JP2007119318A - Carbon fiber-reinforced carbon composite material including carbon nanotube - Google Patents
Carbon fiber-reinforced carbon composite material including carbon nanotube Download PDFInfo
- Publication number
- JP2007119318A JP2007119318A JP2005315973A JP2005315973A JP2007119318A JP 2007119318 A JP2007119318 A JP 2007119318A JP 2005315973 A JP2005315973 A JP 2005315973A JP 2005315973 A JP2005315973 A JP 2005315973A JP 2007119318 A JP2007119318 A JP 2007119318A
- Authority
- JP
- Japan
- Prior art keywords
- carbon
- carbon fiber
- composite material
- reinforced
- nanotube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Ceramic Products (AREA)
Abstract
Description
本発明は、機械的特性、耐熱性、導電性に優れ、例えばロケットや宇宙船など宇宙関連装置の構造材料等に有用な炭素繊維強化炭素複合材料に関するものである。 The present invention relates to a carbon fiber reinforced carbon composite material that has excellent mechanical properties, heat resistance, and electrical conductivity, and is useful as a structural material for space-related devices such as rockets and spacecrafts.
炭素繊維強化炭素複合材料は高熱伝導性で耐熱性、耐熱衝撃性に優れた軽量材であって、宇宙用耐熱構造材、核融合炉壁材等の耐熱部品、及び耐熱慴動材として航空機等の過酷な使用条件のブレーキ材への応用が期待されている。特許文献1には、炭素繊維にピッチ原料を含浸させた後、炭化した炭素繊維強化炭素複合材料が記載されている。
Carbon fiber reinforced carbon composite material is a lightweight material with high thermal conductivity, excellent heat resistance and thermal shock resistance, heat resistant structural materials for space, fusion reactor wall materials, etc. It is expected to be applied to brake materials under severe usage conditions.
かかる炭素繊維強化炭素複合材料は、カーボンナノチューブを含有させることで、機械強度、剛性、熱伝導性及び導電性などの特性の改善が報告されている。特許文献2は、熱硬化型イミドオリゴマーにカーボンナノチューブを添加して熱硬化させることにより、電気伝導性の付与、弾性率や強度の向上、及び耐熱性を向上させたポリイミド複合材料を開示している。特許文献3には、芳香族ポリアミド中に単層カーボンナノチューブを分散させた芳香族ポリアミド複合材料が記載されている。
Such carbon fiber reinforced carbon composite materials have been reported to improve properties such as mechanical strength, rigidity, thermal conductivity, and conductivity by containing carbon nanotubes.
宇宙開発などにともない、構造材料の機械特性や耐熱性に対する要求はとどまるところがない。そのような状況下において、本発明は、高機械強度とともに、高弾性、高耐熱性、良熱伝導性及び良導電性など、優れた特性を持つ構造材として有用な炭素繊維強化炭素複合材料を提供することを目的とする。 With space development, there is no end to the demand for mechanical properties and heat resistance of structural materials. Under such circumstances, the present invention provides a carbon fiber reinforced carbon composite material useful as a structural material having excellent characteristics such as high mechanical strength, high elasticity, high heat resistance, good thermal conductivity, and good conductivity. The purpose is to provide.
前記の目的を達成するためになされた本発明の請求項1に記載の発明は、縮合多環多核芳香族樹脂とカーボンナノチューブとの混合物を、炭素繊維に混合して炭素化したことを特徴とする炭素繊維強化炭素複合材料である。
The invention according to
同じく本発明の請求項2に記載の発明は、請求項1に記載の炭素繊維強化炭素複合材料において、JIS R7222に規定される三点曲げ試験による強度が500MPa以上であることを特徴とする炭素繊維強化炭素複合材料である。
Similarly, the invention according to
請求項3に記載の発明は、該縮合多環多核芳香族樹脂がタールピッチ系の芳香族化合物とグリコール類の縮重合化合物であることを特徴とする請求項1に記載の炭素繊維強化炭素複合材料である。
The invention according to claim 3 is the carbon fiber reinforced carbon composite according to
請求項4に記載の発明は、該カーボンナノチューブがカップスタック型カーボンナノチューブであることを特徴とする請求項1に記載の炭素繊維強化炭素複合材料である。
The invention according to
請求項5に記載の発明は、該炭素繊維がポリアクリロニトリル系炭素繊維であることを特徴とする請求項1に記載の炭素繊維強化炭素複合材料である。
The invention according to
請求項6に記載の発明は、カーボンナノチューブとの混合共存下で、芳香族化合物とグリコール類を縮重合し、得られた該カーボンナノチューブと縮合多環多核芳香族樹脂との混合物を、炭素繊維に含浸し、焼成して炭素化することを特徴とする炭素繊維強化炭素複合材料の製造方法である。 The invention according to claim 6 is a method in which an aromatic compound and a glycol are subjected to polycondensation in the presence of mixing with a carbon nanotube, and the resulting mixture of the carbon nanotube and the condensed polycyclic polynuclear aromatic resin is converted into a carbon fiber. The carbon fiber reinforced carbon composite material is produced by impregnating and carbonizing by firing.
請求項7に記載の発明は、該カーボンナノチューブがカップスタック型カーボンナノチューブであって、超音波を照射して有機溶剤に分散してから、該芳香族化合物とグリコール類を混合共存させ前記縮重合することを特徴とする請求項8に記載の炭素繊維強化炭素複合材料の製造方法である。 According to a seventh aspect of the present invention, the carbon nanotube is a cup-stacked carbon nanotube, which is dispersed in an organic solvent by irradiating an ultrasonic wave, and then the aromatic compound and glycol are mixed and coexisted. The method for producing a carbon fiber-reinforced carbon composite material according to claim 8.
請求項8に記載の発明は、前記縮重合に際し、p−トルエンスルホン酸を触媒として添加することを特徴とする請求項8に記載の炭素繊維強化炭素複合材料の製造方法である。 The invention according to claim 8 is the method for producing a carbon fiber-reinforced carbon composite material according to claim 8, wherein p-toluenesulfonic acid is added as a catalyst in the condensation polymerization.
本発明の炭素繊維強化炭素複合材料は、機械強度とともに、弾性、耐熱性、熱伝導性及び導電性の面で非常に優れた特性を持つ構造材を実現した。特に機械強度においては、驚異的な500MPa以上を達成できた。1000MPaまで達成できる。そのため、宇宙用耐熱構造材、核融合炉壁材の耐熱部品、航空機や車両等のエンジン部材、あるいはブレーキ材、スキー板、釣り竿、ゴルフクラブのシャフトとして利用し、極めて高性能なものにできる。この炭素繊維強化炭素複合材料は、焼成工程前に加圧成形をするため、同一形状の部品を大量生産するのに適している。 The carbon fiber reinforced carbon composite material of the present invention has realized a structural material having excellent properties in terms of elasticity, heat resistance, thermal conductivity, and conductivity as well as mechanical strength. In particular, in terms of mechanical strength, an amazing 500 MPa or more could be achieved. Up to 1000 MPa can be achieved. Therefore, it can be used as a heat-resistant structural material for space, a heat-resistant component of a fusion reactor wall material, an engine member for an aircraft or a vehicle, a brake material, a ski board, a fishing rod, or a shaft of a golf club, and can be made extremely high performance. This carbon fiber reinforced carbon composite material is suitable for mass production of parts having the same shape because it is pressure-formed before the firing step.
本発明を実施するための好ましい形態を以下に説明する。 Preferred modes for carrying out the present invention will be described below.
本発明の炭素繊維強化炭素複合材料は、図1のフローチャートに示す、1〜6の投入原材料および中間製品、ステップ101〜105の工程によって製造され、成形品7として完成する。
The carbon fiber reinforced carbon composite material of the present invention is manufactured by the processes of input
同図に示すように、カップスタック型カーボンナノチューブ(以下、「CSCナノチューブ」という)1をα−メチルナノフタレンに添加し、ステップ101で超音波を照射して分散処理を行う。α−メチルナノフタレンは、CSCナノチューブが再凝集することを抑制する。この分散液に重合単量体としてのコールタールピッチおよびp−キシリレングリコールを加え、さらに触媒としてp−トルエンスルホン酸を添加し、不活性ガス雰囲気下で加温撹拌して縮重合反応を行う。下記化学反応式Iにしたがって反応する。
As shown in the figure, cup-stacked carbon nanotubes (hereinafter referred to as “CSC nanotubes”) 1 are added to α-methyl nanophthalene, and dispersion treatment is performed by irradiating ultrasonic waves in
すると、中間原料製品としてのCSCナノチューブと縮合多環多核芳香族樹脂(COPNA:Condensed Polynuclear Aromatic Resin)との複合体樹脂(以下、「CSCナノチューブ/COPNA複合体樹脂」、或いは単に「複合体樹脂」という)5ができる。 Then, a composite resin of CSC nanotube as an intermediate raw material product and condensed polycyclic polynuclear aromatic resin (COPNA: Condensed Polynuclear Aromatic Resin) (hereinafter referred to as “CSC nanotube / COPNA composite resin” or simply “composite resin”) 5).
ステップ103で、この複合体樹脂5を溶媒(例えばクロロホルム)に溶解した溶液を、ポリアクリロニトリル系炭素繊維6に含浸させる。ステップ104では、この含浸体を若干の張力をかけながら乾燥させた後、ステップ105で濃硫酸に浸漬して表面を炭化させ表面硬化をさせる。これを型枠に挟み込み加熱加圧して成形をした(ステップ106)後、ステップ107で加熱焼成して複合体樹脂を全体的に炭素化する。すると、本発明の炭素繊維強化炭素複合材料が成形品7として完成する。
In
CSCナノチューブ/COPNA複合体樹脂中のCSCナノチューブと縮合多環多核芳香族樹脂との重量比率は3:97〜5:95が好ましい。CSCナノチューブ/COPNA複合体樹脂とこれを含浸させる炭素繊維の重量比率は30:70程度が好ましい。 The weight ratio of the CSC nanotube to the condensed polycyclic polynuclear aromatic resin in the CSC nanotube / COPNA composite resin is preferably from 3:97 to 5:95. The weight ratio of the CSC nanotube / COPNA composite resin and the carbon fiber impregnated with the CSC nanotube / COPNA composite resin is preferably about 30:70.
ステップ107における焼成の温度は約1000℃で実施できる
The firing temperature in
以下、本発明の実施例を詳細に説明するが、本発明の範囲はこれらの実施例に限定されるものではない。 Examples of the present invention will be described in detail below, but the scope of the present invention is not limited to these examples.
(実施例1)
α−メチルナフタレン6mlにCSCナノチューブ(GSIクレオス社製)を3重量%になるように添加して、超音波分散処理を3時間行なった。コールタールピッチ25g、p−キシリレングリコール17g、およびα−メチルナフタレン/カップスタック型カーボンナノチューブ混合液に触媒として、p−トルエンスルホン酸2.3gを加え、アルゴン雰囲気下、反応温度140℃で3時間させ縮重合し、CSCナノチューブ/COPNA複合体樹脂を作製した。
Example 1
CSC nanotubes (manufactured by GSI Creos) were added to 6 ml of α-methylnaphthalene so as to be 3% by weight, and ultrasonic dispersion treatment was performed for 3 hours. As a catalyst, 2.3 g of p-toluenesulfonic acid is added to 25 g of coal tar pitch, 17 g of p-xylylene glycol, and α-methylnaphthalene / cup-stacked carbon nanotube mixture, and the reaction temperature is 140 ° C. under an argon atmosphere. CSC nanotube / COPNA composite resin was produced by condensation polymerization with time.
このCSCナノチューブ/COPNA複合体樹脂4gをクロロホルム10mlに溶解した溶液を、ポリアクリロニトリル系炭素繊維(東レ株式会社製:M55JB)0.7gに含浸し、150g/cm2の張力を掛けながら、一昼夜乾燥した。この複合体樹脂含浸炭素繊維を濃硫酸に5分間浸し、表面硬化を行った後、一昼夜乾燥させた。これを金型に入れ、200℃、500kgF/cm2で2時間加熱圧縮成型を行なった。金型から取り出し、アルゴン雰囲気下で昇温速度250℃/hで1000℃まで加熱して、炭素化を行い、炭素繊維強化炭素複合材料の成形品が得られた。 A solution obtained by dissolving 4 g of this CSC nanotube / COPNA composite resin in 10 ml of chloroform is impregnated with 0.7 g of polyacrylonitrile-based carbon fiber (manufactured by Toray Industries, Inc .: M55JB), and dried overnight while applying a tension of 150 g / cm 2. did. This composite resin-impregnated carbon fiber was immersed in concentrated sulfuric acid for 5 minutes, surface-cured, and then dried overnight. This was put into a mold and subjected to heat compression molding at 200 ° C. and 500 kg F / cm 2 for 2 hours. The product was taken out from the mold and heated to 1000 ° C. at a heating rate of 250 ° C./h in an argon atmosphere to perform carbonization, and a molded product of a carbon fiber reinforced carbon composite material was obtained.
得られた炭素繊維強化炭素複合材料は、図2に示す断面写真のように、炭素繊維間を縮合多環多核芳香族樹脂が埋め、更に縮合多環多核芳香族樹脂中にカップスタック型カーボンナノチューブが分散した状態で炭素化している。 The obtained carbon fiber reinforced carbon composite material is filled with a condensed polycyclic polynuclear aromatic resin between the carbon fibers, as shown in the cross-sectional photograph shown in FIG. 2, and is further cup-stacked carbon nanotubes in the condensed polycyclic polynuclear aromatic resin. Is carbonized in a dispersed state.
(実施例2)
実施例1と同一に作製したCSCナノチューブ/COPNA複合体樹脂4gをクロロホルム10mlに溶解した溶液を、実施例1で使用したのと同一のポリアクリロニトリル系炭素繊維0.7gに含浸し、150g/cm2の張力を掛けながら、一昼夜自然乾燥した。この複合体樹脂含浸炭素繊維を濃硫酸に5分間浸し、表面硬化を行った後、一昼夜乾燥させた。これを金型に入れ、実施例3と同一条件で加熱圧縮成型、および加熱焼成炭素化を行い、炭素繊維強化炭素複合材料の成形品が得られた。
(Example 2)
A solution obtained by dissolving 4 g of the CSC nanotube / COPNA composite resin prepared in the same manner as in Example 1 in 10 ml of chloroform was impregnated in 0.7 g of the same polyacrylonitrile-based carbon fiber used in Example 1, and 150 g / cm. While applying a tension of 2 , it was naturally dried all day and night. This composite resin-impregnated carbon fiber was immersed in concentrated sulfuric acid for 5 minutes, surface-cured, and then dried overnight. This was put into a mold and subjected to heat compression molding and heat calcination carbonization under the same conditions as in Example 3 to obtain a molded product of carbon fiber reinforced carbon composite material.
(比較例)
カップ型カーボンナノチューブを用いなかったこと以外は、実施例1と同様にして炭素繊維強化炭素複合材料を作製した。
(Comparative example)
A carbon fiber reinforced carbon composite material was produced in the same manner as in Example 1 except that the cup-type carbon nanotube was not used.
(三点曲げ試験)
実施例1〜4及び比較例1〜2で得られた炭素繊維強化炭素複合材料をそれぞれ、直径20mm、長さ100mmの丸棒に成型して試験片とし、JIS R7222に準じ、JIS B7733に準じた測定装置によって三点曲げ試験を行なった。
(Three point bending test)
Each of the carbon fiber reinforced carbon composite materials obtained in Examples 1 to 4 and Comparative Examples 1 to 2 was molded into a round bar having a diameter of 20 mm and a length of 100 mm to form a test piece, according to JIS R7222, according to JIS B7733. A three-point bending test was performed with the measuring device.
図3に示すとおり試験片1(直径D=20mm)を水平な支え棒12・13(棒間距離L)上に置き、試験片1の中央に置いた荷重棒11を一定荷重速度2mm/分で鉛直に加え、たわみδを測定した。その測定結果を図3に示す。
As shown in FIG. 3, the test piece 1 (diameter D = 20 mm) is placed on a
試験片1が破壊したときの最大荷重Wmaxと、そのときのたわみδから、曲げ強度σ=8WmaxL/πD3、曲げ弾性率E=4WmaxL3/3πD4Lを算出し、結果を表1に示す。
Bending strength σ = 8 WmaxL / πD 3 and bending elastic modulus E = 4 WmaxL 3 / 3πD 4 L are calculated from the maximum load Wmax when the
図4および表1から明らかなとおり、カップスタック型カーボンナノチューブを含む炭素繊維強化炭素複合材料は、含まないものに比べ、強度が約3倍になっていることがわかった。 As is apparent from FIG. 4 and Table 1, it was found that the strength of the carbon fiber reinforced carbon composite material including the cup stack type carbon nanotubes was about three times that of the carbon fiber reinforced carbon composite material not including the cup stack type carbon nanotube.
1は試験片、11は荷重棒、12・13は支え棒である。 1 is a test piece, 11 is a load bar, and 12 and 13 are support bars.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005315973A JP2007119318A (en) | 2005-10-31 | 2005-10-31 | Carbon fiber-reinforced carbon composite material including carbon nanotube |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005315973A JP2007119318A (en) | 2005-10-31 | 2005-10-31 | Carbon fiber-reinforced carbon composite material including carbon nanotube |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007119318A true JP2007119318A (en) | 2007-05-17 |
Family
ID=38143550
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005315973A Pending JP2007119318A (en) | 2005-10-31 | 2005-10-31 | Carbon fiber-reinforced carbon composite material including carbon nanotube |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007119318A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013511465A (en) * | 2009-11-23 | 2013-04-04 | アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニー | CNT-infused fibers in carbon-carbon composites |
RU2523483C1 (en) * | 2012-12-21 | 2014-07-20 | Федеральное государственное бюджетное научное учреждение "Технологический институт сверхтвердых и новых углеродных материалов" (ФГБНУ ТИСНУМ) | Method of strengthening carbon fibre |
US8999453B2 (en) | 2010-02-02 | 2015-04-07 | Applied Nanostructured Solutions, Llc | Carbon nanotube-infused fiber materials containing parallel-aligned carbon nanotubes, methods for production thereof, and composite materials derived therefrom |
US9017854B2 (en) | 2010-08-30 | 2015-04-28 | Applied Nanostructured Solutions, Llc | Structural energy storage assemblies and methods for production thereof |
EP2915794A1 (en) * | 2014-03-05 | 2015-09-09 | Honeywell International Inc. | Densification of carbon-carbon composite material with copna resin |
CN109292919A (en) * | 2018-10-18 | 2019-02-01 | 浙江田成环境科技有限公司 | A kind of carbon/carbon compound material for heavy metal in waste water recycling |
RU2714650C1 (en) * | 2019-06-24 | 2020-02-18 | Федеральное государственное бюджетное научное учреждение "Технологический институт сверхтвердых и новых углеродных материалов" (ФГБНУ ТИСНУМ) | Method of hardening composite materials based on carbon fiber |
CN113121961A (en) * | 2021-04-20 | 2021-07-16 | 安徽大学 | MFS @ CNT epoxy resin composite material and preparation method thereof |
-
2005
- 2005-10-31 JP JP2005315973A patent/JP2007119318A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013511465A (en) * | 2009-11-23 | 2013-04-04 | アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニー | CNT-infused fibers in carbon-carbon composites |
US8999453B2 (en) | 2010-02-02 | 2015-04-07 | Applied Nanostructured Solutions, Llc | Carbon nanotube-infused fiber materials containing parallel-aligned carbon nanotubes, methods for production thereof, and composite materials derived therefrom |
US9017854B2 (en) | 2010-08-30 | 2015-04-28 | Applied Nanostructured Solutions, Llc | Structural energy storage assemblies and methods for production thereof |
US9907174B2 (en) | 2010-08-30 | 2018-02-27 | Applied Nanostructured Solutions, Llc | Structural energy storage assemblies and methods for production thereof |
RU2523483C1 (en) * | 2012-12-21 | 2014-07-20 | Федеральное государственное бюджетное научное учреждение "Технологический институт сверхтвердых и новых углеродных материалов" (ФГБНУ ТИСНУМ) | Method of strengthening carbon fibre |
EP2915794A1 (en) * | 2014-03-05 | 2015-09-09 | Honeywell International Inc. | Densification of carbon-carbon composite material with copna resin |
CN109292919A (en) * | 2018-10-18 | 2019-02-01 | 浙江田成环境科技有限公司 | A kind of carbon/carbon compound material for heavy metal in waste water recycling |
RU2714650C1 (en) * | 2019-06-24 | 2020-02-18 | Федеральное государственное бюджетное научное учреждение "Технологический институт сверхтвердых и новых углеродных материалов" (ФГБНУ ТИСНУМ) | Method of hardening composite materials based on carbon fiber |
CN113121961A (en) * | 2021-04-20 | 2021-07-16 | 安徽大学 | MFS @ CNT epoxy resin composite material and preparation method thereof |
CN113121961B (en) * | 2021-04-20 | 2022-05-31 | 安徽大学 | MFS @ CNT epoxy resin composite material and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007119318A (en) | Carbon fiber-reinforced carbon composite material including carbon nanotube | |
JP3943123B2 (en) | Method for producing carbon fiber reinforced carbon composite material suitable for heat sink for semiconductor | |
JPH0144671B2 (en) | ||
KR101415255B1 (en) | Post-treatment method of carbon nanotube fibers to enhance mechanical property | |
EP2719661B1 (en) | Method of preparing a carbon fiber-reinforced silicon carbide composite material | |
Wu et al. | In situ preparation of carbon fiber fabric reinforced poly (lactic acid) composites by vacuum‐assisted resin transfer molding | |
JP3728509B2 (en) | Polyimide composite material | |
JP6274811B2 (en) | Carbon-based composite material and manufacturing method thereof | |
JP2879675B1 (en) | Method for producing two-dimensional fiber reinforced silicon carbide / carbon composite ceramics | |
JPH0578182A (en) | Production of porous carbon formed product and electrode material | |
KR100673432B1 (en) | Method for preparation of a carbon composite containing carbon nanotube | |
JP2009274889A (en) | Carbon fiber-reinforced silicon carbide composite material, and method for producing the same | |
JP2700798B2 (en) | Manufacturing method of carbon and graphite materials | |
JP2002255664A (en) | C/c composite material and production method therefor | |
JP2020070197A (en) | Carbon composite material manufacturing method, composition, heat dissipation component, conductive component, and mobile component | |
JPH04321559A (en) | Composition for carbon material, composite carbon material and their production | |
JPS62275009A (en) | Impermeable carbon material and its production | |
JPH0551257A (en) | Production of carbon fiber reinforced carbon material | |
JP5242124B2 (en) | Fine carbon fiber and composite material | |
JP2010037412A (en) | Method for producing sliding member | |
JP2003165784A (en) | Carbonaceous porous body and its producing method | |
Loutfy et al. | Carbon Nanotube—Polycarbonate Composites | |
JPH03197360A (en) | Production of carbon fiber-reinforced carbon material | |
JPS58128686A (en) | Carbon coil resistance heater | |
JP2003055057A (en) | Method of manufacturing carbon fiber reinforced carbon material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070312 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070417 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070904 |