JP2007110887A - Charge/discharge switching method for battery - Google Patents

Charge/discharge switching method for battery Download PDF

Info

Publication number
JP2007110887A
JP2007110887A JP2006143656A JP2006143656A JP2007110887A JP 2007110887 A JP2007110887 A JP 2007110887A JP 2006143656 A JP2006143656 A JP 2006143656A JP 2006143656 A JP2006143656 A JP 2006143656A JP 2007110887 A JP2007110887 A JP 2007110887A
Authority
JP
Japan
Prior art keywords
battery
switch
charging
current
mechanical contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006143656A
Other languages
Japanese (ja)
Other versions
JP4333695B2 (en
Inventor
Yasuhiro Takabayashi
泰弘 高林
Yoichi Aikawa
洋一 相川
Masahide Koshiba
昌英 小柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2006143656A priority Critical patent/JP4333695B2/en
Publication of JP2007110887A publication Critical patent/JP2007110887A/en
Application granted granted Critical
Publication of JP4333695B2 publication Critical patent/JP4333695B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To achieve reduction in size, in weight and also in cost by omitting or downsizing a cooling device, while reducing a conduction loss to a semiconductor switch, and to eliminate the generation of mechanical friction or operation sounds involved in the frequent on/off-operation of a mechanical contact switch. <P>SOLUTION: Charge/discharge switching circuits, in which mechanical contact switches 3 to 4, semiconductor switches 5 to 6, and diodes 7 to 8 are connected in parallel, are connected in series to respective batteries 1 to 2. The mechanical contact switches 3 to 4 are employed to conduct currents at a discharge time of large current conduction and in a large current charge operation region to reduce the conduction loss. The semiconductor switches 5 to 6 are employed to conduct currents in a small current charge operation region to reduce the conduction loss, thereby eliminating the operation sounds resulting from the on/off-operation at pulse charging and the off-operation upon the completion of charging. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、蓄電池を一次電源として、この蓄電池を充電する発電機からなる電源装置と、推進電動機およびシステム運転に必要な補機電動機などの機器類で構成される電気推進システムにおいて、電池の充電,放電,浮動動作の各動作における電池回路の接続,断路を行なうスイッチ方式に関する。   The present invention relates to an electric propulsion system that includes a storage battery as a primary power source, and includes a power supply device including a generator that charges the storage battery, and a propulsion motor and auxiliary motors required for system operation. The present invention relates to a switch system for connecting and disconnecting battery circuits in each operation of discharging, discharging and floating operations.

電池の充放電スイッチ方式の従来例を図12(a)に示す。この方式は例えば特許文献1〜3に開示されており、これを以後半導体式と呼ぶ。
この方式は、電池を充電するときは半導体スイッチQ1〜QnをONし、放電のときは半導体スイッチQ1〜QnをOFFしダイオードD1〜Dnを介して行なう。しかし、この方式は充電時のQ1〜Qnの通電損失、放電時のD1〜Dnの通電損失が大きく、半導体スイッチQ1〜QnやダイオードD1〜Dnの冷却が必要になるという問題がある。
そこで、出願人は特許文献4に開示された、図12(b)に示すような方式を提案している。これは半導体スイッチQ1〜Qnの代わりに機械式接点スイッチSW1〜SWnを用い、通電損失を低減させて冷却装置を不要とするものである。
FIG. 12A shows a conventional example of a battery charge / discharge switch system. This method is disclosed in, for example, Patent Documents 1 to 3, which is hereinafter referred to as a semiconductor type.
In this method, the semiconductor switches Q1 to Qn are turned on when charging the battery, and the semiconductor switches Q1 to Qn are turned off and discharged via the diodes D1 to Dn when discharging the battery. However, this method has a problem that energization loss of Q1 to Qn during charging and energization loss of D1 to Dn during discharging are large, and cooling of the semiconductor switches Q1 to Qn and the diodes D1 to Dn is necessary.
Therefore, the applicant has proposed a system disclosed in Patent Document 4 as shown in FIG. This uses mechanical contact switches SW1 to SWn instead of the semiconductor switches Q1 to Qn to reduce energization loss and eliminate the need for a cooling device.

特開2005−080318号公報JP-A-2005-080318 特開2005−143201号公報Japanese Patent Laid-Open No. 2005-143201 特開2005−168259号公報JP 2005-168259 A 特開2005−312195号公報JP-A-2005-312195

しかし、上記特許文献4に開示の方式にも、機械式接点スイッチSW1〜SWnのON,OFFによるパルス充電動作、または、充電を完了した個別電池のOFF動作などの頻繁なON,OFF動作に伴う機械式接点スイッチの機械的磨耗や動作音の発生という問題がある。
したがって、この発明の課題は、通電損失を低減して冷却装置の省略または縮小により小型,軽量化および低価格化を図るとともに、機械式接点スイッチの頻繁なON,OFF動作に伴う機械的磨耗や動作音の発生をなくすことにある。
However, the method disclosed in Patent Document 4 also involves frequent ON / OFF operations such as pulse charging operation by turning ON / OFF the mechanical contact switches SW1 to SWn, or OFF operation of individual batteries that have completed charging. There is a problem of mechanical wear of the mechanical contact switch and generation of operation noise.
Accordingly, an object of the present invention is to reduce energization loss to reduce the size, weight, and cost by omitting or reducing the cooling device, and to reduce mechanical loss and mechanical wear caused by frequent ON / OFF operations of mechanical contact switches. It is to eliminate the generation of operating noise.

このような課題を解決するため、請求項1の発明では、電池を充放電する充放電回路において、機械式接点スイッチ,半導体スイッチおよびダイオードが並列接続された充放電スイッチ回路を設け、大電流通電となる放電時および大電流充電動作領域では前記機械式接点スイッチを介して通電させる一方、小電流充電動作領域では前記半導体スイッチによる通電とオン,オフ動作をさせることにより通電損失の低減および機械式接点スイッチオン,オフ時の動作音を抑制することを特徴とする。   In order to solve such a problem, according to the first aspect of the present invention, in the charge / discharge circuit for charging / discharging the battery, a charge / discharge switch circuit in which a mechanical contact switch, a semiconductor switch, and a diode are connected in parallel is provided, In the discharging and large current charging operation region, the energization is performed through the mechanical contact switch, while in the small current charging operation region, the energization by the semiconductor switch and the on / off operation are performed to reduce the energization loss and the mechanical type. It is characterized by suppressing the operation sound when the contact switch is turned on and off.

上記請求項1の発明においては、前記充放電スイッチ回路を、ダイオードブリッジ回路の中点間に半導体スイッチを接続し、前記ダイオードブリッジ回路の両端に機械式接点スイッチを並列接続した充放電スイッチ回路に置き換えることができ(請求項2の発明)、または、この請求項2の発明においては、前記半導体スイッチおよび機械式接点スイッチをオフすることにより、電流の流れる方向の如何に関わらず電池を給電回路母線から切り離すことができる(請求項3の発明)。   In the invention of claim 1, the charge / discharge switch circuit is a charge / discharge switch circuit in which a semiconductor switch is connected between the midpoints of the diode bridge circuit, and mechanical contact switches are connected in parallel to both ends of the diode bridge circuit. (Invention of Claim 2) or, in the invention of Claim 2, by turning off the semiconductor switch and the mechanical contact switch, the battery is fed regardless of the direction of current flow. It can be separated from the bus (invention of claim 3).

請求項1の発明によれば、機械式接点スイッチ,半導体スイッチおよびダイオードが並列接続された充放電スイッチ回路を各電池に直列に接続し、大電流通電となる放電時および大電流充電動作領域では前記機械式接点スイッチで通電させて通電損失を低減し、小電流充電動作領域では前記半導体スイッチによる通電として通電損失を低減し、パルス充電におけるオン,オフ動作や充電完了時のオフ動作に起因する動作音を無くすことができる。
また、充電動作から放電動作へ移行する場合、機械式接点スイッチがオンするまでの動作遅れの期間は、ダイオードを介して放電させることで電源断が発生しないようにすることができる。
According to the first aspect of the present invention, a charge / discharge switch circuit in which a mechanical contact switch, a semiconductor switch, and a diode are connected in parallel is connected in series to each battery. The mechanical contact switch is energized to reduce energization loss, and in the small current charging operation region, the energization loss is reduced as energization by the semiconductor switch, resulting from on / off operation in pulse charging and off operation when charging is completed. The operation sound can be eliminated.
Further, when shifting from the charging operation to the discharging operation, it is possible to prevent a power interruption from occurring by discharging through the diode during the operation delay period until the mechanical contact switch is turned on.

また、請求項2または3の発明によれば、請求項1の発明による利点の他に、前記半導体スイッチおよび機械式接点スイッチをオフすることにより、電流の流れる方向の如何に関わらず電池を給電回路母線から切り離すことができる。その結果、異常電池を個別に給電回路母線から切り離すことができるので、電池からの給電を中断することなく、システム運転を継続させることが可能となる。   According to the invention of claim 2 or 3, in addition to the advantages of the invention of claim 1, by turning off the semiconductor switch and the mechanical contact switch, the battery is fed regardless of the direction of current flow. Can be disconnected from the circuit bus. As a result, the abnormal battery can be individually disconnected from the power supply circuit bus, so that the system operation can be continued without interrupting the power supply from the battery.

図1はこの発明の実施の形態を示す構成図である。
充放電スイッチ回路を図示のように、機械式接点スイッチ(SW),ダイオード(D)および半導体スイッチ(Q)の並列接続構成とした点が特徴である。その基本動作は、放電動作および大充電電流領域の通電を機械式接点スイッチ(SW)で行ない、電池最終充電動作の小充電電流0.05C(1C:1時間率放電)領域では、機械式接点スイッチをOFFして半導体スイッチ(Q)のみで通電するようにすれば、半導体スイッチの通電損失を2〜300W程度(従来は1〜10KW程度)に激減できるので、冷却装置を省略または縮小化できるだけでなく、ON・OFF動作に伴う機械的磨耗や騒音発生を無くすことができる。
FIG. 1 is a block diagram showing an embodiment of the present invention.
As shown in the drawing, the charge / discharge switch circuit is characterized in that a mechanical contact switch (SW), a diode (D), and a semiconductor switch (Q) are connected in parallel. The basic operation is that the discharge operation and energization in the large charging current region are performed by the mechanical contact switch (SW), and the mechanical contact is performed in the small charging current 0.05C (1C: 1 hour rate discharge) region of the battery final charging operation. If the switch is turned off and only the semiconductor switch (Q) is energized, the energization loss of the semiconductor switch can be drastically reduced to about 2 to 300 W (previously about 1 to 10 kW), so the cooling device can be omitted or reduced in size. In addition, mechanical wear and noise generation associated with the ON / OFF operation can be eliminated.

図2は図1の充放電動作タイムチャート、図3は定電流→定電流→定電圧充電の動作説明図、図4は定電流→定電圧→定電流パルスの充電動作説明図で、これらの図を参照して図1の動作を説明する。なお、図5は電池放電時の動作を示し、最大放電電流は1C程度が電池から負荷へ流れることを示しており、図6は電池充電時の動作を示し、充電の最大電流は0.25C程度であり、最終充電領域では0.05C程度の充電電流になることを示している。   2 is a time chart of charging / discharging operation of FIG. 1, FIG. 3 is an explanatory diagram of operation of constant current → constant current → constant voltage charging, and FIG. 4 is an explanatory diagram of charging operation of constant current → constant voltage → constant current pulse. The operation of FIG. 1 will be described with reference to the drawings. 5 shows the operation at the time of battery discharge, and the maximum discharge current shows that about 1 C flows from the battery to the load. FIG. 6 shows the operation at the time of battery charging, and the maximum current for charging is 0.25 C. This indicates that a charging current of about 0.05 C is obtained in the final charging region.

まず、図3のように、定電流→定電流→定電圧充電方式の充電を行なう場合について説明する。
この場合は、図1の充電切替スイッチ29(SWC)を定電流→定電流→定電圧の順にプリセット、各ステップの充電電流IBaΣ,IBbΣ=IBcΣを電流設定器33(VRI)でプリセット、また各電池に直列接続された機械式接点スイッチ3(SW1)〜スイッチ4(SWn)は、電池充放電&状態監視制御装置28の指令でONしておく。さらに、図1の発電機運転スイッチ35(SWG)を「運転」として発電機16(G)を運転し、図2に示すa点から発電機定電流制御により電池充電を開始する。
First, as shown in FIG. 3, a case where charging is performed in a constant current → constant current → constant voltage charging method will be described.
In this case, the charging switch 29 (SWC) in FIG. 1 is preset in the order of constant current → constant current → constant voltage, and charging currents IBaΣ and IBbΣ = IBcΣ in each step are preset by the current setting unit 33 (VRI), and The mechanical contact switches 3 (SW1) to 4 (SWn) connected in series to the battery are turned on by a command from the battery charge / discharge & state monitoring controller 28. Further, the generator 16 (G) is operated by setting the generator operation switch 35 (SWG) in FIG. 1 to “operation”, and battery charging is started by the generator constant current control from the point a shown in FIG.

電池電圧検出器13(VDB)の検出信号は電池充放電&状態監視制御装置(単に、装置とも略称する)28に入力されているので、電池電圧がVBb点に到達したことが判定されると、装置28は充電電流IBbΣとなる電流指令を信号36として発電機制御装置34へ与え、これにより発電機は電流設定値IBbΣの定電流制御を行なう。このとき、機械式接点スイッチ3(SW1)〜スイッチ4(SWn)はONを継続させる。
さらに、充電が進み電池電圧が図3に示すVBc点に到達したことを装置28が判定すると、装置28は半導体スイッチ5(Q1)〜6(Qn)にON指令を与えるとともに(図2のc点参照)、機械式接点スイッチ3(SW1)〜スイッチ4(SWn)にOFF指令を与える一方(図2のc1点参照)、装置28から電池電圧検出値VBcおよび定電圧制御指令を信号36として発電機制御装置34へ与え、定電圧制御された発電機電圧を電池に供給する。
Since the detection signal of the battery voltage detector 13 (VDB) is input to the battery charge / discharge & state monitoring control device (simply abbreviated as device) 28, it is determined that the battery voltage has reached the VBb point. The device 28 gives a current command for the charging current IBbΣ to the generator control device 34 as a signal 36, whereby the generator performs constant current control of the current set value IBbΣ. At this time, the mechanical contact switches 3 (SW1) to 4 (SWn) are kept ON.
Further, when the device 28 determines that charging has progressed and the battery voltage has reached the VBc point shown in FIG. 3, the device 28 gives an ON command to the semiconductor switches 5 (Q1) to 6 (Qn) (c in FIG. 2). Point reference), while giving an OFF command to the mechanical contact switches 3 (SW1) to 4 (SWn) (see point c1 in FIG. 2), the battery voltage detection value VBc and the constant voltage control command from the device 28 as a signal 36 The generator voltage is supplied to the generator control device 34 and the constant voltage controlled generator voltage is supplied to the battery.

すなわち、図2に示すように、機械式接点スイッチ3(SW1)〜スイッチ4(SWn)と半導体スイッチ5(Q1)〜6(Qn)が、c点〜c1点間でオーバラップするように装置28から指令を与えることで、給電回路が断路しないようにするとともに、図3のc点〜f点間を定電圧で充電する。
充電が進行して、各電池の充電電流(IBb1〜IBbn)が予め設定した充電電流に到達した電池から、該当する電池の半導体スイッチをOFFして充電を終了させる。全ての電池が充電を終了するf点(図2,図3参照)では全ての半導体スイッチがOFFとなり、また、機械式接点スイッチ3(SW1)〜スイッチ4(SWn)はc1点で既にOFFされているから、全ての電池は給電回路母線から切り離された状態になる。このとき、負荷への給電は運転中の発電機16(G)から行なわれる。
That is, as shown in FIG. 2, the mechanical contact switches 3 (SW1) to 4 (SWn) and the semiconductor switches 5 (Q1) to 6 (Qn) are overlapped between points c to c1. By giving a command from 28, the power feeding circuit is prevented from being disconnected, and the point c to point f in FIG. 3 are charged with a constant voltage.
From the battery in which charging progresses and the charging current (IBb1 to IBbn) of each battery reaches a preset charging current, the semiconductor switch of the corresponding battery is turned off to end the charging. At the point f (see FIGS. 2 and 3) when all the batteries have finished charging, all the semiconductor switches are turned off, and the mechanical contact switches 3 (SW1) to 4 (SWn) are already turned off at the point c1. Therefore, all the batteries are disconnected from the feeder circuit bus. At this time, power is supplied to the load from the operating generator 16 (G).

上記の状態から発電機16(G)を停止するときは、図1の運転スイッチ35(SWG)を「停止」にすると、発電機制御装置34は発電機スイッチ20(SWGH)をOFFするとともに(図2のg点参照)、発電機停止信号を信号36として装置28に与える。装置28が機械式接点スイッチ3(SW1)〜スイッチ4(SWn)にON指令を与えると(図2のg点参照)、機械式接点スイッチ3〜4のON動作遅れ時間により、g1点でON状態となる。これにより、発電機スイッチ20のOFF(図2のg点)から機械式接点スイッチ3〜4がONするまでの動作遅れ期間は、断路が発生することになる。しかし、機械式接点スイッチ3〜4と並列接続されたダイオード7(D1)〜8(Dn)を介して、電池から負荷へ電力が供給されるので、電源瞬断は発生しない。   When stopping the generator 16 (G) from the above state, if the operation switch 35 (SWG) in FIG. 1 is set to “stop”, the generator control device 34 turns off the generator switch 20 (SWGH) ( 2), a generator stop signal is given to the device 28 as a signal 36. When the device 28 gives an ON command to the mechanical contact switches 3 (SW1) to 4 (SWn) (see the point g in FIG. 2), the mechanical contact switches 3 to 4 are turned on at the point g1 due to the ON operation delay time. It becomes a state. As a result, a disconnection occurs during the operation delay period from when the generator switch 20 is turned off (g point in FIG. 2) to when the mechanical contact switches 3 to 4 are turned on. However, since power is supplied from the battery to the load through the diodes 7 (D1) to 8 (Dn) connected in parallel with the mechanical contact switches 3 to 4, no instantaneous power interruption occurs.

また、発電機スイッチ20のOFF信号とは別に放電動作に移行したときは、ダイオード7(D1)〜8(Dn)を介して放電電流が流れるので、この電流を検出器14(SHB)で検出して装置28に与え、装置28から機械式接点スイッチ3〜4にON指令を与える。つまり、機械式接点スイッチ3〜4のON指令は、上記運転スイッチ35(SWG)による停止信号と検出器14(SHB)による信号との並列(OR)信号として、いずれの信号でも機械式接点スイッチ3〜4をONさせるようにしている。当然、これと並列に接続されている半導体スイッチはOFF状態としておく。   Further, when the discharge operation is shifted separately from the OFF signal of the generator switch 20, the discharge current flows through the diodes 7 (D1) to 8 (Dn), and this current is detected by the detector 14 (SHB). Then, an ON command is given from the device 28 to the mechanical contact switches 3 to 4. In other words, the mechanical contact switches 3 to 4 can be turned ON as a parallel (OR) signal of the stop signal from the operation switch 35 (SWG) and the signal from the detector 14 (SHB). 3-4 are turned on. Naturally, the semiconductor switch connected in parallel with this is set in the OFF state.

次に、図4のような定電流→定電圧→定電流パルス充電を行なう場合は、図2のa点から定電流充電を開始し、電圧検出器13(VDB)で検出される電池電圧が、b点電圧VBbに到達したことを装置28で判定したら、定電流制御からVBbを電圧設定値とする定電圧制御への切替信号を、信号36として装置28から発電機制御装置34に与えるので、発電機は定電圧制御されて発電機電圧を電池に供給する。
充電が進行し、電池電流検出器14による検出信号がIBcΣに到達したことを装置28で判定したら、定電圧制御からIBcを電流設定値とする定電流制御への切替信号を、信号36として装置28から発電機制御装置34に与え、定電流制御された発電機電流を電池に供給する。
Next, when performing constant current → constant voltage → constant current pulse charging as shown in FIG. 4, constant current charging is started from point a in FIG. 2, and the battery voltage detected by the voltage detector 13 (VDB) is When the device 28 determines that the point b voltage VBb has been reached, a switching signal from constant current control to constant voltage control with VBb as the voltage setting value is given as a signal 36 from the device 28 to the generator control device 34. The generator is controlled at a constant voltage to supply the generator voltage to the battery.
When charging progresses and the device 28 determines that the detection signal from the battery current detector 14 has reached IBcΣ, a switching signal from constant voltage control to constant current control with IBc as the current set value is set as a signal 36. The generator current is supplied from 28 to the generator control device 34 and the constant current control is supplied to the battery.

ここで、装置28は機械式接点スイッチ3〜4にはOFF指令、半導体スイッチ5(Q1)〜6(Qn)にはON指令を与える。このとき、図1のパルス充電スイッチ30(SWP)ONが選択された場合は、所定のプログラムにより半導体スイッチ5(Q1)〜6(Qn)を時系列にON−OFFさせて、各電池の電圧が予め設定された充電完了電圧VBfに達した電池から、所属する半導体スイッチを順次OFFして充電を完了させる。全ての電池の充電が完了する図2のf点,図4のf点では、全ての半導体スイッチはOFFとなる。従って、全ての半導体スイッチはOFF、機械式接点スイッチ3(SW1)〜4(SWn)はC1時点で既にOFFで、全ての電池は給電回路母線から切り離されているので、負荷へは発電機16(G)から給電される。   Here, the device 28 gives an OFF command to the mechanical contact switches 3 to 4 and an ON command to the semiconductor switches 5 (Q1) to 6 (Qn). At this time, when the pulse charge switch 30 (SWP) ON in FIG. 1 is selected, the semiconductor switches 5 (Q1) to 6 (Qn) are turned on and off in time series by a predetermined program, and the voltage of each battery From the battery that has reached the preset charge completion voltage VBf, the associated semiconductor switches are sequentially turned off to complete the charge. All the semiconductor switches are turned off at the point f in FIG. 2 and the point f in FIG. Accordingly, all the semiconductor switches are OFF, the mechanical contact switches 3 (SW1) to 4 (SWn) are already OFF at the time C1, and all the batteries are disconnected from the feeder circuit bus. Power is supplied from (G).

ここで、最終充電領域(図2のh点〜l点参照)の途中で、何らかの理由で発電機を停止すべく、図1の運転スイッチ35(SWG)を「停止」操作すると、発電機制御装置34から発電機スイッチ20(SWGH)へOFF指令を与えるとともに(図2のl点)、停止の信号36を装置28へ与えるので、装置28は機械式接点スイッチ3(SW1)〜4(SWn)にON指令を与える(図2のl点)。しかし、機械式接点スイッチ3(SW1)〜4(SWn)は動作遅れにより、図2のl1点でONすることになる。この場合も、上記と同様、並列接続されたダイオード7(D1)〜8(Dn)を介して電池から負荷に電力が供給されるので、電源瞬断は発生しない。当然、並列接続された半導体スイッチはOFFとされている。   Here, when the operation switch 35 (SWG) in FIG. 1 is “stopped” in order to stop the generator for some reason in the middle of the final charging range (see points h to l in FIG. 2), the generator control is performed. Since an OFF command is given from the device 34 to the generator switch 20 (SWGH) (point l in FIG. 2) and a stop signal 36 is given to the device 28, the device 28 is connected to the mechanical contact switches 3 (SW1) to 4 (SWn). ) Is given an ON command (point l in FIG. 2). However, the mechanical contact switches 3 (SW1) to 4 (SWn) are turned on at the point l1 in FIG. 2 due to operation delay. In this case as well, since power is supplied from the battery to the load via the diodes 7 (D1) to 8 (Dn) connected in parallel, no power interruption occurs. Naturally, the semiconductor switches connected in parallel are turned off.

浮動動作(電池の充放電電流を0とする動作)を、図2のn点〜o点に示す。
図1の浮動動作スイッチ31(SWF)を図2のn点でONすると、装置28は機械式接点スイッチ3(SW1)〜4(SWn)にOFF指令を与える一方、発電機電圧VGが電池電圧VBよりやや高めのVG+ΔVGとなるような電圧信号36を発電機制御装置34に与えて、発電機の電圧制御を行なう。すなわち、機械式接点スイッチ3(SW1)〜4(SWn)、および半導体スイッチ5(Q1)〜6(Qn)はOFFであり、発電機電圧もダイオード7(D1)〜8(Dn)がブロックするので、各電池は浮動状態となる。
The floating operation (operation in which the charging / discharging current of the battery is 0) is shown at points n to o in FIG.
When the floating operation switch 31 (SWF) in FIG. 1 is turned on at n point in FIG. 2, the device 28 gives an OFF command to the mechanical contact switches 3 (SW1) to 4 (SWn), while the generator voltage VG is the battery voltage. A voltage signal 36 such that VG + ΔVG, which is slightly higher than VB, is given to the generator control device 34 to control the generator voltage. That is, the mechanical contact switches 3 (SW1) to 4 (SWn) and the semiconductor switches 5 (Q1) to 6 (Qn) are OFF, and the generator voltage is also blocked by the diodes 7 (D1) to 8 (Dn). Therefore, each battery is in a floating state.

上記浮動動作状態から、電池と発電機の並列運転で負荷へ電力供給をするような負荷急増が発生した場合は(図2のo点参照)、その直前では機械式接点スイッチ3(SW1)〜4(SWn)および半導体スイッチ5(Q1)〜6(Qn)はOFFであるから、電池はダイオード7(D1)〜8(Dn)を介する放電動作となり、図1に点線で示す−IBΣが負荷へ供給され、発電機16(G)からは図1に示すIGが負荷へ供給される。つまり、負荷へはIΣ2=IG+(−IBΣ)が供給されることになる。このとき、電池はダイオード7(D1)〜8(Dn)を通して放電へ移行するので、電池電流検出器14(SHB)の検出信号を装置28が判定して、機械式接点スイッチ3(SW1)〜4(SWn)にON指令を与える(図2のo点参照)。この場合も、機械式接点スイッチ3(SW1)〜4(SWn)の動作遅れにより図2のp点でONするので、o点〜p点の期間は図示のように、電池はダイオード7(D1)〜8(Dn)を介する放電動作となる。   From the above floating operation state, when there is a sudden increase in load that supplies power to the load in parallel operation of the battery and the generator (see point o in FIG. 2), the mechanical contact switch 3 (SW1) ˜ 4 (SWn) and semiconductor switches 5 (Q1) to 6 (Qn) are OFF, the battery is discharged through the diodes 7 (D1) to 8 (Dn), and −IBΣ indicated by a dotted line in FIG. 1 is supplied to the load from the generator 16 (G). That is, IΣ2 = IG + (− IBΣ) is supplied to the load. At this time, since the battery shifts to discharge through the diodes 7 (D1) to 8 (Dn), the device 28 determines the detection signal of the battery current detector 14 (SHB), and the mechanical contact switch 3 (SW1) to 4 (SWn) is given an ON command (see point o in FIG. 2). Also in this case, the mechanical contact switches 3 (SW1) to 4 (SWn) are turned on at the point p in FIG. 2 due to the operation delay of the mechanical contact switches 3 (SW1) to 4 (SWn). ) To 8 (Dn).

なお、蓄電池を一次電源とする大容量システムとしては、従来から鉛蓄電池,アルカリ蓄電池が多用され、大容量単電池を200〜300セル直列接続して電池群を成し、この電池群の2〜4群を並列接続したシステムが一般的に用いられてきたが、近年、蓄電池を一次電源とする大容量システムに、高エネルギー密度を有するリチウムイオン電池を適用するための検討が進められている。しかしながら、大容量システムへの適用を目的とする大容量リチウムイオン電池は研究・開発段階であり、将来動向は不明であるが、現段階では中小容量単電池を多数直並列に接続して実用化されるものと考えられる。   In addition, as a large-capacity system using a storage battery as a primary power source, a lead storage battery and an alkaline storage battery have been frequently used conventionally, and 200 to 300 cells of large-capacity single cells are connected in series to form a battery group. In general, a system in which four groups are connected in parallel has been used, but in recent years, studies for applying a lithium ion battery having a high energy density to a large capacity system using a storage battery as a primary power source have been advanced. However, large-capacity lithium-ion batteries intended for use in large-capacity systems are in the research and development stage, and the future trend is unknown, but at this stage, many small and medium-capacity cells are connected in series and in parallel. It is considered to be done.

上記のような大容量システムを構成する各単電池には特性バラツキが存在すると考えられ、また、この単電池を多数直並列接続して複数の電池群が並列接続された電池システムをなしたとき、当然、電池群電圧にはバラツキが存在するものと考えられ、さらには温度変化によっても特性が変化する。このような特性バラツキを持つ複数の電池群を並列接続して一括充放電する場合には、電池群相互間には大きな充放電電流差が生じることが予想される。   It is considered that there is a characteristic variation in each single cell constituting the large capacity system as described above, and when a battery system in which a plurality of battery groups are connected in parallel by connecting a large number of the single cells in series and parallel is formed. Naturally, it is considered that the battery group voltage varies, and the characteristics change due to temperature changes. When a plurality of battery groups having such characteristic variations are connected in parallel and collectively charged / discharged, it is expected that a large charge / discharge current difference occurs between the battery groups.

また、蓄電池のうち特にリチウムイオン電池は、エネルギー密度が大きい利点を有する反面、「過充電による発火,爆発の危険性」が指摘され、加えて「過放電による電池特性の劣化が甚大であること」などが報告されていることから、充放電に際して細心の注意と厳密な監視・制御が必要になるとともに、複数の並列接続された電池群を一括充放電する場合には、特性バラツキに起因する劣化やダメージに対する適切な保護が要求される。
このような、複数の並列接続された電池群を一括充放電する場合における特性バラツキに起因する劣化やダメージに対する保護対策として、充放電動作における個別電池群のバラツキによって充放電電流が許容値を超えたときには、該当する異常電池群の充電または放電を停止して電池群の保護を行なうことが考えられる。
In addition, lithium-ion batteries, among other storage batteries, have the advantage of high energy density. On the other hand, “risk of ignition and explosion due to overcharge” has been pointed out, and in addition, “deterioration of battery characteristics due to overdischarge is significant. , Etc. are reported, careful attention and strict monitoring and control are required for charging and discharging, and when charging and discharging a plurality of battery groups connected in parallel, due to characteristic variations. Appropriate protection against deterioration and damage is required.
As a protective measure against deterioration and damage due to characteristic variations when charging and discharging a plurality of battery groups connected in parallel, the charge / discharge current exceeds the allowable value due to variations in individual battery groups during charge / discharge operations. In such a case, it is conceivable that the charging or discharging of the corresponding abnormal battery group is stopped to protect the battery group.

上述の図1の構成の電池システムにおいて、各電池群の特性バラツキに対応する保護対策を適用した例について説明する。図1の電池システムは複数の電池1(B1)〜2(Bn)がそれぞれ充放電スイッチ回路を介して給電回路母線に並列接続されてなる構成である。なお、各電池1(B1)〜2(Bn)は、実際には、それぞれが単電池を多数セル直列接続してなる電池群となっている。このような図1の電池システムにおいて、充電動作時、図2のa点〜b点〜c点の大電流,中電流充電領域で、図3のように、並列接続された複数の電池1(B1)〜2(Bn)に対して定電流モードの一括連続充電を行なう場合、各電池の電流検出器9(SH1)〜10(SHn)で検出した充電電流IB1〜IBnが、充電電流の許容バラツキ範囲から外れたことを装置28で判定したら、その異常電池に対応する機械式接点スイッチ3(SW1)〜4(SWn)をOFFして異常電池を切り離し、発電機制御装置34へ与える電流指令値、すなわち全充電電流指令値を切り離された電池数に該当する分だけ低下させて健全電池の充電電流が増加しないようにするとともに警報を発する。   In the battery system having the configuration shown in FIG. 1 described above, an example in which a protective measure corresponding to the characteristic variation of each battery group is applied will be described. The battery system of FIG. 1 has a configuration in which a plurality of batteries 1 (B1) to 2 (Bn) are connected in parallel to a power supply circuit bus via charge / discharge switch circuits. Each of the batteries 1 (B1) to 2 (Bn) is actually a battery group in which a large number of single cells are connected in series. In such a battery system of FIG. 1, during the charging operation, a plurality of batteries 1 connected in parallel as shown in FIG. 3 in the large current and medium current charging regions of points a to b to c in FIG. 2 ( B1) to 2 (Bn), when performing charging in a continuous current mode in constant current mode, the charging currents IB1 to IBn detected by the current detectors 9 (SH1) to 10 (SHn) of each battery are the allowable charging currents. When the device 28 determines that the variation range has been exceeded, the mechanical contact switches 3 (SW1) to 4 (SWn) corresponding to the abnormal battery are turned off to disconnect the abnormal battery, and a current command to be given to the generator control device 34. The value, that is, the total charging current command value is decreased by an amount corresponding to the number of disconnected batteries so that the charging current of the healthy battery does not increase and an alarm is issued.

充電電流の許容バラツキ範囲は、全充電電流IBΣをそのときON状態の機械式接点スイッチにより接続されている電池の数mで除して求めた平均電流値Ime(=IBΣ/m)の例えば±10%とする。なお、上記の平均値Imeの括弧内における分母の電池数mは、電池1(B1)〜2(Bn)が全てON状態の機械式接点スイッチにより接続されている状態ではm=nであり、異常電池に対する切離し制御が行なわれる度に、電池数mは減少していく。また、特性バラツキ判別に用いる全充電電流IBΣの電流値としては、上記の全充電電流指令値、または、電流検出器14(SHB)で検出した全充電電流検出値のいずれを用いてもよいが、後述の定電圧モードでの一括連続充電の場合と統一するという点では、全充電電流検出値の方が好適である。   The allowable variation range of the charging current is, for example, an average current value Ime (= IBΣ / m) obtained by dividing the total charging current IBΣ by the number m of the batteries connected by the mechanical contact switch in the ON state at that time, for example ± 10%. The number m of denominator batteries in the parentheses of the above average value Ime is m = n when the batteries 1 (B1) to 2 (Bn) are all connected by the mechanical contact switches in the ON state. Each time the disconnection control for the abnormal battery is performed, the number m of batteries decreases. Further, as the current value of the total charging current IBΣ used for characteristic variation determination, either the above-mentioned total charging current command value or the total charging current detection value detected by the current detector 14 (SHB) may be used. The total charge current detection value is more preferable in that it is unified with the case of batch continuous charging in the constant voltage mode described later.

また、充電動作時、図2のb点〜c点の中電流充電領域で、並列接続された複数の電池1(B1)〜2(Bn)に対して、図3のような定電流モードでの一括連続充電の代わりに、図4のような定電圧モードでの一括連続充電を行なう場合もある。この場合も、各電池の電流検出器9(SH1)〜10(SHn)で検出した充電電流IB1〜IBnが、充電電流の許容バラツキ範囲から外れたことを装置28で判定したら、その異常電池に対応する機械式接点スイッチ3(SW1)〜4(SWn)をOFFして異常電池を切り離すとともに、警報を発する。   Further, during the charging operation, the batteries 1 (B1) to 2 (Bn) connected in parallel in the medium current charging region at points b to c in FIG. Instead of the collective continuous charge, collective continuous charge in the constant voltage mode as shown in FIG. 4 may be performed. Also in this case, if the device 28 determines that the charging currents IB1 to IBn detected by the current detectors 9 (SH1) to 10 (SHn) of each battery are out of the allowable variation range of the charging current, the abnormal battery is identified. Corresponding mechanical contact switches 3 (SW1) to 4 (SWn) are turned off to disconnect the abnormal battery and issue an alarm.

充電電流の許容バラツキ範囲は、電流検出器14(SHB)で検出した全充電電流IBΣをそのときON状態の機械式接点スイッチにより接続されている電池の数mで除して求めた平均電流値Ime(IBΣ/m)の例えば±10%とする。なお、上記の平均値Imeの括弧内における分母の電池数mは、電池1(B1)〜2(Bn)が全てON状態の機械式接点スイッチにより接続されている状態ではm=nであり、異常電池に対応する切離し制御が行なわれる度に、電池数mは減少していく。また、定電圧モードでの一括連続充電の場合は、定電流モードでの一括連続充電におけるような、発電機制御装置34へ与える電流指令値を切り離された電池数に該当する分だけ低下させる制御は不要である。   The allowable variation range of the charging current is the average current value obtained by dividing the total charging current IBΣ detected by the current detector 14 (SHB) by the number m of batteries connected by the mechanical contact switch in the ON state at that time. For example, ± 10% of Ime (IBΣ / m). The number m of denominator batteries in the parentheses of the above average value Ime is m = n when the batteries 1 (B1) to 2 (Bn) are all connected by the mechanical contact switches in the ON state. Each time the disconnection control corresponding to the abnormal battery is performed, the number of batteries m decreases. In the case of batch continuous charging in the constant voltage mode, control for reducing the current command value to be given to the generator controller 34 corresponding to the number of disconnected batteries, as in batch continuous charging in the constant current mode. Is unnecessary.

また、最終充電領域で、図3のように、並列接続された複数の電池1(B1)〜2(Bn)に対して定電圧モードでの一括連続充電を行なう場合、各電池の電流検出器9(SH1)〜10(SHn)で検出した充電電流IB1〜IBnが、充電電流の許容バラツキ範囲から外れたことを装置28で判定したら、その異常電池に対応する半導体スイッチ5(Q1)〜6(Qn)をOFFして異常電池を切り離すとともに、警報を発する。   In the final charging region, when performing batch continuous charging in the constant voltage mode for a plurality of batteries 1 (B1) to 2 (Bn) connected in parallel as shown in FIG. If the device 28 determines that the charging currents IB1 to IBn detected at 9 (SH1) to 10 (SHn) are out of the allowable variation range of the charging current, the semiconductor switches 5 (Q1) to 6 corresponding to the abnormal battery Turn off (Qn) to disconnect the abnormal battery and issue an alarm.

充電電流の許容バラツキ範囲は、電流検出器14(SHB)で検出した全充電電流IBΣをそのときON状態の半導体スイッチにより接続されている電池の数mで除して求めた平均電流値Ime(=IBΣ/m)の例えば±10%とする。なお、上記の平均値Imeの括弧内の式における分母の電池数mは、電池1(B1)〜2(Bn)が全てON状態の半導体スイッチにより接続されている状態ではm=nであり、充電電流が予め設定した充電完了レベルの電流値IBdに到達した電池に対する半導体スイッチOFFによる充電終了制御、および、上記のような異常電池に対応する切離し制御が行なわれる度に、電池数mは減少していく。また、最終充電領域においても、定電圧モードでの一括連続充電の場合は、定電流モードでの一括連続充電におけるような、発電機制御装置34へ与える電流指令値を切り離された電池数に相当する分だけ低下させる制御は不要である。   The allowable variation range of the charging current is determined by dividing the total charging current IBΣ detected by the current detector 14 (SHB) by the number m of the batteries connected by the semiconductor switch in the ON state at that time. = IBΣ / m), for example, ± 10%. The number of batteries m in the denominator in the above parentheses of the average value Ime is m = n when the batteries 1 (B1) to 2 (Bn) are all connected by the semiconductor switch in the ON state. The number m of batteries decreases each time the charge termination control for the battery whose charge current has reached the preset charge completion level current value IBd by the semiconductor switch OFF and the disconnection control corresponding to the abnormal battery as described above are performed. I will do it. Also in the final charge region, in the case of batch continuous charge in the constant voltage mode, the current command value to be given to the generator controller 34 is equivalent to the number of disconnected batteries as in the batch continuous charge in the constant current mode. Therefore, it is not necessary to perform control for lowering the amount.

また、最終充電領域で、図4のように、並列接続された複数の電池1(B1)〜2(Bn)に対して、定電流パルス充電、すなわち定電流モードでのパルス充電を行なう場合、各電池の電圧検出器11(VD1)〜12(VDn)で検出した電池電圧VB1〜VBnが、充電電圧の許容バラツキ範囲から外れたことを装置28で判定したら、その異常電池に対応する半導体スイッチ5(Q1)〜6(Qn)をOFFするとともにパルス充電の対象からその異常電池を外して充電を停止させ、さらに警報を発する。   Further, in the final charge region, when performing constant current pulse charging, that is, pulse charging in the constant current mode, for a plurality of batteries 1 (B1) to 2 (Bn) connected in parallel as shown in FIG. If the device 28 determines that the battery voltages VB1 to VBn detected by the voltage detectors 11 (VD1) to 12 (VDn) of each battery are out of the allowable variation range of the charging voltage, the semiconductor switch corresponding to the abnormal battery 5 (Q1) to 6 (Qn) are turned OFF, the abnormal battery is removed from the target of pulse charging, charging is stopped, and an alarm is issued.

充電電圧の許容バラツキ範囲は、パルス充電制御の直前の1周期における各電池の電池電圧検出値VB1〜VBnを記憶しておいて求めた平均値Vme(=(VB1+…+VBn)/m)の例えば±10%とする。ここで、特性バラツキ判別に用いる電池電圧検出値VB1〜VBnとしては、該当する電池に対応する半導体スイッチがONして充電しているときに検出した電池電圧値、すなわち充電時電池電圧を用いてもよく、また、該当する電池に対応する半導体スイッチがOFFしているときに検出した電池電圧値、すなわち開放時電池電圧を用いてもよいが、電池システムに組み込まれた状態での各電池の実効的な特性バラツキを判別するという点では、前者の充電時電池電圧を用いる方式が、後者の開放時電池電圧を用いる方式よりも好適である。   The allowable variation range of the charging voltage is, for example, an average value Vme (= (VB1 +... + VBn) / m) obtained by storing the battery voltage detection values VB1 to VBn of each battery in one cycle immediately before the pulse charging control. ± 10%. Here, as the battery voltage detection values VB1 to VBn used for characteristic variation determination, the battery voltage value detected when the semiconductor switch corresponding to the corresponding battery is turned on and charged, that is, the battery voltage during charging is used. Alternatively, the battery voltage value detected when the semiconductor switch corresponding to the corresponding battery is OFF, that is, the battery voltage at the time of opening may be used, but each battery in the state where it is incorporated in the battery system may be used. In terms of determining an effective characteristic variation, the former method using the battery voltage at the time of charging is more preferable than the latter method using the battery voltage at the time of opening.

なお、上記の平均値Vmeの括弧内の式における分母の電池数mは、電池1(B1)〜2(Bn)が全てパルス充電の対象となっている状態ではm=nであり、電池電圧が予め設定された充電完了電圧VBfに到達した電池に対する充電終了制御、および、上述のような異常電池に対する切離し制御が行なわれる度に、電池数mは減少していく。定電流モードでのパルス充電における充電電流設定値IBcはいずれか1つの電池への充電電流として設定された電流値であり、このような充電電流設定値IBcに対応して発電機制御装置34への電流指令値が与えられているため、定電流モードでの一括連続充電におけるような、発電機制御装置34へ与える電流指令値を切り離された電池数に該当する分だけ低下させる制御は不要である。   The number of batteries m of the denominator in the above parentheses of the average value Vme is m = n when the batteries 1 (B1) to 2 (Bn) are all subjected to pulse charging, and the battery voltage The number of batteries m decreases each time the charging end control for the battery that has reached the preset charging completion voltage VBf and the disconnection control for the abnormal battery as described above are performed. The charging current set value IBc in the pulse charging in the constant current mode is a current value set as a charging current to any one of the batteries, and the generator control device 34 corresponds to such a charging current set value IBc. Therefore, there is no need to reduce the current command value applied to the generator controller 34 by the amount corresponding to the number of disconnected batteries, as in the batch continuous charging in the constant current mode. is there.

また、最終充電領域では、並列接続された複数の電池1(B1)〜2(Bn)に対して、図4のような定電流パルス充電の代わりに、図7のような定電圧パルス充電を行なう場合もある。図7は、定電流→定電流→定電圧パルスの充電動作説明図である。この充電方式では、a点〜b点〜c点の大電流,中電流充電領域では定電流モードでの一括連続充電を行なうとともに、c点〜f点の最終充電領域では定電圧パルス充電、すなわち定電圧モードでのパルス充電を行なう。   Further, in the final charge region, constant voltage pulse charging as shown in FIG. 7 is performed instead of constant current pulse charging as shown in FIG. 4 for a plurality of batteries 1 (B1) to 2 (Bn) connected in parallel. Sometimes it is done. FIG. 7 is an explanatory diagram of charging operation of constant current → constant current → constant voltage pulse. In this charging method, batch continuous charging in the constant current mode is performed in the large current and medium current charging regions from point a to point b to point c, and constant voltage pulse charging is performed in the final charging region from point c to point f. Performs pulse charging in constant voltage mode.

つまり、図7に示されているように、a点から、発電機制御装置34へ与える電流指令値である全充電電流指令値をIBaΣとした定電流モードでの一括連続充電を開始し、電圧検出器13(VDB)で検出される電池電圧が電圧VBbに到達したことを装置28で判定した時点(b点)で、全充電電流指令値をIBbΣに変更してさらに定電流モードでの一括連続充電を行ない、電圧検出器13(VDB)で検出される電池電圧が電圧VBcに到達したことを装置28で判定した時点(c点)で、定電流制御からVBcを電圧設定値とする定電圧制御への切替信号を、信号36として装置28から発電機制御装置34へ与えて、発電機が定電圧制御されるようにするとともに、パルス充電制御を開始する。   That is, as shown in FIG. 7, from the point a, the batch continuous charging in the constant current mode is started with the total charging current command value that is the current command value to be given to the generator control device 34 being IBaΣ, and the voltage When the device 28 determines that the battery voltage detected by the detector 13 (VDB) has reached the voltage VBb (point b), the total charge current command value is changed to IBbΣ, and further in the constant current mode. When constant charge is performed and the device 28 determines that the battery voltage detected by the voltage detector 13 (VDB) has reached the voltage VBc (point c), the constant current control sets VBc as a voltage set value. A switching signal for voltage control is given as a signal 36 from the device 28 to the generator control device 34 so that the generator is controlled at a constant voltage, and pulse charge control is started.

パルス充電制御として、装置28は機械式接点スイッチ3(Sw1)〜4(SWn)にはOFF指令を与えた状態で、所定のプログラムにより半導体スイッチ5(Q1)〜6(Qn)を時系列にON−OFFさせる。特性バラツキを持つ各電池1(B1)〜2(Bn)の充電電流は、それぞれ図7に示されるように時間経過とともに減少する。充電電流が予め設定した充電完了レベルの電流IBcに到達した電池から順次、パルス充電の対象から切り離して充電を終了させていき、f点で全ての電池の充電が完了する。   As pulse charge control, the device 28 sets the semiconductor switches 5 (Q1) to 6 (Qn) in time series according to a predetermined program in a state where an OFF command is given to the mechanical contact switches 3 (Sw1) to 4 (SWn). Turn on and off. The charging current of each of the batteries 1 (B1) to 2 (Bn) having characteristic variations decreases with time as shown in FIG. The batteries that have reached the current IBc at the charging completion level set in advance are sequentially disconnected from the target of pulse charging to complete the charging, and charging of all the batteries is completed at point f.

このような最終充電領域での定電圧パルス充電において、特性バラツキ判別による電池保護制御は次のように行なう。すなわち、各電池の電流検出器9(SH1)〜10(SHn)で検出した充電電流IB1〜IBnが、充電電流の許容バラツキ範囲から外れたことを装置28で判定したら、その異常電池に対応する半導体スイッチ5(Q1)〜6(Qn)をOFFするとともに、パルス充電の対象からその異常電池を外して充電を停止させ、さらに警報を発する。   In such constant voltage pulse charging in the final charging region, battery protection control based on characteristic variation determination is performed as follows. That is, if the device 28 determines that the charging currents IB1 to IBn detected by the current detectors 9 (SH1) to 10 (SHn) of each battery are out of the allowable variation range of the charging current, the battery corresponds to the abnormal battery. The semiconductor switches 5 (Q1) to 6 (Qn) are turned off, the abnormal battery is removed from the pulse charging target, charging is stopped, and an alarm is issued.

充電電流の許容バラツキ範囲は、パルス充電制御の直前の1周期における各電池の充電電流検出値IB1〜IBnを記憶しておいて求めた平均値Ime(=(IB1+…+IBn)/m)の例えば±10%とする。なお、上記の平均値Imeの括弧内の式における分母の電池数mは、電池1(B1)〜2(Bn)が全てパルス充電の対象となっている状態ではm=nであり、充電電流が予め設定した充電完了レベルの電流値IBcに到達した電池に対する充電終了制御、および、上記のような異常電池に対する切離し制御が行なわれる度に、電池数mは減少していく。また、定電圧モードでのパルス充電の場合は、定電流モードでの一括連続充電におけるような、発電機制御装置34へ与える電流指令値を切り離された電池数に相当する分だけ低下させる制御は不要である。   The allowable variation range of the charging current is, for example, an average value Ime (= (IB1 +... + IBn) / m) obtained by storing the charging current detection values IB1 to IBn of each battery in one cycle immediately before the pulse charging control. ± 10%. Note that the number m of denominators in the above parentheses of the average value Ime is m = n when the batteries 1 (B1) to 2 (Bn) are all subjected to pulse charging, and the charging current The number of batteries m decreases each time the charge termination control is performed on the battery that has reached the current value IBc of the preset charge completion level and the disconnection control on the abnormal battery as described above. Further, in the case of pulse charging in the constant voltage mode, control for reducing the current command value to be given to the generator control device 34 by an amount corresponding to the number of disconnected batteries, as in batch continuous charging in the constant current mode, It is unnecessary.

また、放電動作時、各電池の電流検出器9(SH1)〜10(SHn)で検出した放電電流−IB1〜−IBnが、放電電流の許容バラツキ範囲から外れたことを装置28で判定したら、装置28は警報信号を発して外部スイッチをOFFするなどの処理・処置を喚起する。   Also, when the device 28 determines that the discharge currents -IB1 to -IBn detected by the current detectors 9 (SH1) to 10 (SHn) of each battery are out of the allowable variation range of the discharge current during the discharge operation, The device 28 issues a warning signal and prompts processing / treatment such as turning off the external switch.

放電電流の許容バラツキ範囲は、電流検出器14(SHB)で検出した全放電電流検出値−IBΣを並列接続されている電池の数mで除して求めた平均値Ime(=−IBΣ/m)の例えば±10%とする。ここで、特に電池放電のみで負荷へ電力を供給する場合、電池から負荷への電力供給が不用意に停止しないようにするため、ある電池の放電電流バラツキ異常が発生しても、先ずは警報出力だけさせておいて、その上で、電池,発電機および負荷を含むシステム全体の状況を十分に把握した上での判断により、異常電池の切離しを手動操作で行なうことができるようにしておくことが好ましいが、放電動作時の放電は、ダイオード7(D1)〜8(Dn)を介して行なわれるため、充放電スイッチ回路自体では放電時の断路はできない。   The allowable variation range of the discharge current is an average value Ime (= −IBΣ / m) obtained by dividing the total discharge current detection value −IBΣ detected by the current detector 14 (SHB) by the number m of batteries connected in parallel. ), For example, ± 10%. Here, in particular, when power is supplied to the load only by battery discharge, in order to prevent the power supply from the battery to the load from being inadvertently stopped, even if a discharge current variation abnormality of a certain battery occurs, an alarm is first given. With only the output, the abnormal battery can be disconnected manually by making a judgment after fully grasping the situation of the entire system including the battery, generator and load. However, since the discharge during the discharge operation is performed via the diodes 7 (D1) to 8 (Dn), the charge / discharge switch circuit itself cannot disconnect the discharge.

このため、電池システムの運用方法として放電時における異常電池の切離しを行なう場合には、電池1(B1)〜2(Bn)に対応する各充放電スイッチ回路の外部に各充放電スイッチ回路に対してそれぞれ直列に、図1では図示されない図8(a)のような外部スイッチSWD1〜SWDnを設けた構成とすれば、この外部スイッチSWD1〜SWDnを手動によりOFFすることにより異常電池を切り離すことができる。
また、このように放電時における異常電池の切離しを行なう場合には、放電電流の許容バラツキ範囲は、電流検出器14(SHB)で検出した全放電電流検出値−IBΣをそのときON状態の外部スイッチにより接続されている電池の数mで除して求めた平均値Ime(=−IBΣ/m)の例えば±10%とする。平均値Imeの括弧内の式における分母の電池数mは、電池1(B1)〜2(Bn)がすべてON状態の外部スイッチにより接続されている状態ではm=nであり、異常電池に対する切離し操作が行なわれる度に、電池数mは減少していく。
For this reason, when the abnormal battery is disconnected at the time of discharging as an operation method of the battery system, the charge / discharge switch circuit is connected to the outside of each charge / discharge switch circuit corresponding to the batteries 1 (B1) to 2 (Bn). If the external switches SWD1 to SWDn as shown in FIG. 8A (not shown in FIG. 1) are provided in series, the abnormal battery can be disconnected by manually turning off the external switches SWD1 to SWDn. it can.
Further, when the abnormal battery is disconnected during the discharge as described above, the allowable variation range of the discharge current is the total discharge current detection value -IBΣ detected by the current detector 14 (SHB). For example, ± 10% of the average value Ime (= −IBΣ / m) obtained by dividing by the number m of the batteries connected by the switch. The number of batteries m in the denominator in the parenthesis of the average value Ime is m = n in the state where the batteries 1 (B1) to 2 (Bn) are all connected by the external switch in the ON state, and is disconnected from the abnormal battery. Each time the operation is performed, the number of batteries m decreases.

上記の放電動作時の電池切離し用の外部スイッチSWD1〜SWDnとしては、放電動作時の電流は大きいことを考慮すると、通電損失の小さい機械式接点スイッチが好適であるが、半導体スイッチも適用可能である。外部スイッチSWD1〜SWDnに適用する機械式接点スイッチは、常時はONとしておき、異常電池の切離しが必要なときのみOFFとするものであり、例えば負荷開閉器等の開閉器でもよく、遮断器でもよいが、異常電池に対する開路のため多少の過電流遮断が必要になることを想定して、負荷断路器相当の機能を有するスイッチとすることが好ましい。   As the external switches SWD1 to SWDn for disconnecting the battery at the time of the discharging operation, a mechanical contact switch having a small current loss is suitable in consideration of a large current at the time of the discharging operation, but a semiconductor switch is also applicable. is there. The mechanical contact switch applied to the external switches SWD1 to SWDn is always turned on and turned off only when the abnormal battery needs to be disconnected. For example, a switch such as a load switch or a circuit breaker may be used. Although it is good, it is preferable to use a switch having a function equivalent to a load disconnector on the assumption that some overcurrent interruption is required for opening an abnormal battery.

そして、図8(a)のように、図1に示した電池B1に対応する、機械式接点スイッチSW1、半導体スイッチQ1および逆並列ダイオードD1からなる充放電スイッチ回路に、機械式接点スイッチからなる外部スイッチSWD1を直列接続し、電池B2〜Bnについても電池B1と同様に、機械式接点スイッチからなる外部スイッチSWD2〜SWDnを設ける。なお、この機械式接点スイッチを、電動駆動式または電磁駆動式であって、図8(a)に示すように外部信号SWD1dv〜SWDndvによりON−OFFさせることができる可制御スイッチとし、外部スイッチに対する手元での手動操作に加えて、集中監視制御装置からシステム全体の運転状況を見ながらの遠方手動操作もできるようにしてもよい。   As shown in FIG. 8A, the charge / discharge switch circuit comprising the mechanical contact switch SW1, the semiconductor switch Q1, and the antiparallel diode D1 corresponding to the battery B1 shown in FIG. External switches SWD1 are connected in series, and external switches SWD2 to SWDn including mechanical contact switches are provided for the batteries B2 to Bn as well as the battery B1. This mechanical contact switch is an electric drive type or electromagnetic drive type, and is a controllable switch that can be turned on and off by external signals SWD1dv to SWDndv as shown in FIG. In addition to manual operation at hand, remote manual operation while viewing the operating status of the entire system from the centralized monitoring control device may be possible.

次に、放電動作時の電池切離し用の外部スイッチSWD1〜SWDnを半導体スイッチで構成する場合の一例を図8(b)に示す。図8(b)の回路は、図1に示した電池B1に対応する、機械式接点スイッチSW1、半導体スイッチQ1および逆並列ダイオードD1からなる充放電スイッチ回路と外部スイッチSWD1との直列接続回路部において、外部スイッチSWD1を、半導体スイッチQ1および並列ダイオードD1に対してそれぞれ逆極性の半導体スイッチQR1および並列ダイオードDR1を並列接続してなる放電用半導体スイッチ回路で構成したものであり、装置28からのOFF指令QR1dvにより半導体スイッチQR1がOFFして、対応する電池B1からの放電を停止させるようになっている。そして、電池B2〜Bnについても電池B1と同様に、放電用半導体スイッチ回路からなる外部スイッチSWD2〜SWDnを設ける。   Next, FIG. 8B shows an example in which the external switches SWD1 to SWDn for battery separation during the discharging operation are constituted by semiconductor switches. The circuit of FIG. 8 (b) is a series connection circuit portion of a charge / discharge switch circuit comprising a mechanical contact switch SW1, a semiconductor switch Q1, and an antiparallel diode D1 and an external switch SWD1 corresponding to the battery B1 shown in FIG. The external switch SWD1 is constituted by a semiconductor switch circuit for discharge formed by connecting a semiconductor switch QR1 and a parallel diode DR1 having opposite polarities in parallel to the semiconductor switch Q1 and the parallel diode D1, respectively. The semiconductor switch QR1 is turned OFF by the OFF command QR1dv, and the discharge from the corresponding battery B1 is stopped. Then, similarly to the battery B1, the batteries B2 to Bn are provided with external switches SWD2 to SWDn made of a discharging semiconductor switch circuit.

また、電池,発電機および負荷を含むシステムの構成によっては、ある電池の放電電流バラツキ異常が発生した場合に、可制御スイッチ、すなわち図8(a)に示したような遠方操作機能を有する放電用機械式接点スイッチ、あるいは図8(b)に示したような放電用半導体スイッチ回路を用いて当該異常電池を自動的に切り離すようにしてもよく、さらには切離し制御回路を手動・自動切換え式としておき、システムの運転状況に応じて切離し制御モードを選択できるようにしておくとよい。   Further, depending on the configuration of the system including the battery, the generator, and the load, when a discharge current variation abnormality occurs in a certain battery, a controllable switch, that is, a discharge having a remote operation function as shown in FIG. The abnormal battery may be automatically disconnected using a mechanical contact switch for electric discharge or a semiconductor switch circuit for discharging as shown in FIG. 8B, and the disconnect control circuit is manually / automatically switched. It is preferable that the separation control mode can be selected in accordance with the operation status of the system.

また、上記の外部スイッチSWD1〜SWDnは並列接続された電池毎に設ける必要があるので、電池システムの設置スペース上の制約などにより、外部スイッチSWD1〜SWDnを設けることが困難な場合も考えられる。このような場合、外部スイッチSWD1〜SWDnを設ける代わりに、図1におけるスイッチ15(SWB)を、十分な遮断能力のある気中遮断器などで構成しておくとともに、各電池を並列接続するための電池並列接続用ブスバーを、マニュアルでの電池切離し作業が容易な簡易断路器に相当する接続機構としておき、ある電池の放電電流バラツキ異常が発生し、警報が発せられたのに対応して、スイッチ15(SWB)をOFFし、その後、電池並列接続用ブスバーでのマニュアル作業により、当該異常電池の接続を切り離す、という運用で対応することもできる。   Moreover, since it is necessary to provide said external switch SWD1-SWDn for every battery connected in parallel, the case where it is difficult to provide external switch SWD1-SWDn by the restrictions on the installation space of a battery system, etc. can be considered. In such a case, instead of providing the external switches SWD1 to SWDn, the switch 15 (SWB) in FIG. 1 is configured by an air circuit breaker having a sufficient shut-off capability, and the batteries are connected in parallel. The battery parallel connection bus bar is used as a connection mechanism that is equivalent to a simple disconnector that facilitates manual battery disconnection work.In response to an abnormal discharge current variation of a battery, an alarm was issued. The switch 15 (SWB) can be turned off, and then the abnormal battery can be disconnected by manual operation using the battery parallel connection bus bar.

なお、ある電池を構成する直列セルにおいて内部短絡が発生したことを想定すると、このような状態は、その電池の直列起電圧eBが低下し、他の健全電池に比べて見かけ上の放電電流が減少するという電池の異常状態であるから、上述のような放電電流バラツキ判別処理による異常状態の検出信号によって警報を発する。そして、この警報に基づく状況判断により、手動操作で外部スイッチSWD1〜SWDnの内の該当する外部スイッチをOFFして、該当する異常電池を切り離すことができる。   Assuming that an internal short circuit has occurred in a series cell that constitutes a battery, such a state reduces the series electromotive voltage eB of the battery, resulting in an apparent discharge current compared to other healthy batteries. Since the battery is in an abnormal state of decreasing, an alarm is issued by an abnormal state detection signal by the discharge current variation determination process as described above. Then, according to the situation determination based on this alarm, the corresponding external switch among the external switches SWD1 to SWDn can be turned off manually to disconnect the corresponding abnormal battery.

また、上述のように、電池,発電機および負荷を含むシステムの構成によっては、可制御の外部スイッチSWD1〜SWDnを用いて自動操作で該当異常電池を切り離すこともできる。このような手動切離しおよび自動切離しのいずれの場合も、発電機電圧および他の健全電池からの電流流入がブロックされるから、他の健全回路へ影響を与えることなく、電池システムの安全運転が継続される。なお、図8(b)に示した放電用半導体スイッチ回路による異常電池切離しの場合には、半導体スイッチQ1〜QnおよびQR1〜QRnにそれぞれ逆並列接続されたダイオードD1〜DnおよびDR1〜DRnにより、発電機電圧および他の健全電池からの電流流入がブロックされる。   Further, as described above, depending on the configuration of the system including the battery, the generator, and the load, the abnormal battery can be disconnected automatically by using the controllable external switches SWD1 to SWDn. In both cases of manual disconnection and automatic disconnection, since the generator voltage and current inflow from other healthy batteries are blocked, safe operation of the battery system continues without affecting other healthy circuits. Is done. In the case of abnormal battery disconnection by the discharging semiconductor switch circuit shown in FIG. 8B, diodes D1 to Dn and DR1 to DRn connected in reverse parallel to the semiconductor switches Q1 to Qn and QR1 to QRn, respectively, Generator voltage and current inflow from other healthy batteries are blocked.

ところで、図1の充放電スイッチ回路では、放電動作中に一部の電池に異常が発生しても、該当する電池を給電回路母線から完全に切り離せないという問題に対する解決手段としては、上述のように、機械式接点スイッチSW1(SWn),半導体スイッチQ1(Qn)および逆並列ダイオードD1(Dn)からなる充放電スイッチ回路に、図8(a)の放電用機械式接点スイッチ回路SWD1(SWDn)あるいは図8(b)の放電用半導体スイッチ回路SWD1(SWDn)が直列接続された構成を適用することが考えられるが、これ以外に、図9のような構成を適用することもできる。   By the way, in the charge / discharge switch circuit of FIG. 1, as a solution to the problem that even if an abnormality occurs in some of the batteries during the discharge operation, the corresponding batteries cannot be completely disconnected from the feeder circuit bus, as described above. In addition, a charge / discharge switch circuit comprising a mechanical contact switch SW1 (SWn), a semiconductor switch Q1 (Qn) and an antiparallel diode D1 (Dn) is added to the discharge mechanical contact switch circuit SWD1 (SWDn) shown in FIG. Alternatively, a configuration in which the semiconductor switch circuits SWD1 (SWDn) for discharging shown in FIG. 8B are connected in series can be applied, but a configuration as shown in FIG. 9 can also be applied in addition to this.

図9は、図1の変形例を示す構成図であり、図1の充放電スイッチ回路では、機械式接点スイッチおよび半導体スイッチをOFFしても、これらに並列に接続されたダイオードを介して電池が給電回路母線に接続されているため、放電動作中に一部の電池に異常が発生しても、該当する電池を回路から完全に切り離せないことを考慮して、図1における充放電スイッチ回路を充放電スイッチ回路A1(An)に置き換えた構成としたものである。充放電スイッチ回路A1(An)は、ダイオードD11〜D14(Dn1〜Dn4)からなるダイオードブリッジ回路の中点間に、半導体スイッチQ1(Qn)を接続し、前記ダイオードブリッジ回路の両端に機械式接点スイッチSW1(SWn)を並列接続したものである。   FIG. 9 is a block diagram showing a modified example of FIG. 1. In the charge / discharge switch circuit of FIG. 1, even if the mechanical contact switch and the semiconductor switch are turned off, the battery is connected via a diode connected in parallel to them. 1 is connected to the power supply circuit bus, so that even if some battery malfunctions during the discharging operation, the charge / discharge switch circuit in FIG. Is replaced with the charge / discharge switch circuit A1 (An). The charge / discharge switch circuit A1 (An) has a semiconductor switch Q1 (Qn) connected between the midpoints of the diode bridge circuit composed of diodes D11 to D14 (Dn1 to Dn4), and mechanical contacts at both ends of the diode bridge circuit. The switch SW1 (SWn) is connected in parallel.

なお、上記ダイオードブリッジ回路においては、図9に示されているように、反電池側(すなわち、給電回路母線側)の第1および第2のアームをそれぞれ形成するダイオードD11(Dn1)およびD14(Dn4)がそれぞれ充電時および放電時の順方向となるように互いに逆極性にして反電池側の端部端子に共通接続されているとともに、電池側の第1および第2のアームをそれぞれ形成するダイオードD13(Dn3)およびD12(Dn2)がそれぞれ放電時および充電時の順方向となるように互いに逆極性にして電池側の端部端子に共通接続されている。また、上記ダイオードブリッジ回路においては、充電時に順方向となる反電池側第1アームのダイオードD11(Dn1)のカソードと放電時に順方向となる電池側第1アームのダイオードD13(Dn3)のカソードとが第1の中点で接続されているとともに、放電時に順方向となる反電池側第2アームのダイオードD14(Dn4)のアノードと充電時に順方向となる電池側第2アームのダイオードD12(Dn2)のアノードとが第2の中点で接続されている。   In the diode bridge circuit, as shown in FIG. 9, diodes D11 (Dn1) and D14 (D14 (Dn1) and D14 (Dn1)) forming the first and second arms on the anti-battery side (that is, the feeder circuit bus side), respectively. Dn4) are oppositely connected to each other in the forward direction during charging and discharging and commonly connected to the end terminal on the anti-battery side, and form first and second arms on the battery side, respectively. The diodes D13 (Dn3) and D12 (Dn2) are connected in common to the end terminals on the battery side with opposite polarities so as to be in the forward direction during discharging and charging, respectively. In the diode bridge circuit, the cathode of the diode D11 (Dn1) of the anti-battery side first arm that is forward during charging and the cathode of the diode D13 (Dn3) of the battery side first arm that is forward when discharging. Are connected at the first midpoint, and the anode of the diode D14 (Dn4) of the anti-battery side second arm that is forward during discharging and the diode D12 (Dn2) of the battery side second arm that is forward when charging. ) At the second midpoint.

そして、上記ダイオードブリッジ回路の第1の中点と第2の中点との間には、半導体スイッチQ1(Qn)が接続されている。半導体スイッチQ1(Qn)を構成する半導体素子としては、例えばIGBT(絶縁ゲートバイポーラトランジスタ)などを用いることができ、IGBTを用いた場合、半導体スイッチQ1(Qn)のコレクタが上記ダイオードブリッジ回路の第1の中点側に接続されるとともに、半導体スイッチQ1(Qn)のエミッタが上記ダイオードブリッジ回路の第2の中点側に接続される。また、このダイオードブリッジ回路の両端、すなわち、反電池側の端部端子と電池側の端部端子との間に、機械式接点スイッチSW1(SWn)が並列接続されている。   A semiconductor switch Q1 (Qn) is connected between the first midpoint and the second midpoint of the diode bridge circuit. As a semiconductor element constituting the semiconductor switch Q1 (Qn), for example, an IGBT (Insulated Gate Bipolar Transistor) or the like can be used. When the IGBT is used, the collector of the semiconductor switch Q1 (Qn) is the first of the diode bridge circuit. 1 is connected to the middle point side of the semiconductor switch Q1, and the emitter of the semiconductor switch Q1 (Qn) is connected to the second middle point side of the diode bridge circuit. A mechanical contact switch SW1 (SWn) is connected in parallel between both ends of the diode bridge circuit, that is, between the end terminal on the anti-battery side and the end terminal on the battery side.

また、半導体スイッチをON−OFF動作させて行なうパルス充電などにおいて半導体スイッチをOFFするときに、回路インダクタンスによるサージ電圧によって半導体スイッチのコレクタ−エミッタ間に発生する逆電圧を抑制し、半導体スイッチを構成する半導体素子の破壊を防止する必要があるが、図9の構成においては、ダイオードD11〜D14(Dn1〜Dn4)からなるダイオードブリッジ回路が半導体スイッチQ1(Qn)に対するサージ保護機能を奏するものとなっている。すなわち、上記のようなパルス充電における半導体スイッチOFF時のサージ電圧に対しては、半導体スイッチQ1(Qn)のコレクタと反電池側端部端子との間に設けられたダイオードD11(Dn1)と、半導体スイッチQ1(Qn)のエミッタと電池側端部端子との間に設けられたダイオードD12(Dn2)とが逆バイアスとなるとともに、半導体スイッチQ1(Qn)のコレクタと電池側端部端子との間に設けられたダイオードD13(Dn3)と、半導体スイッチQ1(Qn)のエミッタと反電池側端部端子との間に設けられたダイオードD14(Dn4)とが順バイアスとなることから、半導体スイッチQ1(Qn)のコレクタ−エミッタ間に発生する逆電圧が抑制される。   The semiconductor switch is configured by suppressing the reverse voltage generated between the collector and emitter of the semiconductor switch due to the surge voltage caused by the circuit inductance when the semiconductor switch is turned off during pulse charging performed by turning the semiconductor switch on and off. In the configuration of FIG. 9, the diode bridge circuit composed of the diodes D11 to D14 (Dn1 to Dn4) has a surge protection function for the semiconductor switch Q1 (Qn). ing. That is, the diode D11 (Dn1) provided between the collector of the semiconductor switch Q1 (Qn) and the anti-battery side end terminal against the surge voltage when the semiconductor switch is OFF in the pulse charge as described above, The diode D12 (Dn2) provided between the emitter of the semiconductor switch Q1 (Qn) and the battery side end terminal is reverse-biased, and the collector of the semiconductor switch Q1 (Qn) and the battery side end terminal The diode D13 (Dn3) provided therebetween and the diode D14 (Dn4) provided between the emitter of the semiconductor switch Q1 (Qn) and the non-battery side end terminal are forward biased. The reverse voltage generated between the collector and emitter of Q1 (Qn) is suppressed.

なお、半導体スイッチQ1(Qn)には、さらに、図9のように、ダイオードD1(Dn)を逆並列に接続してもよく、充放電スイッチ回路A1(An)における半導体スイッチQ1(Qn)とダイオードブリッジ回路との間の配線が長く、そのインダクタンスが大きい場合には、上記のダイオードD1(Dn)が半導体スイッチQ1(Qn)に対するサージ保護用のダイオードとして有効に機能する。また、半導体スイッチの素子構造として寄生ダイオードが形成されている場合には、この寄生ダイオードをダイオードD1(Dn)として用いることができる。ただし、充放電スイッチ回路A1(An)を、半導体スイッチQ1(Qn)とダイオードブリッジ回路との間の配線が短くなるように構成している場合には、半導体スイッチQ1(Qn)に対するサージ保護手段として、上記のダイオードブリッジ回路があればよい。   Further, as shown in FIG. 9, a diode D1 (Dn) may be connected in antiparallel to the semiconductor switch Q1 (Qn), and the semiconductor switch Q1 (Qn) in the charge / discharge switch circuit A1 (An) is connected to the semiconductor switch Q1 (Qn). When the wiring with the diode bridge circuit is long and the inductance is large, the diode D1 (Dn) functions effectively as a diode for surge protection for the semiconductor switch Q1 (Qn). When a parasitic diode is formed as the element structure of the semiconductor switch, this parasitic diode can be used as the diode D1 (Dn). However, when the charge / discharge switch circuit A1 (An) is configured such that the wiring between the semiconductor switch Q1 (Qn) and the diode bridge circuit is shortened, surge protection means for the semiconductor switch Q1 (Qn) As long as there is a diode bridge circuit as described above.

充放電スイッチ回路を図9のように構成することにより、例えば電池B1に異常が発生したときは、異常電池B1に対応する充放電スイッチ回路A1における機械式接点スイッチSW1および半導体スイッチQ1をともにOFFすることにより、ダイオードD11とD12との順方向(充電時)の電流、およびダイオードD13とD14との順方向(放電時)の電流をともに流さないようにして、異常電池B1を給電回路母線から切り離すことが可能となる。
なお、その他は図1の構成と同様なので、以下では主として図1との相違点について図10,図11を参照して説明する。
By configuring the charge / discharge switch circuit as shown in FIG. 9, for example, when an abnormality occurs in the battery B1, both the mechanical contact switch SW1 and the semiconductor switch Q1 in the charge / discharge switch circuit A1 corresponding to the abnormal battery B1 are turned off. By doing so, the forward current (during charging) of the diodes D11 and D12 and the forward current (during discharging) of the diodes D13 and D14 are prevented from flowing, and the abnormal battery B1 is removed from the feeder circuit bus. It becomes possible to separate.
Since the rest of the configuration is the same as that of FIG. 1, differences from FIG. 1 will be mainly described below with reference to FIGS. 10 and 11.

充電動作について
図10は、図9の構成の動作をタイムチャートで示す説明図であり、図10(a)は、大電流充電領域および小電流充電領域で充電を行い、小電流充電領域の途中で、充電完了前に発電機を停止する場合の動作をタイムチャートで示すものである。図10(a)において、時刻t0以前の大電流充電領域では、半導体スイッチQ1〜QnをOFF、機械式接点スイッチSW1〜SWnをONとして、半導体スイッチ回路を短絡しながら大充電電流を通電して、通電損失の低減を図るものである。充電が進行して図10(a)の時刻t0に到達すると、半導体スイッチQ1〜Qnをt0でON、機械式接点スイッチSW1〜SWnをt1でOFFとして、小電流充電領域での充電を開始する。
Charging Operation FIG. 10 is an explanatory diagram showing the operation of the configuration of FIG. 9 in a time chart. FIG. 10A shows charging in the large current charging region and the small current charging region, and in the middle of the small current charging region. The operation when the generator is stopped before the completion of charging is shown in the time chart. In FIG. 10 (a), in the large current charging region before time t0, the semiconductor switches Q1 to Qn are turned off and the mechanical contact switches SW1 to SWn are turned on to supply a large charging current while shorting the semiconductor switch circuit. This is intended to reduce energization loss. When charging proceeds and reaches time t0 in FIG. 10A, the semiconductor switches Q1 to Qn are turned on at t0 and the mechanical contact switches SW1 to SWn are turned off at t1, and charging in the small current charging region is started. .

上記のように機械式接点スイッチのOFFに先立ち半導体スイッチをONさせるようにして機械式接点スイッチと半導体スイッチとの両方がONしている期間(t0〜t1)を設けることにより、半導体スイッチをONするとき(t0)に、機械式接点スイッチも未だON状態であるから、半導体スイッチのON直前において機械式接点スイッチに発生している微弱な接点間の電圧降下を半導体スイッチで短絡するだけでよいので、略無通電状態で半導体スイッチをONすることができ、半導体スイッチの閉路責務を大幅に軽減することができる。また、機械式接点スイッチをOFFするとき(t1)に、半導体スイッチは既にONされているから、機械式接点スイッチは微弱な接点間の電圧降下を開路するだけでよいので、機械式接点スイッチの開路責務を大幅に軽減することができる。なお、この動作は図1の動作を示す図2の時刻c−c1の動作と同じである。   As described above, the semiconductor switch is turned on by providing a period (t0 to t1) in which both the mechanical contact switch and the semiconductor switch are turned on so that the semiconductor switch is turned on prior to turning off the mechanical contact switch. (T0), since the mechanical contact switch is still in the ON state, it is only necessary to short-circuit the weak voltage drop generated in the mechanical contact switch just before the semiconductor switch is turned on by the semiconductor switch. Therefore, the semiconductor switch can be turned on in a substantially non-energized state, and the duty of closing the semiconductor switch can be greatly reduced. Also, when the mechanical contact switch is turned off (t1), the semiconductor switch is already turned on, so the mechanical contact switch only needs to open the voltage drop between the weak contacts. Open circuit duty can be greatly reduced. This operation is the same as the operation at time c-c1 of FIG. 2 showing the operation of FIG.

また、図2に示すc〜fおよび図10(a)に示すt0〜tx22の小電流充電領域において、何らかの理由で発電機16(G)を停止するとき、図1の構成では図2のg〜g1点やl〜m点のように、機械式接点スイッチの接点がONするまでの時間は、ダイオード7(D1)〜8(Dn)により通電して負荷への給電の遮断が発生しないようにする。
これに対し、図9の構成ではダイオード通電回路はないから、図10(a)に示すように、時刻tx2で発電機運転スイッチ35(SWG)を停止操作した後、発電機制御装置34から電池充放電&状態監視制御装置28へ発電機停止指令(信号36)を与え、発電機停止制御の前に、装置28からの指令37〜38により、時刻tx21で機械式接点スイッチをON、時刻tx22で半導体スイッチをOFFさせ、その後の時刻t2において、発電機停止制御指令により発電機電圧を低下させるとともに発電機回路スイッチ20(SWGH)をOFFして発電機16(G)を停止させるようにして負荷への給電の遮断が発生しないようにする。この点で図1の構成と図9の構成とは相違する。
In addition, when the generator 16 (G) is stopped for some reason in the small current charging region of cf shown in FIG. 2 and t0 to tx22 shown in FIG. 10A, the configuration of FIG. The time until the contact of the mechanical contact switch is turned on, such as the points ˜g1 and ˜m, does not interrupt the power supply to the load by energizing the diodes 7 (D1) -8 (Dn). To.
On the other hand, since the diode energization circuit is not provided in the configuration of FIG. 9, after the generator operation switch 35 (SWG) is stopped at time tx2, as shown in FIG. A generator stop command (signal 36) is given to the charge / discharge & state monitoring control device 28, and before the generator stop control, the mechanical contact switch is turned on at time tx21 in accordance with commands 37 to 38 from the device 28, and time tx22. Then, at time t2, the generator voltage is lowered by the generator stop control command and the generator circuit switch 20 (SWGH) is turned OFF to stop the generator 16 (G). Make sure that the power supply to the load is not interrupted. In this respect, the configuration of FIG. 1 is different from the configuration of FIG.

次に、図10(b)は、満充電状態まで充電し、充電完了後に発電機を停止する場合の動作をタイムチャートで示すものである。図10(b)のように、大〜中電流充電領域(〜t10)から小電流充電領域(t11〜t12)に移行し、小電流充電領域において満充電状態まで充電を行う場合、小電流充電領域(t11〜t12)に移行すると、半導体スイッチをON(連続定電流充電または連続定電圧充電)、または各電池に対応する半導体スイッチを時系列にON−OFF(定電流パルス充電/定電圧パルス充電)させて電池を充電し、連続定電圧充電,定電流パルス充電および定電圧パルス充電では、満充電になった電池から順次半導体スイッチをOFFにして充電の対象から切り離していくという充電終了制御を行い、また、連続定電流充電では、各電池が並列接続された給電回路母線の電圧(VB)が所定値に達した時点で各電池の半導体スイッチをOFFして充電を完了させる。上記のような充電終了制御により、全ての電池の半導体スイッチがOFFしたら、全電池の充電が完了する(時刻t12)。充電が完了すると、全ての電池は給電回路母線から切り離されるが(図9に示す充放電スイッチ回路A1〜An内の機械式接点スイッチOFF、半導体スイッチOFF)、この状態での負荷への給電は発電機16(G)から行なわれる(時刻t12〜t31)。   Next, FIG.10 (b) shows the operation | movement in the case of charging to a full charge state and stopping a generator after completion of charge with a time chart. As shown in FIG. 10B, when the charging is performed from the large to medium current charging region (to t10) to the small current charging region (t11 to t12) and charging is performed to the fully charged state in the small current charging region, the small current charging is performed. When shifting to the region (t11 to t12), the semiconductor switch is turned on (continuous constant current charge or continuous constant voltage charge), or the semiconductor switch corresponding to each battery is turned on and off in time series (constant current pulse charge / constant voltage pulse). Charge) to charge the battery, and in continuous constant voltage charge, constant current pulse charge, and constant voltage pulse charge, the charge switch is controlled to turn off the semiconductor switch sequentially from the fully charged battery and disconnect it from the charge target. In continuous constant current charging, when the voltage (VB) of the power supply circuit bus connected to each battery reaches a predetermined value, the semiconductor switch of each battery is turned off. To complete the charging Te. When the semiconductor end switches of all the batteries are turned off by the charging end control as described above, the charging of all the batteries is completed (time t12). When charging is completed, all the batteries are disconnected from the power supply circuit bus (mechanical contact switch OFF, semiconductor switch OFF in the charge / discharge switch circuits A1 to An shown in FIG. 9), but power supply to the load in this state is It is performed from the generator 16 (G) (time t12 to t31).

この状態で、図10(b)のように、発電機運転スイッチ35(SWG)を停止操作すると(時刻t3)、発電機制御装置34から電池充放電&状態監視制御装置28へ発電機停止指令(信号36)を与え、発電機停止制御の前に、装置28からの指令37〜38により各電池に設けた充放電スイッチ回路A1〜Anの機械式接点スイッチをONさせる。なお、このとき、発電機の停止に対応した放電動作のために半導体スイッチをONさせる必要はないから、半導体スイッチにはON指令を与えないようにする。そして、機械式接点スイッチがONするまでの動作時間遅れ(t3〜t31)が存在するから、この動作遅れ時間中(t3〜t31)に給電が遮断しないよう、t31の後、機械式接点スイッチがONしたことを電池充放電&状態監視制御装置28からの信号36により発電機制御装置34が確認した後、時刻t4で、発電機制御装置34は発電機停止制御指令により発電機電圧を低下させるとともに発電機回路スイッチ20(SWGH)をOFFして発電機16(G)を停止させる。すなわち、t31〜t4期間は発電機と電池の並列接続運転になるので、負荷への給電の遮断は発生しない。   In this state, as shown in FIG. 10B, when the generator operation switch 35 (SWG) is stopped (time t3), the generator stop command is sent from the generator control device 34 to the battery charge / discharge & state monitoring control device 28. (Signal 36) is given, and before the generator stop control, the mechanical contact switches of the charge / discharge switch circuits A1 to An provided in the respective batteries are turned ON by commands 37 to 38 from the device 28. At this time, since it is not necessary to turn on the semiconductor switch for the discharge operation corresponding to the stop of the generator, an ON command is not given to the semiconductor switch. Since there is an operation time delay (t3 to t31) until the mechanical contact switch is turned on, the mechanical contact switch is turned on after t31 so that power supply is not interrupted during this operation delay time (t3 to t31). After the generator controller 34 confirms that it is turned on by the signal 36 from the battery charge / discharge & state monitoring controller 28, the generator controller 34 lowers the generator voltage by the generator stop control command at time t4. At the same time, the generator circuit switch 20 (SWGH) is turned off to stop the generator 16 (G). That is, since the generator and the battery are connected in parallel during the period t31 to t4, the power supply to the load is not interrupted.

一方、図1の構成では上記段落〔0014〕で述べたように、機械式接点スイッチOFF状態で発電機を停止して放電動作に移行するとき、図2に示す機械式接点スイッチがONするまでの動作時間遅れ時間(g〜g1)は、機械式接点スイッチと並列接続されたダイオード7(D1)〜8(Dn)により通電し、機械式接点スイッチの接点がONする時刻g1点でダイオードを短絡して機械式接点スイッチで通電する。
これに対し、図9の構成では、図1のようなダイオードによる放電回路は形成されないから、機械式接点スイッチの接点がONしてから発電機を停止させることで、負荷への給電の遮断が発生しないようにしている。この点で図1の構成と図9の構成とは相違する。
On the other hand, in the configuration of FIG. 1, as described in the paragraph [0014] above, when the generator is stopped in the mechanical contact switch OFF state and the discharge operation is started, the mechanical contact switch shown in FIG. 2 is turned on. The operation time delay time (g to g1) is energized by the diodes 7 (D1) to 8 (Dn) connected in parallel with the mechanical contact switch, and the diode is turned on at the time point g1 when the contact of the mechanical contact switch is turned on. Short circuit and energize with mechanical contact switch.
On the other hand, in the configuration of FIG. 9, since the discharge circuit by the diode as shown in FIG. 1 is not formed, the power supply to the load is interrupted by stopping the generator after the contact of the mechanical contact switch is turned ON. It does not occur. In this respect, the configuration of FIG. 1 is different from the configuration of FIG.

浮動動作について
図1の構成の浮動動作によれば、発電機電圧VGを電池電圧VBよりもやや高めに設定した状態で、半導体スイッチおよび機械式接点スイッチをともにOFFすることにより、半導体素子Qと並列接続されているダイオードDによって発電機電圧VGをブロックし、浮動動作状態を得ている。
これに対し、図9の構成では半導体スイッチQ1〜Qnおよび機械式接点スイッチSW1〜SWnをともにOFFすることにより、電池がどのような動作状態であっても、電池を給電回路母線から切り離すことができる。
About Floating Operation According to the floating operation of the configuration of FIG. 1, the semiconductor element Q and the mechanical contact switch are both turned off while the generator voltage VG is set slightly higher than the battery voltage VB. The generator voltage VG is blocked by the diode D connected in parallel to obtain a floating operation state.
On the other hand, in the configuration of FIG. 9, by turning off both the semiconductor switches Q1 to Qn and the mechanical contact switches SW1 to SWn, the battery can be disconnected from the feeder circuit bus regardless of the operating state of the battery. it can.

図10(c)は、図9の構成における浮動動作をタイムチャートで説明するものである。図9で浮動動作スイッチ31(SWF)をONすると、半導体スイッチQ1〜Qnが図10(c)の時刻t5でOFFし、その後、機械式接点スイッチSW1〜SWnが時刻t51でOFFするので、ダイオードD11(Dn1)→半導体素子Q1(Qn)(OFF)→ダイオードD12(Dn2)の通電経路は形成されないとともに機械式接点スイッチSW1(SWn)もOFFとなっていることから、電池は給電回路母線から切り離されて浮動動作状態となる。この浮動動作状態では、電池は給電回路母線から切り離されているので、推進電動機25(M),補機動力系統22(L)などの負荷への給電は発電機16(G)から行なわれる(時刻t51〜t61)。その後、浮動動作スイッチ31(SWF)を時刻t6でOFFにすれば、機械式接点スイッチSW1〜SWnがON(時刻t6から若干遅れた時刻t61で接点ON)となり、電池が給電回路母線に接続されて浮動動作は解除される。なお、上記のように、浮動動作スイッチ31(SWF)をONして浮動動作を開始するときに、半導体スイッチをOFFした後に機械式接点スイッチをOFFすることにより、開路直前の電池電流の大きさにもよるが、半導体スイッチの開路責務を軽減させ機械式接点スイッチに開路責務を持たせることができる。   FIG. 10C illustrates a floating operation in the configuration of FIG. 9 with a time chart. When the floating operation switch 31 (SWF) is turned on in FIG. 9, the semiconductor switches Q1 to Qn are turned off at time t5 in FIG. 10C, and then the mechanical contact switches SW1 to SWn are turned off at time t51. Since the energization path of D11 (Dn1) → semiconductor element Q1 (Qn) (OFF) → diode D12 (Dn2) is not formed and the mechanical contact switch SW1 (SWn) is also OFF, the battery is disconnected from the feeder circuit bus. It is cut off and becomes a floating operation state. In this floating operation state, since the battery is disconnected from the power supply circuit bus, power is supplied from the generator 16 (G) to loads such as the propulsion motor 25 (M) and the auxiliary power system 22 (L) ( Time t51 to t61). After that, if the floating operation switch 31 (SWF) is turned off at time t6, the mechanical contact switches SW1 to SWn are turned on (contacts are turned on at time t61 slightly delayed from time t6), and the battery is connected to the power supply circuit bus. The floating operation is released. As described above, when the floating operation switch 31 (SWF) is turned on to start the floating operation, the magnitude of the battery current immediately before the circuit is opened by turning off the mechanical contact switch after turning off the semiconductor switch. However, it is possible to reduce the opening duty of the semiconductor switch and to make the mechanical contact switch have the opening duty.

放電動作について
図9の構成での放電動作においては、機械式接点スイッチSW1〜SWnをON、半導体スイッチQ1〜QnをOFFとして、負荷へ電池から給電する。このときの電流経路を図11(a)に示すとともに、対比のため、図1の構成での放電動作における電流経路を図11(b)に示す。
図11(b)では、電池の放電電流−IBは、機械式接点スイッチSWを流れる電流ISWと、ダイオードDを流れる電流IDの合成電流となる。一般的に、ON状態の機械式接点スイッチと順バイアス状態のダイオードの抵抗比は1:100以上と言われるが、抵抗比によってダイオードにも電流IDが流れるので、機械式接点スイッチでダイオードを短絡しても、ダイオード損失・発熱が発生する。
Regarding Discharge Operation In the discharge operation in the configuration of FIG. 9, the mechanical contact switches SW1 to SWn are turned on and the semiconductor switches Q1 to Qn are turned off, and power is supplied from the battery to the load. FIG. 11A shows the current path at this time, and FIG. 11B shows the current path in the discharge operation in the configuration of FIG. 1 for comparison.
In FIG. 11B, the discharge current −IB of the battery is a combined current of the current ISW flowing through the mechanical contact switch SW and the current ID flowing through the diode D. Generally, the resistance ratio of the mechanical contact switch in the ON state and the diode in the forward bias state is said to be 1: 100 or more. However, since the current ID also flows through the diode depending on the resistance ratio, the diode is short-circuited by the mechanical contact switch. Even so, diode loss and heat generation occur.

これに対し、図11(a)では、ダイオードと半導体素子からなる半導体スイッチ回路には、図11(b)におけるような電流IDは流れない。これは、電池の放電電流が逆バイアス状態となるダイオードD12やOFF状態の半導体素子Q1によってブロックされるためである。つまり、図11(a)のようなスイッチ方式によれば、半導体スイッチ回路には電流IDは全く流れないので、損失も発生しない。なお、並列接続された個別電池を何らかの理由で給電回路母線から切り離したいときは、上述のように半導体スイッチQ1〜Qnおよび機械式接点スイッチSW1〜SWnをOFFとすることにより、電池を個別に給電回路母線から切り離すことができる。   On the other hand, in FIG. 11A, the current ID as in FIG. 11B does not flow through the semiconductor switch circuit composed of the diode and the semiconductor element. This is because the discharge current of the battery is blocked by the diode D12 in the reverse bias state or the semiconductor element Q1 in the OFF state. In other words, according to the switching method as shown in FIG. 11A, no current ID flows through the semiconductor switch circuit, so no loss occurs. When it is desired to disconnect individual batteries connected in parallel from the power supply circuit bus for any reason, the batteries are individually powered by turning off the semiconductor switches Q1 to Qn and the mechanical contact switches SW1 to SWn as described above. Can be disconnected from the circuit bus.

電池の保護動作
これについては、例えば上記特許文献3に述べられている。その方式では、充電動作中には異常発生電池を給電回路母線から切り離すことはできるが、放電動作中には異常発生電池を給電回路母線から切り離すことができず、警報を発するのみに留まっている。しかし、図9のようなスイッチ方式では、半導体スイッチおよび機械式接点スイッチをオフすることにより、電流の流れる方向の如何に関わらず電池を給電回路母線から切り離すことができ、異常電池を個別に給電回路母線から切り離すことができるので、電池からの給電を中断することなく、健全電池によるシステム運転を継続させることが可能となる利点が得られる。
Battery Protection Operation This is described, for example, in Patent Document 3 above. In this method, the battery in which the abnormality has occurred can be disconnected from the power supply circuit bus during the charging operation, but the battery in which the abnormality has occurred cannot be disconnected from the power supply circuit bus during the discharging operation, and only an alarm is issued. . However, in the switch system as shown in FIG. 9, by turning off the semiconductor switch and the mechanical contact switch, the battery can be disconnected from the power supply circuit bus regardless of the direction of current flow, and the abnormal battery can be individually fed. Since it can be disconnected from the circuit bus, there is an advantage that the system operation by the healthy battery can be continued without interrupting the power supply from the battery.

なお、図9における充放電スイッチ回路A1(An)の構成は、図8(a)における機械式接点スイッチSW1(SWn),半導体スイッチQ1(Qn)および逆並列ダイオードD1(Dn)からなる充放電スイッチ回路に放電用機械式接点スイッチ回路SWD1(SWDn)が直列接続されてなるスイッチ回路の構成と比べて、電流の流れる方向の如何に関わらず電池を給電回路母線から切り離すことができる点、および、放電動作時の通電損失の小さい点では同様である。しかしながら、電池充放電&状態監視制御装置28からの指令による遠方操作を可能とするため、機械式接点スイッチを、電動駆動式または電磁駆動式であって外部信号によりON−OFFさせることができる可制御スイッチとする場合、機械式接点スイッチの外形寸法が大きくなり、電池システムの設置スペース上の制約がある場合に問題となるが、この点において、図9の構成は、必要となる機械式接点スイッチが1個だけであるので、2個の機械式接点スイッチが必要となる図8(a)の構成よりも、より好適な構成となっている。   The configuration of the charge / discharge switch circuit A1 (An) in FIG. 9 is the charge / discharge comprising the mechanical contact switch SW1 (SWn), the semiconductor switch Q1 (Qn), and the antiparallel diode D1 (Dn) in FIG. Compared with the configuration of the switch circuit in which the discharge mechanical contact switch circuit SWD1 (SWDn) is connected in series to the switch circuit, the battery can be disconnected from the power supply circuit bus regardless of the direction of current flow, and This is the same in terms of small energization loss during the discharge operation. However, in order to enable remote operation according to a command from the battery charge / discharge & state monitoring control device 28, the mechanical contact switch can be electrically driven or electromagnetically driven and can be turned on and off by an external signal. In the case of a control switch, the external dimensions of the mechanical contact switch become large, which is a problem when there are restrictions on the installation space of the battery system. In this respect, the configuration of FIG. Since there is only one switch, the configuration is more preferable than the configuration shown in FIG. 8A, which requires two mechanical contact switches.

この発明の実施の形態を示す構成図Configuration diagram showing an embodiment of the present invention 図1の電池の充放電動作を示すタイムチャートTime chart showing charge / discharge operation of the battery of FIG. 定電流→定電流→定電圧充電の動作説明図Operation explanation of constant current → constant current → constant voltage charging 定電流→定電圧→定電流パルスの充電動作説明図Charge operation explanatory diagram of constant current → constant voltage → constant current pulse 電池放電時の電流−電圧特性図Current-voltage characteristics during battery discharge 電池充電時の電流−電圧特性図Current-voltage characteristics when charging the battery 定電流→定電流→定電圧パルスの充電動作説明図Charge operation explanatory diagram of constant current → constant current → constant voltage pulse 放電用スイッチ回路の説明図Explanatory diagram of discharge switch circuit 図1の変形例を示す構成図Configuration diagram showing a modification of FIG. 図9の動作説明図FIG. 9 is an operation explanatory diagram. 図9における放電動作説明図Explanatory diagram of discharge operation in FIG. 電池充放電方式の従来例を示す構成図Configuration diagram showing a conventional battery charge / discharge system

符号の説明Explanation of symbols

1〜2(B1〜Bn)…蓄電池、3〜4(SW1,SWn)…機械式接点スイッチ、5〜6(Q1〜Qn)…半導体スイッチ、7〜8(D1〜Dn)…ダイオード、9〜10,14,19,23(SH1〜SHn,SHB,SHG)…電流検出器、11〜13,21(VD1〜VDn,VDB,VDG)…電圧検出器、15,20,24,27,29〜31,35(SWB,SWGH,SWLH,SWMH,SWC〜SWF,SWG)…スイッチ、16…発電機(G)、17…発電機界磁(Gf)、22…補機動力系統(L)、25…推進電動機(M)、28…電池充放電&状態監視制御装置、32…電圧設定器、33…電流設定器、34…発電機制御装置、36…信号、37〜38…指令(信号)、A1〜An…充放電スイッチ回路。   1-2 (B1-Bn) ... accumulator, 3-4 (SW1, SWn) ... mechanical contact switch, 5-6 (Q1-Qn) ... semiconductor switch, 7-8 (D1-Dn) ... diode, 9- 10, 14, 19, 23 (SH1 to SHn, SHB, SHG) ... current detector, 11 to 13, 21 (VD1 to VDn, VDB, VDG) ... voltage detector, 15, 20, 24, 27, 29 to 31, 35 (SWB, SWGH, SWLH, SWMH, SWC to SWF, SWG) ... switch, 16 ... generator (G), 17 ... generator field (Gf), 22 ... auxiliary power system (L), 25 ... propulsion motor (M), 28 ... battery charging / discharging & state monitoring control device, 32 ... voltage setting device, 33 ... current setting device, 34 ... generator control device, 36 ... signal, 37-38 ... command (signal), A1 to An: charge / discharge switch circuit.

Claims (3)

電池を充放電する充放電回路において、機械式接点スイッチ,半導体スイッチおよびダイオードが並列接続された充放電スイッチ回路を設け、大電流通電となる放電時および大電流充電動作領域では前記機械式接点スイッチを介して通電させる一方、小電流充電動作領域では前記半導体スイッチによる通電とオン,オフ動作をさせることにより通電損失の低減および機械式接点スイッチオン,オフ時の動作音を抑制することを特徴とする電池の充放電スイッチ方式。   In a charging / discharging circuit for charging / discharging a battery, a mechanical contact switch, a semiconductor switch, and a diode switch are provided in parallel, and the mechanical contact switch is used in discharging and large current charging operation areas where a large current is applied. On the other hand, in the small current charging operation region, the conduction loss by the semiconductor switch and the on / off operation are reduced, thereby reducing the conduction loss and suppressing the operation sound when the mechanical contact switch is on / off. Battery charge / discharge switch system. 前記充放電スイッチ回路を、ダイオードブリッジ回路の中点間に半導体スイッチを接続し、前記ダイオードブリッジ回路の両端に機械式接点スイッチを並列接続した充放電スイッチ回路に置き換えることを特徴とする請求項1に記載の電池の充放電スイッチ方式。   2. The charge / discharge switch circuit is replaced with a charge / discharge switch circuit in which a semiconductor switch is connected between the middle points of a diode bridge circuit, and mechanical contact switches are connected in parallel at both ends of the diode bridge circuit. The charge / discharge switch system for the battery according to 1. 前記半導体スイッチおよび機械式接点スイッチをオフすることにより、電流の流れる方向の如何に関わらず電池を給電回路母線から切り離せるようにしたことを特徴とする請求項2に記載の電池の充放電スイッチ方式。   3. The battery charge / discharge switch according to claim 2, wherein the semiconductor switch and the mechanical contact switch are turned off so that the battery can be disconnected from the feeder circuit bus regardless of the direction of current flow. method.
JP2006143656A 2005-09-14 2006-05-24 Battery charge / discharge switch system Expired - Fee Related JP4333695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006143656A JP4333695B2 (en) 2005-09-14 2006-05-24 Battery charge / discharge switch system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005266775 2005-09-14
JP2006143656A JP4333695B2 (en) 2005-09-14 2006-05-24 Battery charge / discharge switch system

Publications (2)

Publication Number Publication Date
JP2007110887A true JP2007110887A (en) 2007-04-26
JP4333695B2 JP4333695B2 (en) 2009-09-16

Family

ID=38036283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006143656A Expired - Fee Related JP4333695B2 (en) 2005-09-14 2006-05-24 Battery charge / discharge switch system

Country Status (1)

Country Link
JP (1) JP4333695B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008228449A (en) * 2007-03-13 2008-09-25 Fuji Electric Systems Co Ltd Switch control system of charging/discharging circuit for battery
JP2009148099A (en) * 2007-12-14 2009-07-02 Panasonic Electric Works Co Ltd Battery system
JP5082011B2 (en) * 2009-11-06 2012-11-28 パナソニック株式会社 Battery power supply and battery power supply system
US8384351B2 (en) 2008-09-30 2013-02-26 Kabushiki Kaisha Toshiba Battery system using battery unit in which battery arms are connected in parallel
JP2013086735A (en) * 2011-10-21 2013-05-13 East Japan Railway Co System for measuring, monitoring and controlling battery
WO2013153889A1 (en) * 2012-04-11 2013-10-17 日立マクセル株式会社 Battery pack provided with charge and discharge control switch circuit
CN104009514A (en) * 2013-02-27 2014-08-27 蔡富生 Control circuit and method of battery branch in battery system
JP2015097463A (en) * 2013-11-15 2015-05-21 日立化成株式会社 Composite power storage system
WO2017086349A1 (en) * 2015-11-18 2017-05-26 Evtd株式会社 Control device, power storage device, and power storage system
CN112034279A (en) * 2020-07-22 2020-12-04 惠州市德赛西威汽车电子股份有限公司 Constant power supply testing device, system and method
US11482869B2 (en) 2018-10-19 2022-10-25 Next-E Solutions Inc. Electric storage system
US11552483B2 (en) 2018-10-05 2023-01-10 Next-E Solutions Inc. Electric storage system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06257451A (en) * 1993-03-04 1994-09-13 Isuzu Motors Ltd Controller of turbocharger provided with rotary electric machine
JPH07163066A (en) * 1993-12-08 1995-06-23 Fuji Electric Co Ltd Usual commercial feeding system uninterruptible power supply equipment
JP2003338239A (en) * 2002-04-12 2003-11-28 Lg Industrial Syst Co Ltd Hybrid dc electromagnetic contactor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06257451A (en) * 1993-03-04 1994-09-13 Isuzu Motors Ltd Controller of turbocharger provided with rotary electric machine
JPH07163066A (en) * 1993-12-08 1995-06-23 Fuji Electric Co Ltd Usual commercial feeding system uninterruptible power supply equipment
JP2003338239A (en) * 2002-04-12 2003-11-28 Lg Industrial Syst Co Ltd Hybrid dc electromagnetic contactor

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008228449A (en) * 2007-03-13 2008-09-25 Fuji Electric Systems Co Ltd Switch control system of charging/discharging circuit for battery
JP4665922B2 (en) * 2007-03-13 2011-04-06 富士電機システムズ株式会社 Battery charge / discharge circuit switch control system
JP2009148099A (en) * 2007-12-14 2009-07-02 Panasonic Electric Works Co Ltd Battery system
US8384351B2 (en) 2008-09-30 2013-02-26 Kabushiki Kaisha Toshiba Battery system using battery unit in which battery arms are connected in parallel
JP5082011B2 (en) * 2009-11-06 2012-11-28 パナソニック株式会社 Battery power supply and battery power supply system
JP2013086735A (en) * 2011-10-21 2013-05-13 East Japan Railway Co System for measuring, monitoring and controlling battery
WO2013153889A1 (en) * 2012-04-11 2013-10-17 日立マクセル株式会社 Battery pack provided with charge and discharge control switch circuit
TWI511416B (en) * 2013-02-27 2015-12-01 蔡富生 Control circuit and method of battery branch in battery system
JP2014166141A (en) * 2013-02-27 2014-09-08 Fu-Sheng Tsai Control circuit and control method for battery branch of battery system
CN104009514A (en) * 2013-02-27 2014-08-27 蔡富生 Control circuit and method of battery branch in battery system
US9281696B2 (en) 2013-02-27 2016-03-08 Fu-Sheng Tsai Current steering circuit and current steering method for controlling branch current flowing through branch
CN104009514B (en) * 2013-02-27 2016-08-17 蔡富生 The control circuit of battery branch and control method for a battery system
US10283972B2 (en) 2013-02-27 2019-05-07 Fu-Sheng Tsai Control circuit and method of battery branch in battery system
JP2015097463A (en) * 2013-11-15 2015-05-21 日立化成株式会社 Composite power storage system
WO2017086349A1 (en) * 2015-11-18 2017-05-26 Evtd株式会社 Control device, power storage device, and power storage system
JPWO2017086349A1 (en) * 2015-11-18 2018-03-08 NExT−e Solutions株式会社 Control device, power storage device, and power storage system
TWI672889B (en) * 2015-11-18 2019-09-21 日商艾達司股份有限公司 Control device, power storage device, power storage system, and recording medium
US11552483B2 (en) 2018-10-05 2023-01-10 Next-E Solutions Inc. Electric storage system
US11482869B2 (en) 2018-10-19 2022-10-25 Next-E Solutions Inc. Electric storage system
CN112034279A (en) * 2020-07-22 2020-12-04 惠州市德赛西威汽车电子股份有限公司 Constant power supply testing device, system and method

Also Published As

Publication number Publication date
JP4333695B2 (en) 2009-09-16

Similar Documents

Publication Publication Date Title
JP4333695B2 (en) Battery charge / discharge switch system
JP5660105B2 (en) Power storage system
US8134337B2 (en) Electricity storage device having equalization voltage circuit
EP2879900B1 (en) Electrical storage system
JP5706412B2 (en) Low loss battery
EP2760096B1 (en) Electrical storage system and method for controlling electrical storage system
JP4096261B2 (en) Battery protection system
EP2717415A1 (en) Electricity storage system
WO2013118271A1 (en) Parallel accumulator system and method of control thereof
JP2008228449A (en) Switch control system of charging/discharging circuit for battery
JP2007151261A (en) Battery charging and discharging system
JP2008043009A (en) Battery pack and control method
KR20150119905A (en) Detection and prevention of short formation in battery packs
JP2012205407A (en) Power storage device and voltage equalization method of the same
JP2010233367A (en) Control system of electric promoting system
US10096992B2 (en) Electrical storage system
JP2006060883A (en) Two-battery type power supply device for vehicle
JP2006067683A (en) Storage device
JP2008271690A (en) Secondary battery pack
JP4148468B2 (en) Battery charge control device
JP2019195249A (en) Vehicle power supply system
EP3565101A1 (en) Switching control method for isolated bidirectional dc-dc converter
JP5404712B2 (en) Charging apparatus, in-vehicle charging apparatus, and charging method in in-vehicle charging apparatus
JP2007110877A (en) Battery pack and its charger, and charging method
JP4088838B2 (en) Battery charge / discharge control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4333695

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees