生を防止し、等速性を維持することができる。   In any embodiment, the outer spherical surface 22 of the inner rings 20 and 20 ′ is supported in the axial direction by the spherical seat 18 provided on the outer ring 10, and the outer spherical surface 22 of the inner rings 20 and 20 ′ is supported by the cylindrical portion 46 b of the cage 40. Since the structure is supported in the radial direction, a sufficient torque load capacity can be ensured, vibration and noise can be prevented, and constant velocity can be maintained.

次に、本発明の第2の実施形態を図20〜図24に基づいて説明する。この実施形態は、前述のケージ40の最小内径部49をさらに嵩上げ(厚肉化)して新たな最小内径部49’にするとともに、前述の最小内径部49の継手奥側を肉厚方向に削り込んで拡径段部47としたものである。最小内径部49’は内輪外球面22と同じ曲率の凹球面にして継手が作動角をとった状態で最小内径部49’を内輪外球面22で支持可能とする。拡径段部47は継手の機能面を構成しないので加工精度は低くてもよい。新たな最小内径部49’の内径Bは、内輪の球欠部最大径Aより小さい(B<A)。拡径段部の内径Bは、内輪20の外球面22の外径A1より大きい(A1<B)。最小内径部49’と拡径段部47以外は、前記実施形態と同じである。 Next, a second embodiment of the present invention will be described with reference to FIGS. In this embodiment, the minimum inner diameter portion 49 of the cage 40 is further raised (thickened) to a new minimum inner diameter portion 49 ′, and the joint back side of the aforementioned minimum inner diameter portion 49 is arranged in the thickness direction. A diameter-expanded step 47 is formed by cutting. The minimum inner diameter portion 49 ′ is a concave spherical surface having the same curvature as the inner ring outer spherical surface 22, and the minimum inner diameter portion 49 ′ can be supported by the inner ring outer spherical surface 22 in a state where the joint takes an operating angle. Since the enlarged diameter step portion 47 does not constitute a functional surface of the joint, the processing accuracy may be low. The inner diameter B 7 of the new minimum inner diameter portion 49 'is an inner ring of the spherical segment portion maximum diameter A 2 is smaller than (B 7 <A 2). The inner diameter B 8 of the expanded stepped portion is larger than the outer diameter A 1 of the outer spherical surface 22 of the inner ring 20 (A 1 <B 8 ). Except for the minimum inner diameter portion 49 ′ and the enlarged diameter step portion 47, this embodiment is the same as the above embodiment.

この第2の実施形態では、ケージに対する内輪の装入方法が前述したものと異なる。ケージ40の最小内径部49’の内径Bが、内輪20の球欠部最大径Aより小さいから(B<A)、前述の方法では内輪20を装入することができない。そこで、図21〜図23に示すような独特の装入方法を採用する。まず、図21に示すように、内輪20をケージ40の軸線と直角にした状態で内輪20を左右方向に少し傾けて8つの角部(つのぶ)の半分の4つをケージ40内に入れ込む。ここで角部とは、ボール溝24相互間の外球面22のことである。次に、内輪20の両側にある任意の左右一対のボール溝24の側面を、拡径段部47のラジアル面にあてがう(図22、図23(A)参照)。拡径段部の内径Bはこのために内輪20の外球面22の外径A1より大きくしてある。この状態では内輪20の半分以上がケージ40内に入り込んでいる。 In the second embodiment, the method for inserting the inner ring into the cage is different from that described above. Since the inner diameter B 7 of the smallest inner diameter portion 49 ′ of the cage 40 is smaller than the maximum spherical diameter A 2 of the inner ring 20 (B 7 <A 2 ), the inner ring 20 cannot be inserted by the above-described method. Therefore, a unique charging method as shown in FIGS. First, as shown in FIG. 21, with the inner ring 20 being perpendicular to the axis of the cage 40, the inner ring 20 is slightly tilted in the left-right direction and four half of the eight corners are placed in the cage 40. Include. Here, the corner means the outer spherical surface 22 between the ball grooves 24. Next, the side surfaces of any pair of left and right ball grooves 24 on both sides of the inner ring 20 are applied to the radial surface of the diameter-enlarging step portion 47 (see FIGS. 22 and 23A). For this reason, the inner diameter B 8 of the expanded step portion is larger than the outer diameter A 1 of the outer spherical surface 22 of the inner ring 20. In this state, more than half of the inner ring 20 has entered the cage 40.

