JP4096261B2 - Battery protection system - Google Patents

Battery protection system Download PDF

Info

Publication number
JP4096261B2
JP4096261B2 JP2003407172A JP2003407172A JP4096261B2 JP 4096261 B2 JP4096261 B2 JP 4096261B2 JP 2003407172 A JP2003407172 A JP 2003407172A JP 2003407172 A JP2003407172 A JP 2003407172A JP 4096261 B2 JP4096261 B2 JP 4096261B2
Authority
JP
Japan
Prior art keywords
battery
current
charging
discharge
groups
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003407172A
Other languages
Japanese (ja)
Other versions
JP2005168259A (en
Inventor
泰弘 高林
昌英 小柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2003407172A priority Critical patent/JP4096261B2/en
Publication of JP2005168259A publication Critical patent/JP2005168259A/en
Application granted granted Critical
Publication of JP4096261B2 publication Critical patent/JP4096261B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Control Of Charge By Means Of Generators (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

この発明は、一次電源としての蓄電池と、蓄電池を充電する発電機とを備え、蓄電池および発電機から動力へ電力を供給する、いわゆるハイブリッドシステム、例えば電気自動車または電気推進船舶などに適用して好適な電池の保護方式に関する。   The present invention is suitable for application to a so-called hybrid system, such as an electric vehicle or an electric propulsion ship, which includes a storage battery as a primary power source and a generator for charging the storage battery, and supplies power from the storage battery and the generator to power. The present invention relates to a battery protection method.

蓄電池を一次電源とする大容量システムでは、従来から鉛蓄電池,アルカリ蓄電池が多用され、大容量単電池を200〜300セル直列接続して群を成し、この電池群の2〜4群を並列接続するものが一般的である。また、この発明で対象とするリチウムイオン電池は高エネルギー密度を有し、近年、民生用,産業用として小容量分野での実用化が進んでいる。   In a large-capacity system using a storage battery as a primary power supply, a lead storage battery and an alkaline storage battery have been widely used in the past, and 200 to 300 cells of large-capacity single cells are connected in series to form a group, and 2 to 4 groups of this battery group are connected in parallel. What is connected is common. In addition, the lithium ion battery targeted by the present invention has a high energy density, and in recent years, it has been put into practical use in the small capacity field for consumer use and industrial use.

しかし、大容量システムへの適用を目的とする大容量リチウムイオン電池は研究・開発段階であり、将来動向は不明であるが、現段階では中小容量単電池を多数直並列に接続して実用化されるものと考えられている。この場合、単電池には特性バラツキが存在すると考えられ、また、この単電池を多数直並列接続して複数の電池群が並列接続された電池システムをなしたとき、当然、電池群電圧にはバラツキが存在するものと考えられ、さらには温度変化によっても特性が変化する。   However, large-capacity lithium-ion batteries intended for application to large-capacity systems are in the research and development stage, and future trends are unclear, but at this stage, many small and medium-capacity cells are connected in series and in parallel. It is thought to be done. In this case, it is considered that there is a characteristic variation in the unit cell, and when a battery system in which a plurality of unit cells are connected in series by connecting a plurality of unit cells in parallel, naturally, the cell group voltage is It is considered that there is variation, and the characteristics change due to temperature changes.

このような特性バラツキを持つ複数の電池群を並列接続して一括充放電する場合には、電池群相互間には大きな充放電電流差が生じることが予想されることから、電池バラツキを考慮して個々の電池またはグループ電池に分け、スイッチで切替えながら充電する方法が、例えば特許文献1〜3に提案されている。   When multiple battery groups with such characteristic variations are connected in parallel and charged and discharged together, a large charge / discharge current difference is expected to occur between the battery groups. For example, Patent Documents 1 to 3 propose a method of charging the battery while being divided into individual batteries or group batteries and switching them with a switch.

特開平07−203634号公報(第5−6頁、図1)Japanese Patent Application Laid-Open No. 07-203634 (page 5-6, FIG. 1) 特開2002−313439号公報(第3頁、図1)Japanese Patent Laid-Open No. 2002-31439 (page 3, FIG. 1) 特開平11−313445号公報(第5頁、図1)Japanese Patent Laid-Open No. 11-313445 (page 5, FIG. 1)

ここで、電池の特性バラツキについて考察する。
(1)充電動作時のバラツキ
図3(a)は充電動作を説明する回路図である。
図示の一括充電電流+IBΣに対し、個別の電池群ごとに充電電流+IB1〜+IBmが流れるが、この各電池群の充電電流+IB1〜+IBmは電池群ごとにバラツキがあり、定電圧充電動作では図4(a)のように、また、定電流充電動作では図4(b)のようになるものと予想される。
Here, the characteristic variation of the battery will be considered.
(1) Variation during charging operation FIG. 3A is a circuit diagram illustrating the charging operation.
The charging currents + IB1 to + IBm flow for each individual battery group with respect to the illustrated batch charging current + IBΣ. The charging currents + IB1 to + IBm of each battery group vary from battery group to battery group. As shown in FIG. 4A, the constant current charging operation is expected to be as shown in FIG.

図4(a)の定電圧充電動作時を例にとれば、並列接続された電池群へ定電圧を印加したときに流れる各電池群の充電電流は、次式のように表わされる。ただし、電池群に接続される外部配線抵抗は等しいものとする。
+IB=(VG−eB)/(RB+RL)
VG:発電機電圧、eB:電池内部起電圧、RB:電池内部抵抗、RL:配線抵抗
上式より各電池群の充電電流のバラツキは、電池内部起電圧eBと電池内部抵抗RBの差によって生じ、eBまたはRBが大きければ充電電流は小さく、eBまたはRBが小さければ充電電流は大きくなることが分かる。以下に、電池特性のバラツキ要因と電気的な因果関係を説明する。
Taking the case of the constant voltage charging operation of FIG. 4A as an example, the charging current of each battery group that flows when a constant voltage is applied to the battery groups connected in parallel is expressed by the following equation. However, the external wiring resistance connected to the battery group is assumed to be equal.
+ IB = (VG-eB) / (RB + RL)
VG: Generator voltage, eB: Battery internal electromotive voltage, RB: Battery internal resistance, RL: Wiring resistance From the above formula, the variation in the charging current of each battery group is caused by the difference between the battery internal electromotive voltage eB and the battery internal resistance RB. It can be seen that if eB or RB is large, the charging current is small, and if eB or RB is small, the charging current is large. Hereinafter, the cause of variation in battery characteristics and the electrical causal relationship will be described.

(1−1)電池内部起電圧eB:小
電池内部起電圧eBは材質・加工などのバラツキに起因して発生し、eBが小さいほど充電電流は大きくなる傾向を示す。すなわち、同一印加電圧であってもeB差によって充電電流差が生じるが、極端な電流差は電池内部異常の発生が予想される。
(1−2)電池内部抵抗RB:小
電池内部抵抗RBが小さいほど充電電流は大きくなる傾向にあり、極端なRB低下には電極間短絡が考えられ、見かけ上の充電電流(短絡電流)が大きくなる。すなわち、同一印加電圧であってもRB差によって充電電流差が生じ、極端な電流差は電池内部の異常発生が予想される。
(1−3)電池内部抵抗RB:大
電池内部抵抗RBが大きいほど充電電流は小さくなる傾向にあり、極端なRB増加には断線などが考えられ、見かけ上の充電電流は小さくなるか、または流れない。すなわち、同一印加電圧であってもRB差によって充電電流差が生じるが、極端な電流差は電池内部の異常発生が予想される。
(1-1) Battery Internal Electromotive Voltage eB: Small Battery internal electromotive voltage eB is generated due to variations in material and processing, and the charging current tends to increase as eB decreases. That is, even if the applied voltage is the same, a charging current difference is caused by the eB difference, but an abnormal current difference is expected to cause an abnormality in the battery.
(1-2) Battery internal resistance RB: Small The smaller the battery internal resistance RB, the larger the charging current tends to be. An extreme shortage of RB can cause a short circuit between electrodes, and the apparent charging current (short circuit current) is growing. That is, even with the same applied voltage, a charging current difference occurs due to the RB difference, and an abnormal current difference is expected to occur inside the battery.
(1-3) Battery internal resistance RB: Large The larger the battery internal resistance RB, the smaller the charging current tends to be, and an extreme increase in RB is considered to be a disconnection, and the apparent charging current is small, or Not flowing. That is, even if the applied voltage is the same, a charging current difference occurs due to the RB difference, but an abnormal current difference is expected to occur inside the battery.

(2)放電動作時のバラツキ
図3(b)は放電動作を説明する回路図である。
図示の一括放電電流−IBΣに対し、個別の電池群ごとに放電電流−IB1〜−IBmが流れるが、この各電池群の放電電流−IB1〜−IBmは図5のように、電池群ごとにバラツキがあり、互いに電流差を持って流れるものと予想される。
(2) Variation during discharge operation FIG. 3B is a circuit diagram for explaining the discharge operation.
With respect to the illustrated collective discharge current -IBΣ, discharge currents -IB1 to -IBm flow for each individual battery group. The discharge currents -IB1 to -IBm of each battery group are shown in FIG. There are variations and it is expected that they will flow with a difference in current.

図5の放電動作時を例にすれば、各電池群の放電電流は次式のように表わされる。ただし、電池群に接続される外部配線抵抗は等しいものとする。
−IB=−eB/(RB+RL+RLΣ)
eB:電池内部起電圧、RB:電池内部抵抗、RL:配線抵抗 RLΣ:等価負荷抵抗
Taking the discharge operation of FIG. 5 as an example, the discharge current of each battery group is expressed by the following equation. However, the external wiring resistance connected to the battery group is assumed to be equal.
−IB = −eB / (RB + RL + RLΣ)
eB: battery internal electromotive force, RB: battery internal resistance, RL: wiring resistance RLΣ: equivalent load resistance

各電池群の放電電流のバラツキは、電池内部起電圧eBと電池内部抵抗RBのバラツキによって生じる。すなわち、放電動作時の各電池群の「電流−電圧特性(I−V特性)」は電池内部起電圧eBと電池内部抵抗RBおよび放電電流による電圧降下とで決まる特性であるから、電池内部起電圧eBおよび電池内部抵抗RBのバラツキにより、各電池群のI−V特性は図5に示すようにバラツキを生じ、各電池群のI−V特性の差が電池群の放電電流の差として表われる。以下に、電池特性のバラツキ要因と電気的な因果関係を説明する。   The variation in the discharge current of each battery group is caused by the variation in the battery internal electromotive voltage eB and the battery internal resistance RB. That is, the “current-voltage characteristics (IV characteristics)” of each battery group during the discharge operation is determined by the battery internal electromotive voltage eB, the battery internal resistance RB, and the voltage drop due to the discharge current. Due to variations in the voltage eB and the battery internal resistance RB, the IV characteristics of each battery group vary as shown in FIG. 5, and the difference in the IV characteristics of each battery group is expressed as a difference in the discharge current of the battery group. Is called. Hereinafter, the cause of variation in battery characteristics and the electrical causal relationship will be described.

(2−1)電池内部起電圧eB:小
電池は、電池内部起電圧eBが小さくなると電池内部抵抗RBが大きくなり、電池内部起電圧eBが大きくなると電池内部抵抗RBが小さくなる傾向を示す。したがって、電池内部起電圧eBが小さければ、電池内部抵抗RBが大きいことによりI−V特性の傾斜は大きくなり、放電電流は小さくなる。すなわち、並列接続の電池群では全ての電池群端子電圧は同一であるから、内部起電圧eBの極端な低下は放電電流を小さくする。
(2−2)電池内部起電圧eB:大
電池内部起電圧eBが大きければ、電池内部抵抗RBが小さいことによりI−V特性の傾斜は小さくなり、放電電流は大きくなる。すなわち、並列接続の電池群では全ての電池群端子電圧は同一であるから、内部起電圧eBの極端な上昇は放電電流を大きくする。
(2-1) Battery Internal Electromotive Voltage eB: Small The battery has a tendency that the battery internal resistance RB increases when the battery internal electromotive voltage eB decreases, and the battery internal resistance RB decreases when the battery internal electromotive voltage eB increases. Therefore, if the battery internal electromotive voltage eB is small, the slope of the IV characteristic increases due to the large battery internal resistance RB, and the discharge current decreases. That is, since all battery group terminal voltages are the same in the battery group connected in parallel, an extreme decrease in the internal electromotive voltage eB reduces the discharge current.
(2-2) Battery Internal Electromotive Voltage eB: Large If the battery internal electromotive voltage eB is large, the slope of the IV characteristic is small and the discharge current is large because the battery internal resistance RB is small. That is, since all battery group terminal voltages are the same in the battery group connected in parallel, an extreme increase in the internal electromotive voltage eB increases the discharge current.

(2−3)電池内部抵抗RB:大
電池内部抵抗RBが大きければ、I−V特性の傾斜は大きくなり、放電電流は小さくなる。すなわち、並列接続の電池群では全ての電池群端子電圧は同一であるから、極端なRBの増加は放電電流を小さくする。
(2−4)電池内部抵抗RB:小
電池内部抵抗RBが小さければI−V特性の傾斜は小さくなり、放電電流は大きくなる。しかし、極端なRB低下は電池内部短絡が考えられ、電池内部起電圧eBが見かけ上小さくなったのと同じ現象と考えられる(上記2−1項参照)。この場合、並列接続の電池群では全ての電池群端子電圧は同一であるから、極端なeBの低下(内部短絡)は放電電流の減少となる。
(2-3) Battery Internal Resistance RB: Large If battery internal resistance RB is large, the slope of the IV characteristic increases and the discharge current decreases. That is, since all battery group terminal voltages are the same in the battery group connected in parallel, an extreme increase in RB reduces the discharge current.
(2-4) Battery Internal Resistance RB: Small If the battery internal resistance RB is small, the slope of the IV characteristic is small and the discharge current is large. However, an extreme decrease in RB is considered to be the same phenomenon as the battery internal electromotive voltage eB is apparently reduced due to a short circuit inside the battery (see section 2-1 above). In this case, since all battery group terminal voltages are the same in the battery group connected in parallel, an extreme decrease in eB (internal short circuit) results in a decrease in discharge current.

ところで、上記特許文献1〜3に提案の方法によれば、切替えながら電池を充電するので充電時間が長くなるだけでなく、切替えによって生じるノイズ発生が問題となる。
また、リチウムイオン電池はエネルギー密度が大きい利点を有する反面、「過充電による発火,爆発の危険性」が指摘され、加えて「過放電による電池特性の劣化が甚大であること」などが報告されていることから、充放電に際して細心の注意と厳密な監視・制御が必要になるとともに、複数の並列接続された電池群を一括充放電する場合には、特性バラツキに起因する劣化やダメージに対する適切な保護が要求される。
したがって、この発明の課題は、ノイズを発生させることなく充電時間の短縮化を図るとともに、適切な電池保護を可能にすることにある。
By the way, according to the method proposed in Patent Documents 1 to 3, since the battery is charged while switching, not only charging time is lengthened, but also noise generation caused by switching becomes a problem.
In addition, while lithium-ion batteries have the advantage of high energy density, "risk of ignition and explosion due to overcharge" has been pointed out, and in addition, "deterioration of battery characteristics due to overdischarge" is reported. Therefore, careful attention and strict monitoring and control are required for charging and discharging, and when charging and discharging multiple battery groups connected in parallel, appropriate measures against deterioration and damage due to characteristic variations are required. Protection is required.
Accordingly, an object of the present invention is to shorten the charging time without generating noise and to enable appropriate battery protection.

このような課題を解決するため、請求項1の発明では、n(2以上の自然数)個の電池が直列に接続された電池群がm(2以上の自然数)群並列に接続されてなる複数の電池群と、電動機を含む負荷と、前記複数の電池群への充電および負荷への電力供給を行なう原動機駆動発電機と、前記各電池群にそれぞれ直列に接続されたスイッチと、このスイッチをオン,オフ制御して前記複数の電池群の充放電制御を行なうとともに前記原動機駆動発電機の制御を行なう制御回路とを備え、
前記制御回路により電池群の一括充電を行なうときは、充電電流設定値または実充電電流値から充電電流平均値を求め、この充電電流平均値および実電池電圧値から、予め用意された充電電流許容バラツキマップを参照して前記充電電流平均値を基準とした充電電流許容バラツキ範囲の上,下限値を読み出し、これらと個々の電池群の充電電流とを比較し、許容バラツキ範囲を超えたら該当する前記スイッチをオフして充電を停止し、電池群を保護することを特徴とする。
この請求項1の発明においては、定電流充電の状態で前記スイッチをオフして電池群を切り離したときは、電池群数の減少に伴い他の健全電池群の充電電流が増加しないよう、電池群数減少分に相当する分だけ前記発電機の出力を低下させ、健全電池群の負担を軽減することができる(請求項2の発明)。
In order to solve such a problem, in the invention of claim 1, a plurality of battery groups in which n (natural number of 2 or more) batteries are connected in series are connected in parallel to m (natural number of 2 or more) groups. A battery group, a load including an electric motor, a motor-driven generator for charging the plurality of battery groups and supplying power to the loads, a switch connected in series to each of the battery groups, and the switch A control circuit that performs on / off control and performs charge / discharge control of the plurality of battery groups and control of the prime mover drive generator;
When batch charging of the battery group is performed by the control circuit, an average charging current value is obtained from the charging current setting value or the actual charging current value, and a charging current allowable value prepared in advance is calculated from the charging current average value and the actual battery voltage value. Read the upper and lower limits of the charging current allowable variation range based on the average charging current value with reference to the variation map, compare these with the charging current of each battery group, and apply if the allowable variation range is exceeded. The battery is protected by turning off the switch to stop charging.
In the first aspect of the invention, when the battery group is disconnected by turning off the switch in a constant current charge state, the battery does not increase the charging current of other healthy battery groups as the number of battery groups decreases. The output of the generator can be reduced by an amount corresponding to the decrease in the number of groups, and the burden on the healthy battery group can be reduced (invention of claim 2).

請求項3の発明では、n(2以上の自然数)個の電池が直列に接続された電池群がm(2以上の自然数)群並列に接続されてなる複数の電池群と、電動機を含む負荷と、前記複数の電池群への充電および負荷への電力供給を行なう原動機駆動発電機と、前記各電池群にそれぞれ直列に接続されたスイッチと、このスイッチをオン,オフ制御して前記複数の電池群の充放電制御を行なうとともに前記原動機駆動発電機の制御を行なう制御回路とを備え、
前記制御回路により電池群の一括放電を行なうときは、実放電電流値から放電電流平均値を求め、この放電電流平均値および実電池電圧値から、予め用意された放電電流許容バラツキマップを参照して前記放電電流平均値を基準とした放電電流許容バラツキ範囲の上,下限値を読み出し、これらと個々の電池群の放電電流とを比較し、許容バラツキ範囲を超えたら警報を発し、該当する前記電池群を回路から切り離して電池群を保護することを特徴とする。
この請求項3の発明においては、前記電池群の回路からの切り離しは、スイッチによる手動操作または自動操作とすることができる(請求項4の発明)。
In the invention of claim 3, a load including a plurality of battery groups in which a battery group in which n (natural number of 2 or more) batteries are connected in series is connected in parallel to m (natural number of 2 or more) groups, and an electric motor A prime mover drive generator for charging the plurality of battery groups and supplying power to the load, a switch connected in series to each of the battery groups, and turning on and off the switch to control the plurality of the plurality of battery groups A charge / discharge control of the battery group and a control circuit for controlling the prime mover drive generator,
When performing the collective discharge of the battery group by the control circuit, the discharge current average value is obtained from the actual discharge current value, and the discharge current allowable variation map prepared in advance is referred to from the average discharge current value and the actual battery voltage value. The upper and lower limits of the discharge current allowable variation range based on the average discharge current value are read out, and these are compared with the discharge currents of the individual battery groups. When the allowable variation range is exceeded, an alarm is issued and the corresponding The battery group is separated from the circuit to protect the battery group.
In the invention of claim 3, the battery group can be disconnected from the circuit by manual operation or automatic operation by a switch (invention of claim 4).

この発明によれば、ノイズ発生のない連続した定電圧充電または定電流充電により、並列接続された複数の電池群を一括充電することで充電時間の短縮化を図るとともに、充放電動作における個別電池群のバラツキによって充放電電流が許容値を超えたときには、該当する電池群の充電または放電を停止して電池群の保護を行なうことが可能となる。   According to the present invention, the charging time is shortened by batch charging a plurality of battery groups connected in parallel by continuous constant-voltage charging or constant-current charging without generating noise, and the individual batteries in the charge / discharge operation When the charge / discharge current exceeds an allowable value due to the variation in the group, it becomes possible to stop the charging or discharging of the corresponding battery group to protect the battery group.

図1はこの発明の実施の形態を示す構成図である。なお、図1において、1,2は単電池が複数セル直列接続されてなる電池群(B1,Bm)、3,4は半導体素子(Q1,Qm)とダイオード(D1,Dm)との逆並列回路からなるスイッチ回路、5,6,9,13,26は電流検出器、7,8,10,14は電圧検出器、11は発電機の駆動用原電動機(DE)、12は発電機(G)、15は補機(L)、16は推進電動機(M)、17はプログラム設定装置、18はパルス充電スイッチ(SWP)、19は充電切替スイッチ(SWC)、20は浮動充電スイッチ(SWF)、21は電圧設定器(VRV)、22は電流設定器(VRI)、23は充放電制御回路&電池状態監視装置、24は充電制御切替スイッチ(SWvc)、25は発電機制御装置、27は発電機界磁、28は充放電電流許容バラツキマップ、30は警報器、31〜34はスイッチ、35,36はスイッチ(SW1,SWm)を示す。   FIG. 1 is a block diagram showing an embodiment of the present invention. In FIG. 1, 1 and 2 are battery groups (B1, Bm) in which a plurality of cells are connected in series, and 3 and 4 are anti-parallel semiconductor elements (Q1, Qm) and diodes (D1, Dm). Switch circuit comprising circuits, 5, 6, 9, 13, 26 are current detectors, 7, 8, 10, 14 are voltage detectors, 11 is a generator motor (DE) for driving the generator, 12 is a generator ( G), 15 is an auxiliary machine (L), 16 is a propulsion motor (M), 17 is a program setting device, 18 is a pulse charge switch (SWP), 19 is a charge switch (SWC), 20 is a floating charge switch (SWF) ), 21 is a voltage setting device (VRV), 22 is a current setting device (VRI), 23 is a charge / discharge control circuit & battery state monitoring device, 24 is a charge control changeover switch (SWvc), 25 is a generator control device, 27 Is the generator field, 28 is the charge / discharge electricity Allowable variation map, 30 alarm, 31 - 34 switches, 35 and 36 are switches (SW1, SWm).

A)充電時の保護動作
A−1)まず、定電圧充電動作の場合について説明する。この場合は、充電切替スイッチSWC19を定電圧側に切替える。これにより、充放電制御回路&電池状態監視装置23は充電制御切替スイッチSWVC24を電圧側へ切替えるとともに、所定の全充電電流+IBΣを得るために発電機電圧設定器VRV21からの発電機電圧指令VGsを出力し、発電機制御装置25に与える。
A) Protection operation during charging A-1) First, the case of constant voltage charging operation will be described. In this case, the charge switch SWC19 is switched to the constant voltage side. Thereby, the charge / discharge control circuit & battery state monitoring device 23 switches the charge control changeover switch SW VC 24 to the voltage side, and generates a generator voltage command from the generator voltage setting unit VRV21 in order to obtain a predetermined total charge current + IBΣ. VGs are output and supplied to the generator control device 25.

発電機制御装置25は、この発電機電圧指令VGsを設定値として発電機電圧検出器VDG14の検出信号VGiと、発電機電流検出器SHG13の検出信号IGiと、発電機界磁電流検出器SHGF26の検出信号IGfiとをフィードバック信号とし、発電機の界磁GF27の電流IGfを調節して発電機電圧を制御する。
この発電機電圧制御により、補機L15および電動機M16等の負荷が変動しても、安定した発電機電圧VGを電池群に与えて全充電電流+IBΣを供給することができる。
The generator control device 25 sets the generator voltage command VGs as a set value, the detection signal VGi of the generator voltage detector VDG14, the detection signal IGi of the generator current detector SHG13, and the generator field current detector SHGF26. The detection signal IGfi is used as a feedback signal, and the generator voltage is controlled by adjusting the current IGf of the generator field GF27.
By this generator voltage control, even if the loads of the auxiliary machine L15, the electric motor M16, etc. fluctuate, it is possible to supply a stable generator voltage VG to the battery group and supply the total charging current + IBΣ.

A−2)次に、定電流充電動作の場合について説明する。この場合は、充電切替スイッチSWC19を定電流側に切替える。これにより、充放電制御回路&電池状態監視装置23は充電制御切替スイッチSWVC24を電流側へ切替えるとともに、所定の全充電電流+IBΣとなるように電流設定器VRI22からの電池電流指令IBsを出力し、発電機制御装置25に与える。 A-2) Next, the case of constant current charging operation will be described. In this case, the charge switch SWC19 is switched to the constant current side. As a result, the charge / discharge control circuit & battery state monitoring device 23 switches the charge control changeover switch SW VC 24 to the current side, and outputs the battery current command IBs from the current setting unit VRI22 so as to obtain a predetermined total charge current + IBΣ. To the generator control device 25.

発電機制御装置25は、この電池電流指令IBsを設定値として電池電流検出器SHB9で検出した検出信号IBiと、発電機電圧検出器VDG14で検出した検出信号VGiと、発電機電流検出器SHG13で検出した検出信号IGiと、発電機界磁電流検出器SHGF26で検出した検出信号IGfiとをフィードバック信号として、発電機の界磁GF27の電流IGfを調節して全充電電流+IBΣが電池電流指令値IBsとなるように発電機を制御する。
この発電機電流制御により、補機L15および電動機M16等の負荷が変動しても、安定した全充電電流+IBΣを発電機から供給することができる。
The generator control device 25 uses the battery current command IBs as a set value, the detection signal IBi detected by the battery current detector SHB9, the detection signal VGi detected by the generator voltage detector VDG14, and the generator current detector SHG13. Using the detected signal IGi detected and the detected signal IGfi detected by the generator field current detector SHGF26 as a feedback signal, the current IGf of the field GF27 of the generator is adjusted and the total charging current + IBΣ becomes the battery current command value IBs. The generator is controlled so that
By this generator current control, even if the loads of the auxiliary machine L15, the electric motor M16, etc. fluctuate, a stable total charging current + IBΣ can be supplied from the generator.

充電時の動作を示す図4(a),(b)において、+IBΣは発電機から供給される全充電電流であり、また、+IB1〜+IBmは電池群B1〜Bmの各充電電流であって、電流バラツキが生じている状態を示している。
図2(a)は、上記のような並列接続された電池群B1〜Bmの充電電流のバラツキを、充電電流IBを横軸,電池電圧VBiを縦軸とした平面上で例示したものであり、ある時点での電池群B1〜Bmの各充電動作状態(+IB1,VBit)〜(+IBm,VBit)が黒丸印で示されている。
4 (a) and 4 (b) showing the operation at the time of charging, + IBΣ is a total charging current supplied from the generator, and + IB1 to + IBm are charging currents of the battery groups B1 to Bm, It shows a state where current variation occurs.
FIG. 2A illustrates the variation in the charging current of the battery groups B1 to Bm connected in parallel as described above on a plane with the charging current IB as the horizontal axis and the battery voltage VBi as the vertical axis. The charging operation states (+ IB1, VBit) to (+ IBm, VBit) of the battery groups B1 to Bm at a certain time are indicated by black circles.

ここで、図2(a)に示すImeは、設定器22からの電流指令(設定)値IBs、または電池電流検出器SHB9で検出した電池群合計充電電流IBiを全充電電流+IBΣとして扱い、これを充放電制御回路&電池状態監視装置23により電池群数mで除して求めた平均電流値(Ime=IBΣ/m)(ここで、IBΣ=IBsまたはIBΣ=IBi)であり、充放電制御回路&電池状態監視装置23は、この平均電流値Imeを充放電電流許容バラツキマップ28に与える。なお、全充電電流+IBΣとして扱う電流値は、定電圧充電動作では電池群合計充電電流IBiであり、また、定電流充電動作では電流指令値IBsまたは電池群合計充電電流IBiのいずれでもよいが、平均電流値Imeを求める手段を定電圧充電動作の場合と統一するという点からは、実充電電流である電池群合計充電電流IBiの方が好適である。
図2(a)におけるIBmxおよびIBmnは、充放電電流許容バラツキマップ28から出力される充電電流許容バラツキの上限側制限値および下限側制限値を示すものであり、図2(a)では電池群Bmの充電電流+IBmが上限側制限値IBmxを超えた状態が示されている。
Here, Ime shown in FIG. 2 (a) treats the current command (set) value IBs from the setter 22 or the battery group total charge current IBi detected by the battery current detector SHB9 as the total charge current + IBΣ. Is the average current value (Ime = IBΣ / m) (where IBΣ = IBs or IBΣ = IBi) obtained by dividing by the number m of battery groups by the charge / discharge control circuit & battery state monitoring device 23, and charge / discharge control The circuit & battery state monitoring device 23 gives this average current value Ime to the charge / discharge current allowable variation map 28. Note that the current value treated as the total charging current + IBΣ is the battery group total charging current IBi in the constant voltage charging operation, and may be either the current command value IBs or the battery group total charging current IBi in the constant current charging operation. The battery group total charging current IBi, which is the actual charging current, is more preferable from the viewpoint that the means for obtaining the average current value Ime is unified with the case of the constant voltage charging operation.
IBmx and IBmn in FIG. 2A indicate the upper limit side limit value and the lower limit side limit value of the charge current allowable variation output from the charge / discharge current allowable variation map 28. In FIG. A state in which the charging current + IBm of Bm exceeds the upper limit side limit value IBmx is shown.

図1において、充放電電流許容バラツキマップ28は、充放電制御回路&電池状態監視装置23から上記の平均電流値Imeとともに電池電圧VBiが入力され、これらの値からマップに格納されているバラツキの上限側制限値IBmxおよび下限側制限値IBmnを求めて、充放電制御回路&電池状態監視装置23に出力する。
充放電電流許容バラツキマップ28における充電電流許容バラツキマップは、電池群B1〜Bmが並列接続されてなる電池システムの平均電流Imeおよび電池電圧VBiで規定される充電動作状態ごとに許容バラツキ範囲が設定されたものとなっており、これを図6で説明する。
In FIG. 1, a charge / discharge current allowable variation map 28 is inputted with the battery voltage VBi together with the above average current value Ime from the charge / discharge control circuit & battery state monitoring device 23, and the variation stored in the map from these values. An upper limit side limit value IBmx and a lower limit side limit value IBmn are obtained and output to the charge / discharge control circuit & battery state monitoring device 23.
The charge current allowable variation map in the charge / discharge current allowable variation map 28 sets an allowable variation range for each charging operation state defined by the average current Ime and the battery voltage VBi of the battery system in which the battery groups B1 to Bm are connected in parallel. This will be described with reference to FIG.

図6は、充電動作時の許容バラツキマップの説明図であり、この図において、横軸は平均電流値Ime、縦軸は電池電圧VBiであり、黒丸で示されたIme−VBi平面上の交点A〜Fは、それぞれ、(Ime=ImeA,VBi=VBiA)〜(Ime=ImeF,VBi=VBiF)に対応する電池システムの充電動作状態を示すものであり、このような交点ごとに許容バラツキ範囲データが格納されている。そして、充放電電流許容バラツキマップ28に入力された平均電流Imeおよび電池電圧VBiが、例えば、それぞれIme=ImeA,VBi=VBiAであれば、交点Aの充電動作状態と判別し、対応する許容バラツキ範囲データが読み出され、バラツキの上限側制限値IBmx(=IBmxA)および下限側制限値IBmn(=IBmnA)として出力される。各交点ごとに格納される許容バラツキ範囲データとしては、上記のような制限値IBmx,IBmn自体を格納しておいてもよく、また、許容バラツキ範囲の平均電流値Imeに対する割合、すなわち、上限側係数Kmx(%),下限側係数Kmn(%)を交点ごとに格納しておいて、電池システムの充電動作状態に対応して読み取られた係数Kmx,Kmnを用いて、制限値IBmx=(1+Kmx)*Ime,IBmn(1−Kmn)*Imeを演算するようにしてもよい。   FIG. 6 is an explanatory diagram of an allowable variation map during the charging operation, in which the horizontal axis is the average current value Ime, the vertical axis is the battery voltage VBi, and the intersection point on the Ime-VBi plane indicated by a black circle. A to F indicate charging operation states of the battery system corresponding to (Ime = ImeA, VBi = VBiA) to (Ime = ImeF, VBi = VBiF), respectively, and an allowable variation range for each such intersection. Data is stored. If the average current Ime and the battery voltage VBi input to the charge / discharge current allowable variation map 28 are, for example, Ime = ImeA and VBi = VBiA, respectively, it is determined that the charging operation state is at the intersection A, and the corresponding allowable variation. The range data is read and output as a variation upper limit value IBmx (= IBmxA) and a lower limit value IBmn (= IBmnA). As the allowable variation range data stored for each intersection, the limit values IBmx and IBmn as described above may be stored, and the ratio of the allowable variation range to the average current value Ime, that is, the upper limit side The coefficient Kmx (%) and the lower limit coefficient Kmn (%) are stored for each intersection, and the limit value IBmx = (1 + Kmx) using the coefficients Kmx and Kmn read corresponding to the charging operation state of the battery system. ) * Ime, IBmn (1-Kmn) * Ime may be calculated.

次に、充電動作状態に応じて許容バラツキ範囲をどのように設定するかについて、その一例を図6により説明する。図6において破線の楕円形で表現されたゾーン<1>〜<3>は、それぞれ、電池内部起電圧eBが低く充電電流が大きな充電初期状態、充電中期状態および充電終期(満充電付近)の状態を示すものであり、例えば、ゾーン<1>内の交点A〜Bでは±10〜15%の許容バラツキ範囲、ゾーン<2>内の交点C〜Dでは±5〜10%の許容バラツキ範囲、ゾーン<3>内の交点E〜Fでは±5%の許容バラツキ範囲が設定されており、充電初期および充電中期では許容バラツキ範囲を広くし、充電終期(満充電付近)では許容バラツキ範囲を狭くして電池保護を厳しく管理・チェックするようにしている。なお、図6では、上記のようなゾーンごとでの許容バラツキ範囲の違いを、交点A〜Fの黒丸印の大きさの違いで表現している。   Next, an example of how to set the allowable variation range according to the charging operation state will be described with reference to FIG. Zones <1> to <3> represented by broken-line ellipses in FIG. 6 are in an initial charging state, an intermediate charging state, and an end of charging (near full charge) where the battery internal electromotive voltage eB is low and the charging current is large. For example, the allowable variation range of ± 10 to 15% at the intersections A to B in the zone <1>, and the allowable variation range of ± 5 to 10% at the intersections C to D in the zone <2>. The allowable variation range of ± 5% is set at the intersections E to F in the zone <3>. The allowable variation range is widened at the beginning and middle of charging, and the allowable variation range at the end of charging (near full charge). It is narrowed so that battery protection is strictly controlled and checked. In FIG. 6, the difference in the allowable variation range for each zone as described above is expressed by the difference in the size of the black circles at the intersections A to F.

また、図6による上記の説明では、ゾーン<1>〜<3>に対応して許容バラツキ範囲を3段階に設定する例を示したが、このようなゾーンの分け方は任意であり、許容バラツキ範囲を充電動作状態に合わせてよりきめ細かに変えて設定するようにしてもよい。なお、上記のような許容バラツキ範囲の具体的な設定値は、対象となる電池の構造,形式,容量,電池システムとしての規模,使い方などに合わせて定めた管理基準に基づいて決めるようにする。
また、ゾーン<4>で示されるような、電池電圧が低い状態であって、何らかの理由で充電電流を下げた充電動作状態では、充電電流が小さくても許容バラツキ範囲を狭めることはない。ゾーン<5>で示されるような、電池電圧が高いのに充電電流を大きくするような充電動作状態は、通常の充電動作状態ではないので、ゾーン<5>のような充電動作状態が判別された場合には、「異常」,「禁止」などの警告または充電低減、停止などの処置を講ずるようにしてもよい。
Further, in the above description with reference to FIG. 6, an example in which the allowable variation range is set in three stages corresponding to the zones <1> to <3> has been shown. The variation range may be set by changing more finely according to the charging operation state. In addition, the specific setting value of the allowable variation range as described above should be determined based on the management criteria determined in accordance with the structure, type, capacity, scale, usage, etc. of the target battery. .
Further, in a charging operation state in which the battery voltage is low as shown by zone <4> and the charging current is lowered for some reason, the allowable variation range is not narrowed even if the charging current is small. The charging operation state in which the charging current is increased even though the battery voltage is high, as indicated by the zone <5>, is not the normal charging operation state, so the charging operation state as in the zone <5> is determined. In such a case, a warning such as “abnormal” or “prohibited” or measures such as charge reduction or stop may be taken.

以上のように充放電電流許容バラツキマップ28から読み出した電流制限値IBmx,IBmnと、図1の各電池群に設けた電流検出器SH1〜SHmで検出した充電電流+IB1〜+IBmとを充放電制御回路&電池状態監視装置23内で比較し、電流検出値+IB1〜+IBmが制限値IBmx,IBmnで設定された許容バラツキ範囲を超えたら、充放電制御回路&電池状態監視装置23は該当する電池群の半導体素子Q1〜QmへOFF指令Q1dv〜Qmdvを出して充電を停止させ、電池保護を行なうとともに健全電池群に対する充電を継続させ、システムの安全運転を確保するようにしている。   As described above, the current limiting values IBmx and IBmn read from the charge / discharge current allowable variation map 28 and the charge currents + IB1 to + IBm detected by the current detectors SH1 to SHm provided in each battery group in FIG. If the current detection values + IB1 to + IBm exceed the allowable variation range set by the limit values IBmx and IBmn when compared in the circuit & battery state monitoring device 23, the charge / discharge control circuit & battery state monitoring device 23 corresponds to the corresponding battery group. An OFF command Q1dv to Qmdv is issued to the semiconductor elements Q1 to Qm to stop charging, protect the battery and continue to charge the healthy battery group to ensure safe operation of the system.

なお、定電流充電モードでは、上述の電池保護動作により電池群を切り離し電池群の群数が減少した場合、そのまま放置すると充電を継続する健全電池群一群当たりの充電電流が増加して好ましくない。そこで、充放電制御回路&電池状態監視装置23は、停止した電池群数がnxである場合、発電機電流指令値IBsをIBsx=IBΣ×(m−nx)/m(ここで、m:全電池群数、nx:停止した電池群数)へ変更し、健全電池群の充電電流増加を抑制する。
また、上記のように、定電流充電モードでは、全電池群数mのうちnx群の電池群が許容バラツキ範囲を超えて切り離されたとき、(m−nx)群の健全電池群の一群当たりの充電電流増加を抑制するために、発電機電流指令値をIBs=IBΣからIBsx=IBΣ×(m−nx)/mに変更し、発電機出力を低下させる制御を行なうが、この発電機出力低下制御の整定時間の間、健全電池群一群当たりの充電電流IBが過渡的に増加する。
In the constant current charging mode, when the battery group is disconnected by the above-described battery protection operation and the number of battery groups decreases, if left as it is, the charging current per group of healthy battery groups that continue charging is not preferable. Therefore, when the number of stopped battery groups is nx, the charge / discharge control circuit & battery state monitoring device 23 sets the generator current command value IBs to IBsx = IBΣ × (m−nx) / m (where m: all The number of battery groups, nx: the number of stopped battery groups), and the increase in charging current of the healthy battery group is suppressed.
Further, as described above, in the constant current charging mode, when the battery group of the nx group out of the total battery group number m is separated beyond the allowable variation range, the group of the healthy battery group of the (m−nx) group In order to suppress the increase in charging current, the generator current command value is changed from IBs = IBΣ to IBsx = IBΣ × (m−nx) / m, and control is performed to reduce the generator output. During the settling time of the decrease control, the charging current IB per group of healthy battery groups increases transiently.

これに対して、許容バラツキ範囲の上限側制限値IBmxおよび下限側制限値IBmnを求めるための平均電流値Imeを電流指令値IBsから求めている場合、平均電流値Imeは、発電機電流指令値の変更後も、Ime=IBsx/(m−nx)={IBΣ×(m−nx)/m}/(m−nx)=IBΣ/mであって、発電機電流指令値変更前の平均電流値Ime=IBΣ/mから変化しないので、上限側制限値IBmxおよび下限側制限値IBmnも、発電機電流指令値変更前後で変化しない。このため、発電機電流指令値変更時における発電機出力低下制御の整定時間の間、健全電池群一群当たりの充電電流IBのみが過渡的に増加するので、この充電電流IBの過渡的増加量が大きい場合は、許容バラツキ範囲を超えて、バラツキ異常と誤検出してしまう可能性がある。   On the other hand, when the average current value Ime for obtaining the upper limit value IBmx and the lower limit value IBmn of the allowable variation range is obtained from the current command value IBs, the average current value Ime is the generator current command value. Ime = IBsx / (m−nx) = {IBΣ × (m−nx) / m} / (m−nx) = IBΣ / m, and the average current before the generator current command value is changed Since the value Ime = IBΣ / m does not change, the upper limit value IBmx and the lower limit value IBmn do not change before and after the generator current command value is changed. For this reason, only the charging current IB per group of healthy battery groups transiently increases during the settling time of the generator output reduction control when the generator current command value is changed. Therefore, the transient increase amount of the charging current IB is increased. If it is larger, the allowable variation range may be exceeded and a variation abnormality may be erroneously detected.

また、平均電流値Imeを実充電電流である電池群合計充電電流IBiから求めている場合は、上記のような健全電池群一群当たりの充電電流IBの過渡的な増加に対応して健全電池群での実際の平均電流値も過渡的に増加するが、平均電流値Imeを演算し上限側制限値IBmxおよび下限側制限値IBmnを求めるための処理時間の遅れがあるため、上限側制限値IBmxおよび下限側制限値IBmnは健全電池群一群当たりの充電電流IBの過渡的な増加にそのまま追従はしないので、充電電流IBの過渡的増加量が大きい場合は、許容バラツキ範囲を超えて、バラツキ異常と誤検出してしまう可能性がある。このようなバラツキ異常の誤検出を防止するため、異常電池群切り離し時には、タイマーにより、バラツキ異常検出処理を所定時間マスキングするようにするとよい。   Further, when the average current value Ime is obtained from the battery group total charge current IBi that is the actual charge current, the healthy battery group corresponding to the transient increase in the charging current IB per group of the healthy batteries as described above. The actual average current value at the time also increases transiently. However, since there is a processing time delay for calculating the average current value Ime and obtaining the upper limit value IBmx and the lower limit value IBmn, the upper limit value IBmx And the lower limit side limit value IBmn does not follow the transient increase of the charging current IB per group of healthy batteries as it is, so if the transient increase of the charging current IB is large, the allowable variation range is exceeded and the variation is abnormal. May be erroneously detected. In order to prevent such erroneous detection of variation abnormality, it is preferable to mask the variation abnormality detection process for a predetermined time by a timer when the abnormal battery group is disconnected.

また、ある電池群の直列セルにおいて内部短絡が発生したことを想定すると、このような状態は、その電池群の直列起電圧eBが低下し、他の健全電池群に比べて見かけ上の充電電流が増加するという電池の異常状態であるから、この異常状態の検出信号によって直列接続された半導体素子をOFFすれば電池群は保護される。かつ、該当する半導体素子と逆並列接続されたダイオードD1〜Dmによって発電機電圧、および他の健全電池群からの電流流入がブロックされるから、他の健全回路へ影響を与えることなく、システムの安全運転が継続される。   Assuming that an internal short circuit has occurred in a series cell of a certain battery group, such a state reduces the series electromotive voltage eB of that battery group, and the apparent charging current compared to other healthy battery groups. The battery group is protected if the semiconductor elements connected in series are turned off by the detection signal of the abnormal state. In addition, since the generator voltage and the current inflow from other healthy battery groups are blocked by the diodes D1 to Dm connected in antiparallel with the corresponding semiconductor elements, the system can be operated without affecting other healthy circuits. Safe driving continues.

また、定電圧充電動作の場合、一般的な電池における電池内部抵抗の温度係数は負であるため、印加電圧VBが一定であっても、IB=(VB−eB)/RB(ここで、IB:充電電流、eB:電池内部起電圧、RB:電池内部抵抗)の関係によって、温度上昇により分母の電池内部抵抗RBが減少し充電電流IBが増加し、充電電流IBが増加すると電池内部損失IB2*RBが増加して電池温度が上昇し、電池温度が上昇すると電池内部抵抗RBが減少する、という熱暴走状態が発生する可能性があるが、電池温度が上昇して充電電流IBが増加し、許容バラツキ範囲を超えたときにはその電池に該当するスイッチをOFFして充電を停止することにより、電池温度上昇による障害発生を防止することができる。
なお、この発明の電池の保護方式における複数電池群の一括充電の充電パターンは、充電初期から終期まで定電圧充電あるいは定電流充電のみを行なう充電パターンに限定されるものではなく、充電初期から終期にわたって定電圧充電と定電流充電との充電モード切換えや設定電圧値または設定電流値の変更を行なうような充電パターンでもよい。
In the case of the constant voltage charging operation, the temperature coefficient of the battery internal resistance in a general battery is negative. Therefore, even if the applied voltage VB is constant, IB = (VB−eB) / RB (where IB : Charging current, eB: battery internal electromotive voltage, RB: battery internal resistance), the battery internal resistance RB of the denominator decreases and the charging current IB increases due to the temperature rise, and the battery internal loss IB increases when the charging current IB increases. 2 * The battery temperature rises due to the increase in RB, and if the battery temperature rises, the battery internal resistance RB may decrease, which may cause a thermal runaway condition, but the battery temperature increases and the charging current IB increases. Then, when the allowable variation range is exceeded, by turning off the switch corresponding to the battery and stopping the charging, it is possible to prevent the occurrence of a failure due to the battery temperature rise.
Note that the charging pattern for batch charging of a plurality of battery groups in the battery protection method of the present invention is not limited to a charging pattern in which only constant voltage charging or constant current charging is performed from the initial charging stage to the final charging period. The charging pattern may be such that the charging mode is switched between constant voltage charging and constant current charging or the set voltage value or set current value is changed.

B)放電時の保護動作
放電時の動作(電流−電圧特性)を示す図5において、−IBΣは並列接続された各電池群からの放電電流が合計された全放電電流であり、また、−IB1〜−IBmは電池群B1〜Bmの各放電電流であって、各電池群の電流−電圧特性(I−V特性)のバラツキによって電流バラツキが生じている。
図2(b)は、上記のような並列接続された電池群B1〜Bmの放電電流のバラツキを、放電電流IBを横軸、電池電圧VBiを縦軸とした平面上で例示したものであり、ある時点での電池群B1〜Bmの各放電動作状態(−IB1,VBit)〜(−IBm,VBit)が黒丸印で示されている。
B) Protective operation at the time of discharge In FIG. 5 showing the operation at the time of discharge (current-voltage characteristics), −IBΣ is the total discharge current obtained by summing the discharge currents from the battery groups connected in parallel, and − IB1 to -IBm are discharge currents of the battery groups B1 to Bm, and current variations are caused by variations in the current-voltage characteristics (IV characteristics) of the battery groups.
FIG. 2B illustrates the variation of the discharge currents of the battery groups B1 to Bm connected in parallel as described above on a plane with the discharge current IB as the horizontal axis and the battery voltage VBi as the vertical axis. The discharge operation states (−IB1, VBit) to (−IBm, VBit) of the battery groups B1 to Bm at a certain time are indicated by black circles.

ここで、図2(b)に示す電流Imeは放電電流の平均値であり、電流検出器SHB9
で検出した信号IBiをIBΣとして電池群数mで除した値、すなわち、充放電制御回路&電池状態監視装置23内で、Ime=IBΣ(=IBi)/mなる演算にて求めた値であり、充放電制御回路&電池状態監視装置23は、この平均電流値Imeを充放電電流許容バラツキマップ28に与える。
また、図2(b)におけるIBmx,IBmnは、充放電電流許容バラツキマップ28から出力される放電電流許容バラツキの上限側制限値および下限側制限値を示すものであり、図2(b)では、電池群Bmの放電電流−IBmがIBmxを超えた状態が示されている。
図1において、充電動作の場合と同様に、充放電電流許容バラツキマップ28は、充放電制御回路&電池状態監視装置23から上記の平均電流値Imeとともに電池電圧VBiが入力され、これらの値からマップに格納されているバラツキの上限側制限値IBmxおよび下限側制限値IBmnを求めて、充放電制御回路&電池状態監視装置23に出力する。
Here, the current Ime shown in FIG. 2B is an average value of the discharge current, and the current detector SHB9.
The value obtained by dividing the signal IBi detected in step IBΣ by IBΣ by the number of battery groups m, that is, the value obtained by the calculation of Ime = IBΣ (= IBi) / m in the charge / discharge control circuit & battery state monitoring device 23 The charge / discharge control circuit & battery state monitoring device 23 gives this average current value Ime to the charge / discharge current allowable variation map 28.
Further, IBmx and IBmn in FIG. 2B indicate the upper limit side limit value and the lower limit side limit value of the discharge current allowable variation output from the charge / discharge current allowable variation map 28, and in FIG. The state where the discharge current -IBm of the battery group Bm exceeds IBmx is shown.
In FIG. 1, as in the case of the charging operation, the charge / discharge current allowable variation map 28 is inputted with the battery voltage VBi from the charge / discharge control circuit & battery state monitoring device 23 together with the above average current value Ime. The variation upper limit side limit value IBmx and lower limit side limit value IBmn stored in the map are obtained and output to the charge / discharge control circuit & battery state monitoring device 23.

充放電電流許容バラツキマップ28における放電電流許容バラツキマップは、上述の図6により説明した充電電流許容バラツキマップの場合と同様に、電池群B1〜Bmが並列接続されてなる電池システムの平均電流Imeおよび電池電圧VBiで規定される放電動作状態ごとに許容バラツキ範囲が設定されたものとなっており、これを図7で説明する。
図7は、放電動作時の許容バラツキマップの説明図であり、この図において、横軸は平均電流値Ime、縦軸は電池電圧VBiであり、破線の楕円形で表現されたゾーン<1>および<2>は、それぞれ、電池電圧VBiが高く電池残存量が多い領域および電池電圧VBiが低く電池残存量が少ない領域を示すものであり、例えば、ゾーン<1>内では放電電流の大小に関わらず±10〜15%の許容バラツキ範囲とし、ゾーン<2>内では±5〜10%という狭めた許容バラツキ範囲で電池管理を行なうようにしている。放電時のバラツキ管理はそれほど厳しくしなくても良いと考えられるが、電池電圧が低い放電終止領域では、電池バラツキにより発生する過放電を防止するなどの観点から、上記の例のように放電電流の許容バラツキ範囲を狭めた方が良いと考えられる。
The discharge current allowable variation map in the charge / discharge current allowable variation map 28 is the average current Ime of the battery system in which the battery groups B1 to Bm are connected in parallel as in the case of the charge current allowable variation map described with reference to FIG. The allowable variation range is set for each discharge operation state defined by the battery voltage VBi, which will be described with reference to FIG.
FIG. 7 is an explanatory diagram of an allowable variation map at the time of discharging operation, in which the horizontal axis is the average current value Ime, the vertical axis is the battery voltage VBi, and the zone <1> expressed by a dashed ellipse. And <2> indicate a region where the battery voltage VBi is high and the remaining battery amount is large, and a region where the battery voltage VBi is low and the remaining battery amount is small, respectively. Regardless, the allowable variation range is ± 10 to 15%, and battery management is performed within a narrow allowable variation range of ± 5 to 10% in the zone <2>. Although it is considered that variation management at the time of discharge does not have to be so strict, in the discharge termination region where the battery voltage is low, the discharge current is as shown in the above example from the viewpoint of preventing overdischarge caused by battery variation. It is considered better to narrow the permissible variation range.

なお、図7では図示していないが、放電電流許容バラツキマップにおいても、図6で説明した充電電流許容バラツキマップの場合と同様に、充放電電流許容バラツキマップ28に入力された平均電流Imeおよび電池電圧VBiが、例えば、それぞれIme=ImeG,VBi=VBiGであれば、それに対応するIme−VBi平面上の交点G(ImeG,VBiG)での許容バラツキ範囲データが読み出され、バラツキの上限側制限値IBmx(=IBmxG)および下限側制限値IBmn(=IBmnG)として出力される。   Although not shown in FIG. 7, in the discharge current allowable variation map, as in the case of the charge current allowable variation map described with reference to FIG. If the battery voltage VBi is, for example, Ime = ImeG and VBi = VBiG, respectively, the allowable variation range data at the corresponding intersection point G (ImeG, VBiG) on the Ime-VBi plane is read, and the upper limit side of the variation The limit value IBmx (= IBmxG) and the lower limit limit value IBmn (= IBmnG) are output.

以上のように充電電流許容バラツキマップ28から読み出した電流制限値IBmx,IBmnと、図1の各電池群に設けた電流検出器SH1〜SHmで検出した放電電流−IB1〜−IBmとを充放電制御回路&電池状態監視装置23内で比較し、電流検出値−IB1〜−IBmが制限値IBmx,IBmnで設定された許容バラツキ範囲を超えたら、充放電制御回路&電池状態監視装置23がこれを判断して、警報器30から警報を発生させる。   As described above, the current limit values IBmx and IBmn read from the charge current allowable variation map 28 and the discharge currents -IB1 to -IBm detected by the current detectors SH1 to SHm provided in each battery group in FIG. 1 are charged and discharged. When the current detection values -IB1 to -IBm exceed the allowable variation range set by the limit values IBmx and IBmn when compared in the control circuit & battery state monitoring device 23, the charge / discharge control circuit & battery state monitoring device 23 And an alarm is generated from the alarm device 30.

ここで、電池放電のみで負荷へ電力を供給する場合、電池から負荷への電力供給が不用意に停止しないようにするため、ある電池群の放電電流バラツキ異常が発生しても、先ずは警報出力だけさせておいて、その上で、電池,発電機および負荷を含むシステム全体の状況を十分に把握した上での判断により、異常電池群の切り離しを手動操作で行なうことができるようにしておくことが好ましい。このため、スイッチSW1〜SWm(35,36)を設け、このスイッチを手動操作により開路して当該電池群を切り離すことができるようにする。
このような、放電動作時の電池群切り離し用のスイッチSW1〜SWmとしては、放電動作時の電流は大きいことを考慮すると、通電損失の小さい機械接点式スイッチが好適であるが、半導体スイッチも適用可能である。スイッチSW1〜SWmに適用する機械接点式スイッチとしては、例えば負荷開閉器等の開閉器でもよく、遮断器でもよい。なお、この機械接点式スイッチを、電気動力等による遠方操作機能を有する可制御スイッチとし、スイッチに対する手元での手動操作に加えて、集中監視制御装置からシステム全体の運転状況を見ながらの遠方手動操作もできるようにしてもよい。
Here, when power is supplied to the load only by battery discharge, in order to prevent the power supply from the battery to the load from being inadvertently stopped, even if a discharge current variation abnormality of a certain battery group occurs, an alarm is first given. With only output, the abnormal battery group can be separated by manual operation based on the judgment after fully grasping the situation of the entire system including the battery, generator and load. It is preferable to keep it. For this reason, switches SW1 to SWm (35, 36) are provided, and the switches can be opened manually to disconnect the battery group.
As such switches SW1 to SWm for separating the battery group during the discharge operation, a mechanical contact type switch with a small current loss is suitable in consideration of a large current during the discharge operation, but a semiconductor switch is also applicable. Is possible. As a mechanical contact type switch applied to the switches SW1 to SWm, for example, a switch such as a load switch or a circuit breaker may be used. This mechanical contact type switch is a controllable switch with a remote operation function by electric power, etc., and in addition to manual operation on the switch, remote manual operation while monitoring the operating status of the entire system from the centralized monitoring controller You may enable it to operate.

次に、放電動作時の電池群切り離し用スイッチSW1〜SWmを半導体スイッチで構成する場合の一例を図8に示す。図8の回路は、図1に示した電池群B1に対応する半導体素子Q1および逆並列ダイオードD1からなる充電用半導体スイッチ回路3とスイッチSW1(35)との直列接続回路部において、スイッチSW1(35)を、半導体素子Q1およびダイオードD1に対してそれぞれ逆極性の半導体素子QR1およびダイオードDR1を並列接続してなる放電用半導体スイッチ回路で構成したものであり、充放電制御回路&電池状態監視装置23からのOFF指令QR1dvにより半導体素子QR1がOFFして、対応する電池群B1からの放電を停止させるようになっている。そして、電池群B2〜Bmについても、電池群B1と同様に、放電用半導体スイッチ回路からなるSW2〜SWmを設ける。
また、電池,発電機および負荷を含むシステムの構成によっては、ある電池群の放電電流バラツキ異常が発生した場合に、可制御スイッチ、すなわち、上述のような遠方操作機能を有する機械接点式スイッチあるいは図8に示したような放電用半導体スイッチ回路を用いて当該電池群を自動的に切り離すようにしてもよく、さらには、切り離し制御回路を手動・自動切り換え式としておき、システムの運転状況に応じて切り離し制御モードを選択できるようにしておくとよい。
Next, FIG. 8 shows an example in which the battery group disconnecting switches SW1 to SWm at the time of discharging are configured by semiconductor switches. The circuit of FIG. 8 includes a switch SW1 (in the series connection circuit portion of the semiconductor switch Q3 and the switch SW1 (35) composed of the semiconductor element Q1 and the antiparallel diode D1 corresponding to the battery group B1 shown in FIG. 35) is composed of a semiconductor switch circuit for discharge formed by connecting in parallel a semiconductor element QR1 and a diode DR1 having opposite polarities to the semiconductor element Q1 and the diode D1, respectively, and a charge / discharge control circuit & battery state monitoring device The semiconductor device QR1 is turned OFF by the OFF command QR1dv from 23, and the discharge from the corresponding battery group B1 is stopped. And also about battery group B2-Bm, SW2-SWm which consists of a semiconductor switch circuit for discharge is provided similarly to battery group B1.
Further, depending on the configuration of the system including the battery, the generator, and the load, when a discharge current variation abnormality of a certain battery group occurs, a controllable switch, that is, a mechanical contact type switch having a remote operation function as described above or The battery group may be automatically disconnected by using a discharging semiconductor switch circuit as shown in FIG. 8, and the disconnect control circuit is set to manual / automatic switching type, depending on the operating condition of the system. It is better to be able to select the separation control mode.

なお、ある電池群の直列セルにおいて内部短絡が発生したことを想定すると、このような状態は、その電池群の直列起電圧eBが低下し、他の健全電池群に比べて見かけ上の放電電流が減少するという電池の異常状態であるから、この異常状態の検出信号によって警報を発する。そして、この警報に基づく状況判断により、手動操作でスイッチSW1〜SWmの内の該当するスイッチを開路して該当電池群を切り離すことができる。また、上述のように、電池,発電機および負荷を含むシステムの構成によっては、可制御のスイッチSW1〜SWmを用いて自動操作で該当電池群を切り離すこともできる。このような手動切り離しおよび自動切り離しのいずれの場合も、発電機電圧および他の健全電池群からの電流流入がブロックされるから、他の健全回路へ影響を与えることなく、システムの安全運転が継続される。   Assuming that an internal short circuit has occurred in a series cell of a certain battery group, such a state reduces the series electromotive voltage eB of that battery group, and apparent discharge current compared to other healthy battery groups. Since the battery is in an abnormal state that decreases, an alarm is issued by a detection signal of this abnormal state. And according to the situation judgment based on this warning, it can open a corresponding switch among switches SW1-SWm by manual operation, and can isolate | separate a corresponding battery group. In addition, as described above, depending on the configuration of the system including the battery, the generator, and the load, the corresponding battery group can be disconnected automatically by using the controllable switches SW1 to SWm. In both cases of manual disconnection and automatic disconnection, the generator voltage and the current inflow from other healthy battery groups are blocked, so that safe operation of the system continues without affecting other healthy circuits. Is done.

なお、図8に示した放電用半導体スイッチ回路による異常電池群切り離しの場合には、半導体素子Q1〜QmおよびQR1〜QRmにそれぞれ逆並列接続されたダイオードD1〜DmおよびDR1〜DRmにより、発電機電圧および他の健全電池群からの電流流入がブロックされる。
また、上述の図1の構成における充放電電流許容バラツキマップ28は、充電電流許容バラツキマップの機能および放電電流許容バラツキマップの機能の両方を備えているが、一括充電時の電池群保護あるいは一括放電時の電池群保護のいずれかのみを行なう場合は、充電電流許容バラツキマップあるいは放電電流許容バラツキマップのいずれかのみの機能を備えたマップとすることができる。
In the case of disconnecting the abnormal battery group by the discharging semiconductor switch circuit shown in FIG. 8, the generators are generated by the diodes D1 to Dm and DR1 to DRm connected in reverse parallel to the semiconductor elements Q1 to Qm and QR1 to QRm, respectively. Current flow from voltage and other healthy battery groups is blocked.
Further, the charge / discharge current allowable variation map 28 in the configuration of FIG. 1 has both the function of the charge current allowable variation map and the function of the discharge current allowable variation map. When only one of the battery group protections at the time of discharging is performed, a map having only a function of either a charge current allowable variation map or a discharge current allowable variation map can be obtained.

この発明の実施の形態を示す構成図Configuration diagram showing an embodiment of the present invention この発明における充電,放電電流のバラツキ範囲説明図Explanation of variation range of charge and discharge current in this invention 充放電動作回路を示す回路図Circuit diagram showing charge / discharge operation circuit 定電圧充電動作および定電流充電動作の説明図Illustration of constant voltage charge operation and constant current charge operation 放電時の電流−電圧特性を示す特性図Characteristic diagram showing current-voltage characteristics during discharge 充電動作時の許容バラツキマップの説明図Explanatory diagram of allowable variation map during charging operation 放電動作時の許容バラツキマップの説明図Explanatory diagram of allowable variation map during discharge operation 放電用半導体スイッチ回路の説明図Explanatory drawing of semiconductor switch circuit for discharge

符号の説明Explanation of symbols

1,2…電池群(B1,Bm)、3,4…スイッチ回路、5,6,9,13,26…電流検出器、7,8,10,14…電圧検出器、11…駆動用原動機(DE)、12…発電機(G)、15…補機(L)、16…推進電動機(M)、17…プログラム設定装置、18…パルス充電スイッチ(SWP)、19…充電切替スイッチ(SWC)、20…浮動充電スイッチ(SWF)、21…電圧設定器(VRV)、22…電流設定器(VRI)、23…充放電制御回路&電池状態監視装置、24…充電制御切替スイッチ(SWvc)、25…発電機制御装置、27…発電機界磁、28…充放電電流許容バラツキマップ、30…警報器、31〜34…スイッチ、35,36…スイッチ(SW1,SWm)。

DESCRIPTION OF SYMBOLS 1,2 ... Battery group (B1, Bm), 3, 4 ... Switch circuit, 5, 6, 9, 13, 26 ... Current detector, 7, 8, 10, 14 ... Voltage detector, 11 ... Driving motor (DE), 12 ... Generator (G), 15 ... Auxiliary machine (L), 16 ... Propulsion motor (M), 17 ... Program setting device, 18 ... Pulse charge switch (SWP), 19 ... Charge switch (SWC) ), 20 ... Floating charge switch (SWF), 21 ... Voltage setter (VRV), 22 ... Current setter (VRI), 23 ... Charge / discharge control circuit & battery state monitoring device, 24 ... Charge control changeover switch (SWvc) , 25 ... Generator control device, 27 ... Generator field, 28 ... Charge / discharge current allowable variation map, 30 ... Alarm, 31-34 ... Switch, 35, 36 ... Switch (SW1, SWm).

Claims (4)

n(2以上の自然数)個の電池が直列に接続された電池群がm(2以上の自然数)群並列に接続されてなる複数の電池群と、電動機を含む負荷と、前記複数の電池群への充電および負荷への電力供給を行なう原動機駆動発電機と、前記各電池群にそれぞれ直列に接続されたスイッチと、このスイッチをオン,オフ制御して前記複数の電池群の充放電制御を行なうとともに前記原動機駆動発電機の制御を行なう制御回路とを備え、
前記制御回路により電池群の一括充電を行なうときは、充電電流設定値または実充電電流値から充電電流平均値を求め、この充電電流平均値および実電池電圧値から、予め用意された充電電流許容バラツキマップを参照して前記充電電流平均値を基準とした充電電流許容バラツキ範囲の上,下限値を読み出し、これらと個々の電池群の充電電流とを比較し、許容バラツキ範囲を超えたら該当する前記スイッチをオフして充電を停止し、電池群を保護することを特徴とする電池の保護方式。
a plurality of battery groups in which n (natural number of 2 or more) batteries connected in series are connected in parallel to m (natural number of 2 or more) groups, a load including an electric motor, and the plurality of battery groups A motor-driven generator for charging the battery and supplying power to the load, a switch connected in series to each of the battery groups, and on / off control of the switches for charge / discharge control of the plurality of battery groups And a control circuit for controlling the prime mover drive generator,
When batch charging of the battery group is performed by the control circuit, an average charging current value is obtained from the charging current setting value or the actual charging current value, and a charging current allowable value prepared in advance is calculated from the charging current average value and the actual battery voltage value. Read the upper and lower limits of the charging current allowable variation range based on the average charging current value with reference to the variation map, compare these with the charging current of each battery group, and apply if the allowable variation range is exceeded. A battery protection system characterized in that the switch is turned off to stop charging to protect the battery group.
定電流充電の状態で前記スイッチをオフして電池群を切り離したときは、電池群数の減少に伴い他の健全電池群の充電電流が増加しないよう、電池群数減少分に相当する分だけ前記発電機の出力を低下させ、健全電池群の負担を軽減することを特徴とする請求項1に記載の電池の保護方式。   When the battery group is disconnected by turning off the switch in the state of constant current charging, the amount corresponding to the decrease in the number of battery groups is prevented so that the charging current of other healthy battery groups does not increase with the decrease in the number of battery groups. The battery protection system according to claim 1, wherein the output of the generator is reduced to reduce a burden on a healthy battery group. n(2以上の自然数)個の電池が直列に接続された電池群がm(2以上の自然数)群並列に接続されてなる複数の電池群と、電動機を含む負荷と、前記複数の電池群への充電および負荷への電力供給を行なう原動機駆動発電機と、前記各電池群にそれぞれ直列に接続されたスイッチと、このスイッチをオン,オフ制御して前記複数の電池群の充放電制御を行なうとともに前記原動機駆動発電機の制御を行なう制御回路とを備え、
前記制御回路により電池群の一括放電を行なうときは、実放電電流値から放電電流平均値を求め、この放電電流平均値および実電池電圧値から、予め用意された放電電流許容バラツキマップを参照して前記放電電流平均値を基準とした放電電流許容バラツキ範囲の上,下限値を読み出し、これらと個々の電池群の放電電流とを比較し、許容バラツキ範囲を超えたら警報を発し、該当する前記電池群を回路から切り離して電池群を保護することを特徴とする電池の保護方式。
a plurality of battery groups in which n (natural number of 2 or more) batteries connected in series are connected in parallel to m (natural number of 2 or more) groups, a load including an electric motor, and the plurality of battery groups A motor-driven generator for charging the battery and supplying power to the load, a switch connected in series to each of the battery groups, and on / off control of the switches for charge / discharge control of the plurality of battery groups And a control circuit for controlling the prime mover drive generator,
When performing the collective discharge of the battery group by the control circuit, the discharge current average value is obtained from the actual discharge current value, and the discharge current allowable variation map prepared in advance is referred to from the average discharge current value and the actual battery voltage value. The upper and lower limits of the discharge current allowable variation range based on the average discharge current value are read out, and these are compared with the discharge currents of the individual battery groups. When the allowable variation range is exceeded, an alarm is issued and the corresponding A battery protection method comprising protecting a battery group by separating the battery group from a circuit.
前記電池群の回路からの切り離しは、スイッチによる手動操作または自動操作にて行なうことを特徴とする請求項3に記載の電池の保護方式。   The battery protection system according to claim 3, wherein the battery group is separated from the circuit by manual operation or automatic operation using a switch.
JP2003407172A 2003-12-05 2003-12-05 Battery protection system Expired - Fee Related JP4096261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003407172A JP4096261B2 (en) 2003-12-05 2003-12-05 Battery protection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003407172A JP4096261B2 (en) 2003-12-05 2003-12-05 Battery protection system

Publications (2)

Publication Number Publication Date
JP2005168259A JP2005168259A (en) 2005-06-23
JP4096261B2 true JP4096261B2 (en) 2008-06-04

Family

ID=34729299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003407172A Expired - Fee Related JP4096261B2 (en) 2003-12-05 2003-12-05 Battery protection system

Country Status (1)

Country Link
JP (1) JP4096261B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4967282B2 (en) 2005-09-02 2012-07-04 トヨタ自動車株式会社 Vehicle, vehicle power supply device and current detection device
JP4650305B2 (en) * 2006-03-08 2011-03-16 日産自動車株式会社 Power supply control method for vehicle power supply device, and vehicle power supply device
JP5022623B2 (en) * 2006-04-27 2012-09-12 株式会社日立製作所 Elevator system and battery unit
JP4948907B2 (en) * 2006-06-08 2012-06-06 日本電信電話株式会社 Battery system
US8463562B2 (en) 2007-02-08 2013-06-11 Panasonic Ev Energy Co., Ltd. Device and method for detecting abnormality of electric storage device
JP4665922B2 (en) * 2007-03-13 2011-04-06 富士電機システムズ株式会社 Battery charge / discharge circuit switch control system
US8183837B2 (en) 2007-06-11 2012-05-22 Toyota Jidosha Kabushiki Kaisha Control device and control method for electric system
JP5220399B2 (en) * 2007-12-14 2013-06-26 パナソニック株式会社 Battery system
JP5237161B2 (en) * 2009-03-26 2013-07-17 日本電信電話株式会社 DC power supply system and discharge control method thereof
EP2460255B1 (en) 2009-07-31 2016-09-21 Thermo King Corporation Bi-directional battery voltage converter
JP5455215B2 (en) 2009-12-17 2014-03-26 Necエナジーデバイス株式会社 Battery module control system
JP5553622B2 (en) * 2010-01-28 2014-07-16 株式会社Nttファシリティーズ Secondary battery system and management method thereof
CN101860016B (en) * 2010-05-06 2013-01-02 奇瑞汽车股份有限公司 Protection and control method of battery system of plug-in electromobile
JP5725444B2 (en) * 2010-08-24 2015-05-27 スズキ株式会社 Power storage system
JP2012105433A (en) * 2010-11-09 2012-05-31 Nec Fielding Ltd Uninterruptible power supply device, power supply processing method, and power supply processing program
JP5794608B2 (en) 2010-12-24 2015-10-14 Necエナジーデバイス株式会社 Discharge control device, discharge control method and program
WO2013066865A1 (en) * 2011-10-31 2013-05-10 Cobasys, Llc Intelligent charging and discharging system for parallel configuration of series cells with semiconductor switching
US9045052B2 (en) 2011-10-31 2015-06-02 Robert Bosch Gmbh Parallel configuration of series cells with semiconductor switching
JP6056205B2 (en) * 2012-06-06 2017-01-11 富士電機株式会社 Battery power supply charge / discharge control device
JP2014147168A (en) * 2013-01-28 2014-08-14 Toyota Industries Corp Speed control method for retreat traveling, and vehicle

Also Published As

Publication number Publication date
JP2005168259A (en) 2005-06-23

Similar Documents

Publication Publication Date Title
JP4096261B2 (en) Battery protection system
US11616375B2 (en) Rechargeable battery systems and rechargeable battery system operational methods
US9912178B2 (en) Rechargeable battery systems and rechargeable battery system operational methods
US6781343B1 (en) Hybrid power supply device
CN101816092B (en) Secondary cell charge control method and charge control circuit
EP2879900B1 (en) Electrical storage system
JP4333695B2 (en) Battery charge / discharge switch system
JP5618359B2 (en) Secondary battery pack connection control method and power storage system
US20110291619A1 (en) Battery power source device, and battery power source system
EP2666226B1 (en) Rechargeable battery system and corresponding method
WO2010113206A1 (en) Charging device
CN103548234A (en) Battery device
JP2008043009A (en) Battery pack and control method
WO2012050195A1 (en) Electric power supply system
EP2830189B1 (en) Balance correction device and power storage system
JP2013162597A (en) Assembled battery discharge control system and assembled battery discharge control method
JP2017163749A (en) Secondary battery system
JP2011182479A (en) System and method for charging lithium ion battery pack
JP4092656B2 (en) Battery floating charge control system
CN115967157A (en) Battery pack series-multi-path parallel direct-current power supply system and parallel-off-line control method
KR102538244B1 (en) Device and method for preventing battery abnormalities using diodes
US20230059046A1 (en) Apparatus and Methods for Arc Detection, Fault Isolation, and Battery System Reconfiguration

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080227

R150 Certificate of patent or registration of utility model

Ref document number: 4096261

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees