JP2009127637A - Constant velocity universal joint - Google Patents

Constant velocity universal joint Download PDF

Info

Publication number
JP2009127637A
JP2009127637A JP2007299628A JP2007299628A JP2009127637A JP 2009127637 A JP2009127637 A JP 2009127637A JP 2007299628 A JP2007299628 A JP 2007299628A JP 2007299628 A JP2007299628 A JP 2007299628A JP 2009127637 A JP2009127637 A JP 2009127637A
Authority
JP
Japan
Prior art keywords
shaft
ring
retaining ring
annular groove
inner ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007299628A
Other languages
Japanese (ja)
Inventor
Chikaya Shinba
千佳也 榛葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2007299628A priority Critical patent/JP2009127637A/en
Publication of JP2009127637A publication Critical patent/JP2009127637A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To facilitate reduction of the number of parts and improvement of assembling work efficiency, in a nonslip structure of a shaft from an inner ring. <P>SOLUTION: This constant velocity universal joint is equipped with an outer ring and an inner ring 20 for transmitting torque while allowing angular displacement between itself and the outer ring, and has a nonslip structure of the shaft 60 from the inner ring 20 by inserting and fitting the shaft 60 in a shaft hole 26 of the inner ring 20 and fitting a stopper ring 70 in a diametrical reduced state in an annular groove 62 formed on the outer peripheral face of the shaft 60. A bottom face 64 of the annular groove 62 of the shaft 60 is gradually reduced in diameter from a shaft axial end side to the inner ring side, and a shaft axial cross section is formed as a linear tapered face. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、自動車や各種産業機械の動力伝達系において使用され、例えば自動車のドライブシャフトやプロペラシャフトに組み込まれる固定式あるいは摺動式等速自在継手に関し、詳しくは、その等速自在継手の内側継手部材とシャフトの嵌合構造に関する。   The present invention relates to a fixed or sliding constant velocity universal joint that is used in a power transmission system of an automobile or various industrial machines, and is incorporated in, for example, a drive shaft or a propeller shaft of an automobile. The present invention relates to a fitting structure between a joint member and a shaft.

例えば、自動車のドライブシャフト等の連結用継手として使用されている摺動式等速自在継手(ダブルオフセット型等速自在継手:DOJ)は、図13に示すように軸線に平行な複数の直線状トラック溝112が円筒状内周面114に円周方向等間隔で形成された外輪110と、その外輪110のトラック溝112と対応させて軸線に平行な複数の直線状トラック溝122が球面状外周面124に円周方向等間隔で形成された内輪120と、外輪110のトラック溝112と内輪120のトラック溝122とが協働して形成されたボールトラックに配されてトルクを伝達する複数のボール130と、外輪110の円筒状内周面114と内輪120の球面状外周面124との間に介在してボール130を保持するケージ140とを備えている。各ボール130は、ケージ140に形成された複数のポケット142のそれぞれに収容されて円周方向等間隔に配置されている。   For example, a sliding type constant velocity universal joint (double offset type constant velocity universal joint: DOJ) used as a coupling joint for an automobile drive shaft or the like has a plurality of linear shapes parallel to the axis as shown in FIG. An outer ring 110 in which track grooves 112 are formed on the cylindrical inner peripheral surface 114 at equal intervals in the circumferential direction, and a plurality of linear track grooves 122 parallel to the axis corresponding to the track grooves 112 of the outer ring 110 are formed in a spherical outer periphery. A plurality of inner rings 120 formed on the surface 124 at equal intervals in the circumferential direction, a track groove 112 of the outer ring 110 and a track groove 122 of the inner ring 120 are arranged in cooperation to transmit torque. A ball 130 and a cage 140 that holds the ball 130 interposed between a cylindrical inner peripheral surface 114 of the outer ring 110 and a spherical outer peripheral surface 124 of the inner ring 120 are provided. Each ball 130 is accommodated in each of a plurality of pockets 142 formed in the cage 140 and arranged at equal intervals in the circumferential direction.

この等速自在継手をドライブシャフトに使用する場合、外輪110の一端から軸方向に一体的に延びる軸部116をディファレンシャルに連結すると共に、内輪120の軸孔126にスプライン嵌合されたシャフト160を固定式等速自在継手に連結するようにしている。   When this constant velocity universal joint is used for a drive shaft, a shaft portion 116 that extends integrally from one end of the outer ring 110 in the axial direction is connected to the differential, and a shaft 160 that is spline-fitted into the shaft hole 126 of the inner ring 120 is provided. It is connected to a fixed constant velocity universal joint.

この外輪110の軸部116と内輪120側のシャフト160の二軸間で外輪110と内輪120とが角度変位すると、ケージ140のポケット142に収容されたボール130は常にどの作動角においても、その作動角の二等分面内に維持され、継手の等速性が確保される。   If the outer ring 110 and the inner ring 120 are angularly displaced between the shaft portion 116 of the outer ring 110 and the shaft 160 on the inner ring 120 side, the ball 130 accommodated in the pocket 142 of the cage 140 is always at any operating angle. The operating angle is maintained in the bisection plane, and the constant velocity of the joint is ensured.

この摺動式等速自在継手の内輪120とシャフト160との連結構造には、内輪120の軸孔126にシャフト160の軸端を挿入する構造が採用されている。この内輪120の軸孔126の内周面に軸方向に沿う凹凸として雌スプライン128を形成すると共に、シャフト160の軸端の外周面にも雄スプライン168を形成する。シャフト160の軸端を内輪120の軸孔126に挿入して雄スプライン168と雌スプライン128を噛み合わせることにより、シャフト160を内輪120に嵌合させて両者間でトルクを伝達可能としている(例えば、特許文献1の第1図参照)。   A structure in which the shaft end of the shaft 160 is inserted into the shaft hole 126 of the inner ring 120 is adopted as a connection structure between the inner ring 120 and the shaft 160 of the sliding type constant velocity universal joint. A female spline 128 is formed on the inner peripheral surface of the shaft hole 126 of the inner ring 120 as irregularities along the axial direction, and a male spline 168 is also formed on the outer peripheral surface of the shaft end of the shaft 160. By inserting the shaft end of the shaft 160 into the shaft hole 126 of the inner ring 120 and engaging the male spline 168 and the female spline 128, the shaft 160 is fitted to the inner ring 120 so that torque can be transmitted between the two (for example, , See FIG. 1 of Patent Document 1).

一般的に、等速自在継手の内輪120とシャフト160の嵌合構造では、シャフト160の外周面に環状溝を形成し、その環状溝に止め輪を嵌合させて内輪120の奥側端面に当接させることにより、内輪120に対してシャフト160を抜け止めしている。   In general, in the fitting structure of the inner ring 120 of the constant velocity universal joint and the shaft 160, an annular groove is formed on the outer peripheral surface of the shaft 160, and a retaining ring is fitted into the annular groove so that the inner ring 120 has a rear end surface. By making contact, the shaft 160 is prevented from coming off from the inner ring 120.

この場合、製作誤差などによって内輪120の軸方向幅、シャフト160の環状溝の位置にバラツキが生じると、止め輪と内輪120との間に軸方向隙間が生じ、その結果、内輪120がシャフト160に対して軸方向に移動して止め輪に当接し、振動や騒音が発生したりする問題がある。   In this case, if a variation occurs in the axial width of the inner ring 120 and the position of the annular groove of the shaft 160 due to a manufacturing error or the like, an axial gap is generated between the retaining ring and the inner ring 120. As a result, the inner ring 120 is moved to the shaft 160. On the other hand, there is a problem that it moves in the axial direction and comes into contact with the retaining ring, causing vibration and noise.

この問題を解消するため、特許文献1に開示された内輪120とシャフト160の嵌合構造は、図14に示すようにシャフト160の外周面に形成された環状溝162と、その環状溝162に嵌合されて内輪120の奥側端面121に当接する第一の止め輪170と、前述の環状溝162に嵌合されてその環状溝162の端面164に当接する第二の止め輪180とで構成し、第一の止め輪170と第二の止め輪180とが相互に向かい合って接する端面172,182をテーパとしている。   In order to solve this problem, the fitting structure of the inner ring 120 and the shaft 160 disclosed in Patent Document 1 includes an annular groove 162 formed on the outer peripheral surface of the shaft 160 and an annular groove 162 as shown in FIG. A first retaining ring 170 that is fitted and abuts on the back end surface 121 of the inner ring 120, and a second retaining ring 180 that is fitted in the annular groove 162 and abuts on the end surface 164 of the annular groove 162. The end faces 172 and 182 that are configured and the first retaining ring 170 and the second retaining ring 180 are opposed to each other are tapered.

第二の止め輪180が半径方向に縮小すると、第一の止め輪170と第二の止め輪180とが接する端面172,182でのテーパ作用により、第一の止め輪170はその端面174が内輪120の奥側端面121に当接する位置まで軸方向移動し、第二の止め輪180はその端面184が環状溝162の端面164に当接する位置まで軸方向移動する。   When the second retaining ring 180 is contracted in the radial direction, the end surface 174 of the first retaining ring 170 has a taper action at the end surfaces 172 and 182 where the first retaining ring 170 and the second retaining ring 180 are in contact. The second retaining ring 180 moves axially to a position where the end face 184 abuts against the end face 164 of the annular groove 162.

このようにして、内輪120がシャフト160に対して軸方向に隙間なく拘束される。これにより、内輪120がシャフト160に対して軸方向に移動して止め輪170,180に当接することによって発生する振動や騒音を未然に防止するようにしている(例えば、特許文献1の第2図参照)。
特開平3−89026号公報
In this way, the inner ring 120 is restrained with no gap in the axial direction with respect to the shaft 160. Accordingly, vibration and noise generated by the inner ring 120 moving in the axial direction with respect to the shaft 160 and coming into contact with the retaining rings 170 and 180 are prevented in advance (for example, second in Patent Document 1). (See figure).
JP-A-3-89026

ところで、前述の特許文献1に開示された内輪120とシャフト160の嵌合構造では、第一の止め輪170と第二の止め輪180とが接する端面172,182でのテーパ作用により、第一の止め輪170はその端面174が内輪120の奥側端面121に当接する位置まで軸方向移動し、第二の止め輪180はその端面184が環状溝162の端面164に当接する位置まで軸方向移動する。   By the way, in the fitting structure of the inner ring 120 and the shaft 160 disclosed in Patent Document 1 described above, the taper action at the end faces 172 and 182 where the first retaining ring 170 and the second retaining ring 180 contact each other causes the first The retaining ring 170 moves axially to a position where its end surface 174 abuts on the back end surface 121 of the inner ring 120, and the second retaining ring 180 axially travels to a position where its end surface 184 contacts the end surface 164 of the annular groove 162. Moving.

これにより、内輪120がシャフト160に対して軸方向に隙間なく拘束されるので、内輪120がシャフト160に対して軸方向に移動して止め輪170,180に当接することによって発生する振動や騒音を未然に防止できる点で有効な手段である。   As a result, the inner ring 120 is restrained in the axial direction with respect to the shaft 160 without any gap, so that vibration and noise generated by the inner ring 120 moving in the axial direction with respect to the shaft 160 and abutting against the retaining rings 170 and 180 are generated. This is an effective means in that it can be prevented.

しかしながら、内輪120に対するシャフト160の抜け止めに、第一の止め輪170と第二の止め輪180とからなる二つの止め輪を組み合わせているため、シャフト160の抜け止め手段としての部品点数が増加する。   However, since the retaining ring of the first retaining ring 170 and the second retaining ring 180 is combined with the retaining ring of the shaft 160 with respect to the inner ring 120, the number of parts as a retaining means for the shaft 160 increases. To do.

また、その部品点数が多いことや、第一の止め輪170と第二の止め輪180とが相互に向かい合って接する端面172,182がテーパとなっていることから、それら第一の止め輪170と第二の止め輪180を組み合わせてシャフト160に組み付ける作業が煩雑で組み付け作業性が向上させることが困難である。   In addition, since the number of parts is large and the end faces 172 and 182 where the first retaining ring 170 and the second retaining ring 180 face each other are in contact with each other, the first retaining ring 170 is tapered. The operation of combining the second retaining ring 180 and the shaft 160 is complicated and it is difficult to improve the assembly workability.

そこで、本発明は前述の問題点に鑑みて提案されたもので、その目的とするところは、内輪に対するシャフトの抜け止め構造において、部品点数の削減と組み付け作業性の向上を容易に図り得る等速自在継手を提供することにある。   Therefore, the present invention has been proposed in view of the above-mentioned problems, and the object of the present invention is to easily reduce the number of parts and improve the assembly workability in the shaft retaining structure for the inner ring. It is to provide a quick universal joint.

前述の目的を達成するための技術的手段として、本発明は、外側継手部材と、その外側継手部材との間で角度変位を許容しながらトルクを伝達する内側継手部材とを備えた等速自在継手であって、内側継手部材の軸孔にシャフトを挿入して嵌合させ、シャフトの外周面に形成された環状溝に止め輪を縮径状態で嵌入させて内側継手部材に対してシャフトを抜け止めした構造を有し、シャフトの環状溝は、シャフト軸端側から内側継手部材側に向けて漸次縮径する縮径面を有することを特徴とする。   As a technical means for achieving the above-described object, the present invention provides a constant velocity universal including an outer joint member and an inner joint member that transmits torque while allowing angular displacement between the outer joint member and the outer joint member. A joint is inserted into the shaft hole of the inner joint member and fitted, and a retaining ring is fitted in an annular groove formed on the outer peripheral surface of the shaft in a reduced diameter state, and the shaft is fitted to the inner joint member. The annular groove of the shaft has a reduced diameter surface that gradually decreases in diameter from the shaft shaft end side toward the inner joint member side.

シャフトの内側継手部材への組み付けは以下の要領でもって行われる。まず、シャフトを内側継手部材の軸孔の入口側開口端部から挿入して嵌合させる。シャフトは、その外周面に形成された環状溝が内側継手部材の奥側開口端部から突出する位置まで挿入される。この状態で、止め輪を自然状態での直径よりも拡径させた状態でシャフトの環状溝に嵌入させる。環状溝に嵌入した止め輪は、自然状態への弾性復元力でもって半径方向内側へ縮径した縮径状態となる。   Assembly of the shaft to the inner joint member is performed in the following manner. First, the shaft is inserted and fitted from the inlet side opening end of the shaft hole of the inner joint member. The shaft is inserted to a position where an annular groove formed in the outer peripheral surface protrudes from the inner opening end of the inner joint member. In this state, the retaining ring is fitted into the annular groove of the shaft in a state where the diameter of the retaining ring is larger than that in the natural state. The retaining ring fitted in the annular groove is in a reduced diameter state in which the diameter is reduced radially inward by an elastic restoring force to a natural state.

本発明では、シャフトの環状溝が、シャフト軸端側から内側継手部材側に向けて漸次縮径する縮径面である底面を有することにより、以下の(1)(2)のような作用を呈する。   In the present invention, since the annular groove of the shaft has a bottom surface that is a diameter-reducing surface that gradually decreases from the shaft shaft end side toward the inner joint member side, the following effects (1) and (2) are obtained. Present.

(1)止め輪をシャフトの環状溝に嵌入させると、止め輪は自然状態への弾性復元力でもって半径方向内側へ縮径する力が作用する。この時、止め輪の内径が環状溝の底面と当接している。本発明では、シャフトの環状溝の底面を、シャフト軸端側から内側継手部材側に向けて漸次縮径する縮径面としたことにより、止め輪の縮径力が軸方向の分力を発生させ、この軸方向の分力により止め輪が内側継手部材の入口側へ移動してその内側継手部材の奥側端面と当接する。その結果、内側継手部材がシャフトに対して軸方向に隙間なく拘束される。すなわち、内側継手部材はシャフト肩部と止め輪との間で、がた無く挟みつけられる。   (1) When the retaining ring is fitted into the annular groove of the shaft, the retaining ring is subjected to a force that reduces the diameter inward in the radial direction with an elastic restoring force to a natural state. At this time, the inner diameter of the retaining ring is in contact with the bottom surface of the annular groove. In the present invention, the bottom surface of the annular groove of the shaft is a reduced diameter surface that gradually decreases from the shaft shaft end side toward the inner joint member side, so that the diameter reduction force of the retaining ring generates an axial component force. Then, the retaining ring moves to the inlet side of the inner joint member by this axial component force, and comes into contact with the inner end face of the inner joint member. As a result, the inner joint member is restrained without a gap in the axial direction with respect to the shaft. That is, the inner joint member is held between the shaft shoulder portion and the retaining ring without any difficulty.

(2)止め輪をシャフトの環状溝に嵌入させると、止め輪は自然状態への弾性復元力でもって半径方向内側へ縮径する力が作用する。本発明では、シャフトの環状溝の底面を、シャフト軸端側から内側継手部材側に向けて漸次縮径する縮径面としたことにより、止め輪の内径の一部分が環状溝の底面と接触し、止め輪の内径の他の部分が環状溝の底面と接触していない状態となる。環状溝の底面と接触していない止め輪の内径の他の部分は、前述の縮径力でもって環状溝の底面と接触しようと縮径することから、止め輪全体が内側継手部材の入口側に傾いてその止め輪の外径側端面が内側継手部材の奥側端面に当接する。その結果、内側継手部材がシャフトに対して軸方向に隙間なく拘束される。すなわち、内側継手部材はシャフト肩部と止め輪との間で、がた無く挟みつけられる。   (2) When the retaining ring is fitted into the annular groove of the shaft, the retaining ring is subjected to a force that reduces its diameter radially inward with an elastic restoring force to a natural state. In the present invention, the bottom surface of the annular groove of the shaft is a reduced diameter surface that gradually decreases from the shaft shaft end side toward the inner joint member side, so that a part of the inner diameter of the retaining ring comes into contact with the bottom surface of the annular groove. The other part of the inner diameter of the retaining ring is not in contact with the bottom surface of the annular groove. The other part of the inner diameter of the retaining ring that is not in contact with the bottom surface of the annular groove is reduced in diameter so as to come into contact with the bottom surface of the annular groove with the above-mentioned reduction force. The outer diameter side end surface of the retaining ring is in contact with the inner side end surface of the inner joint member. As a result, the inner joint member is restrained without a gap in the axial direction with respect to the shaft. That is, the inner joint member is held between the shaft shoulder portion and the retaining ring without any difficulty.

本発明では、前述した(1)(2)の少なくともいずれか一方の作用でもって、止め輪により内側継手部材がシャフトに対して軸方向に隙間なく拘束されることになる。これら(1)(2)のいずれの作用を呈するかは、止め輪の材質や形状あるいは環状溝の形状などに左右される。   In the present invention, the inner joint member is restrained with respect to the shaft without any gap in the axial direction by the retaining ring by the action of at least one of (1) and (2). Which of these actions (1) and (2) exhibits depends on the material and shape of the retaining ring or the shape of the annular groove.

本発明におけるシャフトの環状溝は、縮径面である底面からシャフト軸端側に向けて連続して形成され、シャフト軸方向と直交する方向に起立する端面とを備えた構造が望ましい。このようにすれば、シャフトに大きな引き抜き力が作用した場合であっても、止め輪が環状溝の奥側端面に当接して係止されることにより、内側継手部材に対するシャフトの抜け止めが強固となる。なお、内側継手部材の奥側端面とは、内側継手部材の軸孔に対してシャフトを挿入する側に位置する入口側端面と反対側の端面を意味する。   The annular groove of the shaft in the present invention preferably has a structure including an end surface that is formed continuously from the bottom surface, which is a reduced diameter surface, toward the shaft shaft end side and rises in a direction orthogonal to the shaft axis direction. In this way, even when a large pulling force is applied to the shaft, the retaining ring is in contact with and locked to the inner end surface of the annular groove, so that the shaft is firmly prevented from coming off the inner joint member. It becomes. In addition, the back side end surface of the inner joint member means an end surface opposite to the inlet side end surface located on the side where the shaft is inserted with respect to the shaft hole of the inner joint member.

本発明におけるシャフトの環状溝の底面は、シャフト軸端側から内側継手部材側に向けて漸次縮径する形状として、シャフト軸方向断面で直線状としたテーパ面、あるいは、シャフト軸方向断面で曲線状とした曲成面が可能である。なお、この曲成面としては、凸状の曲成面または凹状の曲成面のいずれであってもよい。   In the present invention, the bottom surface of the annular groove of the shaft has a tapered surface that is linearly reduced in the cross section in the axial direction of the shaft, or a curved line in the cross section in the axial direction of the shaft. A curved surface is possible. The curved surface may be a convex curved surface or a concave curved surface.

一方、本発明における止め輪の内径は、内側継手部材側からシャフト軸端側へ、つまり、内側継手部材の入口側から奥側へ向けて漸次拡径させた形状とすることが望ましい。このようにすれば、止め輪の内径が環状溝の底面とエッジで当接しないので、前述した作用(1)において、軸方向の分力により止め輪を内側継手部材の入口側へスムーズに移動させることが容易となる。その結果、より確実に、内側継手部材がシャフトに対して軸方向に隙間なく拘束される。すなわち、内側継手部材はシャフト肩部と止め輪との間で、がた無く挟みつけられる。   On the other hand, it is desirable that the inner diameter of the retaining ring in the present invention has a shape that is gradually expanded from the inner joint member side to the shaft shaft end side, that is, from the inlet side to the inner side of the inner joint member. In this way, the inner diameter of the retaining ring does not come into contact with the bottom surface of the annular groove at the edge. Therefore, in the above-described action (1), the retaining ring is smoothly moved to the inlet side of the inner joint member by the axial component force. It becomes easy to make. As a result, the inner joint member is more reliably restrained in the axial direction with respect to the shaft without a gap. That is, the inner joint member is held between the shaft shoulder portion and the retaining ring without any difficulty.

逆に、本発明における止め輪の内径は、内側継手部材側からシャフト軸端側へ、つまり、内側継手部材の入口側から奥側へ向けて漸次縮径させた形状とすることも可能である。このようにすれば、前述した作用(2)において、環状溝の底面と接触していない止め輪の内径の他の部分が、環状溝の底面と接触しようと縮径する力を大きく作用させることができることから、止め輪全体が内側継手部材の入口側に容易に傾く。その結果、より確実に、内側継手部材がシャフトに対して軸方向に隙間なく拘束される。すなわち、内側継手部材はシャフト肩部と止め輪との間で、がた無く挟みつけられる。   On the contrary, the inner diameter of the retaining ring in the present invention can be a shape gradually reduced in diameter from the inner joint member side to the shaft shaft end side, that is, from the inlet side to the inner side of the inner joint member. . In this way, in the above-mentioned action (2), the other part of the inner diameter of the retaining ring that is not in contact with the bottom surface of the annular groove exerts a large force to reduce the diameter so as to contact the bottom surface of the annular groove. Therefore, the entire retaining ring is easily inclined toward the inlet side of the inner joint member. As a result, the inner joint member is more reliably restrained in the axial direction with respect to the shaft without a gap. That is, the inner joint member is held between the shaft shoulder portion and the retaining ring without any difficulty.

本発明では、内側継手部材の軸孔にシャフトを挿入して嵌合させ、シャフトの外周面に形成された環状溝に止め輪を縮径状態で嵌入させて内側継手部材に対してシャフトを抜け止めし、シャフトの環状溝の底面を、内側継手部材の入口側から奥側へ向けて漸次拡径させた構造としている。   In the present invention, the shaft is inserted and fitted into the shaft hole of the inner joint member, and the retaining ring is fitted in an annular groove formed on the outer peripheral surface of the shaft in a reduced diameter state, and the shaft is pulled out from the inner joint member. The bottom surface of the annular groove of the shaft is gradually enlarged from the inlet side to the inner side of the inner joint member.

このような構造としたことによって、止め輪の縮径力が軸方向の分力を発生させ、この軸方向の分力により止め輪が内側継手部材の入口側へ移動してその内側継手部材の奥側端面と当接する。あるいは、環状溝の底面と接触していない止め輪の内径の他の部分が、前述の縮径力でもって環状溝の底面と接触しようと縮径することから、止め輪全体が内側継手部材の入口側に傾いてその止め輪の外径側端面が内側継手部材の奥側端面に当接する。   With such a structure, the diameter reduction force of the retaining ring generates a component force in the axial direction, and the retaining ring moves to the inlet side of the inner joint member by this axial component force, and the inner joint member Abuts on the back end face. Alternatively, the other part of the inner diameter of the retaining ring that is not in contact with the bottom surface of the annular groove is reduced in diameter so as to come into contact with the bottom surface of the annular groove with the above-described reduction force, so that the entire retaining ring is made of the inner joint member. The outer diameter side end surface of the retaining ring is in contact with the inner side end surface of the inner joint member by tilting toward the inlet side.

その結果、内側継手部材がシャフトに対して軸方向に隙間なく拘束されるので、内側継手部材とシャフトとの間で軸方向のガタがなくなり、振動や騒音の発生を未然に防止でき、信頼性の高い等速自在継手を提供できる。   As a result, since the inner joint member is restrained in the axial direction with respect to the shaft without any gap, there is no axial backlash between the inner joint member and the shaft, and vibration and noise can be prevented from occurring in advance. High constant velocity universal joints can be provided.

本発明の実施形態を以下に詳述する。なお、以下の実施形態は、摺動式等速自在継手の一つであるダブルオフセット型等速自在継手(DOJ)に適用した場合を例示するが、クロスグルーブ型等速自在継手(LJ)やトリポード型等速自在継手(TJ)などの他の摺動式等速自在継手にも適用可能である。さらに、バーフィールド型等速自在継手(BJ)やアンダーカットフリー型等速自在継手(UJ)などの固定式等速自在継手にも適用可能である。   Embodiments of the present invention are described in detail below. In addition, although the following embodiment illustrates the case where it applies to the double offset type constant velocity universal joint (DOJ) which is one of the sliding type constant velocity universal joints, a cross groove type constant velocity universal joint (LJ) or The present invention can also be applied to other sliding type constant velocity universal joints such as a tripod type constant velocity universal joint (TJ). Furthermore, the present invention is also applicable to fixed type constant velocity universal joints such as a Barfield type constant velocity universal joint (BJ) and an undercut free type constant velocity universal joint (UJ).

図2に示す実施形態の等速自在継手は、軸線に平行な複数の直線状トラック溝12が円筒状内周面14に円周方向等間隔で形成された外側継手部材としての外輪10と、その外輪10のトラック溝12と対応させて軸線に平行な複数の直線状トラック溝22が球面状外周面24に円周方向等間隔で形成された内側継手部材としての内輪20と、外輪10のトラック溝12と内輪20のトラック溝22とが協働して形成されたボールトラックに配されてトルクを伝達する複数のボール30と、外輪10の円筒状内周面14と内輪20の球面状外周面24との間に介在してボール30を保持するケージ40とを備えている。   The constant velocity universal joint of the embodiment shown in FIG. 2 includes an outer ring 10 as an outer joint member in which a plurality of linear track grooves 12 parallel to the axis are formed on the cylindrical inner peripheral surface 14 at equal intervals in the circumferential direction, A plurality of linear track grooves 22 parallel to the axis corresponding to the track grooves 12 of the outer ring 10 are formed on the spherical outer peripheral surface 24 at equal intervals in the circumferential direction. The track grooves 12 and the track grooves 22 of the inner ring 20 are arranged on a ball track formed in cooperation to transmit a plurality of balls 30 for transmitting torque, the cylindrical inner peripheral surface 14 of the outer ring 10 and the spherical shape of the inner ring 20. A cage 40 interposed between the outer peripheral surface 24 and holding the ball 30.

なお、各ボール30は、ケージ40に形成された複数のポケット42のそれぞれに収容されて円周方向等間隔に配置されている。また、ボール30の数は6個あるいは8個であるが、それ以外の個数でもよく任意である。   Each ball 30 is accommodated in each of a plurality of pockets 42 formed in the cage 40 and arranged at equal intervals in the circumferential direction. The number of balls 30 is six or eight, but other numbers may be used.

この等速自在継手をドライブシャフトに使用する場合、外輪10の一端から軸方向に一体的に延びる軸部16をディファレンシャルに連結すると共に、内輪20の軸孔26にスプライン嵌合されたシャフト60を固定式等速自在継手に連結するようにしている。   When this constant velocity universal joint is used for a drive shaft, a shaft portion 16 that extends integrally from one end of the outer ring 10 in the axial direction is connected to the differential, and a shaft 60 that is spline-fitted into the shaft hole 26 of the inner ring 20 is provided. It is connected to a fixed constant velocity universal joint.

この外輪10の軸部16と内輪20側のシャフト60の二軸間で外輪10と内輪20とが角度変位すると、ケージ40のポケット42に収容されたボール30は常にどの作動角においても、その作動角の二等分面内に維持され、継手の等速性が確保される。   When the outer ring 10 and the inner ring 20 are angularly displaced between the shaft portion 16 of the outer ring 10 and the shaft 60 on the inner ring 20 side, the ball 30 accommodated in the pocket 42 of the cage 40 is always at any operating angle. The operating angle is maintained in the bisection plane, and the constant velocity of the joint is ensured.

この摺動式等速自在継手の内輪20とシャフト60との連結構造には、内輪20の軸孔26にシャフト60の軸端を挿入する構造が採用されている。この内輪20の軸孔26の内径に軸方向に沿う凹凸として雌スプライン28を形成すると共に、シャフト60の軸端外径にも雄スプライン68を形成する。   A structure in which the shaft end of the shaft 60 is inserted into the shaft hole 26 of the inner ring 20 is adopted as a connection structure between the inner ring 20 and the shaft 60 of the sliding type constant velocity universal joint. A female spline 28 is formed on the inner diameter of the shaft hole 26 of the inner ring 20 as irregularities along the axial direction, and a male spline 68 is also formed on the outer diameter of the shaft end of the shaft 60.

シャフト60の軸端を内輪20の軸孔26に挿入して雄スプライン68と雌スプライン28を噛み合わせることにより、シャフト60を内輪20に嵌合させて両者間でトルクを伝達可能としている。なお、内輪20とシャフト60の連結構造は、前述のスプライン嵌合に限らず、トルク伝達可能な他の凹凸嵌合であってもよい。   By inserting the shaft end of the shaft 60 into the shaft hole 26 of the inner ring 20 and engaging the male spline 68 and the female spline 28, the shaft 60 is fitted to the inner ring 20 so that torque can be transmitted between them. In addition, the connection structure of the inner ring 20 and the shaft 60 is not limited to the above-described spline fitting, and may be other uneven fitting that can transmit torque.

この等速自在継手の内輪20と嵌合されるシャフト60は、図3に示すようにその軸端の外周面に環状溝62を形成し、その環状溝62の底面64を、内輪20の軸孔26に対してシャフト60が挿入される内輪20の入口側から奥側へ向けて漸次拡径させている。この実施形態における環状溝62の底面64は、シャフト軸方向断面で直線状としたテーパ面としている。また、この環状溝62は、シャフト軸方向と直交する方向に起立する奥側端面66が、底面64からシャフト軸端側に向けて連続して形成されている。   As shown in FIG. 3, the shaft 60 fitted to the inner ring 20 of the constant velocity universal joint forms an annular groove 62 on the outer peripheral surface of the shaft end, and the bottom surface 64 of the annular groove 62 serves as the axis of the inner ring 20. The diameter is gradually increased from the entrance side to the back side of the inner ring 20 into which the shaft 60 is inserted into the hole 26. The bottom surface 64 of the annular groove 62 in this embodiment is a tapered surface that is linear in the cross section in the shaft axial direction. In addition, the annular groove 62 has a back end surface 66 standing in a direction orthogonal to the shaft axial direction and continuously formed from the bottom surface 64 toward the shaft axial end.

図1に示す実施形態における内輪20とシャフト60の嵌合構造では、内輪20の軸孔26に挿入されたシャフト60の環状溝62に止め輪70を嵌入させて内輪20に対してシャフト60を抜け止めした構造を具備する。   In the fitting structure of the inner ring 20 and the shaft 60 in the embodiment shown in FIG. 1, the retaining ring 70 is fitted into the annular groove 62 of the shaft 60 inserted into the shaft hole 26 of the inner ring 20, and the shaft 60 is fitted to the inner ring 20. It has a structure that prevents it from coming off.

止め輪70は、図4(a)(b)に示すように拡径可能なようにC字状の弾性部材からなる。止め輪70は、自由時の内径D1が、シャフト60の環状溝62に装着した時の内径D2よりも小さくなるように設定されている。これにより、止め輪70をシャフト60に装着した状態で、半径方向内側へ向けて縮径力が作用する。 As shown in FIGS. 4A and 4B, the retaining ring 70 is made of a C-shaped elastic member so that the diameter can be increased. The retaining ring 70 is set so that the inner diameter D 1 when free is smaller than the inner diameter D 2 when it is mounted in the annular groove 62 of the shaft 60. Thereby, in a state where the retaining ring 70 is mounted on the shaft 60, a diameter reducing force acts inward in the radial direction.

シャフト60の内輪20への組み付け要領は次のとおりである。まず、シャフト60を内輪20の軸孔26の入口側開口端部21から挿入する。シャフト60は、その軸端の外周面に形成された環状溝62が内輪20の奥側開口端部23から突出する位置まで挿入される。このシャフト60の挿入により、内輪20の軸孔26の雌スプライン28とシャフト60の外周面の雄スプライン68が噛み合ってスプライン嵌合し、両者間でトルク伝達可能となる。   The procedure for assembling the shaft 60 to the inner ring 20 is as follows. First, the shaft 60 is inserted from the inlet side opening end 21 of the shaft hole 26 of the inner ring 20. The shaft 60 is inserted to a position where an annular groove 62 formed on the outer peripheral surface of the shaft end protrudes from the rear opening end 23 of the inner ring 20. By inserting the shaft 60, the female spline 28 of the shaft hole 26 of the inner ring 20 and the male spline 68 on the outer peripheral surface of the shaft 60 are engaged with each other and are spline-fitted, so that torque can be transmitted between them.

この状態で、図5に示すように、止め輪70を自然状態での直径よりも拡径させた状態でシャフト60の環状溝62に嵌入させる(図中破線参照)。この環状溝62に嵌入した止め輪70は、自然状態への弾性復元力でもって半径方向内側へ縮径する。   In this state, as shown in FIG. 5, the retaining ring 70 is fitted into the annular groove 62 of the shaft 60 in a state where the diameter of the retaining ring 70 is larger than that in the natural state (see the broken line in the figure). The retaining ring 70 fitted in the annular groove 62 is reduced in diameter radially inward by an elastic restoring force to a natural state.

この時、止め輪70は、自然状態への弾性復元力でもって半径方向内側へ縮径する力をシャフト60の環状溝62に作用させる。ここで、止め輪70の内径72が当接している環状溝62の底面64を、内輪20の入口側から奥側へ向けて漸次拡径させたテーパ状としたことにより、止め輪70の縮径力が軸方向の分力を発生させる。この軸方向の分力により止め輪70が内輪20の入口側へ移動してその内輪20の奥側端面25と当接する(図中実線参照)。その結果、内輪20がシャフト60に対して軸方向に隙間なく拘束される。すなわち、内輪20はシャフト60の肩部と止め輪70との間で、がた無く挟みつけられる。   At this time, the retaining ring 70 applies a force to the annular groove 62 of the shaft 60 to reduce the diameter inward in the radial direction with an elastic restoring force to a natural state. Here, the bottom surface 64 of the annular groove 62 with which the inner diameter 72 of the retaining ring 70 abuts is tapered so that the diameter gradually increases from the inlet side to the inner side of the inner ring 20. Radial force generates axial component force. Due to this axial component force, the retaining ring 70 moves to the inlet side of the inner ring 20 and comes into contact with the inner end surface 25 of the inner ring 20 (see the solid line in the figure). As a result, the inner ring 20 is restrained with respect to the shaft 60 without any gap in the axial direction. That is, the inner ring 20 is sandwiched between the shoulder portion of the shaft 60 and the retaining ring 70 without any play.

この環状溝62では、底面64からシャフト軸端側に向けて連続して形成された奥側端面66が、シャフト軸方向と直交する方向に起立した構造となっている。これにより、シャフト60に大きな引き抜き力が作用した場合であっても、止め輪70が環状溝62の奥側端面66に当接して係止されることにより、内輪20に対するシャフト60の抜け止めが強固となる。   The annular groove 62 has a structure in which a rear side end surface 66 continuously formed from the bottom surface 64 toward the shaft shaft end side stands up in a direction orthogonal to the shaft axis direction. As a result, even when a large pulling force is applied to the shaft 60, the retaining ring 70 comes into contact with and engages with the rear end surface 66 of the annular groove 62, thereby preventing the shaft 60 from coming off from the inner ring 20. Become strong.

なお、止め輪70a,70bは、図6(a)(b)に示すようにその内径72a,72bを内輪20の入口側から奥側へ向けて漸次拡径させた形状とすることも可能である。同図(a)は、止め輪70aの内径形状をシャフト軸方向断面で直線状としたテーパ面を例示し、同図(b)は、止め輪70bの内径形状をシャフト軸方向断面で曲線状とした凸曲成面を例示する。   The retaining rings 70a and 70b can also have a shape in which the inner diameters 72a and 72b are gradually expanded from the inlet side to the inner side of the inner ring 20 as shown in FIGS. 6 (a) and 6 (b). is there. FIG. 5A illustrates a tapered surface in which the inner diameter shape of the retaining ring 70a is linear in the cross section in the shaft axial direction, and FIG. 5B illustrates the inner diameter shape of the retaining ring 70b in a curved shape in the cross section in the shaft axial direction. An example of the convex curved surface is shown.

止め輪70a,70bの内径72a,72bを図6(a)(b)に示すような形状とした場合、止め輪70a,70bの内径72a,72bが環状溝62の底面64とエッジで当接しないので、止め輪70a,70bを環状溝62に嵌入させた時に、止め輪70a,70bの縮径力により発生する軸方向の分力でもって止め輪70a,70bが内輪20の入口側へスムーズに移動させることが容易となる。その結果、より確実に、内輪20がシャフト60に対して軸方向に隙間なく拘束される。すなわち、内輪20はシャフト60の肩部と止め輪70a,70bとの間で、がた無く挟みつけられる。   When the inner diameters 72a and 72b of the retaining rings 70a and 70b are formed as shown in FIGS. 6A and 6B, the inner diameters 72a and 72b of the retaining rings 70a and 70b are in contact with the bottom surface 64 of the annular groove 62 at the edge. Therefore, when the retaining rings 70a, 70b are fitted into the annular groove 62, the retaining rings 70a, 70b are smoothly moved to the inlet side of the inner ring 20 by the axial component force generated by the diameter reducing force of the retaining rings 70a, 70b. It becomes easy to move to. As a result, the inner ring 20 is more reliably restrained in the axial direction with respect to the shaft 60 without a gap. In other words, the inner ring 20 is sandwiched between the shoulder portion of the shaft 60 and the retaining rings 70a and 70b without play.

前述した実施形態では、止め輪70が、自然状態への弾性復元力でもって半径方向内側へ縮径する力をシャフト60の環状溝62に作用させることにより、その止め輪70の縮径力で発生する軸方向の分力により止め輪70が内輪20の入口側へ移動してその内輪20の奥側端面25と当接する場合について説明したが、止め輪70の材質や形状あるいは環状溝の形状などによっては、以下のようにして、内輪20がシャフト60に対して軸方向に隙間なく拘束されることもある。   In the above-described embodiment, the retaining ring 70 acts on the annular groove 62 of the shaft 60 by applying a force that shrinks radially inward with an elastic restoring force to a natural state. The case where the retaining ring 70 moves to the inlet side of the inner ring 20 by the generated axial component force and contacts the inner end surface 25 of the inner ring 20 has been described. However, the material and shape of the retaining ring 70 or the shape of the annular groove Depending on the situation, the inner ring 20 may be restrained in the axial direction with no gap in the axial direction as follows.

つまり、図7に示すように、止め輪70を自然状態での直径よりも拡径させた状態でシャフト60の環状溝62に嵌入させると(図中破線参照)、止め輪70は、自然状態への弾性復元力でもって半径方向内側へ縮径する。   That is, as shown in FIG. 7, when the retaining ring 70 is fitted in the annular groove 62 of the shaft 60 in a state where the diameter of the retaining ring 70 is larger than the diameter in the natural state (see the broken line in the figure), the retaining ring 70 is in the natural state. The diameter is reduced radially inward by an elastic restoring force.

この時、止め輪70の内径72が当接している環状溝62の底面64を、内輪20の入口側から奥側へ向けて漸次拡径させたテーパ状としたことにより、止め輪70の内径72の内輪奥側エッジ部が環状溝62の底面64と接触し、止め輪70の内径72の内輪入口側エッジ部が環状溝62の底面64と接触していない状態となる。   At this time, the bottom surface 64 of the annular groove 62 with which the inner diameter 72 of the retaining ring 70 abuts is tapered so that the diameter gradually increases from the inlet side to the inner side of the inner ring 20. The inner ring back side edge portion of 72 is in contact with the bottom surface 64 of the annular groove 62, and the inner ring inlet side edge portion of the inner diameter 72 of the retaining ring 70 is not in contact with the bottom surface 64 of the annular groove 62.

この環状溝62の底面64と接触していない止め輪70の内径72の内輪入口側エッジ部は、縮径力でもって環状溝62の底面64と接触しようと縮径することから、止め輪全体が内輪20の入口側に傾いてその止め輪70の外径側端面74が内輪20の奥側端面25に当接する(図中実線参照)。その結果、内輪20がシャフト60に対して軸方向に隙間なく拘束される。すなわち、内輪20はシャフト60の肩部と止め輪70との間で、がた無く挟みつけられる。   The inner ring inlet side edge portion of the inner diameter 72 of the retaining ring 70 that is not in contact with the bottom surface 64 of the annular groove 62 is reduced in diameter so as to come into contact with the bottom surface 64 of the annular groove 62 with a diameter reducing force. Is inclined toward the inlet side of the inner ring 20, and the outer diameter side end surface 74 of the retaining ring 70 comes into contact with the inner side end surface 25 of the inner ring 20 (see the solid line in the figure). As a result, the inner ring 20 is restrained with respect to the shaft 60 without any gap in the axial direction. That is, the inner ring 20 is sandwiched between the shoulder portion of the shaft 60 and the retaining ring 70 without any play.

なお、止め輪70c,70dは、図8(a)(b)に示すようにその内径72c,72dを内輪20の入口側から奥側へ向けて漸次縮径させた形状とすることも可能である。同図(a)は、止め輪70cの内径形状をシャフト軸方向断面で直線状としたテーパ面を例示し、同図(b)は、止め輪70dの内径形状をシャフト軸方向断面で曲線状とした凸曲成面を例示する。   The retaining rings 70c and 70d can also have a shape in which the inner diameters 72c and 72d are gradually reduced from the inlet side to the inner side of the inner ring 20 as shown in FIGS. 8 (a) and 8 (b). is there. FIG. 5A illustrates a tapered surface in which the inner diameter shape of the retaining ring 70c is linear in the cross section in the shaft axial direction, and FIG. 5B illustrates the inner diameter shape of the retaining ring 70d in a curved shape in the cross section in the shaft axial direction. An example of the convex curved surface is shown.

止め輪70c,70dの内径72c,72dを図8(a)(b)に示すような形状とした場合、止め輪70c,70dを環状溝62に嵌入させた時に、環状溝62の底面64と接触していない止め輪70c,70dの内径72c,72dの入口側エッジ部が、環状溝62の底面64と接触しようと縮径する力を大きく作用させることができることから、止め輪全体が内輪20の入口側に容易に傾く。その結果、より確実に、内輪20がシャフト60に対して軸方向に隙間なく拘束される。すなわち、内輪20はシャフト60の肩部と止め輪70c,70dとの間で、がた無く挟みつけられる。   When the inner diameters 72c and 72d of the retaining rings 70c and 70d are shaped as shown in FIGS. 8A and 8B, when the retaining rings 70c and 70d are fitted into the annular groove 62, the bottom surface 64 of the annular groove 62 and Since the inlet-side edge portions of the inner diameters 72c and 72d of the retaining rings 70c and 70d that are not in contact with each other can exert a large force to reduce the diameter so as to come into contact with the bottom surface 64 of the annular groove 62, the retaining ring as a whole is the inner ring 20. Inclined easily to the entrance side of the. As a result, the inner ring 20 is more reliably restrained in the axial direction with respect to the shaft 60 without a gap. That is, the inner ring 20 is sandwiched between the shoulder portion of the shaft 60 and the retaining rings 70c and 70d without play.

内輪20がシャフト60に対して軸方向に隙間なく拘束される形態としては、図5に示すように止め輪70の縮径力で発生する軸方向の分力により止め輪70が内輪20の入口側へ移動してその内輪20の奥側端面25と当接する場合と、図7に示すように止め輪70の縮径力により、止め輪全体が内輪20の入口側に傾いてその止め輪70の外径側端面74が内輪20の奥側端面25に当接する場合とがある。いずれの形態となるかは、止め輪70の材質や形状あるいは環状溝の形状などによって左右される。   As a form in which the inner ring 20 is constrained in the axial direction with respect to the shaft 60, as shown in FIG. 5, the retaining ring 70 is brought into the inlet of the inner ring 20 by the axial component force generated by the diameter reducing force of the retaining ring 70. And the entire retaining ring is tilted toward the inlet side of the inner ring 20 due to the diameter reducing force of the retaining ring 70 as shown in FIG. The outer diameter side end surface 74 of the inner ring 20 may come into contact with the inner side ring 20 end surface 25. Which form is selected depends on the material and shape of the retaining ring 70 or the shape of the annular groove.

例えば、止め輪70の曲げ剛性が大きい場合には、図5に示すように止め輪70の縮径力で発生する軸方向の分力により止め輪70が内輪20の入口側へ移動してその内輪20の奥側端面25と当接する場合が主となり、止め輪70の曲げ剛性が小さい場合には、図7に示すように止め輪70の縮径力により、止め輪全体が内輪20の入口側に傾いてその止め輪70の外径側端面74が内輪20の奥側端面25に当接する場合が主となる。   For example, when the retaining ring 70 has a large bending rigidity, the retaining ring 70 moves to the inlet side of the inner ring 20 by the axial component force generated by the diameter reducing force of the retaining ring 70 as shown in FIG. When the retaining ring 70 is small in bending rigidity, the entire retaining ring is brought into contact with the inlet of the inner ring 20 by the diameter reducing force of the retaining ring 70 as shown in FIG. The main case is that the outer diameter side end surface 74 of the retaining ring 70 is in contact with the inner side end surface 25 of the inner ring 20 by tilting to the side.

なお、図7に示す形態となる時の止め輪70の曲げ剛性は、図5に示す形態となる時の止め輪70の曲げ剛性よりも小さいが、その場合であっても、シャフト60に加わる軸方向からの引き抜き力に対して止め輪70が抜け止め機能を発揮し得る程度に曲げ剛性を確保している。   The bending rigidity of the retaining ring 70 in the configuration shown in FIG. 7 is smaller than the bending rigidity of the retaining ring 70 in the configuration shown in FIG. 5, but even in that case, it is added to the shaft 60. The bending rigidity is ensured to such an extent that the retaining ring 70 can exhibit a retaining function against the pulling force from the axial direction.

以上の実施形態では、環状溝62の底面64を、内輪20の軸孔26に対してシャフト60が挿入される内輪20の入口側から奥側へ向けて漸次拡径させる一つの形態として、環状溝62の底面64をシャフト軸方向断面で直線状としたテーパ面とした場合について説明したが、本発明はこれに限定されることなく、図9および図10に示すような構造も可能である。   In the above embodiment, the bottom surface 64 of the annular groove 62 is an annular shape that gradually increases in diameter from the inlet side of the inner ring 20 into which the shaft 60 is inserted into the shaft hole 26 of the inner ring 20 toward the back side. Although the case where the bottom surface 64 of the groove 62 is a tapered surface that is linear in the cross section in the axial direction of the shaft has been described, the present invention is not limited to this and a structure as shown in FIGS. 9 and 10 is also possible. .

つまり、環状溝62の底面64を、内輪20の軸孔26に対してシャフト60が挿入される内輪20の入口側から奥側へ向けて漸次拡径させる他の形態として、環状溝62a,62bの底面64a,64bをシャフト軸方向断面で曲線状とした曲成面も可能である。図9は凸状の曲成面を示し、図10は凹状の曲成面を示す。   That is, as another form of gradually increasing the diameter of the bottom surface 64 of the annular groove 62 from the inlet side of the inner ring 20 into which the shaft 60 is inserted into the shaft hole 26 of the inner ring 20 toward the back side, the annular grooves 62a and 62b. Further, curved surfaces in which the bottom surfaces 64a and 64b are curved in the shaft axial section are also possible. FIG. 9 shows a convex curved surface, and FIG. 10 shows a concave curved surface.

環状溝62a,62bの底面64a,64bを、図9に示す凸状の曲成面あるいは図10に示す凹状の曲成面とした場合についても、図3に示すテーパ面とした場合と同様の作用効果を奏するため、重複説明は省略する。なお、この図9および図10に示す実施形態についても、図6(a)(b)および図8(a)(b)に示す内径形状を有する止め輪70a〜70dを適用することも可能であり、同様の作用効果を奏する。   Even when the bottom surfaces 64a and 64b of the annular grooves 62a and 62b are convex curved surfaces as shown in FIG. 9 or concave curved surfaces as shown in FIG. 10, they are the same as the tapered surfaces shown in FIG. In order to achieve the effect, duplicate description is omitted. 9 and 10 can also be applied to the retaining rings 70a to 70d having the inner diameter shapes shown in FIGS. 6 (a), 6 (b) and 8 (a), 8 (b). There are similar effects.

また、シャフト60の環状溝62は、図11に示す形状でもよい。この環状溝62cは、シャフト軸方向断面がV字状の底面64cを有する。つまり、シャフト軸端側である内輪20の奥側に、内輪20の軸孔26に対してシャフト60が挿入される内輪20の入口側から奥側へ向けて漸次拡径させた直線状のテーパ面64c1を持つと共に、内輪20の入口側に、内輪20の軸孔26に対してシャフト60が挿入される内輪20の入口側から奥側へ向けて漸次縮径させた直線状のテーパ面64c2を持つ。 Further, the annular groove 62 of the shaft 60 may have a shape shown in FIG. The annular groove 62c has a bottom surface 64c having a V-shaped cross section in the shaft axial direction. In other words, a linear taper in which the diameter is gradually increased from the inlet side of the inner ring 20 into which the shaft 60 is inserted into the shaft hole 26 of the inner ring 20 toward the inner side, which is the shaft shaft end side. A linear tapered surface having a surface 64c 1 and gradually reducing the diameter from the inlet side to the inner side of the inner ring 20 where the shaft 60 is inserted into the shaft hole 26 of the inner ring 20 on the inlet side of the inner ring 20. with a 64c 2.

このような形状の環状溝62cとした場合、止め輪70をシャフト60の環状溝62cに嵌入させると、図12に示すようにシャフト60の環状溝62cに作用する止め輪70の縮径力が発生する軸方向の分力により、止め輪70が内輪20の入口側へ移動してその内輪20の奥側端面25と当接する。   In the case of the annular groove 62c having such a shape, when the retaining ring 70 is fitted into the annular groove 62c of the shaft 60, the diameter reducing force of the retaining ring 70 acting on the annular groove 62c of the shaft 60 is reduced as shown in FIG. Due to the generated axial force, the retaining ring 70 moves to the inlet side of the inner ring 20 and comes into contact with the inner end face 25 of the inner ring 20.

この時、止め輪70の内径72の内輪奥側エッジ部は、内輪20の軸孔26に対してシャフト60が挿入される内輪20の入口側から奥側へ向けて漸次拡径させた直線状のテーパ面64c1と当接するが、止め輪70の内径72の内輪入口側エッジ部は、内輪20の軸孔26に対してシャフト60が挿入される内輪20の入口側から奥側へ向けて漸次縮径させた直線状のテーパ面64c2と当接しない。その結果、内輪20がシャフト60に対して軸方向に隙間なく拘束される。すなわち、内輪20はシャフト60の肩部と止め輪70との間で、がた無く挟みつけられる。 At this time, the inner ring inner edge 72 of the inner diameter 72 of the retaining ring 70 is linearly expanded gradually from the inlet side of the inner ring 20 into which the shaft 60 is inserted into the shaft hole 26 of the inner ring 20 toward the inner side. Although abuts the tapered surface 64c 1 of the inner ring inlet-side edge portion of the inner diameter 72 of the retaining ring 70, toward the inlet side of the inner ring 20 of the shaft 60 to the shaft hole 26 of the inner ring 20 is inserted into the inner side It does not come into contact with the linear taper surface 64c 2 that has been gradually reduced in diameter. As a result, the inner ring 20 is restrained with respect to the shaft 60 without any gap in the axial direction. In other words, the inner ring 20 is sandwiched between the shoulder portion of the shaft 60 and the retaining ring 70 without play.

なお、図3、図9および図10に示す形状の底面64,64a,64bを有する環状溝62,62a,62bを製作する場合には、その溝加工に専用工具を使用する必要があるのに対して、図11に示す形状の底面64cを有する環状溝62cを製作する場合には、一般的な切削工具で溝加工できる点で有効である。   When manufacturing the annular grooves 62, 62a and 62b having the bottom surfaces 64, 64a and 64b having the shapes shown in FIGS. 3, 9 and 10, it is necessary to use a dedicated tool for the groove processing. On the other hand, when the annular groove 62c having the bottom surface 64c having the shape shown in FIG. 11 is manufactured, it is effective in that the groove can be formed with a general cutting tool.

また、図3、図9および図10に示す環状溝62,62a,62bでは、底面64,64a,64bからシャフト軸端側に向けて連続して形成された奥側端面66,66a,66bが、シャフト軸方向と直交する方向に起立した構造となっている。これに対して、図11に示す環状溝62cでは、シャフト60に大きな引き抜き力が作用した場合のストッパとして機能する奥側端面がない。   Further, in the annular grooves 62, 62a, and 62b shown in FIGS. 3, 9, and 10, there are back end surfaces 66, 66a, and 66b formed continuously from the bottom surfaces 64, 64a, and 64b toward the shaft shaft end side. The structure stands up in a direction perpendicular to the shaft axis direction. On the other hand, in the annular groove 62c shown in FIG. 11, there is no back side end surface that functions as a stopper when a large pulling force acts on the shaft 60.

そこで、任意の引き抜き力以下でシャフト60が内輪20から抜けないように、内輪20の軸孔26に対してシャフト60が挿入される内輪20の入口側から奥側へ向けて漸次拡径させた直線状のテーパ面64c1の角度θを適切に設定すればよい。 Therefore, the diameter is gradually increased from the inlet side of the inner ring 20 into which the shaft 60 is inserted into the shaft hole 26 of the inner ring 20 toward the inner side so that the shaft 60 does not come out of the inner ring 20 below an arbitrary pulling force. The angle θ of the linear tapered surface 64c 1 may be set appropriately.

本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。   The present invention is not limited to the above-described embodiments, and can of course be implemented in various forms without departing from the gist of the present invention. It includes the equivalent meanings recited in the claims and the equivalents recited in the claims, and all modifications within the scope.

本発明の実施形態で、内輪とシャフトの嵌合構造を示す要部拡大断面図である。FIG. 3 is an enlarged cross-sectional view of a main part showing a fitting structure between an inner ring and a shaft in the embodiment of the present invention. 本発明の実施形態で、摺動式等速自在継手の全体構成を示す縦断面図である。It is a longitudinal section showing the whole sliding constant velocity universal joint composition in an embodiment of the present invention. 本発明の実施形態で、環状溝の底面を、シャフト軸端側から内輪側に向けて漸次縮径させる一つの形態として、環状溝の底面をシャフト軸方向断面で直線状のテーパ面としたシャフトを示す正面図である。In the embodiment of the present invention, as one form of gradually reducing the diameter of the bottom surface of the annular groove from the shaft shaft end side toward the inner ring side, the shaft having the bottom surface of the annular groove as a linear taper surface in the shaft axial section FIG. (a)は図1の止め輪を示す側面図、(b)は図1の止め輪を示す断面図である。(A) is a side view which shows the retaining ring of FIG. 1, (b) is sectional drawing which shows the retaining ring of FIG. 図4の止め輪により、内輪がシャフトに対して軸方向に隙間なく拘束される一つの形態を示す要部拡大断面図である。FIG. 5 is an enlarged cross-sectional view showing a main part of an embodiment in which the inner ring is restrained in the axial direction with respect to the shaft without a gap by the retaining ring of FIG. 本発明の他の実施形態で、(a)は内径を内輪の入口側から奥側へ向けて漸次拡径させ、シャフト軸方向断面で直線状としたテーパ面を有する止め輪を示す断面図、(b)は内径を内輪の入口側から奥側へ向けて漸次拡径させ、シャフト軸方向断面で曲線状とした凸曲成面を有する止め輪を示す断面図である。In another embodiment of the present invention, (a) is a cross-sectional view showing a retaining ring having a tapered surface in which the inner diameter gradually increases from the inlet side to the inner side of the inner ring and is linear in the axial section of the shaft, (B) is a cross-sectional view showing a retaining ring having a convexly curved surface whose inner diameter is gradually increased from the inlet side to the inner side of the inner ring and is curved in the shaft axial section. 図4の止め輪により、内輪がシャフトに対して軸方向に隙間なく拘束される他の形態を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the other form with which an inner ring | wheel is restrained with a clearance gap between an axial direction with respect to a shaft by the retaining ring of FIG. 本発明の他の実施形態で、(a)は内径を内輪の入口側から奥側へ向けて漸次縮径させ、シャフト軸方向断面で直線状としたテーパ面を有する止め輪を示す断面図、(b)は内径を内輪の入口側から奥側へ向けて漸次縮径させ、シャフト軸方向断面で曲線状とした凸曲成面を有する止め輪を示す断面図である。In another embodiment of the present invention, (a) is a cross-sectional view showing a retaining ring having a tapered surface in which the inner diameter is gradually reduced from the inlet side to the inner side of the inner ring, and is linear in the shaft axial section, (B) is a cross-sectional view showing a retaining ring having a convex curved surface whose inner diameter is gradually reduced from the inlet side to the inner side of the inner ring and is curved in the shaft axial section. 本発明の他の実施形態で、環状溝の底面を、シャフト軸端側から内輪側に向けて漸次縮径させる他の形態として、環状溝の底面をシャフト軸方向断面で曲線状の凸曲成面としたシャフトを示す正面図である。In another embodiment of the present invention, as another form of gradually reducing the diameter of the bottom surface of the annular groove from the shaft shaft end side toward the inner ring side, the bottom surface of the annular groove is formed in a curved convex curve in the shaft axial section. It is a front view which shows the shaft made into the surface. 本発明の他の実施形態で、環状溝の底面を、シャフト軸端側から内輪側に向けて漸次縮径させる他の形態として、環状溝の底面をシャフト軸方向断面で曲線状の凹曲成面としたシャフトを示す正面図である。In another embodiment of the present invention, as another form of gradually reducing the diameter of the bottom surface of the annular groove from the shaft shaft end side toward the inner ring side, the bottom surface of the annular groove is formed into a curved concave curve in the axial section of the shaft. It is a front view which shows the shaft made into the surface. 本発明の他の実施形態で、シャフト軸方向断面がV字状の底面を有する環状溝を形成したシャフトを示す正面図である。It is a front view which shows the shaft which formed the annular groove which has a V-shaped bottom face in the shaft axial direction cross section in other embodiment of this invention. 図4の止め輪により、内輪がシャフトに対して軸方向に隙間なく拘束される他の形態として、図11のシャフトの環状溝に図4の止め輪を装着した状態を示す要部拡大断面図である。As another form in which the inner ring is restrained in the axial direction with respect to the shaft without a gap by the retaining ring in FIG. 4, an enlarged cross-sectional view of a main part showing a state in which the retaining ring in FIG. 4 is mounted in the annular groove of the shaft in FIG. It is. 従来の等速自在継手の全体構成を示す断面図である。It is sectional drawing which shows the whole structure of the conventional constant velocity universal joint. 従来の等速自在継手における内輪とシャフトの嵌合構造を示す断面図である。It is sectional drawing which shows the fitting structure of the inner ring | wheel and shaft in the conventional constant velocity universal joint.

符号の説明Explanation of symbols

10 外側継手部材(外輪)
20 内側継手部材(内輪)
25 内側継手部材の奥側端面
26 軸孔
60 シャフト
62 環状溝
64 環状溝の底面
66 環状溝の奥側端面
70 止め輪
72 止め輪の内径
10 Outer joint member (outer ring)
20 Inner joint member (inner ring)
25 Inner side of inner joint member 26 Shaft hole 60 Shaft 62 Annular groove 64 Bottom surface of annular groove 66 Inner end surface of annular groove 70 Retaining ring 72 Inner diameter of retaining ring

Claims (6)

外側継手部材と、その外側継手部材との間で角度変位を許容しながらトルクを伝達する内側継手部材とを備えた等速自在継手であって、前記内側継手部材の軸孔にシャフトを挿入して嵌合させ、前記シャフトの外周面に形成された環状溝に止め輪を縮径状態で嵌入させて内側継手部材に対してシャフトを抜け止めした構造を有し、前記シャフトの環状溝は、シャフト軸端側から内側継手部材側に向けて漸次縮径する縮径面を有することを特徴とする等速自在継手。   A constant velocity universal joint comprising an outer joint member and an inner joint member that transmits torque while allowing angular displacement between the outer joint member, and a shaft is inserted into the shaft hole of the inner joint member And having a structure in which a retaining ring is fitted in an annular groove formed on the outer peripheral surface of the shaft in a reduced diameter state to prevent the shaft from coming off with respect to the inner joint member. A constant velocity universal joint having a reduced diameter surface that gradually decreases in diameter from the shaft shaft end side toward the inner joint member side. 前記シャフトの環状溝は、前記縮径面からシャフト軸端側に向けて連続して形成され、シャフト軸方向と直交する方向に起立する端面とを備えた請求項1に記載の等速自在継手。   2. The constant velocity universal joint according to claim 1, wherein the annular groove of the shaft includes an end surface that is continuously formed from the reduced diameter surface toward the shaft shaft end side and rises in a direction orthogonal to the shaft axis direction. . 前記縮径面を、シャフト軸方向断面で直線状とした請求項1又は2に記載の等速自在継手。   The constant velocity universal joint according to claim 1, wherein the reduced diameter surface is linear in a cross section in the shaft axial direction. 前記縮径面を、シャフト軸方向断面で曲線状とした請求項1又は2に記載の等速自在継手。   The constant velocity universal joint according to claim 1, wherein the reduced diameter surface has a curved shape in a cross section in the shaft axial direction. 前記止め輪の内径を、前記内側継手部材側からシャフト軸端側へ向けて漸次拡径させた請求項1〜4のいずれか一項に記載の等速自在継手。   The constant velocity universal joint according to any one of claims 1 to 4, wherein an inner diameter of the retaining ring is gradually expanded from the inner joint member side toward the shaft shaft end side. 前記止め輪の内径を、前記内側継手部材側からシャフト軸端側へ向けて漸次縮径させた請求項1〜4のいずれか一項に記載の等速自在継手。   The constant velocity universal joint according to any one of claims 1 to 4, wherein an inner diameter of the retaining ring is gradually reduced in diameter from the inner joint member side toward the shaft shaft end side.
JP2007299628A 2007-11-19 2007-11-19 Constant velocity universal joint Withdrawn JP2009127637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007299628A JP2009127637A (en) 2007-11-19 2007-11-19 Constant velocity universal joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007299628A JP2009127637A (en) 2007-11-19 2007-11-19 Constant velocity universal joint

Publications (1)

Publication Number Publication Date
JP2009127637A true JP2009127637A (en) 2009-06-11

Family

ID=40818793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007299628A Withdrawn JP2009127637A (en) 2007-11-19 2007-11-19 Constant velocity universal joint

Country Status (1)

Country Link
JP (1) JP2009127637A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015113849A (en) * 2013-12-09 2015-06-22 日本精工株式会社 Taper snap ring
WO2019054775A1 (en) * 2017-09-13 2019-03-21 이래에이엠에스 주식회사 Lash reduction structure of inner race for constant velocity joint

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015113849A (en) * 2013-12-09 2015-06-22 日本精工株式会社 Taper snap ring
WO2019054775A1 (en) * 2017-09-13 2019-03-21 이래에이엠에스 주식회사 Lash reduction structure of inner race for constant velocity joint

Similar Documents

Publication Publication Date Title
JP2010043667A (en) Fixed-type constant velocity universal joint
JP2007170628A (en) Constant velocity universal joint and its inward member
JP2005083408A (en) Fixed type constant velocity universal joint
JP2009287713A (en) Fixed-type constant-velocity universal joint
JP2009068508A (en) Constant velocity universal joint
US8342971B2 (en) Fixed type constant velocity universal joint
JP2009127637A (en) Constant velocity universal joint
JP2009103250A (en) Constant velocity universal joint
JP2007333154A (en) Constant-velocity universal joint
JP5749912B2 (en) Double offset type constant velocity joint
JP2007247848A (en) Cross groove type constant velocity universal joint
JP2009185872A (en) Shaft connection structure for constant velocity joint
JP2010019399A (en) Ball-type constant velocity universal joint
JP2008095843A (en) Circlip and constant velocity joint
JP2006266460A (en) Structure for preventing constant velocity joint shaft from coming off
JP5901950B2 (en) Spline fitting structure
JP2007064322A (en) Fixed type constant velocity universal joint
JP2009079690A (en) Constant velocity universal joint
JP2007002943A (en) Constant velocity universal joint and its inner member
JP2007271040A (en) Fixed type constant velocity universal joint
JP2008232293A (en) Constant velocity universal joint
JP6899663B2 (en) Sliding constant velocity universal joint and its manufacturing method
JP2008267533A (en) Fixed constant velocity universal joint
JP2019138346A (en) Constant velocity universal joint
JP2016176516A (en) Constant velocity universal joint

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110201