次に、内輪20の球面心とケージ40の軸線とをずらす。内輪20は周囲を拡径段部47で囲まれているから、ずらせる最大量は拡径段部47で規制される。内輪20をずらす方向は、図23(A)でいえば左方である。内輪20を左方にずらすことにより、内輪20の外球面22の左側(継手開口側になる)が拡径段部47のラジアル面に当接する。前記内輪角部(つのぶ)はその大端面側に適当なテーパ面22aが付けてあり、このずらし量を確保している。この状態で、内輪20の拡径段部47に当接していない反対側(継手奥側になる)におけるボール溝24の側面が、最小内径部49’を乗り越え可能なケージ40の周方向位置を探る。図23(B)は、拡径段部47のラジアル面に当接していない反対側におけるボール溝24の側面が、最小内径部49’a、49’dを乗り越え可能な周方向位置に来た状態を示す。この状態から、内輪20の軸線を一点鎖線にて示す内輪20の半径方向軸線回りに傾けながら内輪20をケージ40内に装入する(図23(C)参照)。内輪20とケージ40の軸線を一致させて内輪20をストローク端(X)まで移動させた状態が図24である。内輪20の外球面22が突起48と干渉してストローク端が決まる。最小内径部49’は内輪20のボール溝24に入り込むから外球面22と干渉しない。   Next, the spherical center of the inner ring 20 and the axis of the cage 40 are shifted. Since the inner ring 20 is surrounded by the enlarged diameter step portion 47, the maximum amount to be shifted is regulated by the enlarged diameter step portion 47. The direction in which the inner ring 20 is shifted is the left side in FIG. By shifting the inner ring 20 to the left, the left side of the outer spherical surface 22 of the inner ring 20 (becomes the joint opening side) comes into contact with the radial surface of the enlarged diameter step portion 47. The inner ring corner portion (tsubu) is provided with an appropriate taper surface 22a on the large end surface side, and this shift amount is secured. In this state, the circumferential position of the cage 40 where the side surface of the ball groove 24 on the opposite side (behind the joint back side) that is not in contact with the enlarged diameter step portion 47 of the inner ring 20 can get over the minimum inner diameter portion 49 ′. explore. In FIG. 23B, the side surface of the ball groove 24 on the opposite side that is not in contact with the radial surface of the enlarged diameter step portion 47 has come to a circumferential position where it can get over the minimum inner diameter portions 49′a and 49′d. Indicates the state. From this state, the inner ring 20 is inserted into the cage 40 while the axis of the inner ring 20 is tilted about the radial axis of the inner ring 20 indicated by a one-dot chain line (see FIG. 23C). FIG. 24 shows a state where the inner ring 20 is moved to the stroke end (X) with the inner ring 20 and the cage 40 aligned with each other. The outer spherical surface 22 of the inner ring 20 interferes with the projection 48 to determine the stroke end. Since the minimum inner diameter portion 49 ′ enters the ball groove 24 of the inner ring 20, it does not interfere with the outer spherical surface 22.

本発明は以上説明し、かつ、図示した実施の形態に限定されるものではなく、特許請求の範囲に悖ることなく種々の改変態様が可能である。たとえば、図示した実施の形態は8個のトルク伝達ボールを用いたものを例示したが、6個のトルク伝達ボールを用いることも可能である。ただし、トルク伝達ボールを8個とすると、7個以下のトルク伝達ボールを使用するものに比べ、ボール径に対してボールPCDが大きいため、ケージ外球面からのボールの飛び出し量が小さく、内輪、ケージ、ボールからなる仮組みユニットにおいてボールを押し込んだ状態を得るのに半径方向のボールの押し込み量が小さくてすむ。また、ボール径に対してボールPCDが大きいことから、内輪内部にセレーションを確保しやすく、しかも、内輪の、外輪大端面とは反対側に球面部分を確保しやすい。   The present invention is not limited to the embodiment described and illustrated above, and various modifications can be made without departing from the scope of the claims. For example, although the illustrated embodiment exemplifies one using eight torque transmitting balls, it is also possible to use six torque transmitting balls. However, if the number of torque transmission balls is eight, the ball PCD is larger than the ball diameter compared to the one using seven or less torque transmission balls, so the amount of ball jumping out from the cage outer spherical surface is small, the inner ring, In order to obtain a state in which the ball is pushed in a temporary assembly unit including a cage and a ball, the pushing amount of the ball in the radial direction is small. In addition, since the ball PCD is large with respect to the ball diameter, it is easy to ensure serration inside the inner ring, and it is easy to secure a spherical surface portion on the opposite side of the inner ring from the large end surface of the outer ring.

本発明の実施の形態を示す固定式等速自在継手の縦断面図。The longitudinal cross-sectional view of the fixed type constant velocity universal joint which shows embodiment of this invention. 外輪の要部縦断面図。The principal part longitudinal cross-sectional view of an outer ring | wheel. 図2の外輪の右側面図。The right view of the outer ring | wheel of FIG. 内輪の端面図であるIt is an end view of an inner ring (A)はケージの縦断面図、(B)はポケット回りの縦断面図。(A) is a longitudinal sectional view of the cage, (B) is a longitudinal sectional view around the pocket. 図5のケージの左側面図。FIG. 6 is a left side view of the cage of FIG. 5. 内輪をケージに組み込む過程を示す説明図。Explanatory drawing which shows the process in which an inner ring | wheel is integrated in a cage. 内輪とケージの位置関係を示す要部縦断面図。The principal part longitudinal cross-sectional view which shows the positional relationship of an inner ring | wheel and a cage. (A)は内輪とケージのサブアセンブリにボールを組み込んで仮組みユニットとなす過程を示す縦断面図、(B)はボールを省略した仮組みユニットの側面図。(A) is a longitudinal sectional view showing a process of incorporating a ball into a subassembly of an inner ring and a cage to form a temporarily assembled unit, and (B) is a side view of the temporarily assembled unit with the ball omitted. 図9(A)の仮組みユニットの左側面図。The left view of the temporary assembly unit of FIG. 内輪とケージとボールの仮組みユニットを外輪に組み込む過程を示す要部縦断面図。The principal part longitudinal cross-sectional view which shows the process in which the temporary assembly unit of an inner ring | wheel, a cage, and a ball | bowl is integrated in an outer ring | wheel. 仮組みユニットを外輪に組み込んだ状態の端面図。The end view of the state which installed the temporary assembly unit in the outer ring. 図12のXIII−XIII断面図。XIII-XIII sectional drawing of FIG. 図12のXIV−XIV断面図。XIV-XIV sectional drawing of FIG. 内外輪のボール溝の位相を一致させた状態の図12と類似の端面図。FIG. 13 is an end view similar to FIG. 12 in a state where the phases of the ball grooves of the inner and outer rings are matched. 図15の継手の要部縦断面図。The principal part longitudinal cross-sectional view of the coupling of FIG. シャフトを押し込んだ状態の図15の継手の要部縦断面図。The principal part longitudinal cross-sectional view of the coupling of FIG. 15 of the state which pushed in the shaft. 別の実施の形態を示す図16と類似の断面図。Sectional drawing similar to FIG. 16 which shows another embodiment. 別の実施の形態を示す図17と類似の断面図。Sectional drawing similar to FIG. 17 which shows another embodiment. (A)はケージの端面図、(B)はケージの縦断面図、(C)はポケット周りのケージ内面側面図。(A) is an end view of the cage, (B) is a longitudinal sectional view of the cage, and (C) is a side view of the cage inner surface around the pocket. 内輪装入過程を示すケージの縦断面図。The longitudinal cross-sectional view of the cage which shows an inner ring | wheel insertion process. 内輪装入過程を示すケージの縦断面図。The longitudinal cross-sectional view of the cage which shows an inner ring | wheel insertion process. (A)〜(C)は内輪装入過程を示すケージの端面図。(A)-(C) is an end view of the cage showing the inner ring charging process. 内輪装入完了状態のケージの縦断面図。The longitudinal cross-sectional view of the cage of an inner ring | wheel insertion completion state.

符号の説明Explanation of symbols

10 外輪
10a マウス部
10b ステム部
10b1 セレーション部
10b2 ねじ部
12 内球面
14,24 ボール溝
14a 円弧底
14b ストレート底
16a 面取り
16b 円筒部
18 球面座
19 環状空間
20 内輪
22 外球面
24 ボール溝
24a 円弧底
24b ストレート底
26 スプライン孔
27 クリップ溝
29 凹部
30 ボール
40 ケージ
41,43 角部
42 ポケット
44 外球面
46 内周面
46a 球面部
46b 円筒部
47 拡径段部
48 突起
49、49’ 最小内径部
50 シャフト
52 クリップ
54、56 治具
DESCRIPTION OF SYMBOLS 10 Outer ring 10a Mouse | mouth part 10b Stem part 10b1 Serration part 10b2 Screw part 12 Inner spherical surface 14,24 Ball groove 14a Arc bottom 14b Straight bottom 16a Chamfer 16b Cylindrical part 18 Spherical seat 19 Annular space 20 Inner ring 22 Outer spherical surface 24 Ball groove 24a Arc bottom 24b Straight bottom 26 Spline hole 27 Clip groove 29 Recess 30 Ball 40 Cage 41, 43 Corner portion 42 Pocket 44 Outer spherical surface 46 Inner circumferential surface 46a Spherical portion 46b Cylindrical portion 47 Expanded stepped portion 48 Protrusions 49, 49 'Minimum inner diameter portion 50 Shaft 52 Clip 54, 56 Jig

Claims (4)

一端にて開口し内球面に軸方向に延びる複数のボール溝を形成した外輪と、外球面に軸方向に延びる複数のボール溝を形成した内輪と、対をなす外輪のボール溝と内輪のボール溝との間に組み込んだトルク伝達ボールと、外輪の内球面と内輪の外球面との間に介在してトルク伝達ボールをポケット内で軸方向に保持するケージとを具備し、内輪と接するケージの内周面が、外輪の開口側に位置する球面部と、外輪の奥側に位置する円筒部とからなり、前記円筒部は内輪の軸方向移動を所定範囲にわたって許容し、内輪が軸方向移動のストローク端にあるときトルク伝達ボールをケージのポケット内に収めるようにした固定式等速自在継手において、
前記ケージの内径であって前記ポケットの外輪奥側に位置する内径を、前記内輪の軸方向移動のストローク端を規制するケージ内径よりも小さく、かつ、前記内輪の球欠部最大径よりも大きく設定したことを特徴とする固定式等速自在継手。
An outer ring which is open at one end and has a plurality of ball grooves extending in the axial direction on the inner spherical surface, an inner ring having a plurality of ball grooves extending in the axial direction on the outer spherical surface, a pair of outer ring ball grooves and inner ring balls A cage that is provided between the groove and a cage that is interposed between the inner spherical surface of the outer ring and the outer spherical surface of the inner ring and that holds the torque transmitting ball in the pocket in the axial direction, and is in contact with the inner ring The inner peripheral surface of the outer ring is composed of a spherical part located on the opening side of the outer ring and a cylindrical part located on the inner side of the outer ring. The cylindrical part allows axial movement of the inner ring over a predetermined range, and the inner ring is axially In the fixed type constant velocity universal joint in which the torque transmission ball is placed in the cage pocket when it is at the end of the movement stroke,
The inner diameter of the cage, which is located on the back side of the outer ring of the pocket, is smaller than the inner diameter of the cage that regulates the stroke end of the inner ring in the axial direction movement, and larger than the maximum diameter of the ball notch of the inner ring. Fixed constant velocity universal joint characterized by setting.
一端にて開口し内球面に軸方向に延びる複数のボール溝を形成した外輪と、外球面に軸方向に延びる複数のボール溝を形成した内輪と、対をなす外輪のボール溝と内輪のボール溝との間に組み込んだトルク伝達ボールと、外輪の内球面と内輪の外球面との間に介在してトルク伝達ボールをポケット内で軸方向に保持するケージとを具備し、内輪と接するケージの内周面が、外輪の開口側に位置する球面部と、外輪の奥側に位置する円筒部とからなり、前記円筒部は内輪の軸方向移動を所定範囲にわたって許容し、内輪が軸方向移動のストローク端にあるときトルク伝達ボールをケージのポケット内に収めるようにした固定式等速自在継手において、
前記ケージの内径であって前記ポケットの外輪奥側に位置する内径を、前記内輪の球欠部最大径よりも小さい最小内径部にするとともに、前記最小内径部の外輪奥側に拡径段部を形成し、前記内輪をケージの軸線と垂直にしてケージ内に装入する際、内輪ボール溝の側面を前記拡径段部のラジアル面にあてがい、内輪の球面心とケージの軸線とをずらし、内輪軸線を内輪半径方向軸線回りに傾けながら内輪をケージ内に装入可能にしたことを特徴とする固定式等速自在継手。
An outer ring which is open at one end and has a plurality of ball grooves extending in the axial direction on the inner spherical surface, an inner ring having a plurality of ball grooves extending in the axial direction on the outer spherical surface, a pair of outer ring ball grooves and inner ring balls A cage that is provided between the groove and a cage that is interposed between the inner spherical surface of the outer ring and the outer spherical surface of the inner ring and that holds the torque transmitting ball in the pocket in the axial direction, and is in contact with the inner ring The inner peripheral surface of the outer ring is composed of a spherical part located on the opening side of the outer ring and a cylindrical part located on the inner side of the outer ring. The cylindrical part allows axial movement of the inner ring over a predetermined range, and the inner ring is axially In the fixed type constant velocity universal joint in which the torque transmission ball is placed in the cage pocket when it is at the end of the movement stroke,
The inner diameter of the cage that is located on the back side of the outer ring of the pocket is set to a minimum inner diameter part that is smaller than the maximum diameter of the spherical part of the inner ring, and an enlarged stepped part on the back side of the outer ring of the minimum inner diameter part. When the inner ring is inserted into the cage perpendicularly to the cage axis, the side surface of the inner ring ball groove is applied to the radial surface of the enlarged stepped portion, and the spherical center of the inner ring and the cage axis are shifted. A fixed type constant velocity universal joint characterized in that the inner ring can be inserted into the cage while the inner ring axis is inclined about the inner ring radial axis.
前記最小内径部に内輪の外球面と同曲率の凹球面を形成し、継手が作動角をとった状態で前記凹球面を前記内輪外球面で支持するようにしたことを特徴とする請求項2の固定式等速自在継手。   3. A concave spherical surface having the same curvature as the outer spherical surface of the inner ring is formed on the minimum inner diameter portion, and the concave spherical surface is supported by the outer spherical surface of the inner ring in a state where the joint has an operating angle. Fixed constant velocity universal joint. 内輪、ケージおよびトルク伝達ボールを、ユニットハンドリング可能な仮組みユニットとしたことを特徴とする請求項1から3のいずれかの固定式等速自在継手。   The fixed type constant velocity universal joint according to any one of claims 1 to 3, wherein the inner ring, the cage and the torque transmission ball are a temporarily assembled unit capable of unit handling.
JP2005313229A 2005-10-27 2005-10-27 Fixed type constant velocity universal joint Withdrawn JP2007120615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005313229A JP2007120615A (en) 2005-10-27 2005-10-27 Fixed type constant velocity universal joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005313229A JP2007120615A (en) 2005-10-27 2005-10-27 Fixed type constant velocity universal joint

Publications (1)

Publication Number Publication Date
JP2007120615A true JP2007120615A (en) 2007-05-17

Family

ID=38144681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005313229A Withdrawn JP2007120615A (en) 2005-10-27 2005-10-27 Fixed type constant velocity universal joint

Country Status (1)

Country Link
JP (1) JP2007120615A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168642A1 (en) * 2017-03-17 2018-09-20 Ntn株式会社 Fixed-type constant velocity universal joint
CN116871883A (en) * 2023-09-04 2023-10-13 万向钱潮股份公司 Universal joint installation method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168642A1 (en) * 2017-03-17 2018-09-20 Ntn株式会社 Fixed-type constant velocity universal joint
JP2018155321A (en) * 2017-03-17 2018-10-04 Ntn株式会社 Stationary constant velocity universal joint
CN110431323A (en) * 2017-03-17 2019-11-08 Ntn株式会社 Fixed-type constant-velocity Hooks coupling universal coupling
CN110431323B (en) * 2017-03-17 2022-07-15 Ntn株式会社 Fixed constant velocity universal joint
CN116871883A (en) * 2023-09-04 2023-10-13 万向钱潮股份公司 Universal joint installation method
CN116871883B (en) * 2023-09-04 2023-12-15 万向钱潮股份公司 Universal joint installation method

Similar Documents

Publication Publication Date Title
US8808097B2 (en) Fixed type constant velocity universal joint
JP3060340B2 (en) Rotary constant velocity joint
JP2007270997A (en) Fixed type constant velocity universal joint
US8510955B2 (en) Inner joint part for a constant velocity universal joint and process of producing same
JP2006266329A (en) Fixed type constant velocity universal joint
JP2009287713A (en) Fixed-type constant-velocity universal joint
JP2006242263A (en) Fixed constant velocity universal joint and its manufacturing method
JP4537304B2 (en) Fixed constant velocity universal joint
JP2007120615A (en) Fixed type constant velocity universal joint
JP2007100938A (en) Fixed type constant velocity universal joint
JP2007078124A (en) Fixed type constant velocity universal joint
JP2008286330A (en) Tripod-type constant velocity universal joint
JP2007120546A (en) Fixed type constant velocity universal joint and its assembling method
JP2007232192A (en) Fixed type constant velocity universal joint
JP2006242264A (en) Fixed constant velocity universal joint and its manufacturing method
JP2009074594A (en) Sliding type constant velocity universal joint
JP2007078123A (en) Fixed type constant velocity universal joint
JP2008240970A (en) Fixed type constant velocity universal joint
JP2007024106A (en) Fixed type constant velocity universal joint
JP4896673B2 (en) Fixed constant velocity universal joint and manufacturing method thereof
JP4593408B2 (en) Fixed type constant velocity universal joint
JP2006275239A (en) Shaft fitting structure of constant velocity joint
JP2008281182A (en) Tripod type constant velocity universal joint
JP2008089149A (en) Fixed type constant velocity universal joint
JP2008309221A (en) Fixed type constant velocity universal joint

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090106