JP5553622B2 - Secondary battery system and management method thereof - Google Patents

Secondary battery system and management method thereof Download PDF

Info

Publication number
JP5553622B2
JP5553622B2 JP2010016263A JP2010016263A JP5553622B2 JP 5553622 B2 JP5553622 B2 JP 5553622B2 JP 2010016263 A JP2010016263 A JP 2010016263A JP 2010016263 A JP2010016263 A JP 2010016263A JP 5553622 B2 JP5553622 B2 JP 5553622B2
Authority
JP
Japan
Prior art keywords
discharge
battery
assembled
power supply
assembled battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010016263A
Other languages
Japanese (ja)
Other versions
JP2011155784A (en
Inventor
知伸 辻川
敏雄 松島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Facilities Inc
Original Assignee
NTT Facilities Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Facilities Inc filed Critical NTT Facilities Inc
Priority to JP2010016263A priority Critical patent/JP5553622B2/en
Publication of JP2011155784A publication Critical patent/JP2011155784A/en
Application granted granted Critical
Publication of JP5553622B2 publication Critical patent/JP5553622B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Stand-By Power Supply Arrangements (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

この発明は、組電池や放電回路などの異常の有無を簡易に判定することが可能な二次電池システムおよびその管理方法に関する。   The present invention relates to a secondary battery system that can easily determine the presence or absence of abnormality such as an assembled battery or a discharge circuit, and a management method thereof.

通信用電源などのバックアップ用電池として、一般的に鉛蓄電池が使用されているが、鉛蓄電池は体積・重量エネルギー密度が低いため、一定の電気量を取り出すために必要となる蓄電池設備の容積が大きくなり広い設置スペースを必要とするのみならず、重量も大となる。そこで、鉛蓄電池の代替として、エネルギー密度が高いリチウムイオン二次電池が通信用電源のバックアップ用として採用されるに至っている。リチウムイオン二次電池は、エネルギー密度が高く自己放電量も少なく、さらに従来の鉛蓄電池と同じ定電流定電圧充電が可能であることから、組電池として通信用電源などのバックアップ用としての使用に適している。そして、通信用電源に用いられるリチウムイオン二次電池については、過大な電流による配線の損傷を防止するようにした管理システムが知られている(例えば、特許文献1参照。)。
また、停電補償用の直流電源装置は、安定した電力を継続して供給する高信頼性が必要であることから、このような用途で使用される組電池では、定期的に組電池の劣化状況(容量)を確認し、容量が所定のレベルまで低下したら更改することが行われている。このようなバックアップ用組電池の容量試験の一例としては、停電バックアップ電源の電池劣化判定方法が知られている(例えば、特許文献2参照。)。この電池劣化判定方法では、任意の組電池を選択し、選択された組電池を直接放電させて容量を確認するものである。
In general, lead-acid batteries are used as backup batteries for communication power supplies. However, since lead-acid batteries have low volume and weight energy density, the capacity of storage battery equipment required to extract a certain amount of electricity is low. Not only does it require a large installation space, it also increases the weight. Thus, lithium ion secondary batteries with high energy density have been adopted as backups for communication power supplies as an alternative to lead storage batteries. Lithium-ion secondary batteries have high energy density and low self-discharge, and can be charged at the same constant current and constant voltage as conventional lead-acid batteries. Is suitable. And about the lithium ion secondary battery used for the power supply for communication, the management system which prevented damage to the wiring by an excessive electric current is known (for example, refer patent document 1).
In addition, since the DC power supply for power failure compensation requires high reliability to continuously supply stable power, the assembled battery used in such applications is periodically deteriorated. (Capacity) is confirmed, and when the capacity is reduced to a predetermined level, renewal is performed. As an example of the capacity test of such a backup battery pack, a battery deterioration determination method for a power failure backup power supply is known (see, for example, Patent Document 2). In this battery deterioration determination method, an arbitrary assembled battery is selected, and the selected assembled battery is directly discharged to check the capacity.

特開2009−22099号公報JP 2009-22999 A 特開平10−2943号公報Japanese Patent Laid-Open No. 10-2943

リチウムイオン二次電池は、組電池として通信用電源などのバックアップ用としての使用に適しているが、この場合、停電時において確実に機能することが要求される。例えば、リチウムイオン二次電池により構成される一部の組電池に容量低下などの異常が生じている場合や、組電池の放電回路に異常が存在する場合は、停電が生じた場合に直流負荷設備を確実にバックアップすることができなくなるという問題がある。蓄電池の容量を確認するには、放電試験により組電池毎の容量試験を行うことになるが、放電試験では電池を放電終止電圧に至るまで放電させる必要があるとともに、試験中の停電に備えて試験対象電池に代替の蓄電池を接続する必要があり、多大なコストが必要となる。このような問題は、リチウムイオン二次電池に限られず、鉛蓄電池やその他の二次電池にも存在する。したがって、二次電池により構成される組電池の異常や放電回路の異常などを簡易に判定することができれば、便利であり、コスト低減にも寄与する。
また、特許文献2の電池劣化判定方法は、試験の放電終了時点で試験対象組電池が完全に放電されているので、組電池システムの容量が不足することになり、試験終了直後に停電が生じた場合は十分なバックアップができなくなり、信頼性に欠けるという問題がある。
The lithium ion secondary battery is suitable for use as a battery pack for backup such as a communication power source, but in this case, it is required to function reliably during a power failure. For example, if there is an abnormality such as a capacity drop in some battery packs composed of lithium ion secondary batteries, or if there is an abnormality in the discharge circuit of the battery pack, a direct current load will occur if a power failure occurs. There is a problem that the equipment cannot be reliably backed up. In order to check the capacity of the storage battery, a capacity test for each assembled battery is performed by a discharge test. In the discharge test, it is necessary to discharge the battery to the end-of-discharge voltage, and in preparation for a power failure during the test. It is necessary to connect an alternative storage battery to the test target battery, which requires a great deal of cost. Such a problem is not limited to lithium ion secondary batteries, but also exists in lead-acid batteries and other secondary batteries. Therefore, it is convenient and can contribute to cost reduction if it is possible to easily determine abnormality of the assembled battery constituted by the secondary battery, abnormality of the discharge circuit, and the like.
Further, in the battery deterioration determination method of Patent Document 2, since the assembled battery to be tested is completely discharged at the end of the test discharge, the capacity of the assembled battery system is insufficient, and a power failure occurs immediately after the end of the test. In such a case, there is a problem that sufficient backup cannot be performed and reliability is insufficient.

そこでこの発明は、組電池や放電回路の異常の有無を簡易に判定することが可能で、しかも試験終了直後の停電に対する信頼性を損なわない二次電池システムおよび管理方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a secondary battery system and a management method that can easily determine the presence or absence of an abnormality in an assembled battery or a discharge circuit and that do not impair the reliability against a power failure immediately after the end of the test. To do.

上記目的を達成するために請求項1に記載の発明は、多数の二次電池を直列接続して構成される組電池が複数個並列に接続された組電池群と、前記複数の組電池と並列に接続される直流負荷設備と、前記複数の組電池を充電するとともに前記直流負荷設備に直流電力を供給する直流電力供給源とを有する二次電池システムであって、前記直流電力供給源の出力電圧を一時的に前記組電池の開放電圧よりも低く制御し、前記複数の組電池を強制的に放電させる放電指令手段と、前記複数の組電池の放電回路にそれぞれ設けられ、前記放電指令手段による前記直流電力供給源の出力電圧の、一時的な前記組電池の開放電圧以下への低下によって前記組電池から前記直流負荷設備へ流れる放電電流を計測する電流計測手段と、前記各電流計測手段によってそれぞれ計測された放電電流に基づき前記組電池を含むシステム内の異常の有無を判定する判定手段と、を備え、前記判定手段は、前記放電指令手段からの放電指令信号による前記直流電力供給源の出力電圧の一時的な低下に伴う各組電池の放電初期の放電電流と予め設定された基準電流値とを比較し、各組電池からの放電電流が正常であるか否かを判定し、前記組電池は、前記判定手段による前記放電初期の放電電流に基づく判定によって、前記放電終了直後に前記直流電力供給源からの電力供給が停止しても前記直流負荷設備に対して直流電力を供給するための十分な容量を有するように、前記放電指令手段と前記電流計測手段と前記判定手段とを有する組電池状態監視装置により管理されている、ことを特徴とする二次電池システムである。 In order to achieve the above object, the invention according to claim 1 is a battery pack group in which a plurality of battery packs configured by connecting a number of secondary batteries in series are connected in parallel; and the plurality of battery packs; A secondary battery system comprising: a DC load facility connected in parallel; and a DC power supply source that charges the plurality of assembled batteries and supplies DC power to the DC load facility, the secondary battery system comprising: Discharge command means for temporarily controlling the output voltage to be lower than the open voltage of the assembled battery, forcibly discharging the plurality of assembled batteries, and the discharge command of the plurality of assembled batteries , respectively, Current measuring means for measuring a discharge current flowing from the assembled battery to the DC load facility due to a temporary drop in the output voltage of the DC power supply source by the means below the open voltage of the assembled battery; and each current measurement To the means Comprising determining means for determining whether there is an abnormality in the system including the battery pack based on the discharge current measured respectively, the I, the determination means, the DC power supply by the discharge command signal from the discharge command means Compare the discharge current at the beginning of discharge of each assembled battery with a temporary decrease in the output voltage of the source and a preset reference current value to determine whether the discharge current from each assembled battery is normal. The assembled battery supplies DC power to the DC load facility even if the power supply from the DC power supply source is stopped immediately after the discharge is completed, based on the determination based on the discharge current at the initial stage of discharge by the determination means. so as to have sufficient capacity to supply the discharge command means and said current measuring means and managed by the assembled battery state monitoring device and a said determination means, a secondary battery cis, characterized in that It is a non.

この発明によれば、直流電力供給源からの電力供給が停止された場合は、複数の組電池から直流負荷設備へ電力が供給され、電流計測手段によって各組電池から直流負荷設備に流れる放電電流が計測される。ここで、各組電池の電池容量が等しければ、各組電池が分担する放電初期の放電電流は同じ値となるが、組電池や放電回路に異常がある場合は、各組電池から直流負荷設備へ流れる放電初期の放電電流値は大きく異なることになるので、電池や放電回路の異常などのシステム内の異常を簡易に判定することが可能となる。   According to this invention, when the power supply from the DC power supply source is stopped, the power is supplied from the plurality of assembled batteries to the DC load equipment, and the discharge current flows from each assembled battery to the DC load equipment by the current measuring means. Is measured. Here, if the battery capacity of each assembled battery is equal, the discharge current at the initial stage of discharge shared by each assembled battery will be the same value, but if there is an abnormality in the assembled battery or the discharge circuit, the DC load equipment from each assembled battery Since the discharge current value at the initial stage of discharge flowing into the battery is greatly different, it is possible to easily determine an abnormality in the system such as an abnormality in the battery or the discharge circuit.

請求項2に記載の発明は、請求項1に記載の二次電池システムにおいて、前記判定手段には、システム内の異常の有無を表示する判定結果表示手段が接続されていることを特徴としている。
The invention described in claim 2 is the secondary battery system according to claim 1, in the determination means is characterized in that the determination result displaying means for displaying the presence or absence of an abnormality in the system is connected .

請求項3に記載の発明は、請求項1または2に記載の二次電池システムにおいて、前記二次電池は、リチウムイオン二次電池から構成されることを特徴としている。
According to a third aspect of the present invention, in the secondary battery system according to the first or second aspect, the secondary battery is composed of a lithium ion secondary battery.

請求項4に記載の発明は、多数の二次電池を直列接続して構成される組電池が複数個並列に接続された組電池群と、前記複数の組電池と並列に接続される直流負荷設備と、前記複数の組電池を充電するとともに前記直流負荷設備に直流電力を供給する直流電力供給源とを有する二次電池システムの管理方法であって、前記直流電力供給源の出力電圧を放電指令手段によって一時的に前記組電池の開放電圧よりも低く制御して前記複数の組電池を強制的に放電させ、前記放電指令手段による前記直流電力供給源の出力電圧の、一時的な前記組電池の開放電圧以下への低下によって前記各組電池から前記直流負荷設備へ流れる放電電流をそれぞれ電流計測手段により計測し、前記各電流計測手段によってそれぞれ計測された放電電流に基づき前記組電池を含むシステム内の異常の有無を判定手段によって判定し、前記判定手段は、前記放電指令手段からの放電指令信号による前記直流電力供給源の出力電圧の一時的な低下に伴う各組電池の放電初期の放電電流と予め設定された基準電流値とを比較して各組電池からの放電電流が正常であるか否かを判定し、前記組電池は、前記判定手段による前記放電初期の放電電流に基づく判定によって、前記放電終了直後に前記直流電力供給源からの電力供給が停止しても前記直流負荷設備に対して直流電力を供給するための十分な容量を有するように、前記電流計測手段と前記判定手段とを有する組電池状態監視装置により管理されている、ことを特徴とする二次電池システムの管理方法である。 According to a fourth aspect of the present invention, there is provided an assembled battery group in which a plurality of assembled batteries configured by connecting a large number of secondary batteries in series are connected in parallel, and a DC load connected in parallel with the plurality of assembled batteries. A method for managing a secondary battery system comprising: a facility; and a DC power supply source that charges the plurality of assembled batteries and supplies DC power to the DC load facility, wherein the output voltage of the DC power supply source is discharged The plurality of assembled batteries are forcibly discharged by controlling temporarily lower than the open voltage of the assembled battery by command means, and the temporary set of the output voltage of the DC power supply source by the discharge command means the discharge current by the decrease in the battery to the open-circuit voltage below flows into the DC load equipment from each assembled battery measured by the respective current measuring means, based on said discharge current measured respectively by the individual current measuring means Determined by the determining means whether there is an abnormality in the system including a battery, said determining means of each set cell with a temporary reduction in the output voltage of the DC power supply by the discharge command signal from the discharge command means A comparison is made between the discharge current at the initial stage of discharge and a preset reference current value to determine whether or not the discharge current from each battery pack is normal, and the battery pack is discharged at the initial stage of discharge by the determining means. According to the determination based on the current, even if the power supply from the DC power supply source is stopped immediately after the end of the discharge, the current measurement is performed so as to have a sufficient capacity for supplying DC power to the DC load facility. The secondary battery system management method is characterized by being managed by an assembled battery state monitoring device having a means and a determination means .

請求項1および4に記載の発明によれば、組電池や放電回路の異常などシステム内の異常を簡易に判定することが可能となるので、従来のように長時間にわたる放電試験が不要になるとともに、異常を把握するためのコストを著しく低減することができる。また、放電初期の放電電流に基づき異常の有無を判定するので、放電終了時において組電池は十分な容量を有しており、放電終了直後に停電が生じても直流負荷設備に直流電力を確実に供給することができ、停電に対する信頼性を保つことができる。 According to the first and fourth aspects of the present invention, it is possible to easily determine an abnormality in the system such as an abnormality in an assembled battery or a discharge circuit, so that a long-time discharge test is not required. In addition, the cost for grasping the abnormality can be significantly reduced. In addition, since the presence or absence of abnormality is determined based on the discharge current at the beginning of discharge, the assembled battery has sufficient capacity at the end of discharge, and DC power is reliably supplied to the DC load facility even if a power failure occurs immediately after the end of discharge. The reliability against power failure can be maintained.

請求項1の記載の発明によれば、放電指令手段によって複数の組電池を強制的に放電させることができるので、組電池や放電回路の異常の有無を定期的に把握することができ、組電池や放電回路を常に最良の状態に維持しておくことが可能となる。これにより、停電が生じた場合でも直流負荷設備を確実にバックアップすることができ、システムの信頼性を保つことができる。 According to the first aspect of the present invention, since the plurality of assembled batteries can be forcibly discharged by the discharge command means, it is possible to periodically grasp the presence or absence of abnormality in the assembled battery or the discharge circuit. It is possible to always maintain the battery and the discharge circuit in the best state. Thereby, even when a power failure occurs, the DC load facility can be reliably backed up, and the reliability of the system can be maintained.

請求項2に記載の発明によれば、判定手段にはシステムの異常の有無を表示する判定結果表示手段が接続されているので、システムの異常を素早く把握することができ、迅速な対策を施すことが可能となる。 According to the second aspect of the present invention, since the determination means is connected to the determination result display means for displaying the presence / absence of the system abnormality, it is possible to quickly grasp the system abnormality and take quick measures. It becomes possible.

請求項3に記載の発明によれば、二次電池はエネルギー密度が高いリチウムイオン二次電池から構成されるので、他の二次電池に比べて容積を小とすることができ、二次電池システムのコンパクト化を図ることができる。 According to the invention described in claim 3 , since the secondary battery is composed of a lithium ion secondary battery having a high energy density, the volume can be made smaller than that of other secondary batteries. The system can be made compact.

この発明の実施の形態に係る二次電池システムの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the secondary battery system which concerns on embodiment of this invention. 図1の二次電池システムにおける組電池と各装置との接続関係を示す回路図である。It is a circuit diagram which shows the connection relation of the assembled battery and each apparatus in the secondary battery system of FIG. 図2の組電池状態監視装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the assembled battery state monitoring apparatus of FIG. 図1の二次電池システムにおける管理方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the management method in the secondary battery system of FIG. 図1の各組電池が劣化していない場合の放電初期における放電電圧および放電電流の変化を示す特性図である。It is a characteristic view which shows the change of the discharge voltage in the initial stage of discharge when each assembled battery of FIG. 1 has not deteriorated. 図1の一部の組電池に劣化が生じている場合の放電初期における放電電圧および放電電流の変化を示す特性図である。It is a characteristic view which shows the change of the discharge voltage and the discharge current in the early stage of discharge when deterioration has arisen in some assembled batteries of FIG. 図1の各組電池の使用期間と放電電流との関係を示す特性図であって各組電池の放電電流が同じ値を示す特性図(組電池並列接続数:3、定格容量は同一)である。FIG. 2 is a characteristic diagram showing the relationship between the period of use and discharge current of each assembled battery in FIG. 1 and showing the same value for the discharge current of each assembled battery (number of battery packs connected in parallel: 3 with the same rated capacity). is there. 図1の各組電池の使用期間と放電電流との関係を示す特性図であって各組電池の放電電流が異なる値を示す特性図(組電池並列接続数:3、定格容量は同一)である。FIG. 2 is a characteristic diagram showing the relationship between the period of use and discharge current of each assembled battery in FIG. 1 and showing the values of different discharge currents for each assembled battery (number of assembled battery parallel connections: 3; rated capacity is the same). is there. 図1の組電池における使用期間と容量との関係を示す特性図である。It is a characteristic view which shows the relationship between a use period and a capacity | capacitance in the assembled battery of FIG. 図1の組電池における使用期間と内部抵抗との関係を示す特性図である。It is a characteristic view which shows the relationship between the use period and internal resistance in the assembled battery of FIG. 図1の組電池における内部抵抗と電池容量との関係を示す特性図である。It is a characteristic view which shows the relationship between internal resistance and battery capacity in the assembled battery of FIG.

以下、この発明を図示の実施の形態に基づいて説明する。   The present invention will be described below based on the illustrated embodiments.

図1ないし図11は、この発明の実施の形態を示している。図2において、二次電池システム1は、単電池であるリチウムイオンセル(リチウムイオン二次電池)2が複数直列に接続される組電池3を有している。組電池3には、セルコントローラとしての電池監視制御部4が接続されている。電池監視制御部4は、セル電圧測定用配線4aを介して各セル2の電圧を測定するとともに、組電池電圧測定用配線4bを介して組電池3全体の電圧を測定するようになっている。電池監視制御部4は、各リチウムイオンセル2の電圧や温度などのセル状態を測定、監視するとともに、各リチウムイオンセル2の充電電圧が所定値内になるように調整する機能を有している。組電池3と電池監視制御部4は、一つの組電池管理ユニット5としてまとめられている。   1 to 11 show an embodiment of the present invention. In FIG. 2, the secondary battery system 1 includes an assembled battery 3 in which a plurality of lithium ion cells (lithium ion secondary batteries) 2 that are unit cells are connected in series. A battery monitoring controller 4 as a cell controller is connected to the assembled battery 3. The battery monitoring controller 4 measures the voltage of each cell 2 via the cell voltage measurement wiring 4a, and measures the voltage of the entire assembled battery 3 via the assembled battery voltage measurement wiring 4b. . The battery monitoring control unit 4 has a function of measuring and monitoring the cell state such as the voltage and temperature of each lithium ion cell 2 and adjusting the charging voltage of each lithium ion cell 2 to be within a predetermined value. Yes. The assembled battery 3 and the battery monitoring control unit 4 are combined as one assembled battery management unit 5.

この実施の形態においては、二次電池システム1は、図1および図2に示すように、例えば3つの組電池3(組電池A〜組電池C)からなる組電池群を有しており、各組電池3は並列に接続されている。3つの組電池3は、直流電力供給源としての整流器101と通信設備である直流負荷設備102に対して並列に接続されている。整流器101は、交流電力である商用電源100を直流電力に変換し、組電池3をフロート充電するとともに直流負荷設備102に直流電力を供給する機能を有している。すなわち、二次電池システム1は、通常時は、整流器101によって各組電池3をフロート充電するとともに、直流負荷設備102へ直流電力を供給するようになっており、商用電源100の停電時のみ各組電池3から直流負荷設備102へ直流電力を供給するようになっている。   In this embodiment, the secondary battery system 1 includes an assembled battery group including, for example, three assembled batteries 3 (assembled batteries A to C) as shown in FIGS. 1 and 2. Each assembled battery 3 is connected in parallel. The three assembled batteries 3 are connected in parallel to a rectifier 101 as a DC power supply source and a DC load facility 102 as a communication facility. The rectifier 101 has a function of converting commercial power supply 100 that is AC power into DC power, float-charging the assembled battery 3, and supplying DC power to the DC load equipment 102. That is, the secondary battery system 1 normally floats each assembled battery 3 by the rectifier 101 and supplies DC power to the DC load facility 102. DC power is supplied from the assembled battery 3 to the DC load facility 102.

各組電池3は、組電池状態監視装置10によって異常の有無が監視されている。組電池状態監視装置10は、図1に示すように、判定手段12と、判定結果表示手段17と、放電指令手段18、電流計測手段19とを有している。図1に示すように、電流計測手段19は、3つの組電池3の放電回路にそれぞれ設けられており、各組電池3から直流負荷設備102に向けて流れる放電電流を計測する機能を有している。この実施の形態においては、電流計測手段19は、各組電池管理ユニット5内に設けられている。電流計測手段19は、直流電流を測定できるものであれば、その種類を問わないが、放電電流による発熱を極力抑制できる種類のものが望ましい。   Each assembled battery 3 is monitored for abnormality by the assembled battery state monitoring device 10. As shown in FIG. 1, the assembled battery state monitoring device 10 includes a determination unit 12, a determination result display unit 17, a discharge command unit 18, and a current measurement unit 19. As shown in FIG. 1, the current measuring means 19 is provided in each of the discharge circuits of the three assembled batteries 3 and has a function of measuring the discharge current flowing from each assembled battery 3 toward the DC load equipment 102. ing. In this embodiment, the current measuring means 19 is provided in each assembled battery management unit 5. The current measuring means 19 may be of any type as long as it can measure a direct current, but is preferably of a type that can suppress heat generation due to the discharge current as much as possible.

組電池状態監視装置10は、図3に示すように、商用電源100からの電力を制御に必要な電力に変換する電源部11を有している。電源部11には、判定手段12が接続されている。判定手段12は、測定条件設定値入力部13、組電池情報記憶部14、演算部15、データ入力部16とから構成されている。測定条件設定値入力部13は、判定精度を高めるための測定条件を入力する部位であり、例えばコンピュータのキーボードなどから構成されている。組電池情報記憶部14は、例えば組電池を構成する単電池の初期の放電特性などを記憶する機能を有している。演算部15は、組電池情報記憶部14からの情報と、データ入力部16を介して入力された各組電池3の放電初期の放電電流I、I、Iの情報とに基づき、各組電池3の劣化状態などを判定する機能を有している。 As shown in FIG. 3, the assembled battery state monitoring device 10 includes a power supply unit 11 that converts power from the commercial power supply 100 into power necessary for control. A determination unit 12 is connected to the power supply unit 11. The determination unit 12 includes a measurement condition set value input unit 13, an assembled battery information storage unit 14, a calculation unit 15, and a data input unit 16. The measurement condition set value input unit 13 is a part for inputting measurement conditions for increasing the determination accuracy, and is composed of, for example, a computer keyboard. The assembled battery information storage unit 14 has a function of storing, for example, initial discharge characteristics of single cells constituting the assembled battery. The calculation unit 15 is based on the information from the assembled battery information storage unit 14 and the information on the discharge currents I 1 , I 2 , and I 3 at the initial discharge of each assembled battery 3 input via the data input unit 16. It has a function of determining the deterioration state of each assembled battery 3.

図1に示すように、放電指令手段18は、整流器101の制御回路(図示略)と接続されている。放電指令手段18は、例えば予め設定されたプログラムに基づき、定期的に放電指令信号K1を整流器101に出力するように構成されている。整流器101は、放電指令手段18からの放電指令信号K1によって出力電圧を通常時に対して低下するように制御し、一時的に組電池3を放電させる機能を有している。すなわち、放電指令手段18は、放電指令信号K1によって整流器101からの出力電力を一時的に組電池3の開放電圧よりも低下させ、組電池3を強制的に放電させる機能を有している。   As shown in FIG. 1, the discharge command means 18 is connected to a control circuit (not shown) of the rectifier 101. The discharge command means 18 is configured to periodically output a discharge command signal K1 to the rectifier 101 based on, for example, a preset program. The rectifier 101 has a function of temporarily discharging the assembled battery 3 by controlling the output voltage to decrease with respect to the normal time by the discharge command signal K1 from the discharge command means 18. That is, the discharge command means 18 has a function of forcibly discharging the assembled battery 3 by temporarily reducing the output power from the rectifier 101 below the open voltage of the assembled battery 3 by the discharge command signal K1.

判定手段12は、図1に示すように、放電指令手段18からの指令信号K2に基づき、電流計測手段19によって計測された放電初期の放電電流I、I、Iの計測値を計測信号K3a、K3b、K3cとして受け取り、この計測信号K3a、K3b、K3cに対応する放電電流I、I、Iと予め設定された基準電流値Icとを比較することにより、少なくとも組電池3の異常(経年による容量低下などの異常)や組電池3の放電回路の異常を含むシステム内の異常の有無を判定する機能を有している。すなわち、判定手段12は、組電池3の放電時における予め予測される正常な範囲の電流値(基準電流値Ic)と実際に計測された放電初期の放電電流I、I、Iとを比較することにより、組電池3や放電回路の異常などシステム内における異常を判定するようになっている。 As shown in FIG. 1, the determination unit 12 measures the measured values of the discharge currents I 1 , I 2 , and I 3 at the initial stage of the discharge measured by the current measurement unit 19 based on the command signal K2 from the discharge command unit 18. receiving signals K3a, K3b, as k3c, the measurement signal K3a, K3b, by comparing the discharge current I 1, I 2, I 3 with a preset reference current value Ic corresponding to k3c, at least the battery pack 3 The system has a function of determining whether there is an abnormality in the system including abnormalities (abnormalities such as capacity reduction due to aging) and abnormalities in the discharge circuit of the assembled battery 3. That is, the determination means 12 includes a current value (reference current value Ic) in a normal range predicted in advance when the battery pack 3 is discharged, and discharge currents I 1 , I 2 , I 3 at the initial stage of the actual measurement. By comparing these, abnormalities in the system such as abnormalities in the assembled battery 3 and the discharge circuit are determined.

電流計測手段19によって計測される放電電流I、I、Iは、各組電池3の電池容量が等しく放電回路にも異常がなければ、各組電池3が分担する放電電流の比は、1:1:1となるが、各組電池3や放電回路に異常がある場合は、各組電池3の放電電流は、例えば1:0.5:1.5というように並列数に応じた放電電流値とはならない。この実施の態様においては、異常と判定する基準電流値Icを理想値に対して例えば±50%に設定しているが、この基準電流値Icは組電池3の使用年数の程度によってそのレベルを変更するのが望ましい。 The discharge currents I 1 , I 2 , and I 3 measured by the current measuring means 19 are equal to each other when the battery capacity of each assembled battery 3 is equal and the discharge circuit is normal. 1: 1: 1, but if there is an abnormality in each assembled battery 3 or the discharge circuit, the discharge current of each assembled battery 3 depends on the parallel number, for example 1: 0.5: 1.5. It will not be the discharge current value. In this embodiment, the reference current value Ic determined to be abnormal is set to ± 50%, for example, with respect to the ideal value. This reference current value Ic is set to a level depending on the age of the assembled battery 3. It is desirable to change.

判定手段12には、判定結果表示手段17が接続されている。判定手段12は、判定信号K4を判定結果表示手段17に出力するようになっている。判定結果表示手段17は、判定手段12によって例えば組電池3の劣化またはシステム内における放電回路が異常と判定された場合は、異常警報を出力するようになっている。判定結果表示手段17は、例えばLEDランプや警報ブザーなどで構成されている。判定結果表示手段17は、組電池3の近傍に設置してもよいし、組電池3の設置場所から遠く離れた場所に設置する構成としてもよい。   A determination result display means 17 is connected to the determination means 12. The determination unit 12 outputs a determination signal K4 to the determination result display unit 17. The determination result display means 17 outputs an abnormality alarm when the determination means 12 determines that the assembled battery 3 is deteriorated or the discharge circuit in the system is abnormal, for example. The determination result display means 17 is composed of, for example, an LED lamp or an alarm buzzer. The determination result display means 17 may be installed in the vicinity of the assembled battery 3 or may be installed in a place far away from the installation location of the assembled battery 3.

つぎに、二次電池システム1の動作および管理方法について説明する。   Next, the operation and management method of the secondary battery system 1 will be described.

図4は、二次電池システム1における組電池3の劣化度および放電回路の異常を判定するための手順を示している。図3のステップS1においては、放電指令手段18から放電指令信号K1が出力され、これにより整流器101からの出力電圧が通常時よりも低下される。すなわち、整流器101の出力電圧は、放電指令手段18からの放電指令信号K1に基づき組電池3の開放電圧よりも低く制御される。これにより、直流負荷設備102には、各組電池3から直流電力が供給される。ここで、整流器101は、放電指令手段18からの放電指令信号K1を受けた場合でも、出力電圧は許容電圧範囲内に維持されており、例えば判定作業の途中で蓄電池3からの電力供給が停止した場合でも、直流負荷設備102を運転することが可能である。   FIG. 4 shows a procedure for determining the deterioration degree of the assembled battery 3 and the abnormality of the discharge circuit in the secondary battery system 1. In step S1 of FIG. 3, the discharge command signal K1 is output from the discharge command means 18, and thereby the output voltage from the rectifier 101 is lowered from the normal time. That is, the output voltage of the rectifier 101 is controlled to be lower than the open voltage of the assembled battery 3 based on the discharge command signal K1 from the discharge command means 18. As a result, DC power is supplied from each assembled battery 3 to the DC load facility 102. Here, even when the rectifier 101 receives the discharge command signal K1 from the discharge command means 18, the output voltage is maintained within the allowable voltage range. For example, the power supply from the storage battery 3 is stopped during the determination operation. Even in this case, the DC load facility 102 can be operated.

つぎに、図4のステップS2に示すように、各組電池管理ユニット5に設けられた電流計測手段19によって組電池3から直流負荷設備102に流れる放電電流I、I、Iが計測される。そして、ステップS3に進み、計測された放電電流I、I、Iと基準電流値Icとの比較が行われ、放電電流I、I、Iが正常であるか否かが判断される。なお、「正常状態」とは、この場合、各組電池からの放電電流が負荷の消費電力の1/3とした値になっていることである。ここで、放電電流I、I、Iが正常であると判断された場合は、ステップS4に進み、放電指令手段18による蓄電池放電指令が解除され、再び整流器101による直流負荷設備102への電力供給と、整流器101による3つの組電池3のフロート充電が再開される。 Next, as shown in step S <b> 2 of FIG. 4, the discharge currents I 1 , I 2 , and I 3 flowing from the assembled battery 3 to the DC load facility 102 are measured by the current measuring means 19 provided in each assembled battery management unit 5. Is done. In step S3, the measured discharge currents I 1 , I 2 , I 3 are compared with the reference current value Ic to determine whether the discharge currents I 1 , I 2 , I 3 are normal. To be judged. In this case, “normal state” means that the discharge current from each assembled battery has a value that is 1/3 of the power consumption of the load. Here, when it is determined that the discharge currents I 1 , I 2 , and I 3 are normal, the process proceeds to step S 4, the storage battery discharge command by the discharge command means 18 is canceled, and the rectifier 101 returns to the DC load facility 102 again. Power supply and float charging of the three assembled batteries 3 by the rectifier 101 are resumed.

以上述べたように、整流器101の出力電圧低下による各組電池3の放電時においては、組電池A〜組電池Cの電池容量が等しければ、組電池A〜組電池Cが分担する放電電流I、I、Iは、直流負荷設備102に流入する総放電電流を3で除した値となるが、各組電池3の劣化度が異なる場合や放電回路に異常がある場合は、並列数に応じた放電電流値とはならない。したがって、放電電流I、I、Iが並列数に応じた放電電流値とはならない場合は、基準電流値Iに対しても大きくずれることになり、ステップS3において、組電池3自体に異常があるか、または組電池3の放電回路に異常があると判断される。 As described above, at the time of discharging each assembled battery 3 due to the output voltage drop of the rectifier 101, if the battery capacity of the assembled battery A to the assembled battery C is equal, the discharge current I shared by the assembled battery A to the assembled battery C is as follows. 1 , I 2 , and I 3 are values obtained by dividing the total discharge current flowing into the DC load facility 102 by 3, but in parallel when the degree of deterioration of each assembled battery 3 is different or the discharge circuit is abnormal. The discharge current value does not correspond to the number. Therefore, when the discharge currents I 1 , I 2 , and I 3 do not become the discharge current values corresponding to the number of parallel connections, the discharge current values greatly deviate from the reference current value I 0. In step S 3, the assembled battery 3 itself Or the discharge circuit of the assembled battery 3 is determined to be abnormal.

次に、電池の劣化と放電電流の関係を具体的に示す。図5は、各組電池3の定格容量が等しく、劣化していない場合の放電初期における放電電圧および放電電流の変化を示している。図5に示すように、各組電池3が劣化していない場合は、放電電流I、I、Iは各組電池3で等しくなり、負荷電流の1/3になる。一方、図6は、一部の組電池3に劣化が生じている場合の放電初期における放電電圧および放電電流の変化を示している。各組の定格容量が等しくとも、一部の組電池3に劣化が生じている場合は、放電電流I、I、Iは各組電池3でそれぞれ異なる。図7は、各組電池3の使用期間と放電電流との関係を示しており、各組電池3が劣化していない場合は、各組電池3の放電電流I、I、Iはいずれも等しく負荷電流の1/3の値を示す。しかし、一部の組電池3が劣化している場合、図8に示すように、各組電池3の使用期間と放電電流との関係は、時間の経過とともに各組電池3の放電電流I、I、Iの差が次第に大きくなっていく。図7および図8の縦軸の1/nは、組電池3の個数がn個の場合に各組電池3を流れる放電電流が負荷電流の1/nになることを示しており、この実施の形態においては組電池3の個数が3個であるので、各組電池3の放電電流は上述の通り負荷電流の1/3となる。 Next, the relationship between battery deterioration and discharge current will be specifically shown. FIG. 5 shows changes in discharge voltage and discharge current at the initial stage of discharge when the rated capacities of the assembled batteries 3 are equal and not deteriorated. As shown in FIG. 5, when each assembled battery 3 is not deteriorated, the discharge currents I 1 , I 2 , and I 3 are equal in each assembled battery 3 and become 1/3 of the load current. On the other hand, FIG. 6 shows changes in the discharge voltage and discharge current in the initial stage of discharge when some of the assembled batteries 3 are deteriorated. Even if the rated capacity of each set is equal, when some of the assembled batteries 3 are deteriorated, the discharge currents I 1 , I 2 , and I 3 are different for each assembled battery 3. FIG. 7 shows the relationship between the period of use of each assembled battery 3 and the discharge current. When each assembled battery 3 is not deteriorated, the discharge currents I 1 , I 2 , I 3 of each assembled battery 3 are Both show equal values of 1/3 of the load current. However, when some of the assembled batteries 3 are deteriorated, as shown in FIG. 8, the relationship between the use period of each assembled battery 3 and the discharge current is the discharge current I 1 of each assembled battery 3 over time. , I 2 and I 3 gradually increase. The vertical axis 1 / n in FIGS. 7 and 8 indicates that when the number of the assembled batteries 3 is n, the discharge current flowing through each assembled battery 3 becomes 1 / n of the load current. In this embodiment, since the number of the assembled batteries 3 is 3, the discharge current of each assembled battery 3 is 1/3 of the load current as described above.

図9は、組電池3における正常な劣化による容量変化と異常な劣化による容量変化とを示している。図9に示すように、異常な劣化の場合は、正常な場合に比べて短い使用期間で組電池3の容量が著しく低下することがわかる。また、図10は、組電池3における正常な劣化による内部抵抗の変化と異常な劣化による内部抵抗の変化とを示している。図10に示すように、異常な劣化の場合は、正常な場合に比べて短い使用期間で組電池3の内部抵抗が著しく増加することがわかる。図11は、組電池3における内部抵抗と電池容量との関係を示している。図11に示すように、電池容量は内部抵抗が増加するにつれて低下することがわかる。このように、組電池3の劣化は容量、内部抵抗に現れるので、容量、内部抵抗に関係する放電電流I、I、Iを計測することにより、組電池3が劣化しているか否かを判定することが可能となる。 FIG. 9 shows a capacity change due to normal deterioration and a capacity change due to abnormal deterioration in the assembled battery 3. As shown in FIG. 9, in the case of abnormal deterioration, it can be seen that the capacity of the assembled battery 3 is significantly reduced in a shorter use period than in the normal case. FIG. 10 shows changes in internal resistance due to normal deterioration in the assembled battery 3 and changes in internal resistance due to abnormal deterioration. As shown in FIG. 10, in the case of abnormal deterioration, it can be seen that the internal resistance of the assembled battery 3 significantly increases in a shorter use period than in the normal case. FIG. 11 shows the relationship between the internal resistance and the battery capacity in the assembled battery 3. As shown in FIG. 11, it can be seen that the battery capacity decreases as the internal resistance increases. Thus, since the deterioration of the assembled battery 3 appears in the capacity and the internal resistance, whether or not the assembled battery 3 is deteriorated by measuring the discharge currents I 1 , I 2 , and I 3 related to the capacity and the internal resistance. It becomes possible to determine.

図8に示すように、組電池Aの放電電流Iと組電池Bの放電電流Iは、基準電流値Icを上回る値を示しているが、組電池Cの放電電流Iは、基準電流値Icを下回っている。ここで、基準電流値Icは、良否判定の閾値であることから、基準電流値Icを下回った放電電流Iに対応する組電池Cについては、容量が低下しているか、または組電池Cの放電回路に異常(放電回路における接続端子のネジの緩みや断線など)があると判断される。 As shown in FIG. 8, the discharge current I 1 and the assembled battery discharge current I 2 of the B of the battery pack A, while indicating a value exceeding the reference current value Ic, the discharge current I 3 of the battery pack C, the reference It is below the current value Ic. Here, the reference current Ic, since a threshold of quality determination, for the battery pack C corresponding to the discharge current I 3 falls below the reference current value Ic, or capacity is lowered, or the assembled battery C It is determined that there is an abnormality in the discharge circuit (such as a loose connection terminal screw or disconnection in the discharge circuit).

図4のステップS3において、組電池Cの放電電流Iの計測値が正常でないと判断された場合は、ステップS5に進み、判定手段12から異常の旨の判定信号K4が出力され、判定結果表示手段17によって警報が発せられる。その後、ステップS4に進み、放電指令手段18による蓄電池放電指令が解除され、再び整流器101による直流負荷設備102への電力供給と、整流器101による3つの組電池3のフロート充電が再開される。 In step S3 of FIG. 4, if the measured value of the discharge current I 3 of the battery pack C is determined not to be normal, the process proceeds to step S5, the determination signal K4 to the effect that the abnormality judging means 12 is outputted, the determination result An alarm is issued by the display means 17. Thereafter, the process proceeds to step S4, where the storage battery discharge command by the discharge command means 18 is canceled, and the power supply to the DC load facility 102 by the rectifier 101 and the float charging of the three assembled batteries 3 by the rectifier 101 are resumed.

このように、判定手段12によって組電池3自体や組電池3の放電回路の異常を簡易に判定することが可能となるので、従来のように長時間にわたる放電試験が不要になるとともに、二次電池システム1の異常を把握するためのコストを著しく低減することができる。また、放電指令手段18によって組電池3の劣化や放電回路の異常の有無を定期的に把握することができるので、組電池3や放電回路を常に最良の状態に維持しておくことが可能となる。これにより、落雷などにより商用電源100が停電した場合でも、組電池3により直流負荷設備102を確実にバックアップすることができ、二次電池システム1の信頼性を保つことができる。さらに、判定手段12には、判定結果表示手段17が接続されているので、二次電池システム1内の異常を素早く把握することができ、迅速な対策を施すことが可能となる。   As described above, the determination unit 12 can easily determine whether the assembled battery 3 itself or the discharge circuit of the assembled battery 3 is abnormal. The cost for grasping the abnormality of the battery system 1 can be significantly reduced. Further, since the discharge command means 18 can periodically grasp the deterioration of the assembled battery 3 and the abnormality of the discharge circuit, it is possible to always maintain the assembled battery 3 and the discharge circuit in the best state. Become. As a result, even when the commercial power supply 100 fails due to a lightning strike or the like, the DC load facility 102 can be reliably backed up by the assembled battery 3 and the reliability of the secondary battery system 1 can be maintained. Furthermore, since the determination result display means 17 is connected to the determination means 12, it is possible to quickly grasp the abnormality in the secondary battery system 1 and to take quick measures.

また、放電初期の放電電流I、I、Iに基づき異常の有無を判定するので、放電試験が終了した時点において組電池3は十分な容量を有しており、放電終了直後に停電が生じても直流負荷設備102に直流電力を確実に供給することができ、停電に対する信頼性を保つことができる。さらに、この実施の形態においては、組電池3の開放電圧よりも整流器101の出力電圧を一時的に低下させて組電池3を強制的に放電させるようにしているので、例えば異常の判定時に蓄電池3による電力供給が停止した場合でも、整流器101によって直流負荷設備102の運転を継続することが可能となる。したがって、整流器101の出力を完全に停止させて異常の有無を判定する場合に比べて、直流負荷設備102に対する電力供給の信頼度を保つることができる。 Moreover, since the presence or absence of abnormality is determined based on the discharge currents I 1 , I 2 , and I 3 at the initial stage of discharge, the assembled battery 3 has a sufficient capacity at the time when the discharge test is completed, and a power failure occurs immediately after the end of the discharge. Even if this occurs, DC power can be reliably supplied to the DC load facility 102, and reliability against power failure can be maintained. Furthermore, in this embodiment, the output voltage of the rectifier 101 is temporarily lowered from the open voltage of the assembled battery 3 to forcibly discharge the assembled battery 3, so that, for example, when the battery is determined to be abnormal, the storage battery Even when the power supply by 3 is stopped, the operation of the DC load facility 102 can be continued by the rectifier 101. Therefore, the reliability of power supply to the DC load facility 102 can be maintained as compared with the case where the output of the rectifier 101 is completely stopped to determine whether or not there is an abnormality.

以上、この発明の実施の形態について説明したが、具体的な構成は、上記の実施の形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計の変更等があっても、この発明に含まれる。例えば、上記の実施の形態では、二次電池システム1を通信設備などの直流負荷設備102に適用する場合について説明したが、直流電力を入力とする無停電電源装置(UPS:Uninterruptible Power Supply)や、その他の設備に適用することもできる。また、放電指令手段7は、放電指令信号K1によって整流器101の出力電圧を一時的に低下させることにより、複数の組電池3を放電させる機能としたが、整流器101からの出力電力を一時的に完全に停止させて擬似停電を起こさせることにより、複数の組電池3を放電させる構成としてもよい。さらに、放電初期の放電電流I、I、Iの計測は、実際の停電により商用電源100からの電力供給が停止した場合でも可能であり、この場合も放電初期の放電電流I、I、Iに基づき組電池3の異常の有無を判定することができる。 Although the embodiment of the present invention has been described above, the specific configuration is not limited to the above embodiment, and even if there is a design change or the like without departing from the gist of the present invention, Included in the invention. For example, in the above embodiment, the case where the secondary battery system 1 is applied to the DC load equipment 102 such as communication equipment has been described. However, an uninterruptible power supply (UPS) that uses DC power as an input, It can also be applied to other equipment. The discharge command means 7 has a function of discharging the plurality of assembled batteries 3 by temporarily reducing the output voltage of the rectifier 101 by the discharge command signal K1, but the output power from the rectifier 101 is temporarily reduced. It is good also as a structure which discharges the some assembled battery 3 by making it stop completely and causing a pseudo power failure. Furthermore, the measurement of the discharge currents I 1 , I 2 , and I 3 at the initial stage of discharge is possible even when the power supply from the commercial power supply 100 is stopped due to an actual power failure. In this case, the discharge currents I 1 , The presence or absence of abnormality of the assembled battery 3 can be determined based on I 2 and I 3 .

上記の実施の形態では、二次電池としてリチウムイオン二次電池を使用しているが、二次電池は、リチウムイオン二次電池に限定されることはなく、鉛蓄電池であってもよいしこれ以外の種類の二次電池であってもよい。また、放電指令手段18は、予め設定されたプログラムに基づき定期的に放電指令信号K1を整流器101に出力するように構成されているが、遠隔操作によって放電指令力信号K1を整流器101に出力する構成としてもよい。さらに、異常の有無を判定する際の組電池3の放電時間は、組電池3の容量および直流負荷設備102の容量や判定精度などを考慮して極力短時間とすることが望ましい。   In the above embodiment, a lithium ion secondary battery is used as a secondary battery. However, the secondary battery is not limited to a lithium ion secondary battery, and may be a lead storage battery. Other types of secondary batteries may be used. The discharge command means 18 is configured to periodically output the discharge command signal K1 to the rectifier 101 based on a preset program, but outputs the discharge command force signal K1 to the rectifier 101 by remote operation. It is good also as a structure. Furthermore, it is desirable that the discharge time of the assembled battery 3 when determining the presence or absence of abnormality is as short as possible in consideration of the capacity of the assembled battery 3, the capacity of the DC load equipment 102, the determination accuracy, and the like.

1 二次電池システム
2 リチウムイオンセル(二次電池)
3 組電池
4 電池監視制御部
5 組電池管理ユニット
10 組電池状態監視装置
12 判定手段
17 判定結果表示手段
18 放電指令手段
19 電流計測手段
100 商用電源
101 整流器(直流電力供給源)
102 直流負荷設備
1 Secondary battery system 2 Lithium ion cell (secondary battery)
DESCRIPTION OF SYMBOLS 3 Assembly battery 4 Battery monitoring control part 5 Assembly battery management unit 10 Assembly battery state monitoring apparatus 12 Judgment means 17 Judgment result display means 18 Discharge command means 19 Current measurement means 100 Commercial power supply 101 Rectifier (DC power supply source)
102 DC load equipment

Claims (4)

多数の二次電池を直列接続して構成される組電池が複数個並列に接続された組電池群と、前記複数の組電池と並列に接続される直流負荷設備と、前記複数の組電池を充電するとともに前記直流負荷設備に直流電力を供給する直流電力供給源とを有する二次電池システムであって、前記直流電力供給源の出力電圧を一時的に前記組電池の開放電圧よりも低く制御し、前記複数の組電池を強制的に放電させる放電指令手段と、前記複数の組電池の放電回路にそれぞれ設けられ、前記放電指令手段による前記直流電力供給源の出力電圧の、一時的な前記組電池の開放電圧以下への低下によって前記組電池から前記直流負荷設備へ流れる放電電流を計測する電流計測手段と、前記各電流計測手段によってそれぞれ計測された放電電流に基づき前記組電池を含むシステム内の異常の有無を判定する判定手段と、を備え、前記判定手段は、前記放電指令手段からの放電指令信号による前記直流電力供給源の出力電圧の一時的な低下に伴う各組電池の放電初期の放電電流と予め設定された基準電流値とを比較し、各組電池からの放電電流が正常であるか否かを判定し、前記組電池は、前記判定手段による前記放電初期の放電電流に基づく判定によって、前記放電終了直後に前記直流電力供給源からの電力供給が停止しても前記直流負荷設備に対して直流電力を供給するための十分な容量を有するように、前記放電指令手段と前記電流計測手段と前記判定手段とを有する組電池状態監視装置により管理されている、ことを特徴とする二次電池システム。 An assembled battery group in which a plurality of assembled batteries configured by connecting a large number of secondary batteries in series are connected in parallel; a DC load facility connected in parallel with the plurality of assembled batteries; and the plurality of assembled batteries. A secondary battery system having a DC power supply source for charging and supplying DC power to the DC load equipment, wherein the output voltage of the DC power supply source is temporarily controlled to be lower than the open voltage of the assembled battery A discharge command means for forcibly discharging the plurality of assembled batteries, and a discharge circuit of the plurality of assembled batteries , respectively, for temporarily outputting the output voltage of the DC power supply source by the discharge command means. and current measuring means for measuring a discharge current flowing to the DC load equipment from the battery pack by drop to the open-circuit voltage below the battery pack, the assembled collector on the basis of the discharge current measured respectively by each current measuring means And a determining means for determining whether there is an abnormality in the system including the determination means, each set associated with a temporary reduction in the output voltage of the DC power supply by the discharge command signal from the discharge command means A discharge current at the initial stage of battery discharge is compared with a preset reference current value to determine whether or not the discharge current from each assembled battery is normal. According to the determination based on the discharge current, even if the power supply from the DC power supply source is stopped immediately after the end of the discharge, the DC load equipment has a sufficient capacity to supply DC power even if the power supply is stopped. A secondary battery system managed by an assembled battery state monitoring device having a discharge command means, the current measurement means, and the determination means . 前記判定手段には、システム内の異常の有無を表示する判定結果表示手段が接続されていることを特徴とする請求項1に記載の二次電池システム。   The secondary battery system according to claim 1, wherein the determination unit is connected to a determination result display unit that displays presence / absence of abnormality in the system. 前記二次電池は、リチウムイオン二次電池から構成されることを特徴とする請求項1または2に記載の二次電池システム。   The secondary battery system according to claim 1, wherein the secondary battery includes a lithium ion secondary battery. 多数の二次電池を直列接続して構成される組電池が複数個並列に接続された組電池群と、前記複数の組電池と並列に接続される直流負荷設備と、前記複数の組電池を充電するとともに前記直流負荷設備に直流電力を供給する直流電力供給源とを有する二次電池システムの管理方法であって、前記直流電力供給源の出力電圧を放電指令手段によって一時的に前記組電池の開放電圧よりも低く制御して前記複数の組電池を強制的に放電させ、前記放電指令手段による前記直流電力供給源の出力電圧の、一時的な前記組電池の開放電圧以下への低下によって前記各組電池から前記直流負荷設備へ流れる放電電流をそれぞれ電流計測手段により計測し、前記各電流計測手段によってそれぞれ計測された放電電流に基づき前記組電池を含むシステム内の異常の有無を判定手段によって判定し、前記判定手段は、前記放電指令手段からの放電指令信号による前記直流電力供給源の出力電圧の一時的な低下に伴う各組電池の放電初期の放電電流と予め設定された基準電流値とを比較して各組電池からの放電電流が正常であるか否かを判定し、前記組電池は、前記判定手段による前記放電初期の放電電流に基づく判定によって、前記放電終了直後に前記直流電力供給源からの電力供給が停止しても前記直流負荷設備に対して直流電力を供給するための十分な容量を有するように、前記電流計測手段と前記判定手段とを有する組電池状態監視装置により管理されている、ことを特徴とする二次電池システムの管理方法。 An assembled battery group in which a plurality of assembled batteries configured by connecting a large number of secondary batteries in series are connected in parallel; a DC load facility connected in parallel with the plurality of assembled batteries; and the plurality of assembled batteries. A method for managing a secondary battery system comprising a DC power supply source for charging and supplying DC power to the DC load equipment , wherein the assembled battery is temporarily supplied with an output voltage of the DC power supply source by a discharge command means. The plurality of assembled batteries are forcibly discharged by controlling the voltage to be lower than the open circuit voltage of the battery, and the output voltage of the DC power supply source by the discharge command means is temporarily reduced below the open voltage of the assembled battery. the measured respectively by the current measurement means discharge current flowing to the DC load equipment from the assembled battery, in a system including the battery pack based on the discharge current measured respectively by the individual current measuring means The presence or absence of atmospheric determined by the determining means, said determining means, the discharge initial discharge current temporary respective cell packs with decreasing output voltage of the DC power supply by the discharge command signal from the discharge command means and It is determined whether or not the discharge current from each assembled battery is normal by comparing with a preset reference current value, and the assembled battery is determined based on the discharge current at the initial stage of discharge by the determination means, Even if the power supply from the DC power supply source stops immediately after the end of the discharge, the current measuring means and the determining means have a sufficient capacity to supply DC power to the DC load equipment. A management method for a secondary battery system, characterized in that the secondary battery system is managed by an assembled battery state monitoring device .
JP2010016263A 2010-01-28 2010-01-28 Secondary battery system and management method thereof Expired - Fee Related JP5553622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010016263A JP5553622B2 (en) 2010-01-28 2010-01-28 Secondary battery system and management method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010016263A JP5553622B2 (en) 2010-01-28 2010-01-28 Secondary battery system and management method thereof

Publications (2)

Publication Number Publication Date
JP2011155784A JP2011155784A (en) 2011-08-11
JP5553622B2 true JP5553622B2 (en) 2014-07-16

Family

ID=44541315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010016263A Expired - Fee Related JP5553622B2 (en) 2010-01-28 2010-01-28 Secondary battery system and management method thereof

Country Status (1)

Country Link
JP (1) JP5553622B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5783116B2 (en) * 2012-03-30 2015-09-24 株式会社Gsユアサ Battery degradation diagnosis method and charge / discharge monitoring control system
JP5502216B1 (en) * 2013-02-28 2014-05-28 三菱電機株式会社 Branch power supply control device and branch power control method for electric load
JP6207196B2 (en) * 2013-03-28 2017-10-04 株式会社Nttファシリティーズ DC power supply system
JP6384824B2 (en) * 2014-03-20 2018-09-05 株式会社Nttファシリティーズ Storage battery deterioration judgment system
WO2021053769A1 (en) * 2019-09-18 2021-03-25 日本電信電話株式会社 Power quality adjustment device and power quality adjustment method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0549177A (en) * 1991-08-09 1993-02-26 Fujitsu Ltd Battery voltage checking system
JPH0543086U (en) * 1991-11-15 1993-06-11 株式会社小松製作所 Power supply circuit with defective battery identification
JPH07298503A (en) * 1994-04-20 1995-11-10 Fuji Electric Co Ltd Go/no-go decision device for battery of uninterruptible power supply
JP4096261B2 (en) * 2003-12-05 2008-06-04 富士電機システムズ株式会社 Battery protection system
JP2007205798A (en) * 2006-01-31 2007-08-16 Toshiba Corp Information processor and battery capacity measurement method

Also Published As

Publication number Publication date
JP2011155784A (en) 2011-08-11

Similar Documents

Publication Publication Date Title
TWI780280B (en) Economic estimating device and economic estimating method of battery
CN106537718B (en) Battery management
JP4615439B2 (en) Secondary battery management device, secondary battery management method and program
JP5857247B2 (en) Power management system
US10031187B2 (en) System and method for monitoring a DC power system
US20020153865A1 (en) Uninterruptible power supply system having an NiMH or Li-ion battery
KR20180122378A (en) Battery monitoring device and method
JP2017531983A (en) System and method for series battery charging and forming
JP2007309839A (en) Battery pack condition measuring device, degradation of battery pack discrimination method and program for the same
JP5743634B2 (en) Deterioration measuring device, secondary battery pack, deterioration measuring method, and program
JP5773609B2 (en) Battery pack management apparatus, battery pack management method, and battery pack system
KR102014719B1 (en) Battery life management device
CN102570531B (en) Multi-stage charge balance control device and method
KR20220061862A (en) System and method of battery diagnostic
JP5553622B2 (en) Secondary battery system and management method thereof
KR20200021368A (en) Battery Management system based on Cell Charge up Current
JP2017220293A (en) Charge/discharge curve estimation device of battery and charge/discharge curve estimation method using the same
KR101291287B1 (en) Equipped with a spare battery for the maintenance of UPS Systems
JP2009064682A (en) Battery deterioration judging device, and lithium ion battery pack equipped with the same
JP2013160582A (en) Battery pack system and management method of battery pack system
CN110875622B (en) Method for recovering deep discharge battery module and uninterrupted power supply system thereof
JP2012088086A (en) Power management system
JP5783116B2 (en) Battery degradation diagnosis method and charge / discharge monitoring control system
JP2013146159A (en) Charge control system and charge control method of battery pack
KR20190093405A (en) Battery control unit compatible for lithium ion battery, and control method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140527

R150 Certificate of patent or registration of utility model

Ref document number: 5553622

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees