JP6384824B2 - Storage battery deterioration judgment system - Google Patents

Storage battery deterioration judgment system Download PDF

Info

Publication number
JP6384824B2
JP6384824B2 JP2014059175A JP2014059175A JP6384824B2 JP 6384824 B2 JP6384824 B2 JP 6384824B2 JP 2014059175 A JP2014059175 A JP 2014059175A JP 2014059175 A JP2014059175 A JP 2014059175A JP 6384824 B2 JP6384824 B2 JP 6384824B2
Authority
JP
Japan
Prior art keywords
discharge
storage battery
voltage
battery
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014059175A
Other languages
Japanese (ja)
Other versions
JP2015184077A (en
Inventor
壮平 中島
壮平 中島
辻川 知伸
知伸 辻川
火峰 薮田
火峰 薮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Facilities Inc
Original Assignee
NTT Facilities Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Facilities Inc filed Critical NTT Facilities Inc
Priority to JP2014059175A priority Critical patent/JP6384824B2/en
Publication of JP2015184077A publication Critical patent/JP2015184077A/en
Application granted granted Critical
Publication of JP6384824B2 publication Critical patent/JP6384824B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

この発明は、蓄電池の劣化状態・容量を判定する蓄電池劣化判定システムに関する。   The present invention relates to a storage battery deterioration determination system that determines a deterioration state / capacity of a storage battery.

シール型鉛蓄電池やリチウムイオン二次電池などの蓄電池・二次電池は、使用年数の経過に伴ってその容量が低下し、容量が所定の容量未満に達した場合には、新たな蓄電池と交換する必要がある。また、蓄電池の製造メーカなどによって、蓄電池の期待寿命が提示されているが、蓄電池の実際の寿命は、使用環境や使用条件などによって影響される。このため、実際の運用においては、現時点での蓄電池容量がどのくらいであるかを知り、さらには、寿命に至るまでの期間・残寿命を予測して、蓄電池交換などの計画を策定する必要がある。   Rechargeable batteries and secondary batteries such as sealed lead-acid batteries and lithium-ion secondary batteries are replaced with new ones when their capacity drops below the specified capacity as the years of use decrease. There is a need to. In addition, the expected life of the storage battery is presented by the manufacturer of the storage battery, but the actual life of the storage battery is affected by the use environment, use conditions, and the like. For this reason, in actual operation, it is necessary to know how much the storage battery capacity is at the present time, and to predict the period and remaining life until the end of the life, and to formulate a plan for replacing the storage battery, etc. .

一方、現時点での蓄電池容量を正確に知るには、放電試験を行う必要があるが、蓄電池を放電終止電圧(放電を終了させるべき電圧)まで放電させるには、長時間を要し、その間、蓄電池の使用が不可能となる。つまり、UPS(Uninterruptible Power Supply)などのバックアップ電源として使用されている蓄電池の場合、放電試験を行っている間は、バックアップ電源としての機能が失われてしまう。このため、蓄電池を放電終止電圧まで放電させることなく、短時間放電するだけで、蓄電池容量を推定することが可能な劣化判定試験が知られている(例えば、特許文献1参照。)。また、この劣化判定試験では、蓄電池(単電池)を複数直列に接続した組電池の場合、組電池全体を短時間放電させて組電池の端子電圧を測定する。そして、測定電圧の変化から組電池全体の容量を推定し、組電池全体の劣化状態を判定するものである。   On the other hand, in order to accurately know the storage battery capacity at the present time, it is necessary to perform a discharge test. However, it takes a long time to discharge the storage battery to the end-of-discharge voltage (voltage at which discharge should be terminated). Use of the storage battery becomes impossible. That is, in the case of a storage battery used as a backup power source such as UPS (Uninterruptable Power Supply), the function as the backup power source is lost during the discharge test. For this reason, a deterioration determination test is known that can estimate the storage battery capacity by simply discharging the storage battery for a short time without discharging it to the end-of-discharge voltage (see, for example, Patent Document 1). In the deterioration determination test, in the case of an assembled battery in which a plurality of storage batteries (unit cells) are connected in series, the entire assembled battery is discharged for a short time and the terminal voltage of the assembled battery is measured. And the capacity | capacitance of the whole assembled battery is estimated from the change of a measured voltage, and the deterioration state of the whole assembled battery is determined.

また、各蓄電池の不良および組電池の電圧異常を保守員の作業を要することなく、的確に検出して報知することができる、という蓄電池管理装置が知られている(例えば、特許文献2参照。)。この蓄電池管理装置は、各蓄電池の電圧を測定して各蓄電池の不良を検出するとともに、組電池の総電圧を測定して総電圧の電圧異常を検出し、これら不良検出を報知するものである。   Also, a storage battery management device is known that can detect and notify a failure of each storage battery and an abnormal voltage of the assembled battery accurately without requiring maintenance work (see, for example, Patent Document 2). ). This storage battery management device measures the voltage of each storage battery to detect a failure of each storage battery, measures the total voltage of the assembled battery to detect a voltage abnormality of the total voltage, and notifies these failure detections. .

特開平10−040967号公報JP-A-10-040967 特開2000−048861号公報JP 2000-048861 A

ところで、特許文献1の劣化判定試験では、予め放電日時を設定し、その放電日時に至ると組電池全体を放電させて容量を推定するものである。従って、予定された放電試験以外の放電、例えば、実際の停電に伴うバックアップ放電においては、容量が推定されず、劣化を判定することができない。また、組電池単位で劣化状態を判定するだけであるため、劣化状態が異常(容量低下)と判定された場合に、組電池のなかのどの蓄電池に不具合があるかを判定することができない。   By the way, in the deterioration determination test of Patent Document 1, a discharge date and time is set in advance, and when the discharge date and time is reached, the entire assembled battery is discharged to estimate the capacity. Therefore, in discharges other than the scheduled discharge test, for example, backup discharge accompanying an actual power failure, the capacity is not estimated and deterioration cannot be determined. Further, since only the deterioration state is determined for each assembled battery, it is impossible to determine which storage battery in the assembled battery has a defect when the deterioration state is determined to be abnormal (capacity reduction).

また、特許文献2の蓄電池管理装置では、閾値によって各蓄電池や組電池全体が正常であるか異常であるかを判定するのみで、電圧の測定値などが記憶されない。このため、正常と判定されて不良検出などが報知されない場合、異常に近いのかそうでないのかを判断することができない。しかも、異常と判定した場合に不良検出を報知するだけであるため、例えば、特許文献1の劣化判定試験を行った場合であっても、閾値以下の電圧にならないと不良検出が報知されず、放電時における各蓄電池の電圧を把握することができない。   Moreover, in the storage battery management apparatus of patent document 2, it only determines whether each storage battery or the whole assembled battery is normal or abnormal by a threshold value, and the measured value of a voltage etc. are not memorize | stored. For this reason, when it is determined to be normal and failure detection or the like is not notified, it is not possible to determine whether it is close to abnormal or not. In addition, since only the failure detection is notified when it is determined as abnormal, for example, even when the deterioration determination test of Patent Document 1 is performed, the failure detection is not notified unless the voltage is equal to or lower than the threshold value. The voltage of each storage battery at the time of discharge cannot be grasped.

そこでこの発明は、組電池における各蓄電池の劣化状態を適正に判定可能にする蓄電池劣化判定システムを提供することを目的とする。   Therefore, an object of the present invention is to provide a storage battery deterioration determination system that can appropriately determine the deterioration state of each storage battery in an assembled battery.

上記目的を達成するために請求項1に記載の発明は、蓄電池が複数接続された組電池の放電に伴って、前記各蓄電池の劣化状態を判定するための蓄電池劣化判定システムであって、複数の前記組電池を監視する監視装置と、前記各組電池に配設され前記各蓄電池の電圧を常時測定する蓄電池管理装置と、前記各組電池に配設され前記組電池を試験的に放電させる日時を記憶した整流器とが通信自在に接続され、前記監視装置に、前記組電池の放電を知得する放電知得手段と、前記放電知得手段による知得に基づいて、該組電池の前記蓄電池管理装置から前記各蓄電池の電圧を取得する電圧取得手段と、を備え、前記放電知得手段は、前記整流器から前記組電池を試験的に放電させる日時を取得することで放電を知得し、前記電圧取得手段は、前記日時に前記蓄電池管理装置から前記各蓄電池の電圧を取得する、ことを特徴とする。 In order to achieve the above object, the invention described in claim 1 is a storage battery deterioration determination system for determining a deterioration state of each storage battery in accordance with discharge of an assembled battery in which a plurality of storage batteries are connected. A monitoring device that monitors the assembled battery, a storage battery management device that is disposed in each assembled battery, and that constantly measures the voltage of each storage battery, and that is disposed in each assembled battery and discharges the assembled battery on a test basis. A rectifier storing the date and time is communicably connected, and the monitoring device has a discharge knowledge means for knowing the discharge of the battery pack, and the storage battery of the battery pack based on the knowledge of the discharge knowledge means. Voltage acquisition means for acquiring the voltage of each storage battery from a management device, and the discharge acquisition means acquires discharge by acquiring the date and time when the assembled battery is experimentally discharged from the rectifier, The voltage acquisition means includes Wherein from the battery management system to the serial date acquires the voltage of each storage battery, characterized in that.

この発明によれば、監視装置の放電知得手段によって、整流器から組電池を試験的に放電させる日時を取得すると、監視装置の電圧取得手段によって、取得した日時に放電対象の組電池の蓄電池管理装置から各蓄電池の電圧が取得される。つまり、組電池が放電される際には、この組電池の各蓄電池の電圧が監視装置に取得される。 According to the present invention, when the date and time when the assembled battery is experimentally discharged from the rectifier is acquired by the discharge acquisition means of the monitoring device, the storage battery management of the assembled battery to be discharged at the acquired date and time by the voltage acquisition means of the monitoring device. The voltage of each storage battery is acquired from the device. That is, when the assembled battery is discharged, the voltage of each storage battery of the assembled battery is acquired by the monitoring device.

請求項2に記載の発明は、請求項1に記載の蓄電池劣化判定システムにおいて、前記整流器は、前記組電池を試験的に放電させる日時の前に前記日時を前記放電知得手段に送信し、あるいは、前記放電知得手段からの定期的な要求に応じて前記日時を前記放電知得手段に送信する、ことを特徴とする。 The invention according to claim 2 is the storage battery deterioration determination system according to claim 1, wherein the rectifier transmits the date and time to the discharge acquisition means before the date and time when the assembled battery is discharged on a trial basis. Alternatively, the date and time is transmitted to the discharge knowledge acquisition means in response to a periodic request from the discharge knowledge acquisition means .

請求項3に記載の発明は、請求項1または2に記載の蓄電池劣化判定システムにおいて、前記放電知得手段は、前記組電池の放電を検知する前記整流器から検知結果を取得することで放電を知得し、前記電圧取得手段は、前記放電知得手段によって放電が知得された時点で前記蓄電池管理装置から前記各蓄電池の電圧を取得する、ことを特徴とする。 According to a third aspect of the present invention, in the storage battery deterioration determination system according to the first or second aspect, the discharge acquisition means obtains a discharge by acquiring a detection result from the rectifier that detects a discharge of the assembled battery. Knowing and the said voltage acquisition means acquire the voltage of each said storage battery from the said storage battery management apparatus, when discharge is known by the said discharge acquisition means, It is characterized by the above-mentioned.

請求項4に記載の発明は、請求項1から3に記載の蓄電池劣化判定システムにおいて、前記監視装置に、前記電圧取得手段によって取得された前記各蓄電池の電圧と、前記組電池の放電時の放電電流値とに基づいて、前記各蓄電池の容量を推定する容量推定手段を備え、前記容量推定手段は、前記組電池の放電時の放電電流値と、ある放電電流値における標準的な初期の放電特性とに基づいて、前記蓄電値の初期放電特性を算出し、前記初期放電特性により放電開始から所定電圧または放電終止電圧に至るまでの放電時間を求め、前記各蓄電池の電圧に基づいて前記各蓄電池の放電特性を作成し、前記各蓄電池の放電特性により放電開始から所定電圧または放電終止電圧に至るまでの放電時間を求め、前記各蓄電池の放電時間を前記初期放電特性の放電時間で除算して、前記各蓄電池の容量を推定する、ことを特徴とする。 According to a fourth aspect of the present invention, in the storage battery deterioration determination system according to any one of the first to third aspects, the monitoring device is configured such that the voltage of each of the storage batteries acquired by the voltage acquisition unit and the battery pack are discharged. based on the discharge current value, Bei give a capacity estimation means for estimating the capacity of each battery, the capacity estimation means, a discharge current value during discharging of the battery pack, a standard initial in discharge current value in On the basis of the discharge characteristics of the battery, the initial discharge characteristics of the storage value is calculated, the discharge time from the start of discharge to the predetermined voltage or the end-of-discharge voltage is obtained by the initial discharge characteristics, based on the voltage of each storage battery A discharge characteristic of each storage battery is created, a discharge time from the start of discharge to a predetermined voltage or a discharge end voltage is determined by the discharge characteristic of each storage battery, and the discharge time of each storage battery is determined as the initial discharge. It is divided by the sex of the discharge time, and estimates the capacity of each storage battery, characterized in that.

請求項5に記載の発明は、請求項4に記載の蓄電池劣化判定システムにおいて、前記監視装置に、前記容量推定手段によって推定された容量と、前記各蓄電池の使用期間とに基づいて、前記各蓄電池が、前記使用期間に応じた容量よりも低い早期容量低下を起こしているか否かを判定する早期低下判定手段を備える、ことを特徴とする。   According to a fifth aspect of the present invention, in the storage battery deterioration determination system according to the fourth aspect, each of the monitoring devices is based on the capacity estimated by the capacity estimation means and the usage period of each storage battery. The storage battery includes an early decrease determination unit that determines whether or not the storage battery has an early capacity decrease that is lower than the capacity corresponding to the period of use.

請求項1に記載の発明によれば、組電池が放電される際には、この組電池の各蓄電池の電圧が監視装置に取得されるため、組電池における各蓄電池の劣化状態を適正に判定することが可能となる。すなわち、放電時における各蓄電池の電圧が取得されるため、各蓄電池の放電途中の電圧や放電終了時の電圧などによって、各蓄電池の劣化状態をより適正に判定することが可能となる。しかも、組電池の放電が知得されると、すべての放電時において各蓄電池の電圧が監視装置に取得されるため、より多くの放電結果に基づいて各組電池および各蓄電池の劣化状態をより適正に判定することが可能となる。一方、放電時にのみ各蓄電池の電圧が監視装置に取得され、各組電池の各蓄電池の電圧が常時監視装置に取得されるものではないため、監視装置と各蓄電池管理装置との通信量が軽減され、さらに、監視装置の負荷が軽減される。また、組電池を試験的に放電させる日時に各蓄電池の電圧が監視装置に取得されるため、試験的な放電時において確実に各蓄電池の電圧を取得して、各蓄電池の劣化状態を適正に判定することが可能となる。 According to the first aspect of the present invention, when the assembled battery is discharged, the voltage of each storage battery of the assembled battery is acquired by the monitoring device, so that the deterioration state of each storage battery in the assembled battery is appropriately determined. It becomes possible to do. That is, since the voltage of each storage battery at the time of discharge is acquired, it becomes possible to more appropriately determine the deterioration state of each storage battery by the voltage during the discharge of each storage battery, the voltage at the end of discharge, or the like. In addition, when the discharge of the assembled battery is known, the voltage of each storage battery is acquired by the monitoring device at all discharges. Therefore, the deterioration state of each assembled battery and each storage battery is further determined based on more discharge results. It becomes possible to determine appropriately. On the other hand, since the voltage of each storage battery is acquired by the monitoring device only at the time of discharging, and the voltage of each storage battery of each assembled battery is not always acquired by the monitoring device, the communication amount between the monitoring device and each storage battery management device is reduced. Furthermore, the load on the monitoring device is reduced. In addition, since the voltage of each storage battery is acquired by the monitoring device at the date and time when the assembled battery is discharged on a trial basis, the voltage of each storage battery is reliably acquired at the time of the test discharge, and the deterioration state of each storage battery is appropriately set. It becomes possible to judge.

請求項2に記載の発明によれば、組電池を試験的に放電させる日時の前に、この日時を放電知得手段に送信し、あるいは、放電知得手段からの定期的な要求に応じて日時を放電知得手段に送信することができる。 According to the second aspect of the present invention, before the date and time when the assembled battery is discharged on a trial basis, this date and time is transmitted to the discharge knowledge means, or in response to a periodic request from the discharge knowledge means. The date and time can be transmitted to the discharge acquisition means.

請求項3に記載の発明によれば、組電池の放電が検知、知得されると、その時点で各蓄電池の電圧が監視装置に取得されるため、突発的な放電時(例えば、停電に伴うバックアップ放電時)などにおいて確実に各蓄電池の電圧を取得して、各蓄電池の劣化状態を適正に判定することが可能となる。   According to the third aspect of the present invention, when the discharge of the assembled battery is detected and known, the voltage of each storage battery is acquired by the monitoring device at that time. For example, during backup discharge, the voltage of each storage battery can be reliably acquired, and the deterioration state of each storage battery can be properly determined.

請求項4に記載の発明によれば、各蓄電池の電圧と放電電流値とに基づいて、容量推定手段によって各蓄電池の容量が推定されるため、推定された容量に基づいて各蓄電池の劣化状態を適正かつ容易に判定することが可能となる。しかも、各蓄電池の容量が自動的に推定されるため、労力や時間が軽減されるばかりでなく、適正な容量推定によって各蓄電池の劣化状態をより適正に判定することが可能となる。   According to invention of Claim 4, since the capacity | capacitance of each storage battery is estimated by the capacity estimation means based on the voltage and discharge current value of each storage battery, the deterioration state of each storage battery based on the estimated capacity Can be determined appropriately and easily. And since the capacity | capacitance of each storage battery is estimated automatically, not only labor and time are reduced, but it becomes possible to determine the deterioration state of each storage battery more appropriately by appropriate capacity estimation.

請求項5に記載の発明によれば、各蓄電池の推定容量と使用期間とに基づいて、早期低下判定手段によって各蓄電池が早期容量低下(Premature Capacity Loss)を起こしているか否かが判定されるため、各蓄電池の異常劣化や劣化傾向などを含む劣化状態を適正かつ容易に判定することが可能となる。   According to the fifth aspect of the present invention, based on the estimated capacity and usage period of each storage battery, it is determined whether or not each storage battery is causing an early capacity decrease by the early decrease determination means. Therefore, it is possible to appropriately and easily determine the deterioration state including abnormal deterioration or deterioration tendency of each storage battery.

この発明の実施の形態に係る蓄電池劣化判定システムを示す概略構成図である。It is a schematic block diagram which shows the storage battery deterioration determination system which concerns on embodiment of this invention. 図1の蓄電池劣化判定システムの監視装置の概略構成ブロック図である。It is a schematic block diagram of the monitoring apparatus of the storage battery deterioration determination system of FIG. 図2の監視装置の標準データベースに記憶されている、放電容量の経年変化の傾向の例を示す図である。It is a figure which shows the example of the tendency of the secular change of discharge capacity memorize | stored in the standard database of the monitoring apparatus of FIG. 図2の監視装置の容量推定タスクで算出される放電カーブの例を示す図である。It is a figure which shows the example of the discharge curve calculated by the capacity | capacitance estimation task of the monitoring apparatus of FIG. 図1の蓄電池劣化判定システムの電圧取得要求までの第1の動作を示すフローチャートである。It is a flowchart which shows the 1st operation | movement until the voltage acquisition request | requirement of the storage battery deterioration determination system of FIG. 図1の蓄電池劣化判定システムの電圧取得要求までの第2の動作を示すフローチャートである。It is a flowchart which shows the 2nd operation | movement until the voltage acquisition request of the storage battery deterioration determination system of FIG. 図1の蓄電池劣化判定システムの電圧取得要求後の動作を示すフローチャートである。It is a flowchart which shows the operation | movement after the voltage acquisition request | requirement of the storage battery deterioration determination system of FIG.

以下、この発明を図示の実施の形態に基づいて説明する。   The present invention will be described below based on the illustrated embodiments.

図1は、この発明の実施の形態に係る蓄電池劣化判定システム1を示す概略構成図である。この蓄電池劣化判定システム1は、セル(蓄電池・二次電池)2が複数(例えば、23セル)直列に接続された組電池20の放電に伴って、各セル2の劣化状態を判定するためのシステムであり、監視センタCに配設された監視装置5と、監視センタCから遠隔地に位置する各サイトRに配設された蓄電池管理装置3とが、通信網NWを介して通信自在に接続されている。   FIG. 1 is a schematic configuration diagram showing a storage battery deterioration determination system 1 according to an embodiment of the present invention. This storage battery deterioration determination system 1 is for determining the deterioration state of each cell 2 with the discharge of the assembled battery 20 in which a plurality of cells (storage battery / secondary battery) 2 (for example, 23 cells) are connected in series. The system is a system in which a monitoring device 5 disposed in the monitoring center C and a storage battery management device 3 disposed in each site R remote from the monitoring center C can communicate with each other via the communication network NW. It is connected.

ここで、この実施の形態では、通信機器などの負荷設備102に対してバックアップ電源として機能するシール型鉛蓄電池を対象蓄電池とする場合について、主として以下に説明する。また、組電池20は、整流器4に接続され、商用電源101からの電力が整流器4で直流に変換されて組電池20に供給され、組電池20が充電されるようになっている。さらに、整流器4には負荷設備102が接続され、同様にして直流電力が負荷設備102に供給され、商用電源101が停電すると、組電池20から負荷設備102に直流電力が供給されるようになっている。   Here, in this embodiment, the case where a sealed lead-acid battery that functions as a backup power source for the load facility 102 such as a communication device is the target storage battery will be mainly described below. The assembled battery 20 is connected to the rectifier 4, and electric power from the commercial power supply 101 is converted into direct current by the rectifier 4 and supplied to the assembled battery 20, so that the assembled battery 20 is charged. Further, the load facility 102 is connected to the rectifier 4, and DC power is supplied to the load facility 102 in the same manner. When the commercial power source 101 is powered off, DC power is supplied from the assembled battery 20 to the load facility 102. ing.

また、各サイトRの整流器4は、組電池20に対する充電電流値と放電電流値とを計測、送信する機能を備えている。さらに、通信網NWを介して監視装置5と通信自在に接続され、組電池20を試験的に放電させる日時を記憶した記憶装置と、組電池20の放電を検知する検知装置としても機能する。すなわち、第1に、組電池20を試験的に放電させる日時(放電スケジュール)を記憶し、この日時に至ると、出力電圧を低下させることで、並列に接続された組電池20を放電させて劣化判定試験を行うものであり、この際、放電電流値を監視装置5に送信・通知する。さらに、整流器4は、劣化判定試験を行う日の所定時刻(放電日時前)に、放電スケジュールを監視装置5に送信する機能を備えている。第2に、組電池20からの電流(放電電流)を監視することで、組電池20の放電を検知し、放電を検知すると、「放電中警報」と放電電流値とを監視装置5に送信・通知する。   The rectifier 4 at each site R has a function of measuring and transmitting a charging current value and a discharging current value for the assembled battery 20. Furthermore, it communicates with the monitoring device 5 via the communication network NW, and functions as a storage device that stores the date and time when the assembled battery 20 is experimentally discharged, and a detection device that detects the discharge of the assembled battery 20. That is, first, the date and time (discharge schedule) at which the assembled battery 20 is discharged on a trial basis is stored, and when this date and time is reached, the output voltage is lowered to discharge the assembled batteries 20 connected in parallel. A deterioration determination test is performed. At this time, the discharge current value is transmitted to and notified to the monitoring device 5. Furthermore, the rectifier 4 has a function of transmitting a discharge schedule to the monitoring device 5 at a predetermined time (before the discharge date and time) on the day when the deterioration determination test is performed. Second, by monitoring the current (discharge current) from the assembled battery 20, the discharge of the assembled battery 20 is detected, and when the discharge is detected, an “in-discharge alarm” and a discharge current value are transmitted to the monitoring device 5. ·Notice.

蓄電池管理装置3は、各組電池20に配設され、この組電池20内の各セル2の電圧などを常時測定する装置であり、既知・既存の蓄電池管理装置と同等の構成となっている。すなわち、各セル2の電圧や組電池20の総電圧を常時測定し、測定電圧値が所定の適正な電圧範囲外の場合に、異常検出結果を監視装置5に通知するものである。また、組電池20の温度(周囲温度)を常時測定し、測定温度を定期的に監視装置5に通知する機能を備えている。さらに、監視装置5から「電圧取得要求」を受信した場合に、各セル2の電圧値や組電池20の総電圧値などの測定結果を、逐次監視装置5に送信する機能を備えている。   The storage battery management device 3 is a device that is disposed in each assembled battery 20 and constantly measures the voltage of each cell 2 in the assembled battery 20, and has the same configuration as a known and existing storage battery management device. . That is, the voltage of each cell 2 and the total voltage of the assembled battery 20 are constantly measured, and when the measured voltage value is outside a predetermined appropriate voltage range, the abnormality detection result is notified to the monitoring device 5. Moreover, the temperature (ambient temperature) of the assembled battery 20 is always measured, and the function which notifies the measured temperature to the monitoring apparatus 5 regularly is provided. Furthermore, when a “voltage acquisition request” is received from the monitoring device 5, a function of sequentially transmitting measurement results such as the voltage value of each cell 2 and the total voltage value of the assembled battery 20 to the monitoring device 5 is provided.

監視装置5は、複数の組電池20を監視する装置であり、監視機能の他に、図2に示すように、主として、放電知得タスク(放電知得手段)51と、電圧取得タスク(電圧取得手段)52と、電圧データベース53と、標準データベース54と、容量推定タスク(容量推定手段)55と、早期低下判定タスク(早期低下判定手段)56と、これらを制御などする中央処理部57と、を備えている。   The monitoring device 5 is a device that monitors a plurality of assembled batteries 20. In addition to the monitoring function, the monitoring device 5 mainly includes a discharge acquisition task (discharge acquisition means) 51 and a voltage acquisition task (voltage) as shown in FIG. Acquisition means) 52, voltage database 53, standard database 54, capacity estimation task (capacity estimation means) 55, early decrease determination task (early decrease determination means) 56, and central processing unit 57 for controlling these, It is equipped with.

放電知得タスク51は、各組電池20の放電を知得するタスク・プログラムであり、この実施の形態では、次の2つによって各組電池20の放電を知得する。第1に、組電池20を試験的に放電させる日時(放電スケジュール)を整流器4から取得することで、放電を知得する。具体的には、上記のようにして、毎日、その日が劣化判定試験日である整流器4から放電スケジュールを受信することで、組電池20の放電を知得する。この場合、受信した放電スケジュールの日時に当該組電池20が放電する予定である、と知得する。   The discharge acquisition task 51 is a task program for acquiring the discharge of each assembled battery 20, and in this embodiment, the discharge of each assembled battery 20 is acquired by the following two. First, the date and time (discharge schedule) at which the assembled battery 20 is discharged on a trial basis is acquired from the rectifier 4 to know the discharge. Specifically, as described above, the discharge of the assembled battery 20 is obtained by receiving the discharge schedule from the rectifier 4 that is the deterioration determination test day every day. In this case, it is known that the assembled battery 20 is scheduled to be discharged at the date and time of the received discharge schedule.

このように、当日が劣化判定試験日に該当する整流器4から放電スケジュールを監視装置5に送信しているが、次のようにしてもよい。すなわち、毎日所定時刻に監視装置5から全整流器4にスケジュール要求を送信し、これを受けて、当日が劣化判定試験日である整流器4から監視装置5に放電スケジュールを送信してもよい。また、定期的に監視装置5から全整流器4にスケジュール要求を送信し、これを受けて、全整流器4から監視装置5に放電スケジュールを送信し、監視装置5で放電スケジュールを記憶してもよい。   As described above, the discharge schedule is transmitted from the rectifier 4 corresponding to the deterioration determination test date to the monitoring device 5 as described above, but may be as follows. That is, the schedule request may be transmitted from the monitoring device 5 to all the rectifiers 4 at a predetermined time every day, and in response to this, the discharge schedule may be transmitted from the rectifier 4 whose current day is the deterioration determination test date to the monitoring device 5. Further, a schedule request may be periodically transmitted from the monitoring device 5 to all the rectifiers 4, and a discharge schedule may be transmitted from all the rectifiers 4 to the monitoring device 5, and the discharge schedule may be stored in the monitoring device 5. .

第2に、組電池20の放電を検知した検知結果を整流器4から取得することで、放電を知得する。具体的には、上記のようにして、整流器4から「放電中警報」を受信することで、放電を知得する。この場合、「放電中警報」を受信した日時に当該組電池20が放電した、と知得する。   Secondly, the detection result obtained by detecting the discharge of the assembled battery 20 is acquired from the rectifier 4 so that the discharge is known. Specifically, the discharge is acquired by receiving the “alarm during discharge” from the rectifier 4 as described above. In this case, it is known that the battery pack 20 has been discharged on the date and time when the “during discharge alarm” is received.

電圧取得タスク52は、放電知得タスク51による知得に基づいて、当該組電池20の蓄電池管理装置3から各セル2の電圧を取得するタスク・プログラムであり、この実施の形態では、次の2つによって電圧を取得する。第1に、整流器4から放電スケジュールを受信した場合、放電スケジュールの日時に当該蓄電池管理装置3から各セル2の電圧を取得する。具体的には、放電スケジュールの日時に至った時点で、該当する蓄電池管理装置3に「電圧取得要求」を送信し、この蓄電池管理装置3から各セル2の電圧や組電池20の総電圧などの測定結果を受信して、電圧データベース53に記憶、蓄積する。   The voltage acquisition task 52 is a task program that acquires the voltage of each cell 2 from the storage battery management device 3 of the battery pack 20 based on the knowledge by the discharge knowledge task 51. In this embodiment, The voltage is acquired by two. 1stly, when the discharge schedule is received from the rectifier 4, the voltage of each cell 2 is acquired from the said storage battery management apparatus 3 at the date of a discharge schedule. Specifically, when the date and time of the discharge schedule is reached, a “voltage acquisition request” is transmitted to the relevant storage battery management device 3, and the voltage of each cell 2, the total voltage of the assembled battery 20, etc. Are received and stored in the voltage database 53.

第2に、組電池20が放電した時点で、蓄電池管理装置3から各セル2の電圧を取得する。具体的には、整流器4から「放電中警報」を受信した場合に、即座に、該当する蓄電池管理装置3に「電圧取得要求」を送信し、この蓄電池管理装置3から各セル2の電圧や組電池20の総電圧などの測定結果を受信して、電圧データベース53に記憶、蓄積する。   Second, when the battery pack 20 is discharged, the voltage of each cell 2 is acquired from the storage battery management device 3. Specifically, when a “during discharge alarm” is received from the rectifier 4, a “voltage acquisition request” is immediately transmitted to the relevant storage battery management device 3, and the voltage of each cell 2 is transmitted from the storage battery management device 3. Measurement results such as the total voltage of the assembled battery 20 are received and stored in the voltage database 53.

また、このような測定結果の受信、取得は、組電池20の放電が終了して組電池20が再度満充電されるまでの間、逐次行う。すなわち、整流器4から組電池20の充電電流値を受信し、この充電電流値が所定値(例えば、ほぼゼロ)で一定化するまで、各セル2の電圧などの受信、取得を行う。そして、組電池20が満充電された場合に、監視装置5から蓄電池管理装置3に「電圧取得終了」を送信することで、蓄電池管理装置3からの測定結果の送信が終了する。このように、この実施の形態では、「電圧取得終了」を受信するまで蓄電池管理装置3から測定結果を送信しているが、監視装置5から蓄電池管理装置3に「電圧取得要求」を逐次送信し、「電圧取得要求」を受信するごとに蓄電池管理装置3から測定結果を送信し、組電池20が満充電された場合に、監視装置5からの「電圧取得要求」の送信を終了するようにしてもよい。   In addition, such measurement results are received and acquired sequentially until the battery pack 20 is fully discharged until the battery pack 20 is fully discharged. That is, the charging current value of the assembled battery 20 is received from the rectifier 4, and the voltage and the like of each cell 2 is received and acquired until the charging current value becomes constant at a predetermined value (for example, substantially zero). Then, when the assembled battery 20 is fully charged, the transmission of the measurement result from the storage battery management device 3 is completed by transmitting “voltage acquisition end” from the monitoring device 5 to the storage battery management device 3. Thus, in this embodiment, the measurement result is transmitted from the storage battery management device 3 until the “voltage acquisition end” is received, but the “voltage acquisition request” is sequentially transmitted from the monitoring device 5 to the storage battery management device 3. Each time the “voltage acquisition request” is received, the measurement result is transmitted from the storage battery management device 3, and when the assembled battery 20 is fully charged, the transmission of the “voltage acquisition request” from the monitoring device 5 is terminated. It may be.

電圧データベース53は、電圧取得タスク52で取得した各セル2の電圧などを記憶するデータベースである。具体的には、各組電池20の放電ごとに、電圧取得タスク52で取得された各セル2の電圧値や組電池20の総電圧値を時系列的に記憶する。これにより、各セル2および組電池20の放電カーブ(時間の経過に対する電圧変化を示すカーブ)が得られるものである。さらに、各組電池20の放電ごとに、電圧取得タスク52で取得した放電時の周囲温度と、整流器4から受信した放電電流値とを記憶する。   The voltage database 53 is a database that stores the voltage of each cell 2 acquired by the voltage acquisition task 52. Specifically, for each discharge of each assembled battery 20, the voltage value of each cell 2 acquired by the voltage acquisition task 52 and the total voltage value of the assembled battery 20 are stored in time series. Thereby, the discharge curve (curve which shows the voltage change with progress of time) of each cell 2 and the assembled battery 20 is obtained. Further, for each discharge of each assembled battery 20, the discharge ambient temperature acquired by the voltage acquisition task 52 and the discharge current value received from the rectifier 4 are stored.

標準データベース54は、各組電池20に関する情報と、セル2の標準的な放電特性とを記憶したデータベースである。すなわち、第1に、各組電池20に関する情報として、各組電池20の設置場所であるサイトRの名称および位置情報と、セル2の製造メーカ、容量、製造年月および製造番号などが記憶されている。このように、標準データベース54に各組電池20に関する情報を記憶しているが、外部のシステムや記憶装置などから各組電池20に関する情報を取得するようにしてもよい。   The standard database 54 is a database that stores information on each assembled battery 20 and standard discharge characteristics of the cell 2. That is, first, as information about each assembled battery 20, the name and position information of the site R where each assembled battery 20 is installed, the manufacturer, capacity, date of manufacture, and production number of the cell 2 are stored. ing. Thus, although the information regarding each assembled battery 20 is memorize | stored in the standard database 54, you may make it acquire the information regarding each assembled battery 20 from an external system, a memory | storage device, etc. FIG.

第2に、セル2の標準的な放電特性として、まず、特定の放電電流値での初期(容量100%)の放電特性が記憶されている。具体的には、各製造メーカのセル2の定格容量ごとに、例えば、10時間放電率(「C」を定格容量とした場合の0.1C放電電流値)の初期放電カーブ(初期放電特性)、5時間放電率(0.16C放電電流値)の初期放電カーブ、3時間放電率(0.23C放電電流値)の初期放電カーブなどが記憶されている。   Second, as standard discharge characteristics of the cell 2, first, the initial (100% capacity) discharge characteristics at a specific discharge current value are stored. Specifically, for each rated capacity of the cell 2 of each manufacturer, for example, an initial discharge curve (initial discharge characteristics) of a 10-hour discharge rate (0.1 C discharge current value when “C” is the rated capacity) An initial discharge curve with a 5-hour discharge rate (0.16 C discharge current value), an initial discharge curve with a 3-hour discharge rate (0.23 C discharge current value), and the like are stored.

さらに、セル2のある放電電流値における放電容量の経年変化の傾向が記憶されている。具体的に、この実施の形態では、周囲温度が25℃における各製造メーカのセル2の定格容量ごとに、図3に示すように、定格容量の放電時間率である10時間放電率の放電容量の経年変化の傾向を示す実験データL1と、この実験データL1に基づく近似曲線L2とが記憶されている。   Furthermore, the tendency of the discharge capacity over time at a certain discharge current value of the cell 2 is stored. Specifically, in this embodiment, for each rated capacity of the cell 2 of each manufacturer at an ambient temperature of 25 ° C., as shown in FIG. 3, the discharge capacity of the 10-hour discharge rate, which is the discharge time rate of the rated capacity. Are stored experimental data L1 indicating the tendency of secular change and an approximate curve L2 based on the experimental data L1.

容量推定タスク55は、電圧取得タスク52によって取得された各セル2の電圧と、組電池20の放電時の放電電流値とに基づいて、各セル2の容量を推定するタスク・プログラムである。具体的には、まず、放電時の放電電流値・放電率に対する初期(容量100%)の放電特性(初期放電カーブ)を算出する。例えば、放電電流値が0.12C(=定格容量C×0.12)で、標準データベース54に10時間放電率(0.1C)の初期放電カーブと5時間放電率(0.16C)の初期放電カーブが記憶されている場合、0.1Cの初期放電カーブと0.16Cの初期放電カーブとの間に按分されるように、0.12Cの初期放電カーブを算出する。ここで、セル2の定格容量や製造メーカに対応した初期放電カーブを標準データベース54から取得して、0.12Cの初期放電カーブを算出する。このようにして得られた放電電流値の初期放電カーブを、図4に示すようなカーブD100とする。   The capacity estimation task 55 is a task program that estimates the capacity of each cell 2 based on the voltage of each cell 2 acquired by the voltage acquisition task 52 and the discharge current value when the assembled battery 20 is discharged. Specifically, first, an initial (capacity 100%) discharge characteristic (initial discharge curve) with respect to a discharge current value and a discharge rate during discharge is calculated. For example, when the discharge current value is 0.12C (= rated capacity C × 0.12), the standard database 54 has an initial discharge curve of 10 hours discharge rate (0.1C) and an initial discharge curve of 5 hours discharge rate (0.16C). When the discharge curve is stored, the initial discharge curve of 0.12C is calculated so as to be apportioned between the initial discharge curve of 0.1C and the initial discharge curve of 0.16C. Here, an initial discharge curve corresponding to the rated capacity of the cell 2 and the manufacturer is obtained from the standard database 54, and an initial discharge curve of 0.12C is calculated. The initial discharge curve of the discharge current value obtained in this way is a curve D100 as shown in FIG.

次に、この初期放電カーブD100と各セル2の電圧とに基づいて、各セル2の容量を推定する。すなわち、電圧データベース53に記憶された各セル2の各時の電圧値に基づいて、図4に示すように、各セル2の放電カーブDCを作成する。続いて、放電開始から所定電圧・放電終止電圧に至るまでの時間を放電時間とし、各放電カーブDCに基づいて各セル2の放電時間を算出し、各セル2の放電時間を初期放電カーブD100の放電時間で除算して、各セル2の容量を算出、推定する。ここで、電圧データベース53に放電終止電圧までのデータが記憶されていない場合には、作成した放電カーブDCに基づいて、放電終止電圧に至るまでの放電時間を算出、推定する。また、このような容量推定は、放電時の周囲温度に基づいて、25℃に換算して行う。   Next, the capacity of each cell 2 is estimated based on the initial discharge curve D100 and the voltage of each cell 2. That is, based on the voltage value at each time of each cell 2 stored in the voltage database 53, a discharge curve DC of each cell 2 is created as shown in FIG. Subsequently, the time from the start of discharge to the predetermined voltage / end-of-discharge voltage is defined as the discharge time, the discharge time of each cell 2 is calculated based on each discharge curve DC, and the discharge time of each cell 2 is determined as the initial discharge curve D100. Then, the capacity of each cell 2 is calculated and estimated. Here, when the data up to the discharge end voltage is not stored in the voltage database 53, the discharge time until reaching the discharge end voltage is calculated and estimated based on the created discharge curve DC. Further, such capacity estimation is performed by converting to 25 ° C. based on the ambient temperature during discharge.

さらに、推定した容量に基づいて、各セル2の状態を判定する。すなわち、推定容量が80%以上の場合には、「正常」と判定し、推定容量が70%以上80%未満の場合には、「注意」と判定し、推定容量が70%未満の場合には、「異常」と判定する。そして、このような演算結果をディスプレイなどに出力するものである。   Furthermore, the state of each cell 2 is determined based on the estimated capacity. That is, when the estimated capacity is 80% or more, it is determined as “normal”, when the estimated capacity is 70% or more and less than 80%, it is determined as “caution”, and when the estimated capacity is less than 70%. Is determined to be “abnormal”. Then, such a calculation result is output to a display or the like.

すなわち、初期放電カーブD100に基づいて、放電時の放電電流値において容量が70%の場合の放電カーブを、70%放電カーブD70として算出する。そして、図4に示すように、各セル2の放電カーブDCと初期放電カーブD100と70%放電カーブD70とを、ディスプレイの同一グラフ上に表示するとともに、当該組電池20に関する情報や放電日時、放電時間、放電電流、周囲温度をディスプレイに表示する。さらに、各セル2の状態の判定結果をディスプレイに表示する。すなわち、「正常」と判定したセル2の数、「注意」と判定したセル2の数、「異常」と判定したセル2の数を表示する。   That is, based on the initial discharge curve D100, a discharge curve when the capacity is 70% in the discharge current value at the time of discharge is calculated as a 70% discharge curve D70. Then, as shown in FIG. 4, the discharge curve DC, the initial discharge curve D100, and the 70% discharge curve D70 of each cell 2 are displayed on the same graph of the display, as well as information about the battery pack 20, the date and time of discharge, The discharge time, discharge current, and ambient temperature are displayed on the display. Further, the determination result of the state of each cell 2 is displayed on the display. That is, the number of cells 2 determined as “normal”, the number of cells 2 determined as “caution”, and the number of cells 2 determined as “abnormal” are displayed.

早期低下判定タスク56は、容量推定タスク55によって推定された容量と、各セル2の使用期間とに基づいて、各セル2が、使用期間に応じた容量よりも低い早期容量低下を起こしているか否かを判定するタスク・プログラムである。具体的には、まず、標準データベース54に記憶された製造年月と放電日とに基づいて、使用期間(製造後の経過期間)を算出する。次に、標準データベース54に記憶された放電容量の経年変化の傾向、つまり近似曲線L2に基づいて、算出した使用期間・経過年数に対する適正容量を取得する。   Based on the capacity estimated by the capacity estimation task 55 and the usage period of each cell 2, the early decline determination task 56 has caused an early capacity decline that is lower than the capacity corresponding to the usage period. It is a task program that determines whether or not. Specifically, first, based on the date of manufacture and the date of discharge stored in the standard database 54, the usage period (elapsed period after manufacture) is calculated. Next, an appropriate capacity for the calculated use period / elapsed years is acquired based on the tendency of the discharge capacity to change over time stored in the standard database 54, that is, the approximate curve L2.

この際、電圧データベース53に記憶された周囲温度から、組電池20の平均周囲温度が25℃よりも高い場合には、算出した使用期間を25℃に換算した使用期間とする。すなわち、アレニウスの法則により、平均周囲温度が25℃よりも高い場合、次式のようにセル2の劣化が加速することから、使用期間を25℃に換算する。
25=F×2^{(T−25)/10}
F:実際の経過年月
25:25℃に換算した経過年月
T:平均周囲温度
At this time, when the average ambient temperature of the assembled battery 20 is higher than 25 ° C. from the ambient temperature stored in the voltage database 53, the calculated use period is set as a use period converted to 25 ° C. That is, according to Arrhenius' law, when the average ambient temperature is higher than 25 ° C., the deterioration of the cell 2 is accelerated as shown in the following equation, so that the period of use is converted to 25 ° C.
F 25 = F × 2 ^ {(T−25) / 10}
F: Actual elapsed time F 25 : Elapsed time converted to 25 ° C T: Average ambient temperature

そして、容量推定タスク55によって推定された各セル2の容量が、取得した適正容量に対して所定値以上低い場合に、早期容量低下を起こしていると判定し、その判定結果をディスプレイなどに出力するものである。例えば、早期容量低下を起こしていると判定されたセル2の番号をディスプレイに表示する。   When the capacity of each cell 2 estimated by the capacity estimation task 55 is lower than the acquired appropriate capacity by a predetermined value or more, it is determined that an early capacity decrease has occurred, and the determination result is output to a display or the like. To do. For example, the number of the cell 2 determined to have caused the early capacity reduction is displayed on the display.

次に、このような構成の蓄電池劣化判定システム1の作用、動作などについて、図5〜図7に基づいて説明する。   Next, the operation and operation of the storage battery deterioration determination system 1 having such a configuration will be described with reference to FIGS.

まず、毎日の所定時刻に、図5に示すように、その日が劣化判定試験日である整流器4から、放電スケジュールが監視装置5に送信され(ステップS1)、監視装置5の放電知得タスク51によって、受信した放電スケジュールの日時に当該組電池20が放電することが知得される(ステップS2)。次に、劣化判定試験の放電日時に至ると(ステップS3で「Y」の場合)、電圧取得タスク52が起動されて(ステップS4)、放電対象の組電池20の蓄電池管理装置3に「電圧取得要求」が送信される(ステップS5)。   First, at a predetermined time every day, as shown in FIG. 5, the discharge schedule is transmitted from the rectifier 4 whose date is the deterioration determination test date to the monitoring device 5 (step S1), and the discharge acquisition task 51 of the monitoring device 5 is performed. Thus, it is known that the assembled battery 20 is discharged at the date and time of the received discharge schedule (step S2). Next, when the discharge date and time of the deterioration determination test is reached (in the case of “Y” in step S3), the voltage acquisition task 52 is activated (step S4), and the “voltage” is sent to the storage battery management device 3 of the assembled battery 20 to be discharged. An “acquisition request” is transmitted (step S5).

一方、商用電源101が停電などして組電池20が放電を開始し、この放電が整流器4によって検知されると、図6に示すように、整流器4から監視装置5に「放電中警報」と放電電流値とを含む情報が送信され(ステップS11)、監視装置5の放電知得タスク51によって、「放電中警報」を受信した日時に当該組電池20が放電したことが知得される(ステップS12)。続いて即座に、電圧取得タスク52が起動されて(ステップS13)、放電中の組電池20の蓄電池管理装置3に「電圧取得要求」が送信される(ステップS14)。   On the other hand, when the commercial power supply 101 starts a power failure or the like, the assembled battery 20 starts discharging, and when this discharge is detected by the rectifier 4, the rectifier 4 notifies the monitoring device 5 as “discharging alarm” as shown in FIG. Information including the discharge current value is transmitted (step S11), and it is known by the discharge acquisition task 51 of the monitoring device 5 that the assembled battery 20 has been discharged on the date and time when the “during discharge alarm” is received ( Step S12). Then, immediately, the voltage acquisition task 52 is activated (step S13), and a “voltage acquisition request” is transmitted to the storage battery management device 3 of the battery pack 20 being discharged (step S14).

このようにして、蓄電池管理装置3が「電圧取得要求」を受信すると、図7に示すように、蓄電池管理装置3から監視装置5に対して、各セル2の電圧値や組電池20の総電圧値などの測定結果が逐次送信され(ステップS21)、電圧取得タスク52によって測定結果が電圧データベース53に記憶、蓄積される(ステップS22)。つまり、放電中における各セル2の各時の電圧値などが電圧データベース53に記憶される。その後、組電池20の放電が終了すると組電池20が再充電され(ステップS23)、整流器4から監視装置5に組電池20の充電電流値が送信される(ステップS24)。   In this way, when the storage battery management device 3 receives the “voltage acquisition request”, as shown in FIG. 7, the storage battery management device 3 sends the monitoring device 5 the voltage value of each cell 2 and the total of the assembled batteries 20. Measurement results such as voltage values are sequentially transmitted (step S21), and the measurement results are stored and accumulated in the voltage database 53 by the voltage acquisition task 52 (step S22). That is, the voltage value at each time of each cell 2 during discharge is stored in the voltage database 53. Thereafter, when the discharge of the assembled battery 20 is completed, the assembled battery 20 is recharged (step S23), and the charging current value of the assembled battery 20 is transmitted from the rectifier 4 to the monitoring device 5 (step S24).

そして、充電電流値に基づいて組電池20が満充電したと判断されると、上記のようにして、蓄電池管理装置3から監視装置5への測定結果の送信が終了する。その後、容量推定タスク55が起動され、上記のようにして、放電に基づく各セル2の容量が推定され(ステップS25)、さらに、早期低下判定タスク56が起動されて、各セル2が早期容量低下を起こしているか否かが判定される(ステップS26)ものである。   When it is determined that the assembled battery 20 is fully charged based on the charging current value, the transmission of the measurement result from the storage battery management device 3 to the monitoring device 5 is completed as described above. Thereafter, the capacity estimation task 55 is activated, and the capacity of each cell 2 based on the discharge is estimated as described above (step S25). Further, the early decrease determination task 56 is activated, so that each cell 2 has an early capacity. It is determined whether or not a decrease has occurred (step S26).

以上のように、この蓄電池劣化判定システム1によれば、組電池20が放電される際には、この組電池20の各セル2の電圧が監視装置5に送信されるため、組電池20における各セル2の劣化状態を適正に判定することが可能となる。すなわち、放電時における各セル2の電圧が監視装置5で取得されるため、各セル2の放電途中の電圧や放電終了時の電圧などによって、各セル2の劣化状態をより適正に判定することが可能となる。しかも、組電池20の放電が知得されると、すべての放電時において各セル2の電圧が監視装置5に取得されるため、より多くの放電結果に基づいて各組電池20および各セル2の劣化状態をより適正に判定することが可能となる。   As described above, according to the storage battery deterioration determination system 1, when the assembled battery 20 is discharged, the voltage of each cell 2 of the assembled battery 20 is transmitted to the monitoring device 5. It becomes possible to determine the deterioration state of each cell 2 appropriately. That is, since the voltage of each cell 2 at the time of discharge is acquired by the monitoring device 5, the deterioration state of each cell 2 can be more appropriately determined based on the voltage during the discharge of each cell 2 or the voltage at the end of the discharge. Is possible. In addition, when the discharge of the assembled battery 20 is known, the voltage of each cell 2 is acquired by the monitoring device 5 at all discharges, so that each assembled battery 20 and each cell 2 is based on more discharge results. It is possible to more appropriately determine the deterioration state.

具体的には、組電池20を試験的に放電させる日時に各セル2の電圧が監視装置5に送信されるため、劣化判定試験時において確実に各セル2の電圧を取得して、各セル2の劣化状態を適正に判定することが可能となる。また、組電池20の放電が検知、知得されると、その時点で各セル2の電圧が監視装置5に送信されるため、突発的な放電時(例えば、停電に伴うバックアップ放電時)などにおいても確実に各セル2の電圧を取得して、各セル2の劣化状態を適正に判定することが可能となる。   Specifically, since the voltage of each cell 2 is transmitted to the monitoring device 5 at the date and time when the assembled battery 20 is experimentally discharged, the voltage of each cell 2 is reliably acquired during the deterioration determination test. It becomes possible to determine the deterioration state of 2 appropriately. Further, when the discharge of the assembled battery 20 is detected and known, the voltage of each cell 2 is transmitted to the monitoring device 5 at that time, so that sudden discharge (for example, backup discharge accompanying a power failure), etc. In this case, it is possible to reliably acquire the voltage of each cell 2 and appropriately determine the deterioration state of each cell 2.

しかも、従来の劣化判定試験などでは、組電池20の劣化状態が異常(容量低下)と判定された場合に、遠隔地であるサイトRに赴いてどのセル2が異常であるかを調査、判定しなければならなかったが、この蓄電池劣化判定システム1によれば、監視センタCにおいて一元的に、どの組電池20のどのセル2が異常であるかを判定することが可能となり、現地作業が軽減される。   Moreover, in a conventional deterioration determination test or the like, when it is determined that the deterioration state of the assembled battery 20 is abnormal (capacity reduction), it is investigated and determined which cell 2 is abnormal by visiting the remote site R. However, according to the storage battery deterioration determination system 1, it is possible to determine which cell 2 of which assembled battery 20 is abnormal in the monitoring center C in a centralized manner, so that field work can be performed. It is reduced.

一方、放電時にのみ各セル2の電圧が監視装置5に送信され、各組電池20の各セル2の電圧が常時監視装置5に送信されるものではないため、監視装置5と各蓄電池管理装置3との通信量が軽減され、さらに、監視装置5の負荷が軽減される。また、蓄電池管理装置3や整流器4などは既設の装置であり、監視装置5に放電知得タスク51と電圧取得タスク52とを備えるだけ、放電時の各セル2の電圧を取得して、各セル2の劣化状態を適正に判定することが可能となる。   On the other hand, since the voltage of each cell 2 is transmitted to the monitoring device 5 only at the time of discharge, and the voltage of each cell 2 of each assembled battery 20 is not always transmitted to the monitoring device 5, the monitoring device 5 and each storage battery management device 3 and the load on the monitoring device 5 is further reduced. In addition, the storage battery management device 3 and the rectifier 4 are existing devices, and the monitoring device 5 includes only the discharge acquisition task 51 and the voltage acquisition task 52, and acquires the voltage of each cell 2 at the time of discharge, It becomes possible to determine the deterioration state of the cell 2 appropriately.

さらに、放電時の各セル2の電圧に基づいて、容量推定タスク55によって各セル2の容量が推定されるため、推定された容量に基づいて各セル2の劣化状態を適正かつ容易に判定することが可能となる。しかも、各セル2の容量が自動的に推定されるため、労力や時間が軽減されるばかりでなく、適正な容量推定によって各セル2の劣化状態をより適正に判定することが可能となる。また、初期放電カーブD100および70%放電カーブD70と、各セル2の放電カーブDCとが同一グラフ上に表示されるため、目視によって迅速かつ容易に、各セル2の劣化状態を適正に判定することが可能となる。また、容量が「異常」と判定されたセル2の数などが表示、出力されるため、組電池20全体が劣化しているか、組電池20全体を取り替える必要があるか、などを容易かつ適正に判定することが可能となる。   Furthermore, since the capacity of each cell 2 is estimated by the capacity estimation task 55 based on the voltage of each cell 2 at the time of discharge, the deterioration state of each cell 2 is determined appropriately and easily based on the estimated capacity. It becomes possible. In addition, since the capacity of each cell 2 is automatically estimated, not only labor and time are reduced, but also the deterioration state of each cell 2 can be more appropriately determined by appropriate capacity estimation. Further, since the initial discharge curve D100 and the 70% discharge curve D70 and the discharge curve DC of each cell 2 are displayed on the same graph, the deterioration state of each cell 2 is appropriately determined quickly and easily by visual inspection. It becomes possible. In addition, since the number of cells 2 whose capacity is determined to be “abnormal” is displayed and output, it is easy and appropriate to determine whether the entire assembled battery 20 has deteriorated or the entire assembled battery 20 needs to be replaced. Can be determined.

さらには、各セル2の推定容量と使用期間とに基づいて、早期低下判定タスク56によって各セル2が早期容量低下を起こしているか否かが判定されるため、各セル2の異常劣化や劣化傾向などを含む劣化状態を適正かつ容易に判定することが可能となる。   Furthermore, since it is determined whether or not each cell 2 is causing an early capacity decrease based on the estimated capacity and usage period of each cell 2, the abnormal deterioration or deterioration of each cell 2 is determined. It becomes possible to determine a deterioration state including a tendency and the like appropriately and easily.

以上、この発明の実施の形態について説明したが、具体的な構成は、上記の実施の形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計の変更等があっても、この発明に含まれる。例えば、上記の実施の形態では、監視装置5に、放電知得タスク51と電圧取得タスク52と電圧データベース53と標準データベース54と容量推定タスク55と早期低下判定タスク56とを一体的に備えているが、これらの一部または全部を離隔して備えてもよい。例えば、劣化判定用のコンピュータを監視装置5と通信自在に設け、このコンピュータに放電知得タスク51や電圧取得タスク52などを備えてもよい。あるいは、監視装置5から劣化判定用のコンピュータに、放電スケジュールや「放電中警報」を送信し、かつ、蓄電池管理装置3からの測定結果を送信して、劣化判定用のコンピュータにおいて容量推定タスク55や早期低下判定タスク56などを備えてもよい。すなわち、各タスク51、52、55、56やデータベース53、54は、監視装置5側(監視センタC側)に設けていればよい。   Although the embodiment of the present invention has been described above, the specific configuration is not limited to the above embodiment, and even if there is a design change or the like without departing from the gist of the present invention, Included in the invention. For example, in the above embodiment, the monitoring device 5 is integrally provided with the discharge acquisition task 51, the voltage acquisition task 52, the voltage database 53, the standard database 54, the capacity estimation task 55, and the early decrease determination task 56. However, some or all of these may be provided separately. For example, a computer for deterioration determination may be provided so as to be able to communicate with the monitoring device 5, and the computer may be provided with a discharge acquisition task 51 and a voltage acquisition task 52. Alternatively, the monitoring device 5 transmits a discharge schedule or “alarm during discharge” to the deterioration determination computer, and also transmits the measurement result from the storage battery management device 3, and the capacity determination task 55 is performed in the deterioration determination computer. Or an early decline determination task 56 may be provided. That is, each task 51, 52, 55, 56 and databases 53, 54 may be provided on the monitoring device 5 side (monitoring center C side).

また、放電知得タスク51による各組電池20の放電の知得は、上記の手法に限らず、例えば、監視装置5のメモリに放電スケジュールを記憶し、このメモリを定期的に検索することで組電池20の放電を知得するようにしてもよい。さらに、整流器4が記憶装置と検知装置として機能しているが、整流器4以外の装置を記憶装置や検知装置としてもよい。また、シール型鉛蓄電池を対象とする場合のみならず、リチウムイオン二次電池などその他の蓄電池にも適用できることは、勿論である。   Moreover, the knowledge of the discharge of each assembled battery 20 by the discharge knowledge task 51 is not limited to the above-described method. For example, the discharge schedule is stored in the memory of the monitoring device 5 and this memory is periodically searched. You may make it know discharge of the assembled battery 20. FIG. Furthermore, although the rectifier 4 functions as a storage device and a detection device, devices other than the rectifier 4 may be used as the storage device or the detection device. Of course, the present invention can be applied not only to sealed lead-acid batteries but also to other storage batteries such as lithium ion secondary batteries.

1 蓄電池劣化判定システム
2 セル(蓄電池)
20 組電池
3 蓄電池管理装置
4 整流器(記憶装置、検知装置)
5 監視装置
51 放電知得タスク(放電知得手段)
52 電圧取得タスク(電圧取得手段)
53 電圧データベース
54 標準データベース
55 容量推定タスク(容量推定手段)
56 早期低下判定タスク(早期低下判定手段)
101 商用電源
102 負荷設備
NW 通信網
C 監視センタ
R サイト
1 Storage battery deterioration judgment system 2 cells (storage battery)
20 assembled battery 3 storage battery management device 4 rectifier (storage device, detection device)
5 Monitoring device 51 Discharge acquisition task (Discharge acquisition means)
52 Voltage acquisition task (voltage acquisition means)
53 Voltage database 54 Standard database 55 Capacity estimation task (capacity estimation means)
56 Early drop determination task (early drop determination means)
101 Commercial power supply 102 Load facility NW communication network C Monitoring center R Site

Claims (5)

蓄電池が複数接続された組電池の放電に伴って、前記各蓄電池の劣化状態を判定するための蓄電池劣化判定システムであって、
複数の前記組電池を監視する監視装置と、前記各組電池に配設され前記各蓄電池の電圧を常時測定する蓄電池管理装置と、前記各組電池に配設され前記組電池を試験的に放電させる日時を記憶した整流器とが通信自在に接続され、
前記監視装置に、
前記組電池の放電を知得する放電知得手段と、
前記放電知得手段による知得に基づいて、該組電池の前記蓄電池管理装置から前記各蓄電池の電圧を取得する電圧取得手段と、を備え、
前記放電知得手段は、前記整流器から前記組電池を試験的に放電させる日時を取得することで放電を知得し、前記電圧取得手段は、前記日時に前記蓄電池管理装置から前記各蓄電池の電圧を取得する、
ことを特徴とする蓄電池劣化判定システム。
A storage battery deterioration determination system for determining a deterioration state of each storage battery in association with discharge of a battery pack in which a plurality of storage batteries are connected,
A monitoring device that monitors a plurality of the assembled batteries, a storage battery management device that is disposed in each assembled battery and that constantly measures the voltage of each storage battery, and that is disposed in each assembled battery and discharges the assembled battery on a trial basis The rectifier that stores the date and time to be
In the monitoring device,
Discharging knowledge means for knowing the discharge of the assembled battery;
The discharge Chitoku based on Chitoku by means, e Bei voltage acquiring means for acquiring a voltage for each battery from the battery management system of said set battery, a
The discharge acquisition means acquires the discharge by acquiring the date and time when the assembled battery is experimentally discharged from the rectifier, and the voltage acquisition means receives the voltage of each storage battery from the storage battery management device at the date and time. To get the
A storage battery deterioration determination system characterized by that.
前記整流器は、前記組電池を試験的に放電させる日時の前に前記日時を前記放電知得手段に送信し、あるいは、前記放電知得手段からの要求に応じて前記日時を前記放電知得手段に送信する、
ことを特徴とする請求項1に記載の蓄電池劣化判定システム。
The rectifier transmits the date and time to the discharge knowledge means before the date and time when the assembled battery is discharged on a trial basis, or the date and time is determined according to a request from the discharge knowledge means. Send to
The storage battery deterioration determination system according to claim 1.
前記放電知得手段は、前記組電池の放電を検知する前記整流器から検知結果を取得することで放電を知得し、前記電圧取得手段は、前記放電知得手段によって放電が知得された時点で前記蓄電池管理装置から前記各蓄電池の電圧を取得する、
ことを特徴とする請求項1または2のいずれか1項に記載の蓄電池劣化判定システム。
The discharge acquisition means acquires the discharge by acquiring a detection result from the rectifier that detects the discharge of the assembled battery, and the voltage acquisition means is a point in time when the discharge is acquired by the discharge acquisition means. To obtain the voltage of each storage battery from the storage battery management device,
The storage battery deterioration determination system according to any one of claims 1 and 2.
前記監視装置に、前記電圧取得手段によって取得された前記各蓄電池の電圧と、前記組電池の放電時の放電電流値とに基づいて、前記各蓄電池の容量を推定する容量推定手段を備え、
前記容量推定手段は、
前記組電池の放電時の放電電流値と、ある放電電流値における標準的な初期の放電特性とに基づいて、前記蓄電値の初期放電特性を算出し、前記初期放電特性により放電開始から所定電圧または放電終止電圧に至るまでの放電時間を求め、
前記各蓄電池の電圧に基づいて前記各蓄電池の放電特性を作成し、前記各蓄電池の放電特性により放電開始から所定電圧または放電終止電圧に至るまでの放電時間を求め、
前記各蓄電池の放電時間を前記初期放電特性の放電時間で除算して、前記各蓄電池の容量を推定する、
ことを特徴とする請求項1から3のいずれか1項に記載の蓄電池劣化判定システム。
Wherein the monitoring device, wherein the voltage of each battery obtained by the voltage acquiring means, based on the discharge current value during discharging of the battery pack, e Bei capacity estimation means for estimating the capacity of each storage battery,
The capacity estimation means includes
Based on a discharge current value at the time of discharging the assembled battery and a standard initial discharge characteristic at a certain discharge current value, an initial discharge characteristic of the storage value is calculated, and a predetermined voltage is determined from the start of discharge by the initial discharge characteristic. Or find the discharge time to reach the discharge end voltage,
Create discharge characteristics of each storage battery based on the voltage of each storage battery, determine the discharge time from the start of discharge to the predetermined voltage or discharge end voltage by the discharge characteristics of each storage battery,
Dividing the discharge time of each storage battery by the discharge time of the initial discharge characteristics to estimate the capacity of each storage battery;
The storage battery deterioration determination system according to any one of claims 1 to 3, wherein
前記監視装置に、前記容量推定手段によって推定された容量と、前記各蓄電池の使用期間とに基づいて、前記各蓄電池が、前記使用期間に応じた容量よりも低い早期容量低下を起こしているか否かを判定する早期低下判定手段を備える、
ことを特徴とする請求項4に記載の蓄電池劣化判定システム。
Whether or not each of the storage batteries is causing an early capacity decrease lower than the capacity according to the use period, based on the capacity estimated by the capacity estimation means and the use period of each storage battery. An early decline determination means for determining whether
The storage battery deterioration determination system according to claim 4.
JP2014059175A 2014-03-20 2014-03-20 Storage battery deterioration judgment system Expired - Fee Related JP6384824B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014059175A JP6384824B2 (en) 2014-03-20 2014-03-20 Storage battery deterioration judgment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014059175A JP6384824B2 (en) 2014-03-20 2014-03-20 Storage battery deterioration judgment system

Publications (2)

Publication Number Publication Date
JP2015184077A JP2015184077A (en) 2015-10-22
JP6384824B2 true JP6384824B2 (en) 2018-09-05

Family

ID=54350790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014059175A Expired - Fee Related JP6384824B2 (en) 2014-03-20 2014-03-20 Storage battery deterioration judgment system

Country Status (1)

Country Link
JP (1) JP6384824B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240069106A1 (en) * 2021-01-20 2024-02-29 Kabushiki Kaisha Toshiba Storage battery management device and storage battery management method
JP7509119B2 (en) 2021-11-15 2024-07-02 トヨタ自動車株式会社 Battery deterioration diagnostic device and battery deterioration diagnostic method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004301784A (en) * 2003-03-31 2004-10-28 Yazaki Corp Dischargeable capacity estimating method and device for battery
JP2004312849A (en) * 2003-04-04 2004-11-04 Sanyo Denki Co Ltd Uninterruptive power supply system with storage battery deterioration judging circuit
JP5553622B2 (en) * 2010-01-28 2014-07-16 株式会社Nttファシリティーズ Secondary battery system and management method thereof
US8738310B2 (en) * 2010-12-08 2014-05-27 Paul Swanton Automatic determination of baselines for battery testing
EP2778699A4 (en) * 2011-11-08 2015-07-29 Shin Kobe Electric Machinery Battery-state monitoring system

Also Published As

Publication number Publication date
JP2015184077A (en) 2015-10-22

Similar Documents

Publication Publication Date Title
JP5816906B2 (en) Battery status monitoring system
JP4615439B2 (en) Secondary battery management device, secondary battery management method and program
US10587014B2 (en) Lithium ion secondary battery charging control method and charging mechanism
JP5089619B2 (en) Secondary battery deterioration diagnosis device
KR102180625B1 (en) Method for detecting state of health for secondary battery
KR101547004B1 (en) Apparatus and method for estimating state of health of battery
US11486932B2 (en) Method for managing a state of charge of a battery left to rest
KR102571525B1 (en) Apparatus and method for diagnosing the condition of the energy storage device
US10910676B2 (en) Ni—Cd battery with a state of charge indicator
KR101291287B1 (en) Equipped with a spare battery for the maintenance of UPS Systems
KR20160098348A (en) Method of estimating the residual capacities of a plurality of batteries
CN105829903A (en) Method and apparatus for indicating a low battery level
JP2009064682A (en) Battery deterioration judging device, and lithium ion battery pack equipped with the same
JP6384824B2 (en) Storage battery deterioration judgment system
JP2020201044A (en) Open-circuit voltage measuring method, open-circuit voltage measuring device, and program
JP6532374B2 (en) Storage battery state analysis system, storage battery state analysis method, and storage battery state analysis program
JP5203270B2 (en) Secondary battery capacity test system and secondary battery capacity test method
KR102226363B1 (en) How to predict State Of Health of battery management system through remote device
JP4754509B2 (en) Storage battery state measuring device, storage battery deterioration determination method, storage battery deterioration determination program
JP4969179B2 (en) Distribution line remote monitoring control system, battery deterioration diagnosis device and method
JP2007271583A (en) Storage battery management device
KR102300924B1 (en) Remote monitoring system for battery of electric forklift truck and the like
JP2012125121A (en) Charging system and storage battery degradation determination method
US20130151182A1 (en) Process for supplying a medical device
JP2022164990A (en) Storage battery capacity management system, storage battery capacity management method, and storage battery capacity management program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180731

R150 Certificate of patent or registration of utility model

Ref document number: 6384824

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees