JP2007116190A - Semiconductor element and its manufacturing method - Google Patents

Semiconductor element and its manufacturing method Download PDF

Info

Publication number
JP2007116190A
JP2007116190A JP2006335068A JP2006335068A JP2007116190A JP 2007116190 A JP2007116190 A JP 2007116190A JP 2006335068 A JP2006335068 A JP 2006335068A JP 2006335068 A JP2006335068 A JP 2006335068A JP 2007116190 A JP2007116190 A JP 2007116190A
Authority
JP
Japan
Prior art keywords
semiconductor layer
conductivity type
layer
type semiconductor
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006335068A
Other languages
Japanese (ja)
Inventor
Shoichi Yamaguchi
口 正 一 山
Wataru Saito
藤 渉 齋
Ichiro Omura
村 一 郎 大
Masaru Izumisawa
沢 優 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006335068A priority Critical patent/JP2007116190A/en
Publication of JP2007116190A publication Critical patent/JP2007116190A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0638Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layer, e.g. with channel stopper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor element having high withstand voltage characteristics and low on-resistance characteristics by easily realizing a high withstand voltage. <P>SOLUTION: This semiconductor element 1 includes an n-type drain layer 20, a drain electrode 40 formed so as to be brought into contact with the n-type drain layer 20, an n-type drift layer 26 formed so as to be brought into contact with the n-type drain layer 20, and to make drift currents flow in the on state, and to be depleted in the off state, a p-type drift layer 28 formed so as to be brought into contact with the n-type drain layer 20 and the n-type drift layer 26, and to be depleted in the off state, a p-type base layer 30 formed so as to be brought into contact with the n-type drift layer 26 and the p-type drift layer 28, an n+ source layer 32 formed at the surface part of the p-type base layer 30, an insulating gate electrode 36, and a source electrode 38. This semiconductor element 1 is provided with a cell area part where the drift currents are made to flow and a connection terminal area part formed so that the cell area part can be surrounded. In this case, a second n-type drift layer 26a and a second p-type drift layer 28a formed in at least one of two orthogonal directions are formed in the connection terminal area part. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体素子およびその製造方法に関し、特に電力用スイッチング素子として好適なパワー半導体素子の接合終端領域部の構造を対象とする。   The present invention relates to a semiconductor element and a method for manufacturing the same, and particularly to a structure of a junction termination region portion of a power semiconductor element suitable as a power switching element.

近年のパワーエレクトロニクス分野における電源機器の小型化・高性能化への要求を受けて、パワー半導体素子では、高耐圧化・大電流化とともに、低損失化・高速化・高破壊耐量化に対する性能改善が注力されている。その中で、パワーMOSFET(Metal Oxide Semiconductor Field Effect Transistor)はその高速スイッチング性能のため、スイッチング電源分野などでキーデバイスとして定着している。   In response to the recent demand for miniaturization and high performance of power supply equipment in the field of power electronics, power semiconductor devices have improved performance for higher breakdown voltage, higher current, lower loss, higher speed, and higher breakdown capability. Has been focused. Among them, a power MOSFET (Metal Oxide Semiconductor Field Effect Transistor) has been established as a key device in the field of switching power supplies because of its high-speed switching performance.

MOSFETは多数キャリアデバイスであるため、少数キャリア蓄積時間がなくスイッチングが速いという利点を有する。しかし、この反面、伝導度変調がないために高耐圧素子ではIGBT(Insulated Gate Bipolar Transistor)などのバイポーラ素子と比べるとオン抵抗の面で不利になる。これは、MOSFETにおいて高い耐圧を得るには、n型ベース層を厚くし不純物濃度も低くする必要があるため、高耐圧の素子ほどMOSFETのオン抵抗が増大することに起因する。   Since a MOSFET is a majority carrier device, it has the advantage of fast switching with no minority carrier accumulation time. However, on the other hand, since there is no conductivity modulation, a high breakdown voltage element is disadvantageous in terms of on-resistance compared to a bipolar element such as an IGBT (Insulated Gate Bipolar Transistor). This is because, in order to obtain a high breakdown voltage in the MOSFET, it is necessary to increase the thickness of the n-type base layer and reduce the impurity concentration, and therefore the higher the breakdown voltage, the higher the on-resistance of the MOSFET.

パワーMOSFETのオン抵抗は、伝導層(n型ドリフト層)部分の電気抵抗に大きく依存する。そして、このn型ドリフト層の電気抵抗を決定する不純物濃度は、p型ベースとn型ドリフト層が形成するpn接合の耐圧に応じて限界以上には上げられない。このため、素子耐圧とオン抵抗にはトレードオフの関係が存在する。このトレードオフを改善することが低消費電力素子には重要となる。このトレードオフには素子の材料により決定される限界があり、この限界を越えることが既存のパワー素子を超える低オン抵抗素子の実現への道である。   The on-resistance of the power MOSFET greatly depends on the electric resistance of the conductive layer (n-type drift layer) portion. The impurity concentration that determines the electric resistance of the n-type drift layer cannot be increased beyond the limit depending on the breakdown voltage of the pn junction formed by the p-type base and the n-type drift layer. For this reason, there is a trade-off relationship between element breakdown voltage and on-resistance. Improving this tradeoff is important for low power consumption devices. This trade-off has a limit determined by the material of the element, and exceeding this limit is the way to realizing a low on-resistance element exceeding the existing power element.

この問題を解決するMOSFETの一例として、n型ドリフト層にスーパージャンクション構造と呼ばれるリサーフ構造を埋め込んだ構造が知られている。従来の技術によるスーパージャンクション構造を有するパワーMOSFETについて図36を参照しながら説明する。なお、以下の各図において同一の部分には同一の参照番号を付してその詳細な説明を省略する。   As an example of a MOSFET that solves this problem, a structure in which a resurf structure called a super junction structure is embedded in an n-type drift layer is known. A power MOSFET having a super junction structure according to the prior art will be described with reference to FIG. In the following drawings, the same parts are denoted by the same reference numerals, and detailed description thereof is omitted.

図36は、従来の技術によるパワーMOSFETの一例の概略構成を模式的に示す断面図である。同図に示すMOSFETは、n型ドリフト層102の一方の表面にn型ドレイン層100が形成され、このn型ドレイン層100上にはドレイン電極40が形成されている。また、n型ドリフト層102の他方の表面部には複数のp型ベース層108が選択的に形成され、この各p型ベース層108の表面にはn型ソース層110が選択的に形成されている。また、n型ソース層110およびp型ベース層108の表面からn型ドリフト層102の表面を通って隣り合うp型ベース層108およびn型ソース層110の表面に至る領域上には、ゲート絶縁膜112を介してゲート電極114が形成されている。また、p型ベース層108の表面部に隣り合って形成されたn型ソース層110の表面とこれらに挟まれたp型ベース層108の表面の領域上には、各々ソース電極116が形成され、ゲート電極114を挟むように配置されている。さらに、p型ベース層108とn型ドレイン層100との間のn型ドリフト層102中には、リサーフ層をなすように形成されてp型ベース層108に接続されたp型ドリフト層106が形成されている。このように、図36に示すパワーMOSFETは、p型ドリフト層106と、n型ドリフト層102のうちこれらp型ドリフト層106に挟まれた部分とが交互に横方向に繰り返す縦型リサーフ構造となっている。 FIG. 36 is a cross-sectional view schematically showing a schematic configuration of an example of a power MOSFET according to a conventional technique. In the MOSFET shown in the figure, an n + -type drain layer 100 is formed on one surface of an n -type drift layer 102, and a drain electrode 40 is formed on the n + -type drain layer 100. A plurality of p-type base layers 108 are selectively formed on the other surface portion of the n -type drift layer 102, and an n + -type source layer 110 is selectively formed on the surface of each p-type base layer 108. Is formed. Further, on the region from the surface of the n + -type source layer 110 and the p-type base layer 108 to the surface of the adjacent p-type base layer 108 and the n + -type source layer 110 through the surface of the n -type drift layer 102, A gate electrode 114 is formed through the gate insulating film 112. A source electrode 116 is formed on the surface of the n + -type source layer 110 formed adjacent to the surface portion of the p-type base layer 108 and the region of the surface of the p-type base layer 108 sandwiched therebetween. The gate electrode 114 is interposed therebetween. Further, in the n type drift layer 102 between the p type base layer 108 and the n + type drain layer 100, a p type drift layer formed so as to form a RESURF layer and connected to the p type base layer 108. 106 is formed. As described above, the power MOSFET shown in FIG. 36 has a vertical RESURF structure in which the p-type drift layer 106 and the portion sandwiched between the p-type drift layers 106 in the n -type drift layer 102 are alternately repeated in the horizontal direction. It has become.

オフ状態では、これらのp型ドリフト層106と、n型ドリフト層102との間の接合に空乏層が広がり、n型ドリフト層102の不純物濃度を高くしても、ブレークダウンする前にn型ドリフト層102とp型ドリフト層106とが完全に空乏化する。これにより、従来のMOSFETと同様の耐圧が得られる。 In the off state, a depletion layer spreads at the junction between the p-type drift layer 106 and the n type drift layer 102, and even if the impurity concentration of the n type drift layer 102 is increased, before the breakdown occurs. The n type drift layer 102 and the p type drift layer 106 are completely depleted. Thereby, the breakdown voltage similar to that of the conventional MOSFET can be obtained.

ここで、n型ドリフト層102の不純物濃度は、素子の耐圧ではなく、p型ドリフト層106の幅とこれらのp型ドリフト層106の間のn型ドリフト層102自身の幅に依存する。n型ドリフト層102の幅とp型ドリフト層106の幅をさらに狭くすれば、n型ドリフト層102の不純物濃度をいっそう高くすることができ、オン抵抗の更なる低減化と更なる高耐圧化を達成することが可能である。 Here, the impurity concentration of the n type drift layer 102 does not depend on the breakdown voltage of the element, but depends on the width of the p type drift layer 106 and the width of the n type drift layer 102 itself between these p type drift layers 106. . If the width of the n type drift layer 102 and the width of the p type drift layer 106 are further reduced, the impurity concentration of the n type drift layer 102 can be further increased, and the on-resistance can be further reduced and further increased. It is possible to achieve a breakdown voltage.

このようなMOSFETを設計する際には、n型ドリフト層102とp型ドリフト層106の不純物濃度が耐圧とオン抵抗を決める重要なポイントとなる。原理的にn型ドリフト層102とp型リサーフ層106のそれぞれの不純物量を等しくすることにより等価的に不純物濃度がゼロとなって、高耐圧が得られる。 When designing such a MOSFET, the impurity concentration of the n -type drift layer 102 and the p-type drift layer 106 is an important point that determines the breakdown voltage and the on-resistance. In principle, by making the respective impurity amounts of the n type drift layer 102 and the p type RESURF layer 106 equal, the impurity concentration becomes equivalently zero, and a high breakdown voltage is obtained.

しかしながら、従来のスーパージャンクション構造の半導体素子については、素子活性領域部(以下、セル領域部という)を囲むように設けられた接合終端領域部において、阻止状態(オフ状態)やターンオフ時に高耐圧を得るための有効な構造が見出されていない。このため、セル領域部と接合終端領域部では、空乏層の広がり方が異なるため、最適の不純物濃度が異なる。従って、セル領域部と接合終端領域部とで同じ不純物量となるように製造すると、終端部で耐圧が低下し、この箇所に局所的に電界が集中する結果、素子が破壊されることがある。このように、従来の技術では素子全体としては充分な高耐圧が得られないという問題があった。   However, a conventional super junction structure semiconductor device has a high withstand voltage in a blocking state (off state) or turn-off in a junction termination region portion provided so as to surround an element active region portion (hereinafter referred to as a cell region portion). No effective structure has been found to obtain. For this reason, the cell region portion and the junction termination region portion have different ways of spreading the depletion layer, so that the optimum impurity concentration differs. Therefore, if the cell region portion and the junction termination region portion are manufactured so as to have the same impurity amount, the breakdown voltage is reduced at the termination portion, and as a result of local concentration of the electric field at this portion, the element may be destroyed. . As described above, the conventional technology has a problem that a sufficient high breakdown voltage cannot be obtained as the whole element.

また、実際に製造するときにはプロセス間でばらつきがあるため、n型ドリフト層102とp型ドリフト層106のそれぞれの不純物量を完全に等しくすることは困難であり、これによって耐圧が劣化する。従って、このようなプロセスマージンによる耐圧劣化を考慮して素子設計を行う必要がある。オン抵抗を下げるためには、n型ドリフト層102の不純物濃度を上げることが有効である。この一方、耐圧に対するプロセスマージンは、n型ドリフト層102とp型ドリフト層106との間の不純物量の差で決まる。このため、n型ドリフト層102の不純物濃度を上げた場合、プロセスマージンを決める不純物量の差自体が変わるわけではないので、許容される不純物量とn型ドリフト層102の不純物量との比が小さくなる。つまり、プロセスマージンが小さくなってしまう。 Further, since there are variations between processes when actually manufacturing, it is difficult to make the respective impurity amounts of the n -type drift layer 102 and the p-type drift layer 106 completely equal to each other, which deteriorates the breakdown voltage. Therefore, it is necessary to design an element in consideration of the breakdown voltage degradation due to such a process margin. In order to reduce the on-resistance, it is effective to increase the impurity concentration of the n -type drift layer 102. On the other hand, the process margin for the breakdown voltage is determined by the difference in the amount of impurities between the n -type drift layer 102 and the p-type drift layer 106. For this reason, when the impurity concentration of the n type drift layer 102 is increased, the difference in impurity amount itself that determines the process margin does not change, so that the allowable impurity amount and the impurity amount of the n type drift layer 102 are not changed. The ratio becomes smaller. That is, the process margin becomes small.

本発明は、上記事情に鑑みてなされたものであり、その目的は、従来よりも容易かつ良好に高耐圧化でき、高耐圧特性と低オン抵抗特性とを両立し得る半導体素子およびその製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a semiconductor device that can easily and satisfactorily have a higher breakdown voltage than conventional ones, and can achieve both a high breakdown voltage characteristic and a low on-resistance characteristic, and a method for manufacturing the same Is to provide.

本発明によれば、
セル領域部と、このセル領域部を囲むように設けられた接合終端領域部とを有し、前記接合終端領域部での不純物濃度が前記セル領域部での不純物濃度よりも低くなるように形成された第1の第1導電型半導体層と、
前記第1の第1導電型半導体層の一方の表面上に形成された第2の第1導電型半導体層と、
前記第2の第1導電型半導体層に電気的に接続された第1の主電極と、
前記第1の第1導電型半導体層の前記セル領域部内で前記第1の第1導電型半導体層の一方の表面にほぼ垂直な方向でそれぞれが形成され、前記一方の表面に平行な任意の方向である第1の方向に周期的に配置された第1の第2導電型半導体層と、
前記第1の第1導電型半導体層の他方の表面部において前記第1の第2導電型半導体層に接続するように選択的に形成された第2の第2導電型半導体層と、
前記第2の第2導電型半導体層の表面部に選択的に形成された第3の第1導電型半導体層と、
前記第2の第2導電型半導体層の表面と前記第3の第1導電型半導体層の表面とに接するように形成された第2の主電極と、
前記第1の第1導電型半導体層の他方の表面のうち隣り合う前記第2の第2導電型半導体層に挟まれた領域と、前記隣り合う第2の第2導電型半導体層の表面と前記第3の第1導電型半導体層の表面の上にゲート絶縁膜を介して形成された制御電極と、
前記接合終端領域部内で前記セル領域部との境界面近傍の表面部において前記セル領域部を取り囲むように形成され、前記第2の主電極に電気的に接続される第3の第2導電型半導体層と、
を備える半導体素子が提供される。
According to the present invention,
It has a cell region portion and a junction termination region portion provided so as to surround the cell region portion, and is formed so that the impurity concentration in the junction termination region portion is lower than the impurity concentration in the cell region portion. A first first conductivity type semiconductor layer formed;
A second first conductivity type semiconductor layer formed on one surface of the first first conductivity type semiconductor layer;
A first main electrode electrically connected to the second first conductivity type semiconductor layer;
Each of the first first conductivity type semiconductor layers is formed in a direction substantially perpendicular to one surface of the first first conductivity type semiconductor layer within the cell region portion of the first first conductivity type semiconductor layer, and is arbitrary in parallel to the one surface. A first second conductivity type semiconductor layer periodically disposed in a first direction which is a direction;
A second second conductivity type semiconductor layer selectively formed so as to be connected to the first second conductivity type semiconductor layer at the other surface portion of the first first conductivity type semiconductor layer;
A third first conductivity type semiconductor layer selectively formed on a surface portion of the second second conductivity type semiconductor layer;
A second main electrode formed so as to be in contact with the surface of the second second conductivity type semiconductor layer and the surface of the third first conductivity type semiconductor layer;
Of the other surface of the first first conductivity type semiconductor layer, a region sandwiched between the adjacent second second conductivity type semiconductor layers, and the surface of the adjacent second second conductivity type semiconductor layer, A control electrode formed on the surface of the third first conductivity type semiconductor layer via a gate insulating film;
A third second conductivity type formed so as to surround the cell region portion in a surface portion in the vicinity of the boundary surface with the cell region portion in the junction termination region portion and electrically connected to the second main electrode. A semiconductor layer;
A semiconductor device is provided.

また、本発明によれば、
アスペクト比Rのトレンチ溝が設けられた第1導電型半導体層と前記トレンチ溝内に埋め込まれた第2導電型半導体層とを有するスーパージャンクション構造の半導体素子の製造方法であって、
第1導電型半導体層内にR/N(Nは2以上の自然数)のアスペクト比を有するトレンチ溝を形成する第1の工程と、
前記トレンチ溝を埋め込むように第2導電型半導体層をエピタキシャル成長させる第2の工程と、
前記第1導電型半導体層の表面が露出するまで前記第2導電型半導体層を除去する第3の工程と、
前記第1導電型半導体層および前記第2導電型半導体層の上に、前記第1の工程により形成されたトレンチ溝の深さと実質的に同一の長さだけ層厚が増大するように前記第1導電型半導体層をエピタキシャル成長させる第4の工程と、
前記第1の工程により形成されたトレンチ溝に埋め込まれた前記第2導電型半導体層が露出するように前記第1導電型半導体層を選択的に除去する第5の工程と、
前記第2乃至第5の工程を(N−1)回だけ繰り返す工程と、
を備える半導体素子の製造方法が提供される。
Moreover, according to the present invention,
A method for manufacturing a semiconductor device having a super junction structure having a first conductivity type semiconductor layer provided with a trench groove having an aspect ratio R and a second conductivity type semiconductor layer embedded in the trench groove,
Forming a trench groove having an aspect ratio of R / N (N is a natural number of 2 or more) in the first conductivity type semiconductor layer;
A second step of epitaxially growing a second conductivity type semiconductor layer so as to fill the trench groove;
A third step of removing the second conductive semiconductor layer until a surface of the first conductive semiconductor layer is exposed;
The thickness of the first conductive semiconductor layer and the second conductive semiconductor layer is increased by a length substantially the same as the depth of the trench formed in the first step. A fourth step of epitaxially growing the one conductivity type semiconductor layer;
A fifth step of selectively removing the first conductive type semiconductor layer so that the second conductive type semiconductor layer embedded in the trench groove formed by the first step is exposed;
Repeating the second to fifth steps (N-1) times;
A method for manufacturing a semiconductor device is provided.

以上詳述したとおり、本発明は、以下の効果を奏する。
即ち、本発明によれば、低オン抵抗と高耐圧とを同時に実現する半導体素子が提供される。
As described above in detail, the present invention has the following effects.
That is, according to the present invention, there is provided a semiconductor element that can simultaneously realize a low on-resistance and a high breakdown voltage.

また、本発明によれば、スーパージャンクション構造を有する半導体素子を少ない工程数で形成することができる。   Further, according to the present invention, a semiconductor element having a super junction structure can be formed with a small number of steps.

本発明の実施の形態のいくつかについて図面を参照しながら説明する。以下では先ず本発明にかかる半導体素子の実施の形態について説明し、最後に本発明にかかる半導体素子の製造方法の実施の形態について説明する。   Several embodiments of the present invention will be described with reference to the drawings. Hereinafter, an embodiment of a semiconductor device according to the present invention will be described first, and finally, an embodiment of a method for manufacturing a semiconductor device according to the present invention will be described.

(A)半導体素子の実施形態
以下では、スーパージャンクション構造を有するパワーMOSFETを取り上げて説明する。しかしながら、本発明にかかる半導体素子は、これに限ることなく、スーパージャンクション構造を有するSBDやMPSダイオード、SIT、JFET、IGBT等のスイッチング素子、ダイオードとスイッチング素子の複合素子または集積素子に対しても適用可能である。
(A) Embodiment of Semiconductor Device Hereinafter, a power MOSFET having a super junction structure will be described. However, the semiconductor element according to the present invention is not limited to this, and is also applicable to a switching element such as SBD, MPS diode, SIT, JFET, IGBT, etc. having a super junction structure, a composite element or an integrated element of a diode and a switching element. Applicable.

(1)第1の実施形態
図1は、本発明にかかる半導体素子の第1の実施の形態の概略構造を示す平面図である。図2および図3は、それぞれ図1の切断線A−A、B−Bに沿った本実施形態の半導体素子の断面図である。図36との対比において明らかなように、本実施形態の半導体素子1の特徴は、n型ドリフト層26とp型ドリフト層28とがセル領域部のみならず、接合終端領域部の周縁近傍に至るまで形成されている点にある。以下、本実施形態の半導体素子1の構造をより詳細に説明する。
(1) 1st Embodiment FIG. 1: is a top view which shows schematic structure of 1st Embodiment of the semiconductor element concerning this invention. 2 and 3 are cross-sectional views of the semiconductor device of the present embodiment taken along section lines AA and BB in FIG. 1, respectively. As is clear from comparison with FIG. 36, the semiconductor element 1 of the present embodiment is characterized in that the n-type drift layer 26 and the p-type drift layer 28 are not only in the cell region portion but also in the vicinity of the periphery of the junction termination region portion. It is in the point formed until. Hereinafter, the structure of the semiconductor element 1 of the present embodiment will be described in more detail.

本実施形態の半導体素子1は、n型ドレイン層20と、ドレイン電極40と、n型ドリフト層26と、p型ドリフト層28と、p型ベース層30と、n型ソース層32と、ソース電極38と、絶縁ゲート電極36と、フィールド電極48とを備える。 The semiconductor element 1 of this embodiment includes an n + type drain layer 20, a drain electrode 40, an n type drift layer 26, a p type drift layer 28, a p type base layer 30, an n + type source layer 32, Source electrode 38, insulated gate electrode 36, and field electrode 48.

ドレイン電極40は、n型ドレイン層20の一方の表面、図2および3においては下面に形成される。p型ドリフト層28は、n型ドレイン層20の他方の表面、図2および3においては上面に形成されたn型半導体層26内でそれぞれn型ドレイン層20との境界面からn型半導体層26の表面部に至るまでストライプ形状をなすように形成され、各ストライプ状のp型ドリフト層28は、n型ドレイン層20の表面に水平な所定方向においてセル領域部のみならず接合終端領域部にまで所定の間隔で配置される。n型半導体層26内でこれらのp型ドリフト層28に挟まれた領域は、n型ドリフト層26を構成する。n型ドリフト層26とp型ドリフト層28のいずれについても、その幅および不純物濃度は、例えば幅が5μmの場合で不純物濃度が約4×1015cm−3であり、幅が1μmであれば、その不純物濃度は約2×1016cm−3である。 The drain electrode 40 is formed on one surface of the n + -type drain layer 20, that is, the lower surface in FIGS. The p-type drift layer 28 is n-type from the interface with the n + -type drain layer 20 in the n-type semiconductor layer 26 formed on the other surface of the n + -type drain layer 20, or the upper surface in FIGS. The stripe-shaped p-type drift layer 28 is formed not only in the cell region portion but also in a predetermined direction on the surface of the n + -type drain layer 20 so as to form a stripe shape up to the surface portion of the semiconductor layer 26. They are arranged at predetermined intervals up to the termination region. A region sandwiched between these p-type drift layers 28 in the n-type semiconductor layer 26 constitutes the n-type drift layer 26. The width and impurity concentration of both the n-type drift layer 26 and the p-type drift layer 28 are, for example, when the width is 5 μm and the impurity concentration is about 4 × 10 15 cm −3 and the width is 1 μm. The impurity concentration is about 2 × 10 16 cm −3 .

p型ベース層30は、p型ドリフト層28に接続するようにn型半導体層内26の表面部に選択的に形成される。n型ソース層32は、p型ベース層30の表面部に選択的に形成される。ソース電極38は、p型ベース層30の表面において隣り合うn型ソース層32とこれらに挟まれたp型ベース層30に接続するように形成される。さらに、これらのソース電極38に囲まれるように、絶縁ゲート電極36は、n型ドリフト層26の表面、これに隣接するp型ベース層30の表面およびこのp型ベース層30に接するn型ソース層32の表面上に絶縁膜34を介して配設される。このような構造により、半導体素子1は、絶縁ゲート36直下のp型ベース層30の表面部をチャネル領域とする電子注入用nチャネルMOSFETを構成する。本実施形態では、プレーナ型のゲート構造を有する場合について説明するが、トレンチ型のゲート構造を用いても良い。この点は、以下の各実施形態についても同様である。 The p-type base layer 30 is selectively formed on the surface portion of the n-type semiconductor layer 26 so as to be connected to the p-type drift layer 28. The n + type source layer 32 is selectively formed on the surface portion of the p type base layer 30. The source electrode 38 is formed so as to be connected to the n + -type source layer 32 adjacent on the surface of the p-type base layer 30 and the p-type base layer 30 sandwiched therebetween. Further, the insulated gate electrode 36 is surrounded by the source electrode 38, and the n + type is in contact with the surface of the n-type drift layer 26, the surface of the p-type base layer 30 adjacent thereto, and the p-type base layer 30. An insulating film 34 is disposed on the surface of the source layer 32. With such a structure, the semiconductor element 1 constitutes an n-channel MOSFET for electron injection in which the surface portion of the p-type base layer 30 immediately below the insulating gate 36 is a channel region. In this embodiment, the case of having a planar gate structure is described, but a trench gate structure may be used. This also applies to each of the following embodiments.

半導体素子1はまた、接合終端領域部のうちセル領域部との境界近傍の表面部でセル領域部を囲むように形成されたp型ベース層30aを備える。p型ベース層30aは、接合終端領域部に設けられたp型ドリフト層28aのうちセル領域部に最も近いp型ドリフト層28aに離散的に接続される。接合終端領域部の表面には、p型ベース層30a上の一部の領域を除いて絶縁膜46が形成され、この絶縁膜46上にフィールド電極48がセル領域を囲むように形成され、p型ベース層30aの表面にコンタクトするとともに、ソース電極38と電気的に接続される。接合終端領域の周縁には、n型ドリフト層26の表面部に高濃度のn型チャネルストッパ層42が形成され、このn型チャネルストッパ層42上に電極44が設けられる。 The semiconductor element 1 also includes a p-type base layer 30a formed so as to surround the cell region portion at the surface portion near the boundary with the cell region portion in the junction termination region portion. The p-type base layer 30a is discretely connected to the p-type drift layer 28a closest to the cell region portion among the p-type drift layers 28a provided in the junction termination region portion. An insulating film 46 is formed on the surface of the junction termination region except for a part of the region on the p-type base layer 30a, and a field electrode 48 is formed on the insulating film 46 so as to surround the cell region. It contacts the surface of the mold base layer 30 a and is electrically connected to the source electrode 38. A high concentration n + type channel stopper layer 42 is formed on the surface of the n type drift layer 26 at the periphery of the junction termination region, and an electrode 44 is provided on the n + type channel stopper layer 42.

図2および図3内の破線は、等電位線を表わし、これは、n型ドリフト層26とp型ドリフト層28の幅が8μm、不純物濃度が2×1015cm−3、厚さが50μmの条件を用いて計算したシミュレーション結果である。 2 and 3 represent equipotential lines. The width of the n-type drift layer 26 and the p-type drift layer 28 is 8 μm, the impurity concentration is 2 × 10 15 cm −3 , and the thickness is 50 μm. It is the simulation result calculated using the conditions.

本実施形態の半導体素子1は、ターンオフ時において、平面視におけるドリフト層26(26a),28(28a)のストライプ長手方向(図1のB−B方向、以下、水平方向という)に直交する方向(図1のA−A方向、以下、垂直方向という)についてはn型ドリフト層26aとp型ドリフト層28aのセル領域部に近い側から素子周縁へ向けて空乏化が進み、水平方向では、ドリフト層26a,28aの素子周縁部からセル領域部にかけて、その境界面で同時に空乏化が進む。このとき、電子はn型ドリフト層26aからn型ドレイン層20を介してドレイン電極40に排出され、この一方、正孔はp型ドリフト層28aからp型ベース層30aおよびフィールド電極48を介してソース電極38に排出される。ただし、垂直方向においては、正孔はn型ドリフト層26aとp型ドリフト層28aとの接合を横切るように排出される。さらに、阻止状態(オフ時)においては、図2および図3に示すように、フィールド電極48により等電位線の間隔が均一化されるので、これにより電界が緩和される。この結果、半導体素子1について安定した高耐圧を得ることができる。 The semiconductor element 1 of the present embodiment is perpendicular to the stripe longitudinal direction of the drift layers 26 (26 a) and 28 (28 a) in plan view (BB direction in FIG. 1, hereinafter referred to as the horizontal direction) when turned off. For the A-A direction in FIG. 1 (hereinafter referred to as the vertical direction), depletion proceeds from the side close to the cell region portion of the n-type drift layer 26a and the p-type drift layer 28a toward the periphery of the element. Depletion proceeds simultaneously at the boundary surface from the peripheral edge of the drift layers 26a, 28a to the cell region. At this time, electrons are discharged from the n-type drift layer 26 a to the drain electrode 40 via the n + -type drain layer 20, while holes are transferred from the p-type drift layer 28 a to the p-type base layer 30 a and the field electrode 48. To the source electrode 38. However, in the vertical direction, holes are discharged so as to cross the junction between the n-type drift layer 26a and the p-type drift layer 28a. Further, in the blocking state (OFF state), as shown in FIGS. 2 and 3, the field electrode 48 makes the equipotential line intervals uniform, thereby relaxing the electric field. As a result, a stable high breakdown voltage can be obtained for the semiconductor element 1.

なお、n型ドレイン層20の構造は、図1〜図3に示す形態に限られることなく、例えばエピタキシャル・ウェーハの基板やこれを所定の深さだけ熱拡散した層、または不純物を熱拡散した拡散層などを適用することができる。また、本実施形態ではn型ドレイン層20およびn型半導体層26の2層構造としたが、これらの間に濃度が連続的に変化する中間層を介装しても良い。また、本実施形態では、図2および図3に示すように単一の厚さを有する絶縁膜46上にフィールド電極48を形成したが、これに限ることなく、例えば後述する第11〜第16の実施形態におけるように、絶縁膜46の厚さを周縁部に近づくにつれて漸次増大するように設定しても良い。これらの点は、以下の第2〜第10の実施形態についても同様である。   The structure of the n-type drain layer 20 is not limited to the form shown in FIGS. 1 to 3. For example, the substrate of an epitaxial wafer, a layer obtained by thermally diffusing the substrate by a predetermined depth, or impurities are thermally diffused. A diffusion layer or the like can be applied. In the present embodiment, the n-type drain layer 20 and the n-type semiconductor layer 26 have a two-layer structure. However, an intermediate layer having a continuously changing concentration may be interposed therebetween. In the present embodiment, the field electrode 48 is formed on the insulating film 46 having a single thickness as shown in FIGS. 2 and 3, but the present invention is not limited to this. As in the embodiment, the thickness of the insulating film 46 may be set so as to gradually increase as it approaches the peripheral edge. These points are the same in the following second to tenth embodiments.

(2)第2の実施形態
図4は、本発明にかかる半導体素子の第2の実施の形態の概略構造を示す平面図である。図5および図6は、それぞれ図4の切断線A−A、B−Bに沿った本実施形態の半導体素子の断面図である。
(2) Second Embodiment FIG. 4 is a plan view showing a schematic structure of a second embodiment of a semiconductor element according to the present invention. 5 and 6 are cross-sectional views of the semiconductor device of the present embodiment taken along section lines AA and BB in FIG. 4, respectively.

本実施形態の半導体素子2は、図1に示す半導体素子1が備えるフィールド電極48に代えて、接合終端領域部内でセル領域を囲むように配置されたp型ベース層30aに接続してさらにこれを囲むように形成されたp型リサーフ層52を備える。半導体素子2のその他の構造は、図1に示す半導体素子1と実質的に同一である。 The semiconductor element 2 of this embodiment is connected to a p-type base layer 30a arranged so as to surround the cell region in the junction termination region instead of the field electrode 48 provided in the semiconductor element 1 shown in FIG. The p type RESURF layer 52 is formed so as to surround the substrate. The other structure of the semiconductor element 2 is substantially the same as that of the semiconductor element 1 shown in FIG.

図2および図3の等電位線に示すように、このようなp型リサーフ層52を備えることによっても、オフ時に電界が緩和されので、安定した高耐圧を得ることができる。 As shown by the equipotential lines in FIG. 2 and FIG. 3, by providing such a p type RESURF layer 52, the electric field is relaxed at the time of OFF, so that a stable high breakdown voltage can be obtained.

(3)第3の実施形態
図7は、本発明にかかる半導体素子の第3の実施の形態の概略構造を示す平面図である。なお、同図中の切断線A−Aに沿った断面図は、図2と実質的に同一である。
(3) Third Embodiment FIG. 7 is a plan view showing a schematic structure of a semiconductor device according to a third embodiment of the present invention. In addition, the cross-sectional view along the cutting line AA in the figure is substantially the same as FIG.

本実施形態の半導体素子3の特徴は、上述した実施形態と異なり、p型ドリフト層54,54aが円形の平面形状を有する点にある。このような形状でp型ドリフト層を構成することにより、素子の表面に水平な面内のどの方向にも同様に空乏層を伸ばすことができる。   The feature of the semiconductor element 3 of this embodiment is that the p-type drift layers 54 and 54a have a circular planar shape, unlike the above-described embodiment. By configuring the p-type drift layer in such a shape, the depletion layer can be similarly extended in any direction in a plane horizontal to the surface of the element.

なお、図7では円形パターンを有する場合について示したが、四角形や六角形等の多角形のパターンでも良い。また、n型ドリフト層26がパターンを有するように形成しても良い。また、上述した第2の実施形態と同様に、フィールド電極48に代えてリサーフ層を適用することもできる。   Although FIG. 7 shows a case where a circular pattern is provided, a polygonal pattern such as a square or a hexagon may be used. Further, the n-type drift layer 26 may be formed to have a pattern. Further, similarly to the second embodiment described above, a RESURF layer can be applied instead of the field electrode 48.

(4)第4の実施形態
図8は、本発明にかかる半導体素子の第4の実施の形態の概略構造を示す平面図である。図9は、図8の切断線A−Aに沿った本実施形態の半導体素子の断面図である。
(4) Fourth Embodiment FIG. 8 is a plan view showing a schematic structure of a fourth embodiment of a semiconductor element according to the present invention. FIG. 9 is a cross-sectional view of the semiconductor device of the present embodiment taken along the cutting line AA of FIG.

本実施形態の半導体素子4は、上述した第1〜第3の実施形態とは異なり、接合終端領域部のn型ベース層としてセル領域部のn型ドリフト層26よりも低濃度のn型ベース層68を備える。さらに、半導体素子4は、後述するp型ドリフト層27を除き、接合終端領域部内にドリフト層を有しない。n型ベース層68の表面部には、セル領域を囲むようにp型ベース層30aおよび複数のp型ガードリング層62が選択的に形成される。p型ベース層30aの下方にはその配置に対応してp型ドリフト層27が形成され、これによりp型ベース層30aがドレイン層20を介してドレイン電極40に接続される。 Unlike the first to third embodiments described above, the semiconductor element 4 of the present embodiment is an n type having a lower concentration than the n type drift layer 26 of the cell region as the n type base layer of the junction termination region. A base layer 68 is provided. Further, the semiconductor element 4 does not have a drift layer in the junction termination region except for a p-type drift layer 27 described later. A p-type base layer 30a and a plurality of p-type guard ring layers 62 are selectively formed on the surface portion of the n -type base layer 68 so as to surround the cell region. A p-type drift layer 27 is formed below the p-type base layer 30a in accordance with the arrangement thereof, whereby the p-type base layer 30a is connected to the drain electrode 40 through the drain layer 20.

このように、本実施形態によれば、接合終端領域部内に複数のドリフト層を有しない場合であっても、セル領域部を取り囲む単一のスーパージャンクション構造と、その周辺の表面部で同様にセル領域を取り囲むように形成されたp型ガードリング層62により、安定した高耐圧を得ることができる。   As described above, according to the present embodiment, even in the case where a plurality of drift layers are not provided in the junction termination region portion, the single super junction structure surrounding the cell region portion and the surface portion around it are similarly applied. A stable high breakdown voltage can be obtained by the p-type guard ring layer 62 formed so as to surround the cell region.

本実施形態の一変形例の断面図を図10に示す。同図に示す半導体素子4’は、セル領域部のn型ドリフト層26と同一濃度のn型ベース層22を接合終端領域部に有し、接合終端領域部にもp型ドリフト層29が設けられ、n型ベース層22の表面部に選択的に設けられたp型ガードリング層62’に接続される。さらに、接合終端領域部の周縁部には、n型ベース層22の表面に露出するようにp型ドリフト層29’が形成されている。これらの構成により、接合終端領域部に広がる等電位線がなだらかになるので、安定した高耐圧が得られる。この結果、接合終端領域部での耐圧低下が抑制される。   A cross-sectional view of a modification of this embodiment is shown in FIG. The semiconductor element 4 ′ shown in the figure has an n-type base layer 22 in the junction termination region having the same concentration as the n-type drift layer 26 in the cell region, and a p-type drift layer 29 is also provided in the junction termination region. And connected to a p-type guard ring layer 62 ′ selectively provided on the surface of the n-type base layer 22. Further, a p-type drift layer 29 ′ is formed on the periphery of the junction termination region so as to be exposed on the surface of the n-type base layer 22. With these configurations, the equipotential lines extending in the junction termination region portion become gentle, so that a stable high breakdown voltage can be obtained. As a result, a decrease in breakdown voltage at the junction termination region is suppressed.

(5)第5の実施形態
図11は、本発明にかかる半導体素子の第5の実施の形態の概略構造を示す平面図である。図12は、図11の切断線A−Aに沿った本実施形態の半導体素子の断面図である。なお、図11の切断線B−Bに沿った断面図は図3と同様である。
(5) Fifth Embodiment FIG. 11 is a plan view showing a schematic structure of a semiconductor device according to a fifth embodiment of the present invention. FIG. 12 is a cross-sectional view of the semiconductor device of the present embodiment taken along the cutting line AA of FIG. Note that the cross-sectional view along the cutting line BB in FIG. 11 is the same as FIG.

本実施形態は、セル領域部のn型ドリフト層26内で水平方向に平行に形成された絶縁膜を有する半導体素子に好適な接合終端領域構造を提供するものである。   The present embodiment provides a junction termination region structure suitable for a semiconductor element having an insulating film formed in parallel in the horizontal direction within the n-type drift layer 26 in the cell region portion.

図11および図12に示すように、本実施形態の半導体素子5では、n型ドリフト層26(26a)内で水平方向にトレンチ溝64が形成され、その内部に絶縁膜66が形成されている。このような絶縁膜は、例えば、低濃度のn型ベース層68により構成される基板にストライプ状のトレンチ溝64をセル領域部から接合終端領域部に延在するように形成し、このトレンチ溝64の側壁にイオン注入等の方法を用いてn型不純物とp型不純物を導入した後に熱拡散することにより製造することができる。これにより、絶縁膜66を周回するようにn型ドリフト層26(26a)とp型ドリフト層28(28a)とが形成される。従って、接合終端領域部では、水平方向で絶縁膜66と両ドリフト層26a、28aが周縁部近傍まで延在するが、垂直方向には、絶縁膜66とドリフト層は形成されない。 As shown in FIGS. 11 and 12, in the semiconductor element 5 of this embodiment, the trench groove 64 is formed in the horizontal direction in the n-type drift layer 26 (26a), and the insulating film 66 is formed therein. . Such an insulating film is formed by, for example, forming a striped trench groove 64 from a cell region portion to a junction termination region portion in a substrate constituted by a low concentration n -type base layer 68, It can be manufactured by introducing an n-type impurity and a p-type impurity into the sidewall of the groove 64 using a method such as ion implantation and then thermally diffusing. Thereby, the n-type drift layer 26 (26a) and the p-type drift layer 28 (28a) are formed so as to go around the insulating film 66. Therefore, in the junction termination region, the insulating film 66 and both drift layers 26a and 28a extend to the vicinity of the peripheral edge in the horizontal direction, but the insulating film 66 and drift layer are not formed in the vertical direction.

この理由は、仮に垂直方向に絶縁膜66とドリフト層26a、28aを形成すると、絶縁膜66が存在するためにターンオフ時にp型ドリフト層28a内の正孔が排出されず、結果的に空乏層が伸びなくなって最外周のセルに電界が集中し素子を破壊するおそれがあるためである。   This is because if the insulating film 66 and the drift layers 26a and 28a are formed in the vertical direction, the holes in the p-type drift layer 28a are not discharged at the time of turn-off due to the presence of the insulating film 66, resulting in a depletion layer. This is because the electric field concentrates on the outermost peripheral cell and the element may be destroyed.

図12に示すように、本実施形態の半導体素子5は、接合終端領域において低濃度のn型ベース層68上に絶縁膜46を介してセル領域を囲むように設けられたフィールドプレート電極48をさらに備えるので、空乏層が十分に広がり高耐圧を得ることができる。 As shown in FIG. 12, the semiconductor element 5 of this embodiment includes a field plate electrode 48 provided on a low-concentration n type base layer 68 so as to surround a cell region via an insulating film 46 in a junction termination region. Further, the depletion layer is sufficiently spread and a high breakdown voltage can be obtained.

(6)第6の実施形態
図13は、本発明にかかる半導体素子の第6の実施の形態の概略構造を示す平面図である。図14および図15は、それぞれ図13の切断線A−A、B−Bに沿った本実施形態の半導体素子の断面図である。
(6) Sixth Embodiment FIG. 13 is a plan view showing a schematic structure of a semiconductor device according to a sixth embodiment of the present invention. 14 and 15 are cross-sectional views of the semiconductor device of the present embodiment taken along section lines AA and BB in FIG. 13, respectively.

本実施形態の半導体素子6では、前述した第5の実施形態と異なり、絶縁膜66はセル領域部内でのみ形成され、接合終端領域部に延在しない。さらに、半導体素子6の接合終端領域部には、n型ドリフト層もp型ドリフト層も形成されていない。本実施形態では、接合終端領域部にn型ドリフト層26よりも低濃度のn型ベース層68が形成され、このn型ベース層68の表面部には、セル領域を囲むようにp型ベース層30aおよび複数のp型ガードリング層62が選択的に形成される。p型ベース層30aの表面にソース電極38aがコンタクトしている。また、p型ベース層30aの下方にはその配置に対応してp型ベース層27が形成され、これによりp型ベース層30aがドレイン層20を介してドレイン電極40に接続される。このような接合終端領域部の構造によっても、本実施形態の半導体素子6は、充分な高耐圧を得ることができる。 In the semiconductor element 6 of this embodiment, unlike the above-described fifth embodiment, the insulating film 66 is formed only in the cell region portion and does not extend to the junction termination region portion. Furthermore, neither an n-type drift layer nor a p-type drift layer is formed in the junction termination region of the semiconductor element 6. In the present embodiment, an n -type base layer 68 having a lower concentration than the n-type drift layer 26 is formed in the junction termination region, and the surface of the n -type base layer 68 has a p-type so as to surround the cell region. A mold base layer 30a and a plurality of p-type guard ring layers 62 are selectively formed. A source electrode 38a is in contact with the surface of the p-type base layer 30a. Further, a p-type base layer 27 is formed below the p-type base layer 30a corresponding to the arrangement thereof, whereby the p-type base layer 30a is connected to the drain electrode 40 through the drain layer 20. Even with such a structure of the junction termination region, the semiconductor element 6 of the present embodiment can obtain a sufficiently high breakdown voltage.

図16は、本実施形態の一変形例を示す平面図である。本例の半導体素子6’では、絶縁膜72がセル領域部内に限り垂直方向にも形成され、これにより、絶縁膜72が網目の平面形状を有する。半導体素子6’のその他の構造は、図13に示す半導体素子6と実質的に同一である。絶縁膜72がセル領域部でこのような構造を有する場合であっても、絶縁膜72が接合終端領域部に延在することなく、かつ、接合終端領域部でp型ガードリング層62が形成されているので、半導体素子6’は充分な高耐圧を得ることができる。   FIG. 16 is a plan view showing a modification of the present embodiment. In the semiconductor element 6 ′ of this example, the insulating film 72 is also formed in the vertical direction only in the cell region portion, whereby the insulating film 72 has a mesh planar shape. The other structure of the semiconductor element 6 'is substantially the same as that of the semiconductor element 6 shown in FIG. Even when the insulating film 72 has such a structure in the cell region portion, the insulating film 72 does not extend to the junction termination region portion, and the p-type guard ring layer 62 is formed in the junction termination region portion. Therefore, the semiconductor element 6 ′ can obtain a sufficiently high breakdown voltage.

(7)第7の実施形態
図17は、本発明にかかる半導体素子の第7の実施の形態の概略構造を示す平面図である。図18は、図17の切断線A−Aに沿った本実施形態の半導体素子の断面図である。なお、図17の切断線B−Bに沿った断面図は図3と同様である。
(7) Seventh Embodiment FIG. 17 is a plan view showing a schematic structure of a seventh embodiment of a semiconductor element according to the present invention. 18 is a cross-sectional view of the semiconductor device of the present embodiment taken along the cutting line AA of FIG. Note that the cross-sectional view along the cutting line BB in FIG. 17 is the same as FIG.

本実施形態の半導体素子7は、上述した第5の実施形態における半導体素子5の構成に加え、接合終端領域部内で垂直方向に形成された絶縁膜76と、接合終端領域部内でそれぞれが垂直方向に形成されて水平方向に周期的に配置されたn型ドリフト層166およびp型ドリフト層168をさらに備える。このような構造により、垂直方向でも水平方向と同様に、ターンオフ時にp型ドリフト層168内の正孔が排出されるので、空乏層が十分に広がり高耐圧を得ることができる。   In addition to the configuration of the semiconductor element 5 in the fifth embodiment described above, the semiconductor element 7 of this embodiment includes an insulating film 76 formed in the vertical direction in the junction termination region and a vertical direction in the junction termination region. And an n-type drift layer 166 and a p-type drift layer 168 that are periodically formed in the horizontal direction. With such a structure, holes in the p-type drift layer 168 are discharged at turn-off in the vertical direction as well as in the horizontal direction, so that the depletion layer is sufficiently spread and high breakdown voltage can be obtained.

(8)第8の実施形態
図19は、本発明にかかる半導体素子の第8の実施の形態の概略構造を示す平面図である。図20および図21は、それぞれ図19の切断線A−A、B−Bに沿った本実施形態の半導体素子の断面図である。
(8) Eighth Embodiment FIG. 19 is a plan view showing a schematic structure of an eighth embodiment of a semiconductor element according to the present invention. 20 and 21 are cross-sectional views of the semiconductor device of this embodiment taken along section lines AA and BB in FIG. 19, respectively.

本実施形態では、図11に示す第5の実施形態と異なり、セル領域部から接合終端領域部に延在するように形成された絶縁膜76とドリフト層26a、28aが、垂直方向にも周期的に配置されて接合終端領域部の周縁近傍に至るまで形成される。また、接合終端領域部の表面部には、セル領域を囲むように所定幅を有するpリサーフ層52が設けられている。さらに、接合終端領域部において垂直方向に周期的に配置された各p型ドリフト層28a4〜28a7上には電位固定用の電極78が設けられ(図20参照)、これらの電極78は、相互間の間隔を維持しながらソース電極38aのコーナ部と中心を共有する円弧をなすように曲折してp型ドリフト層28a1〜28a3に直交するように延在して形成され、この延在部分でこれらp型ドリフト層28a1〜28a3に接続される(図21参照)。 In the present embodiment, unlike the fifth embodiment shown in FIG. 11, the insulating film 76 and the drift layers 26 a and 28 a formed so as to extend from the cell region portion to the junction termination region portion have a period in the vertical direction as well. And is formed up to the vicinity of the periphery of the junction termination region. Further, a p - resurf layer 52 having a predetermined width is provided on the surface of the junction termination region so as to surround the cell region. Furthermore, potential fixing electrodes 78 are provided on the p-type drift layers 28a4 to 28a7 periodically arranged in the vertical direction in the junction termination region (see FIG. 20). Are bent so as to form an arc sharing the center with the corner portion of the source electrode 38a while maintaining the gap of the source electrode 38a and extending so as to be orthogonal to the p-type drift layers 28a1 to 28a3. Connected to the p-type drift layers 28a1 to 28a3 (see FIG. 21).

本実施形態の半導体素子8は、上述した構造により、ターンオフ時に垂直方向に周期的に設けられたp型ドリフト層3a4〜7内の正孔を電極78を介して排出するので、水平方向と垂直方向の2つの方向で空乏層が均等に伸びる。これにより、高耐圧が保持される。   The semiconductor element 8 of the present embodiment discharges holes in the p-type drift layers 3a4 to 7a periodically provided in the vertical direction through the electrode 78 at the time of turn-off due to the structure described above. The depletion layer extends evenly in the two directions. Thereby, a high breakdown voltage is maintained.

(9)第9の実施形態
図22は、本発明にかかる半導体素子の第9の実施の形態の概略構造を示す平面図である。図23は、図22の切断線A−Aに沿った本実施形態の半導体素子の断面図である。なお、図22の切断線B−Bに沿った断面図は図3と同様である。
(9) Ninth Embodiment FIG. 22 is a plan view showing a schematic structure of a ninth embodiment of a semiconductor element according to the present invention. FIG. 23 is a cross-sectional view of the semiconductor device of this embodiment taken along section line AA of FIG. Note that the cross-sectional view along the cutting line BB in FIG. 22 is the same as FIG.

本実施形態の半導体素子9は、前述した第8の実施形態と異なり、接合終端領域部においてそれぞれの水平方向にストライプ状に形成され垂直方向に周期的に配置された絶縁膜84とこれを周回するように形成されたn型ドリフト層172とが水平方向でそれぞれ分割されて平面視において格子形状をなすように形成され、これにより、p型ドリフト層178の水平方向の領域が垂直方向で相互に接続されている。この垂直方向でのp型ドリフト層178の接続構造により、ターンオフ時に正孔が排出される。また、本実施形態の半導体素子9は、上述した第1の実施の形態と同様に、セル領域を囲むように形成されたp型ベース層30aに接続され、接合終端領域上に形成された絶縁膜46上に延在して形成されたフィールド電極48を備えるので、これにより接合終端領域部における電界が緩和される。この結果、充分な高耐圧が得られる。   Unlike the above-described eighth embodiment, the semiconductor element 9 of the present embodiment has an insulating film 84 formed in stripes in the horizontal direction and periodically arranged in the vertical direction in the junction termination region and the circuit. The n-type drift layer 172 formed in such a manner is divided in the horizontal direction so as to form a lattice shape in plan view, whereby the horizontal regions of the p-type drift layer 178 are mutually perpendicular. It is connected to the. Due to the connection structure of the p-type drift layer 178 in the vertical direction, holes are discharged at the time of turn-off. In addition, the semiconductor element 9 of this embodiment is connected to the p-type base layer 30a formed so as to surround the cell region and is insulated on the junction termination region, as in the first embodiment described above. Since the field electrode 48 formed so as to extend on the film 46 is provided, the electric field in the junction termination region is thereby reduced. As a result, a sufficiently high breakdown voltage can be obtained.

(10)第10の実施形態
図24は、本発明にかかる半導体素子の第10の実施の形態の概略構造を示す平面図である。図25および図26は、それぞれ図24の切断線A−A、B−Bに沿った本実施形態の半導体素子の断面図である。
(10) Tenth Embodiment FIG. 24 is a plan view showing a schematic structure of a tenth embodiment of a semiconductor element according to the present invention. 25 and 26 are cross-sectional views of the semiconductor device of this embodiment taken along section lines AA and BB in FIG. 24, respectively.

本実施形態の半導体素子10は、図19に示す半導体素子8のpリサーフ層52と電極78に代えて、セル領域を囲むように接合終端領域上に半絶縁性ポリシリコン等により形成された抵抗性フィールドプレート(Resistive Field Plate:RFP)50を備える。RFP50は、セル領域との境界近傍におけるp型ベース層30aを介して、または直接にソース電極38aに接続されるとともに、p型ドリフト層28aに接続される。特に、セル領域部のp型ドリフト層28を水平方向に延在した部分に該当するp型ドリフト層28a1および28a2については、それらのほぼ全長においてRFP50にコンタクトしている(図26参照)。また、接合終端領域部で垂直方向に周期的に形成されたp型ドリフト層28a4〜28a7は、水平方向におけるセル領域部の幅に対応する幅において離散的にRFP50にコンタクトしている(図25参照)。 The semiconductor element 10 of this embodiment is formed of semi-insulating polysilicon or the like on the junction termination region so as to surround the cell region, instead of the p - resurf layer 52 and the electrode 78 of the semiconductor element 8 shown in FIG. A resistive field plate (RFP) 50 is provided. The RFP 50 is connected to the source electrode 38a via the p-type base layer 30a in the vicinity of the boundary with the cell region or directly to the p-type drift layer 28a. In particular, the p-type drift layers 28a1 and 28a2 corresponding to the portion extending in the horizontal direction of the p-type drift layer 28 in the cell region are in contact with the RFP 50 in almost the entire length thereof (see FIG. 26). Further, the p-type drift layers 28a4 to 28a7 periodically formed in the vertical direction in the junction termination region portion are in discrete contact with the RFP 50 in a width corresponding to the width of the cell region portion in the horizontal direction (FIG. 25). reference).

このような構造により、ターンオフ時に正孔がp型ドリフト層28aからRFP50を介してソース電極38aに排出されるので、半導体素子10は充分な高耐圧を実現することができる。   With such a structure, holes are discharged from the p-type drift layer 28a to the source electrode 38a via the RFP 50 at the time of turn-off, so that the semiconductor element 10 can realize a sufficiently high breakdown voltage.

(11)第11の実施形態
図27は、本発明にかかる半導体素子の第11の実施の形態の概略構成を模式的に示す断面図である。
(11) Eleventh Embodiment FIG. 27 is a cross-sectional view schematically showing a schematic configuration of an eleventh embodiment of a semiconductor element according to the present invention.

図27に示す縦型パワーMOSFET11は、n型ベース層をなす半導体層102と、nドレイン層100と、ドレイン電極40と、スーパージャンクション構造をなす複数のp型リサーフ層106,130と、p型ベース層108と、n型ソース層110と、ゲート電極114およびソース電極116とを備える。 A vertical power MOSFET 11 shown in FIG. 27 includes a semiconductor layer 102 forming an n type base layer, an n + drain layer 100, a drain electrode 40, and a plurality of p type RESURF layers 106 and 130 forming a super junction structure, A p-type base layer 108, an n + -type source layer 110, a gate electrode 114, and a source electrode 116 are provided.

ドレイン層100は、n型ベース層102の一方の表面、図27においては下面に形成され、ドレイン電極40は、nドレイン層100上に形成される。 The n + drain layer 100 is formed on one surface of the n type base layer 102, the lower surface in FIG. 27, and the drain electrode 40 is formed on the n + drain layer 100.

p型リサーフ層106,130は、n型ベース層102の他方の表面部、図27においては上面部に、セル領域部だけでなく接合終端領域部にも所定方向に周期的に配置され、これによりスーパージャンクション構造が形成され、p型リサーフ層106はp型ドリフト層106として機能し、また、n型ベース層102のうち、これらp型ドリフト層106に挟まれた領域部分はn型ドリフト層102として機能する。 The p-type RESURF layers 106 and 130 are periodically arranged in a predetermined direction not only in the cell region portion but also in the junction termination region portion on the other surface portion of the n -type base layer 102, in FIG. Thereby super junction structure is formed, p-type RESURF layer 106 functions as a p-type drift layer 106, also, n - of the type base layer 102, region portion sandwiched between the p-type drift layer 106 the n - It functions as a type drift layer 102.

p型ベース層108は、セル領域部におけるn型ベース層102の表面部でp型ドリフト層106に接続されるように選択的に形成される。n型ソース層110は、p型ベース層108の表面部でストライプの平面形状を有するように選択的に拡散形成される。p型ベース層108は、例えば、約3×1017cm−3の不純物濃度で約2.0μmの深さに形成され、また、n型ソース層110は、例えば、約1×1020cm−3の不純物濃度で約0.2μmの深さに形成される。 The p-type base layer 108 is selectively formed so as to be connected to the p-type drift layer 106 at the surface portion of the n -type base layer 102 in the cell region portion. The n + type source layer 110 is selectively diffused so as to have a planar shape of stripes on the surface portion of the p type base layer 108. The p-type base layer 108 is formed to a depth of about 2.0 μm, for example, with an impurity concentration of about 3 × 10 17 cm −3 , and the n + -type source layer 110 is, for example, about 1 × 10 20 cm. -3 with an impurity concentration of -3 .

ゲート電極114は、n型ソース層110およびp型ベース層108の表面からn型ドリフト層102の表面を介して隣り合うp型ベース層108およびn型ソース層110の表面に至る領域上に、膜厚約0.1μmのゲート絶縁膜、例えばSi酸化膜112を介してストライプの平面形状をなすように形成される。ソース電極116は、p型ベース層108の表面部における一方のn型ソース層110の表面領域、p型ベース層108の表面領域および隣り合うn型ソース層110の表面領域でストライプの平面形状をなすように形成され、ゲート電極114を挟むように配置される。 Gate electrode 114 is a region extending from the surfaces of n + type source layer 110 and p type base layer 108 to the surfaces of adjacent p type base layer 108 and n + type source layer 110 via the surface of n type drift layer 102. A stripe insulating planar shape is formed on a gate insulating film having a thickness of about 0.1 μm, for example, a Si oxide film 112. The source electrode 116 is a stripe plane in the surface region of one n + -type source layer 110, the surface region of the p-type base layer 108, and the surface region of the adjacent n + -type source layer 110 in the surface portion of the p-type base layer 108. It is formed so as to have a shape, and is arranged so as to sandwich the gate electrode 114.

縦型パワーMOSFET11の接合終端領域部におけるスーパージャンクション構造の上には、金属またはポリシリコンなどの導電性膜128が絶縁膜126を介して形成され、これにより、接合終端領域におけるフィールドプレート構造を構成する。なお、素子の周縁の表面部には、n層で形成され空乏化を止めるフィールドストッパ42が設けられている。   On the super junction structure in the junction termination region of the vertical power MOSFET 11, a conductive film 128 such as metal or polysilicon is formed via an insulating film 126, thereby forming a field plate structure in the junction termination region. To do. A field stopper 42 that is formed of an n layer and stops depletion is provided on the peripheral surface of the element.

このような構造により、高電圧印加時にフィールドプレート128により接合終端領域部のスーパージャンクション構造部が速やかに空乏化して、接合終端領域部が等価的に低不純物濃度層となるので、接合終端領域部での電界集中が抑制され、高耐圧が保持される。なお、接合終端領域部の表面部にリサーフ層を形成しても、フィールドプレートと同様にスーパージャンクション構造部が速やかに空乏化するので、同様な効果を得ることができる。図27において、フィールドプレート128はソース電極116と同じ電位となるような構造を有するが、これに限ることなく、ゲート電極114と同じ電位となるように製造しても良い。   With such a structure, when the high voltage is applied, the super junction structure portion of the junction termination region portion is quickly depleted by the field plate 128, and the junction termination region portion becomes an equivalent low impurity concentration layer. Electric field concentration is suppressed and high breakdown voltage is maintained. Even if the RESURF layer is formed on the surface portion of the junction termination region portion, the super junction structure portion is quickly depleted like the field plate, and the same effect can be obtained. In FIG. 27, the field plate 128 has a structure in which the potential is the same as that of the source electrode 116. However, the field plate 128 is not limited to this and may be manufactured to have the same potential as that of the gate electrode 114.

接合終端領域部のp型ドリフト層130の不純物量をセル領域部のp型ドリフト層106の不純物量よりも多くすることにより、接合終端領域部での耐圧低下を抑制することができる。p型ドリフト層106,130の不純物量は、幅と不純物密度との積とする。   By making the impurity amount of the p-type drift layer 130 in the junction termination region portion larger than the impurity amount of the p-type drift layer 106 in the cell region portion, it is possible to suppress a decrease in breakdown voltage in the junction termination region portion. The impurity amount of the p-type drift layers 106 and 130 is the product of the width and the impurity density.

図27では、接合終端領域部のp型ドリフト層130は、セル領域部のp型ドリフト層106よりも広い幅で形成されるが、p型ドリフト層106と同じ不純物密度を有するように形成される。これにより、接合終端領域部でのp型ドーパントの不純物量が多くなり、この結果、接合終端領域部での耐圧低下を抑制することができる。   In FIG. 27, the p-type drift layer 130 in the junction termination region is formed with a width wider than the p-type drift layer 106 in the cell region, but is formed to have the same impurity density as the p-type drift layer 106. The As a result, the impurity amount of the p-type dopant in the junction termination region increases, and as a result, a decrease in breakdown voltage in the junction termination region can be suppressed.

なお、この構造に限ることなく、例えば、セル領域部のp型ドリフト層106の幅と接合終端領域部のp型ドリフト層130の幅を同じにし、不純物密度を接合終端領域部だけ高くしても同様の効果が得られる。   For example, the width of the p-type drift layer 106 in the cell region and the width of the p-type drift layer 130 in the junction termination region are made the same, and the impurity density is increased only in the junction termination region. The same effect can be obtained.

図28は、p型不純物量を変化させた時の耐圧の変化をセル領域部と接合終端領域部のそれぞれについて示すグラフである。同図の横軸は、n型ドリフト層の不純物量Nnに対するp型ドリフト層の不純物量Npの比とした。同図に示すように、セル領域部ではn型ドリフト層不純物量とp型ドリフト層不純物量とが等しい(アンバランスが0%)場合に最も高い耐圧が得られ、p型ドリフト層の不純物量が相対的に高くなっても低くなってもその比率に応じて0%の点を中心に対称的に耐圧が低下することがわかる。この一方、接合終端領域部では、p型ドリフト層不純物量を相対的に10%高くした場合が最も高い耐圧が得られることがわかる。このように、セル領域部と接合終端領域部では、最適のp型ドリフト層の不純物量が異なり、セル領域部で最適のp型ドリフト層濃度と同一の濃度で接合終端領域部にもp型ドリフト層を形成すると、接合終端領域部で耐圧が低下してしまう。図28からも明らかなように、接合終端領域部で最適の不純物量は、セル領域部より高くなっている。 FIG. 28 is a graph showing the change in breakdown voltage when the p-type impurity amount is changed for each of the cell region portion and the junction termination region portion. The horizontal axis of the figure represents the ratio of the impurity amount Np of the p-type drift layer to the impurity amount Nn of the n -type drift layer. As shown in the figure, in the cell region portion, the highest breakdown voltage is obtained when the n type drift layer impurity amount and the p type drift layer impurity amount are equal (unbalance is 0%), and the impurity of the p type drift layer is obtained. It can be seen that the withstand voltage decreases symmetrically around the point of 0% depending on the ratio regardless of whether the amount is relatively high or low. On the other hand, in the junction termination region, it can be seen that the highest breakdown voltage can be obtained when the p-type drift layer impurity amount is relatively increased by 10%. As described above, the optimum impurity amount of the p-type drift layer is different between the cell region portion and the junction termination region portion, and the junction termination region portion is also p-type at the same concentration as the optimum p-type drift layer concentration in the cell region portion. When the drift layer is formed, the breakdown voltage is lowered at the junction termination region. As is apparent from FIG. 28, the optimum impurity amount in the junction termination region is higher than that in the cell region.

セル領域部おけるp型ドリフト層不純物量は、プロセスマージンも含めると、n型ドリフト層の80〜120%とすることが最適であり、接合終端領域部におけるp型ドリフト層不純物量は、プロセスマージンも含めると、n型ドリフト層の90〜130%とすることが最適であるから、終端部のp型ドリフト層不純物量は、セル領域部のp型ドリフト層不純物量の75〜163%とすることが望ましい。最も高い耐圧が得られるp型ドリフト層不純物量は終端部の方が高いので、終端部のp型ドリフト層不純物量は、セル領域部の不純物量に対して、100〜163%とすることがより望ましい。 The p-type drift layer impurity amount in the cell region portion is optimal to be 80 to 120% of the n -type drift layer including the process margin. The p-type drift layer impurity amount in the junction termination region portion is Including the margin, it is optimal that the n type drift layer is 90 to 130%. Therefore, the p-type drift layer impurity amount in the terminal portion is 75 to 163% of the p-type drift layer impurity amount in the cell region portion. Is desirable. Since the p-type drift layer impurity amount that can provide the highest breakdown voltage is higher in the termination portion, the p-type drift layer impurity amount in the termination portion may be 100 to 163% with respect to the impurity amount in the cell region portion. More desirable.

スーパージャンクション構造の形成方法は、例えば、イオン注入と埋め込み結晶成長を繰り返す方法でも、トレンチ溝を形成して埋め込みエピを行う方法でも、トレンチ溝を形成した後に斜め方向からイオン注入を行う方法のいずれでもよい。   The method of forming the super junction structure includes, for example, either a method of repeating ion implantation and buried crystal growth, a method of forming a trench groove and performing buried epi, or a method of implanting ions from an oblique direction after forming the trench groove. But you can.

接合終端領域部のp型ドリフト層濃度を上げることは、スーパージャンクション構造の各形成方法に応じて可能である。   Increasing the concentration of the p-type drift layer in the junction termination region is possible depending on each formation method of the super junction structure.

イオン注入と埋め込み結晶成長を繰り返してスーパージャンクション構造を形成する方法では、セル領域部と接合終端領域部で別々にイオン注入を行っても、セル領域部と接合終端領域部でイオン注入のマスク開口幅を変えて同時にイオン注入を行ってもよい。   In the method of forming a super junction structure by repeating ion implantation and buried crystal growth, even if ion implantation is separately performed in the cell region portion and the junction termination region portion, the mask opening for ion implantation is performed in the cell region portion and the junction termination region portion. The ion implantation may be performed at the same time while changing the width.

トレンチ溝を形成した後にトレンチ溝内を結晶成長により埋め込む方法、または、斜め方向からイオン注入や気相拡散を行ってスーパージャンクション構造を形成する方法では、セル領域部と接合終端領域部とでトレンチ溝幅やメサ幅を変えてもよい。   In the method of filling the trench groove by crystal growth after forming the trench groove, or the method of forming a super junction structure by performing ion implantation or gas phase diffusion from an oblique direction, the trench is formed between the cell region portion and the junction termination region portion. The groove width and mesa width may be changed.

また、p型ドリフト層不純物量をセル領域部と終端部で同じにし、接合終端領域部のn型ドリフト層不純物量をセル領域部よりも下げても同様な効果が得られる。 Further, the same effect can be obtained even if the p-type drift layer impurity amount is made the same in the cell region portion and the termination portion, and the n type drift layer impurity amount in the junction termination region portion is made lower than that in the cell region portion.

(12)第12の実施形態
図29は、本発明にかかる半導体素子の第12の実施の形態の概略構成を模式的に示す断面図である。
(12) Twelfth Embodiment FIG. 29 is a cross-sectional view schematically showing a schematic configuration of a twelfth embodiment of a semiconductor element according to the present invention.

本実施形態の半導体素子12の特徴は、セル領域部と接合終端領域部とでセルピッチが異なるp型ドリフト層でスーパージャンクション構造を構成する点にある。即ち、接合終端領域部のp型ドリフト層132のセルピッチをセル領域部のp型ドリフト層106よりも狭くしている。このように、接合終端領域部でのセル幅を狭くすることにより、ターンオフ時に接合終端領域部での空乏化が速やかに進む。この結果、接合終端領域部での耐圧低下が抑制される。   A feature of the semiconductor element 12 of the present embodiment is that a super junction structure is formed by p-type drift layers having different cell pitches in the cell region portion and the junction termination region portion. That is, the cell pitch of the p-type drift layer 132 in the junction termination region is made narrower than that of the p-type drift layer 106 in the cell region. Thus, by narrowing the cell width in the junction termination region, depletion in the junction termination region proceeds rapidly at turn-off. As a result, a decrease in breakdown voltage at the junction termination region is suppressed.

図30は、p型ドリフト層とn型ドリフト層の不純物量バランスに対する耐圧の変化を示すグラフである。n型ドリフト層の不純物濃度は、2.5×1015cm−3とした。セルピッチを16μmとした場合と8μmとした場合とを比較すると、セルピッチを8μmと狭くした方が、不純物のバランスに対して耐圧低下が小さくなっている。これより、セルピッチを狭くすることにより、不純物濃度バランスに対するマージンを大きくすることができることが分かる。 FIG. 30 is a graph showing changes in breakdown voltage with respect to the impurity amount balance of the p-type drift layer and the n -type drift layer. The impurity concentration of the n type drift layer was 2.5 × 10 15 cm −3 . Comparing the case where the cell pitch is 16 μm and the case where the cell pitch is 8 μm, when the cell pitch is narrowed to 8 μm, the decrease in breakdown voltage is smaller with respect to the balance of impurities. From this, it can be seen that the margin for the impurity concentration balance can be increased by narrowing the cell pitch.

さらに、n型ドリフト層とp型ドリフト層との不純物量バランスに注目すると、セル幅を変化させても、耐圧が最も高くなる最適のp型ドリフト層不純物量は、n型ドリフト層よりも高い不純物量となっている。このことから、接合終端領域部のセル幅を狭くした場合でも、接合終端領域部のp型ドリフト層不純物量をセル領域部よりも高くすることが望ましいことが分かる。 Further, when attention is paid to the impurity amount balance between the n type drift layer and the p type drift layer, the optimum p type drift layer impurity amount with the highest withstand voltage even when the cell width is changed is larger than that of the n type drift layer. The amount of impurities is also high. From this, it can be seen that even when the cell width of the junction termination region is narrowed, it is desirable that the amount of p-type drift layer impurities in the junction termination region is higher than that of the cell region.

(13)第13の実施形態
図31は、本発明にかかる半導体素子の第13の実施の形態の概略構成を模式的に示す断面図である。
(13) Thirteenth Embodiment FIG. 31 is a cross-sectional view schematically showing a schematic configuration of a thirteenth embodiment of a semiconductor element according to the present invention.

本実施形態の半導体素子13の特徴は、接合終端領域部でのp型ドリフト層134の形状にあり、上述した各実施形態における柱状の断面形状ではなく水玉状の断面形状を有するように埋め込まれている点にある。仮に、スーパージャンクション構造を構成するp型ドリフト層134がセル領域部でこのような水玉の断面形状を有する場合は、ターンオフで一旦空乏化した後、p型ドリフト層の空乏化が保持されてしまうが、本実施形態では、水玉状の断面形状のp型ドリフト層134が接合終端領域部にのみ形成されているので、半導体素子13のオン動作に影響を及ぼすことはない。   The semiconductor element 13 of this embodiment is characterized by the shape of the p-type drift layer 134 in the junction termination region, and is embedded so as to have a polka-dot cross-sectional shape instead of the columnar cross-sectional shape in each of the above-described embodiments. There is in point. If the p-type drift layer 134 constituting the super junction structure has such a polka-dot cross-sectional shape in the cell region portion, the depletion of the p-type drift layer is maintained after being depleted once by turn-off. However, in this embodiment, since the p-type drift layer 134 having a polka-dot cross-sectional shape is formed only in the junction termination region portion, the ON operation of the semiconductor element 13 is not affected.

スーパージャンクション構造の形成にあたり、イオン注入と埋め込み結晶成長を繰り返す方法を採用する場合、接合終端領域部でスーパージャンクション構造のセルピッチを狭くすると、イオン注入するドーパントの量が終端領域で減ってしまう。本実施形態のp型ドリフト層134は、このような問題を解消するために埋め込み成長後の拡散を採用した場合に得られる構造である。即ち、埋め込み成長後の拡散によれば、埋め込まれたp層の濃度は、セル領域部では高く、接合終端領域部では低くなる。この結果、セル領域部では上下のp層が接続して柱状の断面形状をなすようにp型ドリフト層が形成されるが、接合終端領域部では各埋め込み層が接続されることなく水玉状の断面形状を有することになる。ただし、接合終端領域部でセルピッチを狭くしすぎると、隣り合うp型ドリフト層同士が接続されてしまうので、接合終端領域部のセルピッチとしては、セル領域部のセルピッチの半分以上に設定することが望ましい。   When the method of repeating ion implantation and buried crystal growth is adopted in forming the super junction structure, if the cell pitch of the super junction structure is narrowed in the junction termination region, the amount of dopant to be ion implanted is reduced in the termination region. The p-type drift layer 134 of the present embodiment has a structure obtained when diffusion after buried growth is employed in order to solve such a problem. That is, according to the diffusion after buried growth, the concentration of the buried p layer is high in the cell region portion and low in the junction termination region portion. As a result, the p-type drift layer is formed so that the upper and lower p layers are connected to form a columnar cross-sectional shape in the cell region portion, but each buried layer is not connected to each other in the junction termination region portion. It will have a cross-sectional shape. However, if the cell pitch is made too narrow in the junction termination region, adjacent p-type drift layers are connected to each other. Therefore, the cell pitch in the junction termination region can be set to more than half the cell pitch in the cell region. desirable.

(14)第14の実施形態
図32は、本発明にかかる半導体素子の第14の実施の形態の概略構成を模式的に示す断面図である。本実施形態の半導体素子14は、接合終端領域部でのスーパージャンクション構造のセル幅がセル領域部におけるセル幅よりも狭くなるように形成され、かつ、接合終端領域部内でp型ドリフト層136のメサ幅が相対的に広くなるように形成される。これにより、接合終端領域部のp型ドリフト層136の不純物濃度をセル領域部よりも高くすることができる。このような構造により、本実施形態の半導体素子14は、接合終端領域部での耐圧低下が抑制される。
(14) Fourteenth Embodiment FIG. 32 is a cross-sectional view schematically showing a schematic configuration of a fourteenth embodiment of a semiconductor element according to the present invention. The semiconductor element 14 of the present embodiment is formed such that the cell width of the super junction structure in the junction termination region is narrower than the cell width in the cell region, and the p-type drift layer 136 is formed in the junction termination region. The mesa width is formed to be relatively wide. Thereby, the impurity concentration of the p-type drift layer 136 in the junction termination region can be made higher than that in the cell region. With such a structure, the semiconductor element 14 of the present embodiment suppresses a decrease in breakdown voltage in the junction termination region.

(15)第15の実施形態
図33は、本発明にかかる半導体素子の第15の実施の形態の概略構成を模式的に示す断面図である。図27に示す半導体素子11との対比において明らかなように、本実施形態の半導体素子15の特徴は、スーパージャンクション構造とnドレイン層100との間に設けられたn型ドリフト層142をさらに備え、このn型ドリフト層142とスーパージャンクション構造とでn型ドリフト層を構成する点にある。n型ドリフト層142は、スーパージャンクション構造におけるn型ドリフト層102よりも低い不純物濃度を有するように形成される。このようなn型ドリフト層142を有する場合であっても、上部のスーパージャンクション構造の空乏化により耐圧が決定されるため、上述したスーパージャンクション構造の半導体素子1〜10と同様の接合終端領域構造を設計できる。本実施形態の半導体素子15では、図27に示す第11の実施形態と同様に、接合終端領域部におけるp型ドリフト層130の幅をセル領域部のp型ドリフト層106よりも広くすることにより、接合終端領域部でのスーパージャンクション構造のp型不純物量をセル領域部よりも多くしている。これにより、接合終端領域部での耐圧低下を抑制することが可能になる。
(15) Fifteenth Embodiment FIG. 33 is a cross-sectional view schematically showing a schematic configuration of a fifteenth embodiment of a semiconductor element according to the present invention. As is clear from the comparison with the semiconductor element 11 shown in FIG. 27, the semiconductor element 15 of the present embodiment is characterized by an n type drift layer 142 provided between the super junction structure and the n + drain layer 100. In addition, the n type drift layer 142 and the super junction structure constitute an n type drift layer. N type drift layer 142 is formed to have a lower impurity concentration than n type drift layer 102 in the super junction structure. Even in the case of having such an n type drift layer 142, the breakdown voltage is determined by depletion of the upper super junction structure, so that the junction termination region similar to that of the semiconductor elements 1 to 10 having the super junction structure described above is used. You can design the structure. In the semiconductor element 15 of this embodiment, as in the eleventh embodiment shown in FIG. 27, the width of the p-type drift layer 130 in the junction termination region is made wider than that of the p-type drift layer 106 in the cell region. The p-type impurity amount of the super junction structure in the junction termination region is larger than that in the cell region. Thereby, it becomes possible to suppress the pressure | voltage resistant fall in a junction termination area | region part.

(16)第16の実施形態
図34は、本発明にかかる半導体素子の第16の実施の形態の概略構成を模式的に示す断面図である。前述した第15の実施形態と同様に、図34に示す半導体素子16では、n型ドリフト層142とスーパージャンクション構造とでn型ドリフト層を構成している。n型ドリフト層142は、スーパージャンクション構造におけるn型ドリフト層102よりも低い不純物濃度を有する。本実施形態では、接合終端領域部構造として接合終端領域部のスーパージャンクション構造のセルピッチをセル領域部のセルピッチよりも狭くすることにより、p型ドリフト層132とn型ドリフト層102との濃度バランスに対するマージンを広くすることができる。さらに、接合終端領域部でのp型ドリフト層132の不純物量をセル領域部よりも多くすれば、接合終端領域部での耐圧低下をさらに抑制できる。
(16) Sixteenth Embodiment FIG. 34 is a cross-sectional view schematically showing a schematic configuration of a sixteenth embodiment of a semiconductor element according to the present invention. As in the fifteenth embodiment described above, in the semiconductor element 16 shown in FIG. 34, the n type drift layer 142 and the super junction structure constitute an n type drift layer. N type drift layer 142 has a lower impurity concentration than n type drift layer 102 in the super junction structure. In this embodiment, the cell balance of the super junction structure of the junction termination region portion as the junction termination region portion structure is made narrower than the cell pitch of the cell region portion, whereby the concentration balance between the p-type drift layer 132 and the n -type drift layer 102 is achieved. Can be widened. Furthermore, if the impurity amount of the p-type drift layer 132 in the junction termination region portion is made larger than that in the cell region portion, it is possible to further suppress the breakdown voltage drop in the junction termination region portion.

(B)半導体素子の製造方法の実施形態
図35は、本発明にかかる半導体素子の製造方法の実施の一形態を示す略示断面図である。本実施形態は、上述した本発明の半導体素子の各実施形態におけるスーパージャンクション構造を少ない結晶成長回数で形成する方法を提供する。
(B) Embodiment of Method for Manufacturing Semiconductor Device FIG. 35 is a schematic cross-sectional view showing one embodiment of a method for manufacturing a semiconductor device according to the present invention. The present embodiment provides a method of forming the super junction structure in each of the semiconductor device embodiments of the present invention described above with a small number of crystal growths.

イオン注入と埋め込み結晶成長を繰り返す従来のプロセスでは、拡散によりp型リサーフ層(p型ドリフト層)を形成するので、1回の結晶成長膜厚を厚くすることができず、このため5〜7回にわたってイオン注入および埋め込み結晶成長を繰り返す必要があった。また、従来の他のプロセスとしては、トレンチ溝を形成した後にトレンチ溝内を結晶成長により埋め込む方法があり、この場合は埋め込み成長回数を1回にすることが可能である。しかしながら、スーパージャンクション構造で期待されるトレンチ溝のアスペクト比は5以上と高いので、このような埋め込み結晶成長は困難であった。   In a conventional process in which ion implantation and embedded crystal growth are repeated, a p-type RESURF layer (p-type drift layer) is formed by diffusion, so that it is not possible to increase the thickness of a single crystal growth film. It was necessary to repeat ion implantation and embedded crystal growth over and over. As another conventional process, there is a method of filling the trench groove by crystal growth after forming the trench groove. In this case, it is possible to reduce the number of filling growths to one. However, since the aspect ratio of the trench groove expected in the super junction structure is as high as 5 or more, such buried crystal growth is difficult.

本実施形態の製造方法の特徴は、図35(a)〜(f)に示すように、アスペクト比の低いトレンチ埋め込み結晶成長を複数回繰り返す点にある。即ち、まずn型半導体層151内に、最終的に要求されるアスペクト比の半分でトレンチ溝154を形成し(図35(a))、このトレンチ溝154を埋め込むように、p型半導体層156をエピタキシャル成長させる(同図(b))。次に、n型半導体層151の表面が露出するまでp型半導体層156を後退させ、トレンチ溝に埋め込まれた半導体層158を得る(同図(c))。その後、n型半導体層151およびp型半導体層158を覆うようにn型半導体層をさらにエピタキシャル成長させ、p型半導体層158の膜厚と同一の膜厚を有するn型半導体層160を形成する(同図(d))。続いて、トレンチ溝154と合致するトレンチ溝162をn型半導体層160内に形成する(同図(e))。さらに、n型半導体層153およびp型半導体層158を覆うようにn型半導体層164をエピタキシャル成長させる(同図(f))。このように、本実施形態の半導体素子製造方法によれば、比較的容易に埋め込み成長を行うので、イオン注入と埋め込み結晶成長を繰り返す従来のプロセスよりも少ない結晶成長回数でスーパージャンクション構造を形成することができる。 A feature of the manufacturing method of this embodiment is that, as shown in FIGS. 35A to 35F, trench embedded crystal growth with a low aspect ratio is repeated a plurality of times. That is, first, a trench groove 154 is formed in the n type semiconductor layer 151 at a half of the aspect ratio finally required (FIG. 35A), and a p type semiconductor is formed so as to fill the trench groove 154. The layer 156 is epitaxially grown ((b) in the figure). Next, the p type semiconductor layer 156 is retracted until the surface of the n type semiconductor layer 151 is exposed to obtain a semiconductor layer 158 embedded in the trench (FIG. 3C). Then, n - -type semiconductor layer 151 and the p - allowed -type semiconductor layer further epitaxial growth, p - - -type semiconductor layer 158 and an n cover type n has a film same thickness as the thickness of the semiconductor layer 158 - -type semiconductor layer 160 is formed ((d) in the figure). Subsequently, a trench groove 162 coinciding with the trench groove 154 is formed in the n type semiconductor layer 160 ((e) in the figure). Further, n - -type semiconductor layer 153 and the p - n so as to cover the type semiconductor layer 158 - -type semiconductor layer 164 is epitaxially grown (Fig. (F)). As described above, according to the semiconductor element manufacturing method of the present embodiment, since the buried growth is performed relatively easily, the super junction structure is formed with a smaller number of crystal growth times than in the conventional process in which ion implantation and buried crystal growth are repeated. be able to.

なお、本実施形態では2回のトレンチ埋め込み結晶成長でスーパージャンクション構造を形成したが、これに限ることなく、例えば一回あたりのアスペクト比を求められるアスペクト比の1/3以下に設定してトレンチ埋め込み結晶成長を3回以上繰り返すこととしても良い。また、1回目と2回目のスーパージャンクション構造をそれぞれストライプ状に形成し、相互に直交するように形成すると、位置合わせを確実に行うことができる。   In this embodiment, the superjunction structure is formed by two trench embedded crystal growths. However, the present invention is not limited to this, and for example, the trench is set to have an aspect ratio of 1/3 or less of the required aspect ratio. The embedded crystal growth may be repeated three or more times. Further, if the first and second super junction structures are formed in a stripe shape and are formed so as to be orthogonal to each other, the alignment can be reliably performed.

以上、本発明の実施の形態について説明したが、本発明は上記形態に限ることなくその技術的範囲内で種々変更して実施することができる。例えば、上述した各実施形態においては、スーパージャンクション構造、p型ベース層、nソース層およびゲート電極をストライプ状に形成したが、格子状や千鳥状をなすように配置してもよい。また、半導体材料としてシリコン(Si)を用いた縦型パワーMOSFETについて説明したが、他の材料としては、例えばシリコンカーバイト(SiC)や窒化ガリウム(GaN)、窒化アルミニウム(AlN)等の化合物半導体の他、ダイアモンドを用いることもできる。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments and can be implemented with various modifications within the technical scope thereof. For example, in each of the embodiments described above, the super junction structure, the p-type base layer, the n + source layer, and the gate electrode are formed in a stripe shape, but may be arranged in a lattice shape or a staggered shape. Further, the vertical power MOSFET using silicon (Si) as the semiconductor material has been described, but other materials include compound semiconductors such as silicon carbide (SiC), gallium nitride (GaN), and aluminum nitride (AlN). In addition, diamond can also be used.

本発明にかかる半導体素子の第1の実施の形態の概略構造を示す平面図である。1 is a plan view showing a schematic structure of a semiconductor device according to a first embodiment of the present invention. 図1に示す半導体素子の切断線A−Aに沿った断面図である。FIG. 2 is a cross-sectional view taken along a cutting line AA of the semiconductor element shown in FIG. 1. 図1に示す半導体素子の切断線B−Bに沿った断面図である。FIG. 4 is a cross-sectional view taken along a cutting line BB of the semiconductor element shown in FIG. 1. 本発明にかかる半導体素子の第2の実施の形態の概略構造を示す平面図である。It is a top view which shows schematic structure of 2nd Embodiment of the semiconductor element concerning this invention. 図4に示す半導体素子の切断線A−Aに沿った断面図である。FIG. 5 is a cross-sectional view taken along a cutting line AA of the semiconductor element shown in FIG. 4. 図4に示す半導体素子の切断線B−Bに沿った断面図である。FIG. 5 is a cross-sectional view taken along a cutting line BB of the semiconductor element shown in FIG. 4. 本発明にかかる半導体素子の第3の実施の形態の概略構造を示す平面図である。It is a top view which shows schematic structure of 3rd Embodiment of the semiconductor element concerning this invention. 本発明にかかる半導体素子の第4の実施の形態の概略構造を示す平面図である。It is a top view which shows schematic structure of 4th Embodiment of the semiconductor element concerning this invention. 図8に示す半導体素子の切断線A−Aに沿った断面図である。FIG. 9 is a cross-sectional view taken along a cutting line AA of the semiconductor element shown in FIG. 8. 図8に示す半導体素子の一変形例を示す断面図である。It is sectional drawing which shows the modification of the semiconductor element shown in FIG. 本発明にかかる半導体素子の第5の実施の形態の概略構造を示す平面図である。It is a top view which shows schematic structure of 5th Embodiment of the semiconductor element concerning this invention. 図11に示す半導体素子の切断線A−Aに沿った断面図である。FIG. 12 is a cross-sectional view taken along a cutting line AA of the semiconductor element shown in FIG. 11. 本発明にかかる半導体素子の第6の実施の形態の概略構造を示す平面図である。It is a top view which shows schematic structure of 6th Embodiment of the semiconductor element concerning this invention. 図13に示す半導体素子の切断線A−Aに沿った断面図である。FIG. 14 is a cross-sectional view of the semiconductor element shown in FIG. 13 along the cutting line AA. 図13に示す半導体素子の切断線B−Bに沿った断面図である。FIG. 14 is a cross-sectional view taken along the cutting line BB of the semiconductor element shown in FIG. 13. 図13に示す半導体素子の一変形例を示す平面図である。FIG. 14 is a plan view illustrating a modified example of the semiconductor element illustrated in FIG. 13. 本発明にかかる半導体素子の第7の実施の形態の概略構造を示す平面図である。It is a top view which shows schematic structure of 7th Embodiment of the semiconductor element concerning this invention. 図17に示す半導体素子の切断線A−Aに沿った断面図である。FIG. 18 is a cross-sectional view taken along a cutting line AA of the semiconductor element shown in FIG. 17. 本発明にかかる半導体素子の第8の実施の形態の概略構造を示す平面図である。It is a top view which shows schematic structure of 8th Embodiment of the semiconductor element concerning this invention. 図19に示す半導体素子の切断線A−Aに沿った断面図である。FIG. 20 is a cross-sectional view taken along a cutting line AA of the semiconductor element shown in FIG. 19. 図19に示す半導体素子の切断線B−Bに沿った断面図である。FIG. 20 is a cross-sectional view taken along a cutting line BB of the semiconductor element shown in FIG. 19. 本発明にかかる半導体素子の第9の実施の形態の概略構造を示す平面図である。It is a top view which shows schematic structure of 9th Embodiment of the semiconductor element concerning this invention. 図22に示す半導体素子の切断線A−Aに沿った断面図である。FIG. 23 is a cross-sectional view taken along a cutting line AA of the semiconductor element shown in FIG. 22. 本発明にかかる半導体素子の第10の実施の形態の概略構造を示す平面図である。It is a top view which shows schematic structure of 10th Embodiment of the semiconductor element concerning this invention. 図24に示す半導体素子の切断線A−Aに沿った断面図である。FIG. 25 is a cross-sectional view taken along a cutting line AA of the semiconductor element shown in FIG. 24. 図24に示す半導体素子の切断線B−Bに沿った断面図である。FIG. 25 is a cross-sectional view taken along a cutting line BB of the semiconductor element shown in FIG. 24. 本発明にかかる半導体素子の第11の実施の形態の概略構成を模式的に示す断面図である。It is sectional drawing which shows typically schematic structure of 11th Embodiment of the semiconductor element concerning this invention. p型ドーパントと耐圧との関係をセル領域部と接合終端領域部のそれぞれについて示すグラフである。It is a graph which shows the relationship between the amount of p-type dopants, and a proof pressure about each of a cell region part and a junction termination region part. 本発明にかかる半導体素子の第12の実施の形態の概略構成を模式的に示す断面図である。It is sectional drawing which shows typically schematic structure of 12th Embodiment of the semiconductor element concerning this invention. p型リサーフ層とn型ドリフト層の不純物量バランスに対する耐圧の変化を示すグラフである。It is a graph which shows the change of the proof pressure with respect to the impurity amount balance of a p-type RESURF layer and an n type drift layer. 本発明にかかる半導体素子の第13の実施の形態の概略構成を模式的に示す断面図である。It is sectional drawing which shows typically schematic structure of 13th Embodiment of the semiconductor element concerning this invention. 本発明にかかる半導体素子の第14の実施の形態の概略構成を模式的に示す断面図である。It is sectional drawing which shows typically schematic structure of 14th Embodiment of the semiconductor element concerning this invention. 本発明にかかる半導体素子の第15の実施の形態の概略構成を模式的に示す断面図である。It is sectional drawing which shows typically schematic structure of 15th Embodiment of the semiconductor element concerning this invention. 本発明にかかる半導体素子の第16の実施の形態の概略構成を模式的に示す断面図である。It is sectional drawing which shows typically schematic structure of 16th Embodiment of the semiconductor element concerning this invention. 本発明にかかる半導体素子の製造方法の実施の一形態を示す略示断面図である。It is a schematic sectional drawing which shows one Embodiment of the manufacturing method of the semiconductor element concerning this invention. 従来の技術によるスーパージャンクション構造を有するパワーMOSFETの概略構成を模式的に示す断面図である。It is sectional drawing which shows typically schematic structure of power MOSFET which has the super junction structure by a prior art.

符号の説明Explanation of symbols

1〜16 半導体素子
20,100 n型ドレイン層
26 n型ドリフト層(セル領域部)
26a,136,166 n型ドリフト層(接合終端領域部)
28,54,106 p型ドリフト層(セル領域部)
28a,29,29’,54a,130,132,134,136,168 p型ドリフト層(接合終端領域部)
30,108 p型ベース層(セル領域部)
30a p型ベース層(接合終端領域部)
32,110 n型ソース層
34,112 ゲート絶縁膜
36,114 絶縁ゲート電極
38 ソース電極(セル領域)
38a ソース電極(接合終端領域部)
40 ドレイン電極
42 n型チャネルストッパ層
44 電極
48,128 フィールド電極
52 p型リサーフ層
62,62’ p型ガードリング層
66,72,76 絶縁膜
68 n型ベース層
102,142 n型ドリフト層
151,153,160 n型半導体層
156,158,164 p型半導体層
1-16 Semiconductor device 20, 100 n + type drain layer 26 n type drift layer (cell region part)
26a, 136, 166 n-type drift layer (junction termination region)
28, 54, 106 p-type drift layer (cell region part)
28a, 29, 29 ', 54a, 130, 132, 134, 136, 168 p-type drift layer (junction termination region)
30,108 p-type base layer (cell region)
30a p-type base layer (junction termination region)
32, 110 n + type source layer 34, 112 Gate insulating film 36, 114 Insulated gate electrode 38 Source electrode (cell region)
38a Source electrode (junction termination region)
40 drain electrode 42 n + type channel stopper layer 44 electrode 48, 128 field electrode 52 p type RESURF layer 62, 62 ′ p type guard ring layers 66, 72, 76 insulating film 68 n type base layer 102, 142 n Type drift layers 151, 153, 160 n type semiconductor layers 156, 158, 164 p type semiconductor layers

Claims (4)

セル領域部と、このセル領域部を囲むように設けられた接合終端領域部とを有し、前記接合終端領域部での不純物濃度が前記セル領域部での不純物濃度よりも低くなるように形成された第1の第1導電型半導体層と、
前記第1の第1導電型半導体層の一方の表面上に形成された第2の第1導電型半導体層と、
前記第2の第1導電型半導体層に電気的に接続された第1の主電極と、
前記第1の第1導電型半導体層の前記セル領域部内で前記第1の第1導電型半導体層の一方の表面にほぼ垂直な方向でそれぞれが形成され、前記一方の表面に平行な任意の方向である第1の方向に周期的に配置された第1の第2導電型半導体層と、
前記第1の第1導電型半導体層の他方の表面部において前記第1の第2導電型半導体層に接続するように選択的に形成された第2の第2導電型半導体層と、
前記第2の第2導電型半導体層の表面部に選択的に形成された第3の第1導電型半導体層と、
前記第2の第2導電型半導体層の表面と前記第3の第1導電型半導体層の表面とに接するように形成された第2の主電極と、
前記第1の第1導電型半導体層の他方の表面のうち隣り合う前記第2の第2導電型半導体層に挟まれた領域と、前記隣り合う第2の第2導電型半導体層の表面と前記第3の第1導電型半導体層の表面の上にゲート絶縁膜を介して形成された制御電極と、
前記接合終端領域部内で前記セル領域部との境界面近傍の表面部において前記セル領域部を取り囲むように形成され、前記第2の主電極に電気的に接続される第3の第2導電型半導体層と、
を備える半導体素子。
It has a cell region portion and a junction termination region portion provided so as to surround the cell region portion, and is formed so that the impurity concentration in the junction termination region portion is lower than the impurity concentration in the cell region portion. A first first conductivity type semiconductor layer formed;
A second first conductivity type semiconductor layer formed on one surface of the first first conductivity type semiconductor layer;
A first main electrode electrically connected to the second first conductivity type semiconductor layer;
Each of the first first conductivity type semiconductor layers is formed in a direction substantially perpendicular to one surface of the first first conductivity type semiconductor layer within the cell region portion of the first first conductivity type semiconductor layer, and is arbitrary in parallel to the one surface. A first second conductivity type semiconductor layer periodically disposed in a first direction which is a direction;
A second second conductivity type semiconductor layer selectively formed so as to be connected to the first second conductivity type semiconductor layer at the other surface portion of the first first conductivity type semiconductor layer;
A third first conductivity type semiconductor layer selectively formed on a surface portion of the second second conductivity type semiconductor layer;
A second main electrode formed so as to be in contact with the surface of the second second conductivity type semiconductor layer and the surface of the third first conductivity type semiconductor layer;
Of the other surface of the first first conductivity type semiconductor layer, a region sandwiched between the adjacent second second conductivity type semiconductor layers, and the surface of the adjacent second second conductivity type semiconductor layer, A control electrode formed on the surface of the third first conductivity type semiconductor layer via a gate insulating film;
A third second conductivity type formed so as to surround the cell region portion in a surface portion in the vicinity of the boundary surface with the cell region portion in the junction termination region portion and electrically connected to the second main electrode. A semiconductor layer;
A semiconductor device comprising:
前記第1の第1導電型半導体層の前記接合終端領域部内で前記第1の第1導電型半導体層の前記一方の表面にほぼ垂直な方向で形成され、一端で前記第3の第2導電型半導体層に接して前記第3の第2導電型半導体層を介して前記第2の主電極に電気的に接続される第4の第2導電型半導体層をさらに備えることを特徴とする請求項1に記載の半導体素子。   The first second conductivity type semiconductor layer is formed in a direction substantially perpendicular to the one surface of the first first conductivity type semiconductor layer within the junction termination region of the first first conductivity type semiconductor layer, and the third second conductivity at one end. And a fourth second conductive semiconductor layer in contact with the second semiconductor electrode and in contact with the second main electrode through the third second conductive semiconductor layer. Item 2. The semiconductor element according to Item 1. 前記接合終端領域部の前記第1の第1導電型半導体層の表面部に第2導電型半導体層で形成された複数のガードリング層をさらに備えることを特徴とする請求項1または2に記載の半導体素子。   3. The device according to claim 1, further comprising a plurality of guard ring layers formed of a second conductivity type semiconductor layer on a surface portion of the first first conductivity type semiconductor layer in the junction termination region portion. Semiconductor element. アスペクト比Rのトレンチ溝が設けられた第1導電型半導体層と前記トレンチ溝内に埋め込まれた第2導電型半導体層とを有するスーパージャンクション構造の半導体素子の製造方法であって、
第1導電型半導体層内にR/N(Nは2以上の自然数)のアスペクト比を有するトレンチ溝を形成する第1の工程と、
前記トレンチ溝を埋め込むように第2導電型半導体層をエピタキシャル成長させる第2の工程と、
前記第1導電型半導体層の表面が露出するまで前記第2導電型半導体層を除去する第3の工程と、
前記第1導電型半導体層および前記第2導電型半導体層の上に、前記第1の工程により形成されたトレンチ溝の深さと実質的に同一の長さだけ層厚が増大するように前記第1導電型半導体層をエピタキシャル成長させる第4の工程と、
前記第1の工程により形成されたトレンチ溝に埋め込まれた前記第2導電型半導体層が露出するように前記第1導電型半導体層を選択的に除去する第5の工程と、
前記第2乃至第5の工程を(N−1)回だけ繰り返す工程と、
を備える半導体素子の製造方法。
A method for manufacturing a semiconductor device having a super junction structure having a first conductivity type semiconductor layer provided with a trench groove having an aspect ratio R and a second conductivity type semiconductor layer embedded in the trench groove,
Forming a trench groove having an aspect ratio of R / N (N is a natural number of 2 or more) in the first conductivity type semiconductor layer;
A second step of epitaxially growing a second conductivity type semiconductor layer so as to fill the trench groove;
A third step of removing the second conductive semiconductor layer until a surface of the first conductive semiconductor layer is exposed;
The thickness of the first conductive semiconductor layer and the second conductive semiconductor layer is increased by a length substantially the same as the depth of the trench formed in the first step. A fourth step of epitaxially growing the one conductivity type semiconductor layer;
A fifth step of selectively removing the first conductive type semiconductor layer so that the second conductive type semiconductor layer embedded in the trench groove formed by the first step is exposed;
Repeating the second to fifth steps (N-1) times;
A method for manufacturing a semiconductor device comprising:
JP2006335068A 2006-12-12 2006-12-12 Semiconductor element and its manufacturing method Pending JP2007116190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006335068A JP2007116190A (en) 2006-12-12 2006-12-12 Semiconductor element and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006335068A JP2007116190A (en) 2006-12-12 2006-12-12 Semiconductor element and its manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002074633A Division JP3908572B2 (en) 2002-03-18 2002-03-18 Semiconductor element

Publications (1)

Publication Number Publication Date
JP2007116190A true JP2007116190A (en) 2007-05-10

Family

ID=38098020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006335068A Pending JP2007116190A (en) 2006-12-12 2006-12-12 Semiconductor element and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007116190A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103747A (en) * 2005-10-06 2007-04-19 Sumco Corp Method of manufacturing semiconductor substrate
JP2009135427A (en) * 2007-11-06 2009-06-18 Denso Corp Semiconductor device and its manufacturing method
US7911023B2 (en) 2007-11-06 2011-03-22 Denso Corporation Semiconductor apparatus including a double-sided electrode element and method for manufacturing the same
EP2472584A2 (en) 2010-12-28 2012-07-04 Renesas Electronics Corporation Semiconductor device
US8395230B2 (en) 2008-08-08 2013-03-12 Sony Corporation Semiconductor device and method of manufacturing the same
US8404526B2 (en) 2008-09-10 2013-03-26 Sony Corporation Semiconductor device and manufacturing method for the same
KR101248664B1 (en) * 2011-08-01 2013-03-28 주식회사 케이이씨 Power semiconductor device
KR101248669B1 (en) 2011-08-01 2013-04-03 주식회사 케이이씨 Power semiconductor device
US8716789B2 (en) 2012-03-23 2014-05-06 Kabushiki Kaisha Toshiba Power semiconductor device
KR101403061B1 (en) 2012-12-12 2014-06-27 주식회사 케이이씨 Power semiconductor device
US8786046B2 (en) 2009-11-19 2014-07-22 Renesas Electronics Corporation Semiconductor device and method for manufacturing the same
US8835276B2 (en) 2005-10-06 2014-09-16 Sumco Corporation Method for manufacturing semiconductor substrate
CN104078502A (en) * 2013-03-26 2014-10-01 茂达电子股份有限公司 Semiconductor power device and manufacturing method thereof
US9166036B2 (en) 2011-08-12 2015-10-20 Renesas Electronics Corporation Power MOSFET, an IGBT, and a power diode
JP2016111129A (en) * 2014-12-04 2016-06-20 ローム株式会社 Semiconductor device
CN105845715A (en) * 2016-04-29 2016-08-10 中航(重庆)微电子有限公司 Super junction power device and layout structure and preparation method of super junction power device
JP2017228794A (en) * 2017-09-05 2017-12-28 ルネサスエレクトロニクス株式会社 Power MOSFET
JPWO2017187856A1 (en) * 2016-04-27 2018-05-10 三菱電機株式会社 Semiconductor device
JP2018532248A (en) * 2016-08-29 2018-11-01 洛陽鴻泰半導体有限公司Luoyang Hongtai Semiconductor Co.,Ltd Semiconductor wafer with three-dimensional structure
CN111244151A (en) * 2018-11-29 2020-06-05 株洲中车时代电气股份有限公司 Super junction terminal structure of power semiconductor device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10313115A (en) * 1998-06-22 1998-11-24 Denso Corp Insulated-gate field-effect transistor
JP2001015752A (en) * 1998-11-11 2001-01-19 Fuji Electric Co Ltd Superjunction semiconductor element and manufacture thereof
JP2001230413A (en) * 2000-02-17 2001-08-24 Fuji Electric Co Ltd Semiconductor element
JP2001298191A (en) * 2000-02-09 2001-10-26 Fuji Electric Co Ltd Semiconductor device
JP2001298190A (en) * 2000-02-09 2001-10-26 Fuji Electric Co Ltd Semiconductor device and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10313115A (en) * 1998-06-22 1998-11-24 Denso Corp Insulated-gate field-effect transistor
JP2001015752A (en) * 1998-11-11 2001-01-19 Fuji Electric Co Ltd Superjunction semiconductor element and manufacture thereof
JP2001298191A (en) * 2000-02-09 2001-10-26 Fuji Electric Co Ltd Semiconductor device
JP2001298190A (en) * 2000-02-09 2001-10-26 Fuji Electric Co Ltd Semiconductor device and manufacturing method thereof
JP2001230413A (en) * 2000-02-17 2001-08-24 Fuji Electric Co Ltd Semiconductor element

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103747A (en) * 2005-10-06 2007-04-19 Sumco Corp Method of manufacturing semiconductor substrate
US9034721B2 (en) 2005-10-06 2015-05-19 Sumco Corporation Method for manufacturing semiconductor substrate
US8956947B2 (en) 2005-10-06 2015-02-17 Sumco Corporation Method for manufacturing semiconductor substrate
US8835276B2 (en) 2005-10-06 2014-09-16 Sumco Corporation Method for manufacturing semiconductor substrate
JP2009135427A (en) * 2007-11-06 2009-06-18 Denso Corp Semiconductor device and its manufacturing method
US7911023B2 (en) 2007-11-06 2011-03-22 Denso Corporation Semiconductor apparatus including a double-sided electrode element and method for manufacturing the same
JP4678547B2 (en) * 2007-11-06 2011-04-27 株式会社デンソー Semiconductor device and manufacturing method thereof
US8395230B2 (en) 2008-08-08 2013-03-12 Sony Corporation Semiconductor device and method of manufacturing the same
US8421152B2 (en) 2008-09-10 2013-04-16 Sony Corporation Semiconductor device and manufacturing method for the same
US8404526B2 (en) 2008-09-10 2013-03-26 Sony Corporation Semiconductor device and manufacturing method for the same
US9660070B2 (en) 2009-11-19 2017-05-23 Renesas Electronics Corporation Power superjunction MOSFET device with resurf regions
US8786046B2 (en) 2009-11-19 2014-07-22 Renesas Electronics Corporation Semiconductor device and method for manufacturing the same
US9269767B2 (en) 2009-11-19 2016-02-23 Renesas Electronics Corporation Power superjunction MOSFET device with resurf regions
US9093288B2 (en) 2009-11-19 2015-07-28 Renesas Electronics Corporation Power superjunction MOSFET device with resurf regions
EP2472584A2 (en) 2010-12-28 2012-07-04 Renesas Electronics Corporation Semiconductor device
US8575707B2 (en) 2010-12-28 2013-11-05 Renesas Electronics Corporation Semiconductor power device having a super-junction structure
US9379235B2 (en) 2010-12-28 2016-06-28 Renesas Electronics Corporation Semiconductor device including a MOSFET and having a super-junction structure
US8796787B2 (en) 2010-12-28 2014-08-05 Renesas Electronics Corporation Semiconductor device
EP2884541A1 (en) 2010-12-28 2015-06-17 Renesas Electronics Corporation Semiconductor device
US8987819B2 (en) 2010-12-28 2015-03-24 Renesas Electronics Corporation Semiconductor device
KR101248664B1 (en) * 2011-08-01 2013-03-28 주식회사 케이이씨 Power semiconductor device
KR101248669B1 (en) 2011-08-01 2013-04-03 주식회사 케이이씨 Power semiconductor device
US9825163B2 (en) 2011-08-12 2017-11-21 Renesas Electronics Corporation Power MOSFET, an IGBT, and a power diode
US9166036B2 (en) 2011-08-12 2015-10-20 Renesas Electronics Corporation Power MOSFET, an IGBT, and a power diode
US8716789B2 (en) 2012-03-23 2014-05-06 Kabushiki Kaisha Toshiba Power semiconductor device
US9041101B2 (en) 2012-03-23 2015-05-26 Kabushiki Kaisha Toshiba Power semiconductor device
US8901651B2 (en) 2012-12-12 2014-12-02 Kec Corporation Power semiconductor device
KR101403061B1 (en) 2012-12-12 2014-06-27 주식회사 케이이씨 Power semiconductor device
CN104078502A (en) * 2013-03-26 2014-10-01 茂达电子股份有限公司 Semiconductor power device and manufacturing method thereof
JP2016111129A (en) * 2014-12-04 2016-06-20 ローム株式会社 Semiconductor device
JPWO2017187856A1 (en) * 2016-04-27 2018-05-10 三菱電機株式会社 Semiconductor device
CN105845715A (en) * 2016-04-29 2016-08-10 中航(重庆)微电子有限公司 Super junction power device and layout structure and preparation method of super junction power device
JP2018532248A (en) * 2016-08-29 2018-11-01 洛陽鴻泰半導体有限公司Luoyang Hongtai Semiconductor Co.,Ltd Semiconductor wafer with three-dimensional structure
JP2017228794A (en) * 2017-09-05 2017-12-28 ルネサスエレクトロニクス株式会社 Power MOSFET
CN111244151A (en) * 2018-11-29 2020-06-05 株洲中车时代电气股份有限公司 Super junction terminal structure of power semiconductor device
CN111244151B (en) * 2018-11-29 2023-06-23 株洲中车时代半导体有限公司 Super junction terminal structure of power semiconductor device

Similar Documents

Publication Publication Date Title
JP3908572B2 (en) Semiconductor element
JP2007116190A (en) Semiconductor element and its manufacturing method
JP5198030B2 (en) Semiconductor element
JP5052025B2 (en) Power semiconductor device
JP6367760B2 (en) Insulated gate type switching device and manufacturing method thereof
US7919824B2 (en) Semiconductor device and method of manufacturing the same
JP4564509B2 (en) Power semiconductor device
JP5188037B2 (en) Semiconductor device
JP5462020B2 (en) Power semiconductor device
JP4564510B2 (en) Power semiconductor device
JP5342752B2 (en) Semiconductor device
JP2008182054A (en) Semiconductor device
US8680608B2 (en) Power semiconductor device with a low on resistence
JP2011029233A (en) Power semiconductor element and manufacturing method of the same
US6949798B2 (en) Semiconductor device
JP2006269720A (en) Semiconductor device and its fabrication process
JP2006005275A (en) Semiconductor device for electric power
JP5365016B2 (en) Semiconductor device and manufacturing method thereof
WO2015104949A1 (en) Silicon carbide semiconductor device and silicon carbide semiconductor device manufacturing method
JP2009272397A (en) Semiconductor device
JP5559232B2 (en) Power semiconductor device
JP4867131B2 (en) Semiconductor device and manufacturing method thereof
US20180358429A1 (en) Silicon carbide semiconductor device
JP2007019146A (en) Semiconductor device
KR102100863B1 (en) SiC MOSFET power semiconductor device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20101019

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101220

A02 Decision of refusal

Effective date: 20110301

Free format text: JAPANESE INTERMEDIATE CODE: A02