JP6056205B2 - Battery power supply charge / discharge control device - Google Patents

Battery power supply charge / discharge control device Download PDF

Info

Publication number
JP6056205B2
JP6056205B2 JP2012129167A JP2012129167A JP6056205B2 JP 6056205 B2 JP6056205 B2 JP 6056205B2 JP 2012129167 A JP2012129167 A JP 2012129167A JP 2012129167 A JP2012129167 A JP 2012129167A JP 6056205 B2 JP6056205 B2 JP 6056205B2
Authority
JP
Japan
Prior art keywords
voltage
battery
unit
cell
assembled battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012129167A
Other languages
Japanese (ja)
Other versions
JP2013255335A (en
Inventor
泰弘 高林
泰弘 高林
謙二 馬場
謙二 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2012129167A priority Critical patent/JP6056205B2/en
Publication of JP2013255335A publication Critical patent/JP2013255335A/en
Application granted granted Critical
Publication of JP6056205B2 publication Critical patent/JP6056205B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

この発明は、充電可能な電池で構成された電池電源と、この電池電源の電池を充電する発電装置等で構成された通常電源とを備えるハイブリッド電源により電動機等の負荷を駆動する電気駆動システムにおける、前記通常電源により電池電源を充電しながら負荷へ電力を供給して運転するモードおよび通常電源を停止して電池電源のみから負荷へ給電して運転するモードでの電池電源の充放電制御装置に関する。   The present invention relates to an electric drive system in which a load such as an electric motor is driven by a hybrid power source including a battery power source configured by a rechargeable battery and a normal power source configured by a power generator that charges the battery of the battery power source. The present invention relates to a charging / discharging control device for a battery power supply in a mode in which power is supplied to a load while the battery power is being charged by the normal power supply and a mode in which the normal power supply is stopped and power is supplied from only the battery power supply to the load. .

例えば電気推進船のようなハイブリッド電源を用いた電気駆動システムにおいては、発電装置で構成された通常電源で電池電源の電池を充電しながら推進電動機や船内補機類へ給電して運転するモードと発電機を停止して電池電源のみから給電して運転するモードとがある。   For example, in an electric drive system using a hybrid power source such as an electric propulsion ship, a mode in which the propulsion motor and inboard auxiliary equipment are operated by charging the battery of the battery power source with a normal power source constituted by a power generator and There is a mode in which the generator is stopped and power is supplied only from the battery power source.

このような電気駆動システムでは、大容量の電源を必要とするため、ハイブリッド電源の電池電源は、電池素子単体では容量が小さいため、電池素子を多数直並列接続して構成することより大容量化している。   Since such an electric drive system requires a large-capacity power source, the battery power source of the hybrid power source has a small capacity, so that the capacity can be increased by configuring a large number of battery elements connected in series and parallel. ing.

このような電池電源の充放電制御を行う制御回路の従来例を図6に示す(特許文献1参照)。   FIG. 6 shows a conventional example of a control circuit that performs charge / discharge control of such a battery power source (see Patent Document 1).

図6は電気推進船舶の電気駆動システムの構成を示すブロック回路図である。   FIG. 6 is a block circuit diagram showing the configuration of the electric drive system of the electric propulsion vessel.

ハイブリッド電源1は、電池電源2と通常電源3とで構成されている。電池電源2は、大容量の電源とするために、充電可能な例えばリチウムイオン電池等の電池素子b1〜bnを複数(n)個直列に接続して組電池Bを構成し、この組電池B1〜Bmを複数(m)組並列に接続して構成されている。   The hybrid power source 1 includes a battery power source 2 and a normal power source 3. In order to make the battery power supply 2 a large-capacity power supply, a plurality of (n) rechargeable battery elements b1 to bn such as lithium ion batteries are connected in series to form an assembled battery B, and this assembled battery B1 ˜Bm is configured by connecting a plurality (m) sets in parallel.

通常電源3は、例えばディーゼルエンジ等の原動機DEで駆動される交流発電機Gとこの発電機の出力の交流電力を直流電力に変換する整流器RECとで構成されている。電池電源2および通常電源3はそれぞれハイブリッド電源1の母線にスイッチS1およびS2を介して並列に接続される。   The normal power supply 3 includes an AC generator G driven by a prime mover DE such as a diesel engine and a rectifier REC that converts AC power output from the generator into DC power. Battery power source 2 and normal power source 3 are connected in parallel to the bus of hybrid power source 1 via switches S1 and S2, respectively.

このように構成されたハイブリッド電源1からスイッチS3を介してインバータを構成する電力変換器INVとこれによって駆動される交流の推進電動機Mを有する推進装置4に給電される。推進電動機Mは、ここには図示しない推進プロペラを駆動して船舶を推進する。   Power is supplied from the thus configured hybrid power supply 1 to the propulsion device 4 having the power converter INV constituting the inverter and the AC propulsion motor M driven by the inverter via the switch S3. The propulsion motor M propels the ship by driving a propeller (not shown) here.

通常電源3から電池電源2を充電しながら、推進装置4およびここには図示しないその他の負荷に給電して運転する通常の運転モードにおいては、スイッチS1、S2およびS3が投入され、通常電源3から電池電源2および推進装置4に給電される。   In a normal operation mode in which the battery power supply 2 is charged from the normal power supply 3 and is operated by supplying power to the propulsion device 4 and other loads not shown here, the switches S1, S2 and S3 are turned on, and the normal power supply 3 Is supplied to the battery power source 2 and the propulsion device 4.

この時、充放電制御5が、電池電源2の充電状態に応じて発電機Gの出力を制御する。充電制御部5は、定電圧で充電を行うために発電機Gの出力電圧が一定電圧になるように発電機Gを制御する定電圧充電制御手段AVR、定電流で充電を行うために電池電源の充電電流IBが一定になるように発電機Gを制御する定電流充電制御手段ACRおよび、定電力で充電を行うために電池電源2の充電電力PBが一定になるように発電機Gを制御する定電力充電制御手段APRを備えている。 At this time, the charge / discharge control unit 5 controls the output of the generator G according to the state of charge of the battery power supply 2. The charging control unit 5 is a constant voltage charging control means AVR for controlling the generator G so that the output voltage of the generator G becomes a constant voltage in order to charge at a constant voltage, and a battery power source for charging at a constant current Constant current charging control means ACR for controlling the generator G so that the charging current IB of the battery is constant, and the generator G is controlled so that the charging power PB of the battery power source 2 is constant for charging with constant power. Constant power charge control means APR is provided.

定電圧充電制御手段AVRは、充電電圧設定器20に設定された充電電圧設定値VBsと電圧検出器9によって検出した電池電源2の端子(出力)電圧VBiとを比較して両者の偏差を求め、電圧調節演算器36によりこの偏差をゼロにする発電機Gに対する電圧指令VGsを演算により求める。   The constant voltage charge control means AVR compares the charge voltage set value VBs set in the charge voltage setter 20 with the terminal (output) voltage VBi of the battery power supply 2 detected by the voltage detector 9 to obtain a deviation between the two. The voltage adjustment calculator 36 calculates the voltage command VGs for the generator G that makes this deviation zero.

定電流充電制御手段ACRは、同様に、充電電流設定器21に設定されて充電電流設定値IBsと電池電源の電流検出器8によって検出された充電電流検出値IBiとを比較して両者の偏差を求め、電流調節演算器37によりこの偏差をゼロにする発電機Gに対する電圧指令値VGsを演算により求める。   Similarly, the constant current charge control means ACR compares the charge current set value IBs set in the charge current setter 21 and the charge current detected value IBi detected by the current detector 8 of the battery power source, and the difference between the two. The voltage command value VGs for the generator G that makes this deviation zero is calculated by the current adjustment calculator 37 by calculation.

さらに、定電力充電制御手段APRは、充電電力設定器22に設定されて充電電力設定値PBsと、電力演算器25によって電圧検出器9で検出されて電池電源電圧検出値VBiと電流検出器8によって検出された充電電流検出値IBiとを乗算して求めた電池電源の充電電力検出値PBiとを比較して両者の偏差を求め、電力調節演算器38によりこの偏差をゼロにする発電機Gに対する電圧指令値VGsを演算により求める。   Further, the constant power charging control means APR is set in the charging power setting unit 22 and the charging power set value PBs, and the power calculator 25 detects the battery power supply voltage detection value VBi and the current detector 8. The charging power detection value PBi of the battery power source obtained by multiplying the charging current detection value IBi detected by the above is compared to obtain a deviation between the two, and the generator G that makes this deviation zero by the power adjustment calculator 38 Is obtained by calculation.

定電圧充電制御手段AVR、定電流充電制御手段ACRおよび定電力充電制御手段APRで演算により求められた電圧指令VGsは、充電モード切換器39によって選択して発電機Gの界磁FLGを制御する励磁調整装置FLCに与えられる。   The voltage command VGs calculated by the constant voltage charge control means AVR, constant current charge control means ACR and constant power charge control means APR is selected by the charge mode switch 39 to control the field FLG of the generator G. It is given to the excitation adjustment device FLC.

励磁調整装置FLCは、電圧調節器48において、各充電制御手段から与えられた電圧指令VGsと電圧検出器10で検出された整流器RECの出力電圧の検出値VGiとを比較して、両者の偏差がゼロになる発電機Gへの電流指令値IGsを演算して、電流調節器50に与える。電流調節器50においては、電流指令値IGsと電流検出器11で検出された発電機出力電流IGiとを比較して、両者の偏差がゼロになる発電機の界磁GFへの界磁電流指令値Ifsを演算して界磁制御装置51へ与える。   In the voltage regulator 48, the excitation adjustment device FLC compares the voltage command VGs given from each charging control means with the detected value VGi of the output voltage of the rectifier REC detected by the voltage detector 10, and determines the deviation between the two. The current command value IGs to the generator G that becomes zero is calculated and supplied to the current regulator 50. In the current regulator 50, the current command value IGs is compared with the generator output current IGi detected by the current detector 11, and the field current command to the field GF of the generator where the deviation between the two is zero. The value Ifs is calculated and given to the field controller 51.

界磁制御装置51は、界磁GFへ供給する界磁電流IfGを界磁電流指令値Ifsに対応した電流に制御する。これによって電圧検出器10によって検出される発電機Gの出力電圧VGiが、前記各充電制御手段から与えられた電圧指令値VGsになるように調節さ
れ、電池の充電を最適制御することができる。
The field control device 51 controls the field current IfG supplied to the field GF to a current corresponding to the field current command value Ifs. As a result, the output voltage VGi of the generator G detected by the voltage detector 10 is adjusted to be the voltage command value VGs given from each of the charge control means, and the battery charging can be optimally controlled.

しかし、このような従来の充放電制御装置では、電池電源を構成する個々の電池素子(単電池ともいう)の充電電圧を監視することはしていないため、定電流充電モードや、定電力充電モードで充電を行った場合、電池素子の特性のバラツキによって組電池を構成する電池素子によっては充電電圧が規定された上限値を超過して過充電状態となることが予想される。また、組電池は多数の電池素子(単電池)を直並列接続して構成されているから、電池電源の充放電によって組電池中の一部の単電池が、充電不足、過充電、過放電状態となることも予想される。   However, such a conventional charge / discharge control device does not monitor the charging voltage of each battery element (also referred to as a single cell) constituting the battery power supply, so that the constant current charging mode or the constant power charging is performed. When charging is performed in the mode, it is expected that the charging voltage exceeds the prescribed upper limit value depending on the battery elements constituting the assembled battery due to variations in the characteristics of the battery elements, and an overcharged state is expected. In addition, since the assembled battery is configured by connecting a large number of battery elements (single cells) in series and parallel, some of the single cells in the assembled battery are undercharged, overcharged, or overdischarged due to charging / discharging of the battery power supply. Expected to be in a state.

さらに、複数組の組電池を並列接続して構成した電池電源において、組電池を過充電および過放電から保護するために、組電池電圧が上限値または下限値を超過したとき、この組電池を電池電源から切離して保護することも既に行われている(特許文献2参照)。   Further, in a battery power source configured by connecting a plurality of sets of battery packs in parallel, when the battery pack voltage exceeds an upper limit value or a lower limit value in order to protect the battery pack from overcharge and overdischarge, The protection from the battery power supply has already been performed (see Patent Document 2).

さらにまた、特許文献3では、電池電源から負荷へ給電中に組電池の電圧が下限値を超過しようとするときは、負荷を制限して、組電池電圧が下限値以下に低下しないようにして電池電源の組電池を保護することも行われている。   Furthermore, in Patent Document 3, when the voltage of the assembled battery is going to exceed the lower limit during power feeding from the battery power source, the load is limited so that the assembled battery voltage does not drop below the lower limit. Protecting the battery pack of a battery power source is also performed.

しかし、これらの従来装置おいても、電池電源を構成する組電池中の個々の電池素子、すなわち単電池の過充電や、過放電を保護することは行われていない。   However, even in these conventional apparatuses, overcharge and overdischarge of individual battery elements in the assembled battery constituting the battery power source, that is, single cells, are not performed.

特開2012‐050294号公報JP 2012-050294 A 特開2005‐168259号公報JP 2005-168259 A 特開2008‐067525号公報JP 2008-067525 A

前記のように電気駆動システムのハイブリッド電源の電池電源は、リチウムイオン電池等の充電可能な電池素子を多数直並列接続して大容量化が図られている。また、特にリチウムイオン電池の場合は、過充電、過放電によって急速に特性の劣化が進行し、寿命が短くなることが知られている。このため、リチウムイオン電池で構成した電池電源の充電動作のときは、単電池およびこれを複数直並列接続して構成した組電池の双方の電池電圧が規定の上限値を超過しないようにして過充電および過電圧を防止し、また、放電動作のときは単電池、組電池双方の電池電圧が規定の下限値より低下しないようにして過放電および電圧低下を防止するようにすれば、充放電動作における単電池の特性劣化の進行が抑制され、電池電源の寿命を延ばすことができる。   As described above, the battery power source of the hybrid power source of the electric drive system has a large capacity by connecting many rechargeable battery elements such as lithium ion batteries in series and parallel. In particular, in the case of a lithium ion battery, it is known that deterioration of characteristics rapidly proceeds due to overcharge and overdischarge, and the life is shortened. For this reason, during the charging operation of a battery power source composed of lithium ion batteries, the battery voltage of both the unit cell and the assembled battery composed by connecting a plurality of these in series and in parallel must not exceed the prescribed upper limit value. Charge and discharge operation is prevented by preventing charging and overvoltage, and also preventing discharge and overvoltage by preventing the battery voltage of both single cells and assembled batteries from dropping below the specified lower limit. The progress of the deterioration of the characteristics of the single battery is suppressed, and the life of the battery power source can be extended.

この発明は、前記にかんがみて、特に、組電池を構成する一部の単電池の特性の劣化が組電池全体の寿命に影響を与えることになるから、単電池、組電池双方の電圧状態を監視して、充放電動作時における単電池の適切な制限制御を行い、特性劣化を抑制することにより寿命の長い電池電源を提供することを課題とするものである。   In view of the above, the present invention, in particular, causes the deterioration of the characteristics of some of the unit cells constituting the assembled battery to affect the life of the entire assembled battery. It is an object of the present invention to provide a battery power source having a long life by monitoring and performing appropriate restriction control of the single cell during the charge / discharge operation and suppressing characteristic deterioration.

前記の課題を解決するために、この発明は、複数の充電可能な電池素子(単電池)を直列接続して構成された組電池を複数組並列接続して構成された電池電源と、この電池電源の電池を充電する発電装置で構成された通常電源とを備えるハイブリッド電源により電動機の負荷を駆動するようにした電気駆動システムにおいて、
前記電池電源の充放電時に、この電池電源を構成する個々の電池素子(単電池)の電圧(単電池電圧)および組電池の電圧(組電池電圧)をそれぞれ検出する電池電圧検出手段と、
前記電池電圧検出手段によって検出された単電池電圧および組電池電圧をそれぞれ単電池上限設定電圧または単電池下限設定電圧および組電池上限設定電圧または組電池下限設定電圧と比較する電圧判定手段と、
前記電池電圧検出手段により検出された単電池電圧に、前記電池電源における単電池の直列接続個数倍して組電池換算電圧を求める組電池電圧換算手段と、
前記電池電源の充電時に、前記単電池電圧または組電池電圧が前記単電池上限設定電圧または組電池上限設定電圧を超えたとき、前記組電池電圧換算手段よって求められた組電池換算電圧と前記電池電圧検出手段で検出された組電池電圧のどちらか高い方の電圧に基づいて前記単電池圧および組電池電圧の双方また何れか一方の電圧が前記単電池上限設定電圧または組電池上限設定電圧を超えないように前記通常電源から供給する充電電圧を制限する手段と、
前記電池電源の放電時に、前記単電池電圧または組電池電圧が前記単電池下限設定電圧または組電池下限設定電圧を超えたとき、前記組電池電圧換算手段よって求められた組電池換算電圧と前記電池電圧検出手段で検出された組電池電圧とを比較し、どちらか低い方の電圧に基づいて前記単電池圧および組電池電圧の双方また何れか一方の電圧が前記単電池下限設定電圧または組電池下限設定電圧を超えないように前記電池電源から負荷への供給電力を制限する手段と、
を備えることを特徴とする。
In order to solve the above-described problems, the present invention provides a battery power source configured by connecting a plurality of battery packs configured by connecting a plurality of rechargeable battery elements (single cells) in series, and a plurality of battery packs connected in parallel. In an electric drive system in which a load of an electric motor is driven by a hybrid power source including a normal power source configured by a power generation device that charges a battery of the power source,
Battery voltage detecting means for detecting the voltage (unit cell voltage) of each battery element (unit cell) and the voltage of the assembled battery (assembled battery voltage) constituting the battery power source when charging and discharging the battery power source;
Voltage determination means for comparing the cell voltage and the assembled battery voltage detected by the battery voltage detection means with the cell upper limit set voltage or the cell lower limit set voltage and the battery pack upper limit set voltage or the battery pack lower limit set voltage, respectively.
An assembled battery voltage converting means for obtaining an assembled battery converted voltage by multiplying the unit cell voltage detected by the battery voltage detecting means by the number of cells connected in series in the battery power supply;
During charging of the battery power supply, when said single cell voltage or the battery pack voltage exceeds the single battery upper limit set voltage or the battery pack upper limit set voltage, the on thus assembled battery referred voltage obtained as the assembled battery voltage converting means either higher voltage the unit cell voltage and the voltage of the battery module both or either one of voltages above unit cell upper limit set voltage or battery pack limit based on the of the detected voltage of the battery module in the battery voltage detection means Means for limiting a charging voltage supplied from the normal power supply so as not to exceed a set voltage;
During discharge of the battery power supply, when said single cell voltage or the battery pack voltage exceeds the unit cell lower limit setting voltage or the battery pack lower limit setting voltage, the on thus assembled battery referred voltage obtained as the assembled battery voltage converting means comparing the assembled battery voltage detected by the battery voltage detection means, whichever is lower the unit cell voltage and the battery pack voltage based on the voltage of both or one of voltage the unit cell lower limit setting voltage Or means for limiting the power supplied from the battery power source to the load so as not to exceed the battery pack lower limit setting voltage,
It is characterized by providing.

また、この発明においては、前記組電池換算電圧および組電池電圧の双方または何れか一方が前記上限設定電圧または下限設定電圧を超過したときは、当該電池を有する組の組電池を給電電路から切離して、これを保護することができる。
In the present invention, when both or either of the assembled battery conversion voltage and the assembled battery voltage exceed the upper limit set voltage or the lower limit set voltage , the assembled battery of the set having the battery is disconnected from the power supply circuit. This can be protected.

さらに、この発明においては前記電池電源を構成する単電池および組電池双方の電池番号および電池電圧、ならびに前記上限設定電圧または下限設定電圧への到達日時を記録・表示できるようにするのがよい。
Further, good to be able record and display the time arrival date of the single cells and a battery both cell number and cell voltage and the upper limit set voltage or lower limit setting voltage, constituting the battery power source in the present invention .

この発明によれば、複数の電池素子(単電池)を直列接続して構成した組電池を複数組並列接続して構成した電池電源の組電池の電圧だけでなく、組電池を構成する個々の電池素子(単電池)の電圧を検出し、組電池電圧、または単電池電圧あるいはこの単電池電圧を組電池相当電圧に換算した組電池換算電圧が予め設定した上限電圧または下限電圧を超過しないように充電電圧または放電電力を制限するようにしているので、組電池だけでなく単電池の過充電および過放電を抑制することができるので、電池電源の寿命を長くすることができる。   According to the present invention, not only the voltage of the assembled battery of the battery power source configured by connecting a plurality of assembled batteries configured by connecting a plurality of battery elements (single cells) in series, but also the individual batteries constituting the assembled battery The voltage of the battery element (single cell) is detected, and the assembled battery voltage, the unit cell voltage, or the assembled battery conversion voltage obtained by converting this unit cell voltage into the assembled battery equivalent voltage does not exceed the preset upper limit voltage or lower limit voltage. In addition, since the charging voltage or discharging power is limited, overcharging and overdischarging of not only the assembled battery but also the single cell can be suppressed, so that the life of the battery power source can be extended.

この発明の充放電制御装置の実施例の基本構成を示すブロック回路構成図。The block circuit block diagram which shows the basic composition of the Example of the charging / discharging control apparatus of this invention. この発明の充電動作の説明に用いる充電特性図。The charge characteristic view used for description of the charge operation of this invention. この発明における電池電源の充電動作の説明に用いる組電池の個々の電池素子(単電池)の電圧変化を示す図。The figure which shows the voltage change of each battery element (unit cell) of the assembled battery used for description of the charging operation of the battery power supply in this invention. この発明における電池電源の放電動作の説明に用いる組電池の個々の電池素子(単電池)の電圧変化を示す図。The figure which shows the voltage change of each battery element (unit cell) of the assembled battery used for description of discharge operation of the battery power supply in this invention. この発明の充放電制御装置の応用例の構成を示すブロック回路構成図。The block circuit block diagram which shows the structure of the application example of the charging / discharging control apparatus of this invention. 従来の充放電制御装置の構成を示すブロック回路構成図。The block circuit block diagram which shows the structure of the conventional charging / discharging control apparatus.

この発明の実施の形態を図に示す実施例について説明する。   Embodiments of the present invention will be described with reference to the embodiments shown in the drawings.

図1にこの発明の実施例1による充放電制御装置の基本的な回路構成を示す。   FIG. 1 shows a basic circuit configuration of a charge / discharge control apparatus according to Embodiment 1 of the present invention.

この図1のこの発明の電池電源の充放電制御装置は、基本的には、図6に示した従来装置と同じ構成を有するので、同一の構成要素は同一の符号で示し、説明を省略する。   1 has basically the same configuration as the conventional apparatus shown in FIG. 6, and therefore, the same components are indicated by the same reference numerals and the description thereof is omitted. .

この発明による充電制御装置は、従来装置とは、電池電源を構成する個々の電池素子(単電池)および組電池の両方の電圧を監視制御する電池電圧監視制御部80を設けた点が相違する。   The charge control device according to the present invention is different from the conventional device in that a battery voltage monitoring control unit 80 for monitoring and controlling the voltages of both individual battery elements (unit cells) constituting the battery power source and the assembled battery is provided. .

この電池電圧監視制御部80には、電池電源2の組電池Bを構成する直列接続された複数(n)の電池素子(単電池)b1〜bnのそれぞれの端子から、それぞれの電圧を検出する単電池電圧検出器63が設けられている。この単電池電圧検出器63は、クロックパルス発生器60の発生するクロックパルスCPに同期して組電池を構成する複数の単電池を順次走査選択して、個々の単電池bnの電圧Vbnを検出する。   The battery voltage monitoring control unit 80 detects each voltage from each terminal of a plurality (n) of battery elements (unit cells) b1 to bn connected in series constituting the assembled battery B of the battery power source 2. A unit cell voltage detector 63 is provided. The unit cell voltage detector 63 sequentially scans and selects a plurality of unit cells constituting the assembled battery in synchronization with the clock pulse CP generated by the clock pulse generator 60, and detects the voltage Vbn of each unit cell bn. To do.

電池電源2の組電池Bの電圧VBは、これと並列に接続された電圧検出器9により検出される。   The voltage VB of the assembled battery B of the battery power source 2 is detected by a voltage detector 9 connected in parallel therewith.

単電池電圧検出器63により検出された単電池電圧Vbnは、電圧判別部64で、単電池上限電圧設定器61および単電池下限電圧設定器62に設定された単電池の上限電圧VbUおよび下限電圧VbLとの大小関係が比較判別される。電圧判別部64の上限判定部64Uは、単電池電圧Vbnが設定された単電池電圧上限値VbU以上(Vbn≧VbU)のときに、比較した単電池電圧Vbnをそのまま保持電圧VbUnとして出力し、電圧保持部65の上限保持部65Uに保持する。電圧判別部64の下限判定部64Lは、単電池電圧Vbnが設定された単電池電圧下限値VbL以下(Vbn≦VbL)のときに、単電池電圧Vbnをそのまま保持電圧VbLnとして出力し、電圧保持部65の下限保持部65Lに保持する。   The unit cell voltage Vbn detected by the unit cell voltage detector 63 is determined by the voltage determination unit 64 in the unit cell upper limit voltage setter 61 and the unit cell lower limit voltage setter 62. The magnitude relationship with VbL is compared and determined. The upper limit determination unit 64U of the voltage determination unit 64 outputs the compared unit cell voltage Vbn as the holding voltage VbUn as it is when the unit cell voltage Vbn is equal to or higher than the unit cell voltage upper limit value VbU (Vbn ≧ VbU). The voltage is held in the upper limit holding unit 65U of the voltage holding unit 65. The lower limit determination unit 64L of the voltage determination unit 64 outputs the unit cell voltage Vbn as the holding voltage VbLn as it is when the unit cell voltage Vbn is equal to or lower than the set unit cell voltage lower limit value VbL (Vbn ≦ VbL), and holds the voltage. The lower limit holding part 65L of the part 65 is held.

同様に、電圧検出器9で検出された組電池電圧VBiは、電圧判別部71で、組電池上限電圧設定器35および組電池下限電圧設定器36に設定された組電池電圧の上限電圧VGUおよび下限電圧VGLとの大小関係が比較判別される。電圧判別部71の上限判定部71Uは、組電池電圧VBiが設定された組電池上限電圧VGU以上(VBi≧VGU)のときに、比較した組電池電圧VBiをそのまま保持電圧VGUgとして出力し、電圧保持部70の上限保持部70Uに保持する。電圧判別部71の下限判定部71Lは、組電池電圧VBiが、設定された組電池下限電圧VGL以下(VBi≦VGL)のときに、組電池電圧VBiをそのまま保持電圧VGLgとして出力し、電圧保持部70の下限保持部70Lに保持する。   Similarly, the assembled battery voltage VBi detected by the voltage detector 9 is obtained by the voltage discriminating unit 71 at the assembled battery upper limit voltage setter 35 and the assembled battery lower limit voltage setter 36. The magnitude relationship with the lower limit voltage VGL is compared and determined. The upper limit determination unit 71U of the voltage determination unit 71 outputs the compared assembled battery voltage VBi as the holding voltage VGUg as it is when the assembled battery voltage VBi is equal to or higher than the set assembled battery upper limit voltage VGU (VBi ≧ VGU). The upper limit holding unit 70U of the holding unit 70 is held. When the assembled battery voltage VBi is equal to or lower than the set assembled battery lower limit voltage VGL (VBi ≦ VGL), the lower limit determining unit 71L of the voltage determining unit 71 outputs the assembled battery voltage VBi as it is as the holding voltage VGLg, and holds the voltage. The lower limit holding part 70L of the part 70 is held.

単電池の上限設定器61および下限設定器62に設置された上限電圧VbUおよび下限値VbL、ならびに電圧保持部65の上限保持部65Uおよび下限保持部65Lに保持された単電池電圧の上限保持電圧VbUnおよび下限保持電圧VbLnは、それぞれ、組電池換算部66で組電池電圧相当の電圧に換算される。 Upper limit voltage VbU and lower limit value VbL installed in upper limit setting unit 61 and lower limit setting unit 62 of cell, and upper limit of unit cell voltage held in upper limit holding unit 65 U and lower limit holding unit 65 L of voltage holding unit 65 The holding voltage VbUn and the lower limit holding voltage VbLn are converted into voltages equivalent to the assembled battery voltage by the assembled battery conversion unit 66, respectively.

この換算は、換算部66Us、66Ud、66Ls、66Ldのそれぞれで、次のとおり、単電池の電圧値を組電池における単電池の直列接続個数(n)倍することにより行われる。
(1)設定上限電圧の換算部66Us
組電池換算設定上限電圧VbUB = 単電池設定上限電圧VbU × 単電池の直列接続個数n
(2)保持上限電圧の換算部66Ud
組電池換算保持上限電圧VbU1 = 単電池保持電圧VbUn × 単電池の直列接続個数n
(3)設定下限電圧の換算部66Ls
組電池換算設定下限電圧VbLM = 単電池設定下限電圧VbL × 単電池の直列接続個数n
(4)保持下限電圧の換算部66Ld
組電池換算保持下限電圧VbL1 = 単電池保持電圧VbLn × 単電池の直列接続個数n
このようにして求められた単電池電圧の組電池換算保持上限電圧VbU1および組電池換算保持下限電圧VbL1は、電圧判別部68および69において、それぞれ電圧保持部70から出力される組電池上限保持電圧VBU2および組電池下限保持電圧VBL2と大小関係が比較判別される。電圧判別部68は、VbU1>VBU2と換算電圧が大きくなったとき判別出力bnUを発生し、電圧判別部69は、VbL1<VBL2と換算電圧が小さくなったとき判別出力MnDを発生する。
This conversion is performed by multiplying the voltage value of the unit cells by the number (n) of the unit cells connected in series as follows in each of the conversion units 66Us, 66Ud, 66Ls, and 66Ld.
(1) Set upper limit voltage conversion unit 66Us
Battery set conversion upper limit voltage VbUB = unit cell set upper limit voltage VbU x number of unit cells connected in series n
(2) Holding upper limit voltage conversion unit 66Ud
Battery pack equivalent retention upper limit voltage VbU1 = unit cell retention voltage VbUn x number of unit cells connected in series n
(3) Setting lower limit voltage conversion unit 66Ls
Battery set conversion lower limit voltage VbLM = Cell set lower limit voltage VbL × Number of cells connected in series n
(4) Holding lower limit voltage conversion section 66Ld
Battery pack equivalent retention lower limit voltage VbL1 = unit cell retention voltage VbLn x number of unit cells connected in series n
The battery cell converted holding upper limit voltage VbU1 and the battery pack converted holding lower limit voltage VbL1 of the unit cell voltage thus obtained are the battery pack upper limit holding voltage output from the voltage holding unit 70 in the voltage determination units 68 and 69, respectively. The magnitude relation with VBU2 and battery pack lower limit holding voltage VBL2 is compared and determined. The voltage discriminating unit 68 generates a discrimination output bnU when the converted voltage becomes large as VbU1> VBU2, and the voltage discriminating unit 69 generates the discrimination output MnD when the converted voltage becomes small as VbL1 <VBL2.

電圧判別部68の判別出力bnUは、制限演算部44に電圧制限指令として与えられ、電圧判別部69の判別出力MnDは、推進装置4の速度を制御する速度制御部14に速度制限指令として与えられる。制限演算部44は、電圧判別部68から判別出力bnUを受け取ると、組電池換算部66の設定上限電圧の換算部66Usから受け取った組電池換算設定上限電圧VbUBを充放電制御部5の励磁調整装置FLCの発電機電圧指令回路に挿入された指令制限器VGL2に発電機電圧指令VGsの上限を規定する制限値として与える。   The discrimination output bnU of the voltage discrimination unit 68 is given as a voltage limit command to the limit calculation unit 44, and the discrimination output MnD of the voltage discrimination unit 69 is given as a speed limit command to the speed control unit 14 that controls the speed of the propulsion device 4. It is done. When the limit calculation unit 44 receives the determination output bnU from the voltage determination unit 68, the excitation adjustment of the charge / discharge control unit 5 uses the assembled battery conversion set upper limit voltage VbUB received from the set upper limit voltage conversion unit 66 Us of the assembled battery conversion unit 66. The limiter VGL2 inserted in the generator voltage command circuit of the device FLC is given as a limit value that defines the upper limit of the generator voltage command VGs.

電圧判別部64および71には、設定器61、62、35、36から与えられる上、下限設定値の5%および10%超過を検出する機能も備え、単電池および組電池の検出電圧が、上、下限設定値をそれぞれ10%以上超過する状態となったら、電圧異常の警報出力VbAL1およびVbAL2を発生する。   The voltage discriminating units 64 and 71 are provided with setting functions 61, 62, 35, and 36, and also have a function of detecting 5% and 10% exceeding the lower limit set value. When the upper and lower limit set values are exceeded by 10% or more, voltage abnormality alarm outputs VbAL1 and VbAL2 are generated.

監視制御部78は、前記の電圧異常の警報出力VbAL1およびVbAL2や、電圧判別部68,69の判別出力bnU,MnD等を受け取って電池電源を構成する単電池および組電池双方の電池番号、電池電圧、上限電圧または下限電圧に到達時間などの動作状態および警報等を記録・表示し、操作員の運転状態監視に供するものである。   The supervisory control unit 78 receives the alarm outputs VbAL1 and VbAL2 of the voltage abnormality, the discrimination outputs bnU, MnD, etc. of the voltage discrimination units 68 and 69 and receives the battery numbers and batteries of both the unit cell and the assembled battery constituting the battery power source. It records and displays the operation status such as arrival time and alarms at the voltage, upper limit voltage or lower limit voltage, and provides them for monitoring the operating status of the operator.

次に、このように構成されたこの発明の装置の動作を説明する。
[充電動作]
従来装置と同様に、充電モード切換器39により定充電モードが選択される。ここでは定電流充電モードでの充電動作を、図2に基づいて説明する。この図2においては、単電池と組電池の充電特性を同じ特性線で表示できるように単電池電圧Vbnと組電池電圧VBiを定格電圧に対する%電圧で示し、組電池電圧を()を付けて表示している。
Next, the operation of the apparatus of the present invention configured as described above will be described.
[Charging operation]
As in the conventional apparatus, the constant charging mode is selected by the charging mode switch 39. Here, the charging operation in the constant current charging mode will be described with reference to FIG. In FIG. 2, the cell voltage Vbn and the assembled battery voltage VBi are shown as a percentage voltage with respect to the rated voltage so that the charging characteristics of the cell and the assembled battery can be displayed by the same characteristic line, and the assembled battery voltage is attached with (). it's shown.

図2に示すように、充電電流IBiを、1段目(t0〜t1時点)ではIB1、第2段目(t1〜t2時点)ではIB2、第3段目(t2点〜t3時点)ではIB3へと充電の進行に伴って充電電流を段階的に低下させて充電を行い、組電池電圧VBiがt3時点でVBid1に上昇した条件で第4段目の充電へ移行する。この最終充電領域の第4段目では、充電電流を微小電流IB4にして電池を満充電まで充電する。   As shown in FIG. 2, the charging current IBi is IB1 at the first stage (time t0 to t1), IB2 at the second stage (time t1 to t2), and IB3 at the third stage (time t2 to t3). As the charging progresses, charging is performed by gradually reducing the charging current, and the charging proceeds to the fourth stage charging under the condition that the assembled battery voltage VBi increases to VBid1 at time t3. In the fourth stage of this final charging area, the charging current is set to a minute current IB4 and the battery is charged to full charge.

組電池の全ての電池素子(単電池)の特性劣化が少なく、特性線Aのような充電特性を示す場合には、時間経過とともに電池電圧はVBid2から上昇して、t7時点で単電池の終止電圧VbU,組電池の終止電圧VBU2(=VGU)に至って満充電になる。   When there is little characteristic deterioration of all the battery elements (single cells) of the assembled battery and the charging characteristic as shown by the characteristic line A is shown, the battery voltage rises from VBid2 with time and the cell ends at time t7. The voltage reaches VbU and the assembled battery end voltage VBU2 (= VGU) and is fully charged.

単電池に特性劣化やバラツキが生じ、特性線Bのように特性が僅かに劣化した場合には、t5時点で上限電圧VbUを通過してt7時点ではVbiOV1まで上昇する。   When the characteristic deterioration or variation occurs in the unit cell and the characteristic is slightly deteriorated as shown by the characteristic line B, it passes the upper limit voltage VbU at time t5 and rises to VbiOV1 at time t7.

組電池電圧がVBU2=VGU、単電池電圧がVbU1=VbUを超過しようとする場合は、超過しないように発電機Gに電圧制限動作を加えて、充電電流を点線で示すIB5のように制限する。   When the assembled battery voltage is VBU2 = VGU and the cell voltage is going to exceed VbU1 = VbU, a voltage limiting operation is applied to the generator G so as not to exceed it, and the charging current is limited to IB5 indicated by a dotted line. .

さらに、組電池電圧VBU2が例えば組電池上限設定電圧VGUの10%超過となるVGU+δ2の上限超過保護レベルVBiOVに達したとき、また、単電池電圧VbU1が例えば単電池上限設定電圧VbUの10%超過となるVbU+δ2の上限超過保護レベルVBiOVに達したときは、この時点(t6)で充電を停止するなどして電池の保護を行う。   Further, when the assembled battery voltage VBU2 reaches the upper limit over-protection level VBiOV of VGU + δ2, for example, exceeding 10% of the assembled battery upper limit set voltage VGU, and the unit cell voltage VbU1 exceeds, for example, 10% of the unit cell upper limit set voltage VbU When the upper limit excess protection level VBiOV of VbU + δ2 is reached, the battery is protected by stopping charging at this time (t6).

なお、単電池電圧が上限値、下限値を超過したことを組電池の端子電圧から検出することは困難である。なぜなら、組電池を構成する一部の単電池の電圧変化は組電池電圧に比して微小であり、また、単電池の特性バラツキによって単電池電圧にバラツキが発生するからである。このため、単電池の電圧を個々に検出して充電時は発電機の電圧制限制御を行って過充電を防止する必要がある。   It is difficult to detect from the terminal voltage of the battery pack that the unit cell voltage exceeds the upper limit value and the lower limit value. This is because the voltage change of some of the unit cells constituting the assembled battery is minute compared to the assembled battery voltage, and the unit cell voltage varies due to the variation of the unit cell characteristics. For this reason, it is necessary to detect the voltage of the single cell individually and to perform voltage limit control of the generator during charging to prevent overcharging.

さらに、単電池の特性劣化が進行してC特性線のよう大幅に特性が劣化した場合は、上記説明と同様に単電池電圧の組電池換算電圧VbU1および組電池電圧VBU2が上限設定電圧VGUを超えないように発電機の電圧制限制御を行っても、t4時点で上限値の10%超過となるVGU+δ2を超過する電圧まで上昇するので、ここで充電停止などの保護を行う。   Further, when the deterioration of the characteristics of the single battery progresses and the characteristics are significantly deteriorated as shown by the C characteristic line, the battery pack converted voltage VbU1 and the battery pack voltage VBU2 of the single battery voltage are equal to the upper limit setting voltage VGU as described above. Even if the voltage limit control of the generator is performed so that it does not exceed, the voltage rises to a voltage exceeding VGU + δ2, which exceeds 10% of the upper limit value at time t4, and thus protection such as charging stop is performed here.

このような充電動作時の電池電圧監視制御部80の動作を、図3を参照して説明する。   The operation of the battery voltage monitoring controller 80 during such a charging operation will be described with reference to FIG.

図3は、充電動作中の組電池を構成する複数(n)個直列接続された電池素子(単電池)b1〜bnの個々の検出電圧の変化を時系列的に示したものである。   FIG. 3 shows, in a time series manner, changes in individual detection voltages of a plurality (n) of battery elements (single cells) b1 to bn constituting the assembled battery during the charging operation.

図1に示す単電池電圧検出器63は、クロックパルス発生器60から与えられるクロックパルスCPに同期して、図3におけるt1時点で単電池b1の電圧Vb1、t2時点で、単電池b2の電圧Vb2、t3時点で単電池b3の電圧Vb3、・・・tn‐1時点で単電池bn‐1の電圧Vbn−1、tn時点で、単電池bnの電圧Vbnというように単電池b1〜bnを順次走査選択して各単電池の電圧Vbnを検出する。検出した単電池電圧Vbnは電圧判別部64に出力する。電圧判別部64は、その都度設定された上限電圧VbUと比較してVbn≧VbUのときに、そのときの単電池電圧を判別出力VbUnとして出力する。   The cell voltage detector 63 shown in FIG. 1 is synchronized with the clock pulse CP supplied from the clock pulse generator 60, and the voltage Vb1 of the cell b1 at the time t1 in FIG. 3 and the voltage of the cell b2 at the time t2. The voltage Vb3 of the cell b3 at the time Vb2, t3,... The voltage Vbn-1 of the cell bn-1 at the time tn-1, the voltage Vbn of the cell bn at the time tn, and the cells b1 to bn as the voltage Vbn of the cell bn. The voltage Vbn of each unit cell is detected by sequentially scanning and selecting. The detected unit cell voltage Vbn is output to the voltage determination unit 64. The voltage determination unit 64 outputs the cell voltage at that time as the determination output VbUn when Vbn ≧ VbU as compared with the set upper limit voltage VbU each time.

判別出力VbUnは電圧保持部65の上限保持部65Uに保持される。保持部65Uに保持された単電池電圧VbUnは、組電池換算部66で、組電池における単電池直列接続個数n倍して組電池電圧相当の電圧VbU1に換算される。組電池換算部66で求められた組電池換算電圧VbU1は、電圧判別部68に加えられ、ここで、電圧保持部70Uから加えられる組電池判定電圧VBU2と大小関係が比較判別され、VbU1>VBU2のときに、判別出力bnUを制限演算部44に出力する。   The determination output VbUn is held in the upper limit holding unit 65U of the voltage holding unit 65. The unit cell voltage VbUn held in the holding unit 65U is converted by the assembled battery conversion unit 66 into a voltage VbU1 equivalent to the assembled battery voltage by multiplying the number of unit cells connected in series by n. The assembled battery conversion voltage VbU1 obtained by the assembled battery conversion unit 66 is applied to the voltage determination unit 68, where the magnitude relation is compared with the assembled battery determination voltage VBU2 applied from the voltage holding unit 70U, and VbU1> VBU2 At this time, the discrimination output bnU is output to the limit calculation unit 44.

ここで、組電池上限電圧VBU2と単電池電圧をn倍して求めた組電池換算上限電圧VbU1とを比較すると、組電池換算下限電圧VbU1は組電池中の一部の電圧の上昇した単電池電圧を組電池に換算した電圧であるから、単電池換算上限電圧信号VbU1の方が組電池電圧そのものである組電池上限電圧VBU2より高く(VbU1>VBU2)なる。   Here, when the battery pack upper limit voltage VBU2 is compared with the battery pack conversion upper limit voltage VbU1 obtained by multiplying the battery voltage by n, the battery pack conversion lower limit voltage VbU1 is a cell in which a part of the battery voltage has increased. Since the voltage is a voltage converted into an assembled battery, the single cell converted upper limit voltage signal VbU1 is higher than the assembled battery upper limit voltage VBU2 that is the assembled battery voltage itself (VbU1> VBU2).

したがって、電圧判別部68は大抵の場合、組電池換算上限電圧VbU1を選択して電圧限指令bnUとして制限演算部44に与える。   Therefore, in most cases, the voltage determination unit 68 selects the assembled battery conversion upper limit voltage VbU1 and supplies it to the limit calculation unit 44 as the voltage limit command bnU.

制限演算部44は単電池電圧が制限電圧VbUに一致する発電機指令電圧に対する制限値VbUBを指令制限器VGL2に与えて発電機の電圧制限制御を行う。これによって、発電機Gの出力電圧が、単電池電圧Vbnが単電池上限設定電圧VbUに一致するような電圧に制限される。   The limit calculation unit 44 provides the command limiter VGL2 with the limit value VbUB for the generator command voltage whose cell voltage matches the limit voltage VbU, and performs the voltage limit control of the generator. As a result, the output voltage of the generator G is limited to a voltage such that the unit cell voltage Vbn matches the unit cell upper limit set voltage VbU.

図3において、単電池bnの電圧Vbnが単電池設定上限電圧VbUより小さくなるT1周期のt1〜t2時点間およびt2〜t3時点間は何も制御することなく通過するが、単電池電圧Vb3が単電池上限設定電圧VbUと一致し、Vbn≧VbUとなるt3〜t4時点間では電圧判別部64が判別出力VbUnを出力し、電圧保持部65Uに保持1として保持され、組電池換算部66で、組電池相当電圧VbU1に換算されるなどして、前記したような発電機Gの出力電圧制限制御が行われ、単電池b3の電圧Vb3が設定された上限電圧VbUを超えないようにされる。 3, unit cell bn voltage Vbn is a single battery set upper limit voltage between t 1 ~t 2 time points smaller T1 period than VbU and t 2 ~t 3 time between passes without controlling anything but a single Between time t3 and time t4 when the battery voltage Vb3 coincides with the unit cell upper limit setting voltage VbU and Vbn ≧ VbU, the voltage determination unit 64 outputs the determination output VbUn, and is held as the hold 1 in the voltage holding unit 65U. In the conversion unit 66, the output voltage restriction control of the generator G as described above is performed, for example, by conversion to the assembled battery equivalent voltage VbU1, and the voltage Vb3 of the unit cell b3 does not exceed the set upper limit voltage VbU. To be done.

T1周期のtn−1〜tn時点間で単電池bn−1の電圧Vbn−1が、上限電圧VbUに達したことを電圧判別部64が判別して判別出力VbUnを電圧保持部65に与えるので、電圧保持部64は、保持1をリセットして保持電圧を保持2に更新する。この電圧保持部64から新しい保持電圧VbUnが出力されると前記と同様に発電機Gの電圧制限制御が行われる。   Since the voltage discriminating unit 64 discriminates that the voltage Vbn-1 of the cell bn-1 has reached the upper limit voltage VbU between the time points tn-1 and tn of the T1 cycle, and provides the discriminating output VbUn to the voltage holding unit 65. The voltage holding unit 64 resets the holding 1 and updates the holding voltage to the holding 2. When a new holding voltage VbUn is output from the voltage holding unit 64, the voltage limit control of the generator G is performed as described above.

T1周期のtn〜T2周期のt1時点間の単電池bnの電圧Vbnは、Vbn<VbUであるのでこの期間はそのまま通過される。T2周期のt1〜t2時点間およびt2〜t3時点間では、単電池電圧Vb1、Vb2は、何れも上限設定電圧VbUより小さいので、これらの期間はそのまま通過される。T2周期のt3〜t4時点間において電圧判別64が単電池b3の電圧Vb3が上限設定電圧VbUより5%程度高いVbU+δ1に達することを判別すると、クロックパルス発生器60にクロックパルス停止信号Stを出力してクロックパルス発生器60の動作を一時停止するとともに、単電池電圧検出器63の走査選択操作の一時停止、電圧保持部65,70の動作の一時停止、および保持電圧VbUnのリセットを行う。   The voltage Vbn of the unit cell bn between the time t1 of the T1 cycle and the time t1 of the T2 cycle is Vbn <VbU, and thus this period is passed as it is. Since the unit cell voltages Vb1 and Vb2 are both smaller than the upper limit set voltage VbU between the time points t1 to t2 and the time points t2 to t3 in the T2 cycle, these periods are passed as they are. When the voltage determination 64 determines that the voltage Vb3 of the cell b3 reaches VbU + δ1 which is about 5% higher than the upper limit setting voltage VbU between the time points t3 and t4 of the T2 cycle, the clock pulse stop signal St is output to the clock pulse generator 60. Then, the operation of the clock pulse generator 60 is temporarily stopped, the scanning selection operation of the unit cell voltage detector 63 is temporarily stopped, the operations of the voltage holding units 65 and 70 are temporarily stopped, and the holding voltage VbUn is reset.

単電池b3の電圧Vb3は、電圧判別部64⇒電圧保持部65⇒組電池換算部66⇒電圧判別部68⇒指令制限部44⇒指令制限器VGL2に順次加わり、単電池b3の組電池換算電圧VbU3が組電池換算上限電圧VbUBに一致する制限信号BnU1Gで、励磁調整装置FLCに充電制御手段から与えられる発電機電圧指令VGsを制限して発電機Gの電圧をこの制限信号BnU1Gに制限する制御を行う。   The voltage Vb3 of the unit cell b3 is sequentially applied to the voltage discriminating unit 64⇒the voltage holding unit 65⇒the assembled battery converting unit 66⇒the voltage discriminating unit 68⇒the command limiting unit 44⇒the command limiting unit VGL2, and the assembled battery converted voltage of the unit cell b3 A control for limiting the generator G command to the limit signal BnU1G by limiting the generator voltage command VGs given from the charge control means to the excitation adjustment device FLC by the limit signal BnU1G where VbU3 matches the assembled battery conversion upper limit voltage VbUB. I do.

このとき、単電池電圧Vb3は制限電圧VbU+δ1上昇しているので、制限演算部44は、電圧判別部68から+δ1分を打ち消すための判別出力bnUを受けることにより制限信号BnU1G(=VbU−δ1)を出力し、指令制限器VGL2に与える。単電池b3の電圧Vb3が上限電圧VbUに一致するように演算した発電機電圧制限指令信号BnU1Gは一旦、T2周期のt3点でBnU1G=VbU−δ1に低下されて、t4点に向かって徐々にBnU1G=VbUまで上昇され、T2周期のt4点に至る。 At this time, since the single-cell voltage Vb3 is increased to limit the voltage VBU + .delta.1, limiting calculation unit 44 limits by receiving discrimination output bnU for canceling .delta.1 minutes + from the voltage discriminating unit 68 signals BnU1G (= VbU-δ1 ) Is output to the command limiter VGL2. The generator voltage limit command signal BnU1G calculated so that the voltage Vb3 of the cell b3 matches the upper limit voltage VbU is once lowered to BnU1G = VbU−δ1 at the point t3 of the T2 cycle, and gradually toward the point t4. The voltage is raised to BnU1G = VbU and reaches the point t4 in the T2 cycle.

この制限信号に追従して、発電機電圧はT2周期のt3点から徐々に低下してt4点に到って単電池b3の電圧Vb3は、上限設定電圧VbUに一致する。   Following this limit signal, the generator voltage gradually decreases from the point t3 of the T2 cycle, reaches the point t4, and the voltage Vb3 of the unit cell b3 matches the upper limit set voltage VbU.

単電池電圧Vb3がVbUと一致するまで低下すると電圧判別部64が一致を検出してクロックパルス停止信号Stをオフにしてクロックパルスパル発生器60の動作を再開させるとともに、判別出力VbUnを出力して電圧保持部65Uに、これまで保持されていた保持2をリセットして新に保持3をセットする。この保持電圧VbUnが、組電池換算部66⇒電圧判別部66⇒制限演算部44⇒指令制限器VGL2を介して単電池b3の電圧Vb3が上限設定電圧VbUを超えないように発電機Gの電圧制限制御を行う。   When the cell voltage Vb3 decreases to coincide with VbU, the voltage discriminating unit 64 detects the coincidence, turns off the clock pulse stop signal St, restarts the operation of the clock pulse pulse generator 60, and outputs the discriminant output VbUn. In the voltage holding unit 65U, the holding 2 that has been held so far is reset and a new holding 3 is set. This holding voltage VbUn is the voltage of the generator G so that the voltage Vb3 of the cell b3 does not exceed the upper limit set voltage VbU via the assembled battery conversion unit 66⇒voltage determination unit 66⇒limit calculation unit 44⇒command limiter VGL2. Perform limit control.

このように、単電池電圧Vbn<上限設定電圧VbUであれば制限制御を通過し、Vbn≧VbUであれば、検出の都度毎に電圧保持を更新することによって、発電機Gへの電圧指令VGsを制限指令値BnUGに制限して発電機の電圧制限制御を行って単電池電圧Vbnが上限設定電圧VbUを超えないようにする。   In this way, if the cell voltage Vbn <the upper limit set voltage VbU, the limit control is passed, and if Vbn ≧ VbU, the voltage holding VGs to the generator G is updated by updating the voltage holding for each detection. Is limited to the limit command value BnUG and the voltage limit control of the generator is performed so that the unit cell voltage Vbn does not exceed the upper limit set voltage VbU.

単電池電圧Vb3がT3周期のt3点におけるように上限電圧VbUの10%以上超過のVbU+δ2に上昇したとき、または、T4周期のt1点におけるように単電池b1の電圧Vb1が上限電圧VbUより10%を超える低下を生じ、VbU−γになったことを電圧判別部64が検出すると、単電池電圧の過剰な電圧上昇、過剰な電圧低下として警報信号VbAL1を発生して監視制御部78へ送る。   When the cell voltage Vb3 rises to VbU + δ2 exceeding 10% of the upper limit voltage VbU as at the point t3 of the T3 cycle, or the voltage Vb1 of the cell b1 is the upper limit voltage VbU as at the point t1 of the T4 cycle. When the voltage discriminating unit 64 detects that the voltage drops more than 10% and becomes VbU-γ, an alarm signal VbAL1 is generated as an excessive voltage increase or excessive voltage decrease of the unit cell voltage, and the monitoring control unit 78 Send to.

監視制御部78は警報信号VbAL1を受信すると警報を発するとともに、スイッチS1を遮断して電池電源の充電を停止させるか、または、発電機の充電動作を停止させるなどの保護制御を行う。   When the monitoring control unit 78 receives the warning signal VbAL1, the monitoring control unit 78 issues a warning and performs protection control such as shutting off the switch S1 to stop the charging of the battery power supply or stopping the charging operation of the generator.

また、単電池電圧Vbnが上限電圧VbUに達する毎に電圧判別部64は判別出力信号VbUnを出力して電圧保持部65の保持電圧を保持1⇒保持2⇒保持3⇒保持4と更新し、電圧判別部68の判別出力bnUと電圧判別部64の電池番号を示す信号Snにより、監視制御部78は、単電池番号b1・・・bn、単電池電圧Vbn、上限電圧到達時間などの動作進行状態データの記録・表示を行う。この監視制御装置78に表示された動作状態を示すデータは、操作員によって監視される。   Further, every time the unit cell voltage Vbn reaches the upper limit voltage VbU, the voltage discriminating unit 64 outputs the discrimination output signal VbUn to update the holding voltage of the voltage holding unit 65 as 1 → hold 2 → hold 3 → hold 4; Based on the discrimination output bnU of the voltage discriminating unit 68 and the signal Sn indicating the battery number of the voltage discriminating unit 64, the supervisory control unit 78 advances the operation of the unit cell numbers b1... Bn, the unit cell voltage Vbn, the upper limit voltage arrival time, etc. Record and display status data. Data indicating the operation state displayed on the monitoring control device 78 is monitored by an operator.

以上は単電池の保護動作を説明したが、組電池電圧の保護動作について次に説明する。   The protective operation of the unit cell has been described above. The protective operation of the assembled battery voltage will be described next.

組電池電圧VGの上限電圧VGUは上限電圧設定器35に設定し、また、下限電圧はVGLは下限電圧設定器36に設定する。   The upper limit voltage VGU of the assembled battery voltage VG is set in the upper limit voltage setter 35, and the lower limit voltage is set in the lower limit voltage setter 36.

組電池Bの充電を多段定電流での定電流充電モードで行った場合、充電電流IBiおよび充電電圧VBiは図2に示すように変化する。図2では、単電池の特性も同時に示す関係で組電池に関する値は()で表示している。   When the battery pack B is charged in a constant current charging mode with a multistage constant current, the charging current IBi and the charging voltage VBi change as shown in FIG. In FIG. 2, the value related to the assembled battery is indicated by () because the characteristics of the cell are also shown.

図2のt3点から第4段目の終止充電動作を開始すると組電池電圧はVBid2からVBU2(=VGU)に向かって上昇する。   When the end charging operation of the fourth stage is started from the point t3 in FIG. 2, the assembled battery voltage increases from VBid2 toward VBU2 (= VGU).

組電池を構成する単電池の特性のバラツキが少なく、特性劣化の小さい時の充電特性を特性線Aで、使用時間、充放電サイクルなどによって特性劣化が僅かに進行したときの充電特性を特性線Bで、さらに、特性劣化がかなり進行した時の充電特性を特性線Cで示している。   Characteristic line A shows the charging characteristics when there is little variation in the characteristics of the cells constituting the assembled battery and the characteristic deterioration is small, and the charging characteristics when the characteristic deterioration slightly progresses depending on the operating time, charge / discharge cycle, etc. In B, the charging characteristic when the characteristic deterioration has considerably progressed is indicated by a characteristic line C.

組電池Bの充電特性が特性線Aで示す特性であれば、充電完了のt7点では、組電池電圧はVBU2(=上限電圧VGU)に至る。   If the charging characteristic of the assembled battery B is the characteristic indicated by the characteristic line A, the assembled battery voltage reaches VBU2 (= the upper limit voltage VGU) at the time t7 when charging is completed.

組電池Bの充電特性が特性線Bで示すような特性の場合、電池電圧VBiはt7に至る前のt6点で上限設定電圧VBU2=VGUに達し、さらにt7点まで充電を継続すれば、組電池電圧VBiはVBiOV1に達して過充電状態になる。   When the charging characteristic of the assembled battery B is the characteristic indicated by the characteristic line B, the battery voltage VBi reaches the upper limit set voltage VBU2 = VGU at the point t6 before reaching the time t7, and further, the charging is continued until the time t7. Battery voltage VBi reaches VBiOV1 and enters an overcharge state.

そこで、組電池電圧VBiが上限電圧設定器35に設定した上限設定電圧VGUに達したことを電圧判別部71が検出して判別出力VGUgを出力して電圧保持部70Uに与え、ここに保持する。電圧保持部70Uは保持した判別出力VGUgを組電池保持電圧VBU2として電圧判別部68に与える。電圧判別部68は組電池換算部66から与えられる組電池換算保持電圧VbU1と比較して、VbU1<VBU2であれば、判別出力bnUを発生し、制限演算部44に与える。これにより、発電機Gの出力電圧VG、組電池Bの電圧VBiが上限電圧VGUを超えないように制御され、組電池Bの過充電が抑止される。 Therefore, the voltage discrimination unit 71 detects that the assembled battery voltage VBi has reached the upper limit set voltage VGU set in the upper limit voltage setter 35, outputs a discrimination output VGUg, gives it to the voltage holding unit 70U, and holds it there. . The voltage holding unit 70U supplies the held determination output VGUg to the voltage determination unit 68 as the assembled battery holding voltage VBU2. The voltage determination unit 68 generates a determination output bnU and supplies it to the limit calculation unit 44 if VbU1 <VBU2 as compared with the assembled battery converted holding voltage VbU1 provided from the assembled battery conversion unit 66 . This ensures that the output voltage VG of the generator G, the voltage VBi of the battery module B is controlled so as not to exceed the upper limit voltage VGU, overcharge of the battery pack B is inhibited.

この動作は組電池電圧が上限電圧に達して単電池電圧は上限電圧に達していない場合の動作で、もし、組電池換算保持電圧VbU1と組電池保持電圧VBU2を同時に検出した場合には単電池電圧検出VbU1を優先選択して前記の発電機の電圧制限制御を行う。   This operation is an operation when the assembled battery voltage reaches the upper limit voltage and the unit cell voltage does not reach the upper limit voltage. If the assembled battery conversion holding voltage VbU1 and the assembled battery holding voltage VBU2 are detected at the same time, the unit cell The voltage detection control of the generator is performed by preferentially selecting the voltage detection VbU1.

また、電圧判別部71は、組電池電圧VBiが上限電圧VGUの10%超過のVGU+δ2を超えることを検出すると、警報信号VbAL2を発生し、監視制御部78に与える。監視制御部78はこの警報信号VbAL2の表示、記録を行うとともに警報を発し、組電池スイッチS1をオフにして組電池をハイブリッド電源の給電母線から切離して組電池の充電を停止するか、または、発電機を停止して組電池の充電を停止する。   Further, when the voltage determination unit 71 detects that the assembled battery voltage VBi exceeds VGU + δ2 that exceeds 10% of the upper limit voltage VGU, the voltage determination unit 71 generates an alarm signal VbAL2 and gives it to the monitoring control unit 78. The monitoring control unit 78 displays and records this alarm signal VbAL2 and issues an alarm, and turns off the assembled battery switch S1 to disconnect the assembled battery from the power supply bus of the hybrid power supply, or stops charging the assembled battery, or Stop the generator and stop charging the battery pack.

組電池が特性線Cの特性で充電されるときも、組電池電圧VBiは、特性線Bの特性で充電されるときと同様にt4点で、VBiOVを通過し、さらに充電が継続されるとt7点でVBiOV2に達する。   Even when the assembled battery is charged with the characteristic of the characteristic line C, the assembled battery voltage VBi passes through the VBiOV at the point t4 as in the case of being charged with the characteristic of the characteristic line B, and further charging is continued. VBiOV2 is reached at point t7.

組電池電圧VBiが上限電圧VBU2=VGUを5%程度超過したVGU+δ1に達したときは、前記と同様、電圧判別部71は電圧VBiと上限電圧VGUとを比較して判別出力VGUgを発生し、電圧保持部70で保持する。電圧保持部70は、組電池保持電圧VBU2を出力して電圧判別部68で、組電池換算保持電圧VbU1と比較して、VBU2>VbU1のとき、判別出力bnUを発生し、制限演算部44に与えると、VGU−δ1に対応する制限指令BnUGを指令制限器VGL2に与えて、前記の単電池電圧に基づく制御と同様の発電機Gの電圧制限制御を行う。   When the assembled battery voltage VBi reaches VGU + δ1, which exceeds the upper limit voltage VBU2 = VGU by about 5%, the voltage discriminating unit 71 compares the voltage VBi with the upper limit voltage VGU and generates a discrimination output VGUg, as described above. The voltage holding unit 70 holds the voltage. The voltage holding unit 70 outputs the assembled battery holding voltage VBU2 and compares it with the assembled battery converted holding voltage VbU1 by the voltage discriminating unit 68. When VBU2> VbU1, the discriminating output bnU is generated, and the limiting calculating unit 44 When given, the limit command BnUG corresponding to VGU-δ1 is given to the command limiter VGL2, and the voltage limit control of the generator G similar to the control based on the unit cell voltage is performed.

なお、上限電圧設定35に設定した上限設定電圧VGUを制限指令として加えられた指令制限器VGL1は、発電機の電圧制御を手動操作行った場合の発電機の電圧制限要素として作用する。 The command limiter VGL1 to which the upper limit set voltage VGU set in the upper limit voltage setting 35 is added as a limit command acts as a voltage limit element for the generator when the voltage control of the generator is performed manually.

組電池電圧VBiが上限電圧VGUをその10%以上超過したVGU+δ2に上昇したとき、または、下限設定電圧VGLをその10%以上低下したVGL−γに低下したときは、電圧判別71がこれを検出して警報信号VbAL2を監視制御部78に出力する。監視制御部78は、組電池の動作状態の表示、記録を行うとともに、警報を発し、異常状態であれば組電池スイッチS1をオフにしてハイブリッド電源の給電母線から切離して組電池の保護を行うか、または、発電機を停止して充電を停止して組電池の保護を行う。
[放電動作]
電池電源2のみからの電力で推進装置4を駆動する、電池電源2の放電動作について図4を参照して説明する。
When the battery pack voltage VBi rises to VGU + δ2, which exceeds the upper limit voltage VGU by 10% or more, or when the lower limit set voltage VGL falls to VGL-γ, which has fallen by 10% or more, the voltage discrimination 71 detects this. The alarm signal VbAL2 is output to the monitoring controller 78. The monitoring control unit 78 displays and records the operating state of the assembled battery, and also issues an alarm. If the battery is abnormal, the monitoring control unit 78 turns off the assembled battery switch S1 and disconnects it from the power supply bus of the hybrid power source to protect the assembled battery. Or, stop the generator and stop charging to protect the battery pack.
[Discharge operation]
The discharge operation of the battery power supply 2 that drives the propulsion device 4 with power from only the battery power supply 2 will be described with reference to FIG.

図4は、放電動作中の組電池を構成する複数(n)個直列接続された電池素子(単電池)b1〜bnの個々の検出電圧の変化を時系列的に示したものである。   FIG. 4 shows, in a time series manner, changes in individual detection voltages of a plurality (n) of battery elements (single cells) b1 to bn constituting the assembled battery during the discharging operation.

図1における単電池電圧検出器63は、クロックパルス発生器60のクロックパルスCPに同期して、単電池b1〜bnを順次走査選択して、図4におけるt1時点で単電池b1の電圧Vb1、t2時点で、単電池b2の電圧Vb2、t3時点で単電池b3の電圧Vb3、・・・tn‐1時点で単電池bn‐1の電圧Vbn−1、tn時点で、単電池bnの電圧Vbnを検出する。検出した単電池電圧Vbnは電圧判別部64の下限判別部64Lに出力する。電圧判別部64の下限判別部64Lは、その都度下限設定電圧VbLと比較してVbn≦VbLのときに、その単電池電圧Vbnを判別出力VbLnとして出力する。   The cell voltage detector 63 in FIG. 1 sequentially scans and selects the cells b1 to bn in synchronization with the clock pulse CP of the clock pulse generator 60, and the voltage Vb1 of the cell b1 at time t1 in FIG. The voltage Vb2 of the cell b2 at time t2, the voltage Vb3 of the cell b3 at time t3,... the voltage Vbn-1 of the cell bn-1 at time tn-1, the voltage Vbn of the cell bn at time tn. Is detected. The detected single cell voltage Vbn is output to the lower limit determination unit 64L of the voltage determination unit 64. The lower limit discriminating unit 64L of the voltage discriminating unit 64 outputs the unit cell voltage Vbn as the discrimination output VbLn when Vbn ≦ VbL as compared with the lower limit setting voltage VbL each time.

判別出力VbLnは電圧保持部65の保持部65Lに単電池下限電圧として保持される。保持部65Lに保持された単電池下限電圧VbLnは、組電池換算部66の換算部65Ldで、組電池における単電池直列接続個数(n)倍して組電池電圧相当の電圧に換算した組電池換算下限電圧VbL1(=VbLn×n)が求められる。組電池換算部66で求められた組電池換算下限電圧VbL1は、電圧判別部69に加えられる。   The determination output VbLn is held in the holding unit 65L of the voltage holding unit 65 as a unit cell lower limit voltage. The battery cell lower limit voltage VbLn held in the holding unit 65L is converted by the conversion unit 65Ld of the battery pack conversion unit 66 to a voltage equivalent to the battery voltage by multiplying the number of battery cells connected in series (n). A conversion lower limit voltage VbL1 (= VbLn × n) is obtained. The assembled battery conversion lower limit voltage VbL1 obtained by the assembled battery conversion unit 66 is added to the voltage determination unit 69.

一方、組電池電圧VBiを検出する電圧検出器9により検出された組電池電圧VBiは、電圧判別71の下限電圧判別部71Lに与えられる。電圧判別部71Lは組電池電圧VBiを組電池下限電圧設定器36に設定された組電池下限電圧VGLと比較してVGL以下となるVBiを検出すると、その組電池電圧VBiを判別出力VGLgとして出力し、これを電圧保持部70の下限保持部70Lに与える。電圧保持部70LはクロックパルスCPと同期して判別出力VGLgを保持して、これを組電池下限電圧VBL2として電圧判別部69に加える。   On the other hand, the assembled battery voltage VBi detected by the voltage detector 9 that detects the assembled battery voltage VBi is given to the lower limit voltage determination unit 71L of the voltage determination 71. When the voltage discriminating unit 71L detects the VBi that is equal to or lower than VGL by comparing the assembled battery voltage VBi with the assembled battery lower limit voltage VGL set in the assembled battery lower limit voltage setting device 36, the assembled battery voltage VBi is output as the discriminant output VGLg. This is given to the lower limit holding unit 70L of the voltage holding unit 70. The voltage holding unit 70L holds the discrimination output VGLg in synchronization with the clock pulse CP, and applies this to the voltage discrimination unit 69 as the assembled battery lower limit voltage VBL2.

電圧判別部69は前記の組電池換算下限電圧VbL1とこの組電池下限電圧VBL2とを比較して低い方の電圧を選択して速度制限指令MnD(VbL1またはVBL2)として出力する。   The voltage discriminating unit 69 compares the assembled battery conversion lower limit voltage VbL1 with the assembled battery lower limit voltage VBL2, selects the lower voltage, and outputs it as a speed limit command MnD (VbL1 or VBL2).

ここで、組電池下限電圧VBL2と単電池電圧をn倍して求めた組電池換算下限電圧VbL1とを比較すると、組電池換算下限電圧VbL1は組電池中の一部の低下した単電池電圧を組電池に換算した電圧であるから、組電池換算下限電圧VbL1の方が組電池電圧そのものである組電池下限電圧VBL2より低い電圧(VbL1<VBL2)となる。   Here, when the battery pack lower limit voltage VBL2 and the battery pack conversion lower limit voltage VbL1 obtained by multiplying the battery cell voltage by n are compared, the battery pack conversion lower limit voltage VbL1 is obtained by reducing a part of the battery cell voltage in the battery pack. Since it is the voltage converted into the assembled battery, the assembled battery converted lower limit voltage VbL1 is lower than the assembled battery lower limit voltage VBL2 which is the assembled battery voltage itself (VbL1 <VBL2).

したがって、電圧判別部69は大抵の場合、組電池換算下限電圧VbL1を選択して速度制限指令MnDとして推進装置4の速度制御部14に与える。   Therefore, in most cases, the voltage determination unit 69 selects the assembled battery conversion lower limit voltage VbL1 and gives it to the speed control unit 14 of the propulsion device 4 as the speed limit command MnD.

また、組電池換算部66から、単電池電圧設定下限電圧VbLを下限換算部66Lsで単電池直列個数n倍して求めた組電池換算設定下限電圧VbLMを速度制御部14に与える。   Further, the assembled battery conversion setting lower limit voltage VbLM, which is obtained by multiplying the unit cell voltage setting lower limit voltage VbL by the lower limit conversion unit 66Ls and multiplying the number of unit cells by n, is given from the assembled battery conversion unit 66 to the speed control unit 14.

速度制御部14は速度制限指令MnDを受け取ると、これが組電池または単電池電圧が組電池換算設定下限電圧VbLMより低下しないように電力変換器INVの出力を低下させて推進電動機Mの回転速度を減速させる。   Upon receiving the speed limit command MnD, the speed control unit 14 decreases the output of the power converter INV so that the assembled battery or single battery voltage does not fall below the assembled battery conversion setting lower limit voltage VbLM, thereby reducing the rotational speed of the propulsion motor M. Decelerate.

図4において、単電池bnの電圧Vbnが単電池設定下限電圧VbLより大となるT1周期のt1〜t2時点間およびt2〜t3時点間は何も制御することなく通過するが、単電池b3の電圧Vb3が単電池設定下限電圧VbLと一致し、Vbn≧VbLとなるt3〜t4時点間では電圧判別部64の下限判定部64Lが判別出力VbLnを出力し、下限電圧保持部65Lに保持1として保持され、組電池換算部66の下限換算部66Lで、組電池電圧相当した下限電圧VbL1に換算し、これを電圧判定部69で、電圧保持部70L保持された組電池下限電圧VBL2と大小関係を比較判別される。電圧判定部69で、VbL1<VBL2が判別されると、速度制限指令Mndが、発生され、前記したような推進装置4の速度制限制御が行われ、単電池b3の電圧Vb3が下限設定電圧VbL以下に低下しないようにされる。   In FIG. 4, the voltage Vbn of the unit cell bn passes between the time points t1 to t2 and the time point t2 to t3 of the T1 period when the voltage Vbn is higher than the unit cell setting lower limit voltage VbL. The voltage determination unit 64L of the voltage determination unit 64 outputs the determination output VbLn between the time t3 and the time t4 when the voltage Vb3 coincides with the unit cell set lower limit voltage VbL and Vbn ≧ VbL, and is held as 1 in the lower limit voltage holding unit 65L. The lower limit conversion unit 66L of the assembled battery conversion unit 66 converts it to a lower limit voltage VbL1 corresponding to the assembled battery voltage, and this is converted by the voltage determination unit 69 to the assembled battery lower limit voltage VBL2 held by the voltage holding unit 70L. Is discriminated. When the voltage determination unit 69 determines that VbL1 <VBL2, the speed limit command Mnd is generated, the speed limit control of the propulsion device 4 as described above is performed, and the voltage Vb3 of the cell b3 is set to the lower limit set voltage VbL. It is made not to fall below.

tn−1〜tn時点間およびT1周期のtn〜T2周期のt1時点間では、単電池bn−1およびbnの電圧Vbn−1およびVbnが下限設定電圧VbLより大きいので、これらの期間はそのまま何も制御しないで通過する。さらに、T2周期のt1〜t2時点間で、VbLと等しい単電池b1の電圧Vb1が検出されると、電圧判別部64Lが単電池電圧Vb1を判別出力VbLnとして出力するので、電圧保持部65Lの保持が保持2に更新される。電圧保持部65Lに保持された保持電圧VbLnを、組電池換算部66Ldにより組電池電圧相当電圧に換算した組電池換算下限電圧VbL1が電圧判別部69で判別されて速度制限指令MnDが速度制御部14に出力され、推進装置4の速度制限制御が行われる。   Since the voltages Vbn-1 and Vbn of the single cells bn-1 and bn are larger than the lower limit set voltage VbL between the time points tn-1 and tn and between the time points t1 and t1 of the T1 cycle, the period is not changed. Also pass without control. Further, when the voltage Vb1 of the unit cell b1 equal to VbL is detected between the time points t1 and t2 of the T2 cycle, the voltage determination unit 64L outputs the unit cell voltage Vb1 as the determination output VbLn, so that the voltage holding unit 65L The hold is updated to hold 2. The battery pack conversion lower limit voltage VbL1 obtained by converting the hold voltage VbLn held in the voltage hold unit 65L into the battery pack voltage equivalent voltage by the battery pack conversion unit 66Ld is determined by the voltage determination unit 69, and the speed limit command MnD is transmitted to the speed control unit. 14 and the speed limit control of the propulsion device 4 is performed.

T2周期のt2〜t3時点間では、単電池b2の電圧Vb2がVbLより大きくいので、この期間は何も制御しないで通過する。t3点において単電池b3の電圧Vb3が下限設定電圧VbLよりその5%程度低いVbL−δ1まで低下したことが検出されると、電圧判別部64Lは、これを判別して、クロックパルス停止信号Stを出力してクロックパルス発生器60および単電池電圧検出器63の動作の一時停止、並びに電圧保持部66Lおよび70Lの保持リセットを行う。   Between the time points t2 and t3 of the T2 cycle, the voltage Vb2 of the unit cell b2 is higher than VbL, and thus this period passes without being controlled. When it is detected that the voltage Vb3 of the cell b3 has dropped to VbL-δ1 that is about 5% lower than the lower limit setting voltage VbL at the point t3, the voltage determination unit 64L determines this and determines the clock pulse stop signal St Is output to temporarily stop the operation of the clock pulse generator 60 and the single battery voltage detector 63 and hold and reset the voltage holding units 66L and 70L.

このとき、単電池b3の電圧Vb3は電圧判別部64Lの判別出力VbLnは電圧保持部65Lに保持され、単電池換算部66Ldで、単電池換算下限電圧VbL1に変換され、さらにこれが電圧判別部70Lで判別されて速度制限指令MnDが発生され、速度制御部14に与えられ、そして組電池電圧に換算した組電池換算下限電圧VbLMが速度制御部14に与えられる。   At this time, the voltage Vb3 of the unit cell b3 is stored in the voltage holding unit 65L while the determination output VbLn of the voltage determination unit 64L is converted into the unit cell conversion lower limit voltage VbL1 by the unit cell conversion unit 66Ld, which is further converted into the voltage determination unit 70L. And the speed limit command MnD is generated and given to the speed control unit 14, and the assembled battery conversion lower limit voltage VbLM converted to the assembled battery voltage is given to the speed control unit 14.

速度制御部14は速度制限指令MnDが下限設定電圧VbLMに一致するように推進電動機Mの回転速度を減速制御して、図4のように単電池b3電圧Vb3はVbL−δ1からT2周期のt4時点に向かって上昇し、t4時点でVbLに一致する。   The speed control unit 14 reduces the rotational speed of the propulsion motor M so that the speed limit command MnD coincides with the lower limit set voltage VbLM, and the cell b3 voltage Vb3 is changed from VbL-δ1 to t4 in the cycle T2 as shown in FIG. It rises toward the time point and coincides with VbL at time point t4.

一致したことを電圧判別部64Lが検出し判別出力VbLnを出力し、電圧保持部65Lの保持を保持3に更新し、引き続き前記と同様の電動機速度制限制御を行う。   The voltage discriminating unit 64L detects the coincidence, outputs the discriminating output VbLn, updates the holding of the voltage holding unit 65L to the holding 3, and then performs the same motor speed limit control as described above.

このように、単電池電圧Vbn>単電池下限設定電圧VbLであれば保持電圧のままとして通過させる。したがって、速度制御部14は、単電池電圧Vbnが保持電圧VbLnに保たれるように推進電動機Mの回転速度を制限する制御を行う。Vbn=VbLを検出する毎に保持電圧を更新して速度制限指令MnDによってVbn=VbLに維持されるように推進電動機Mの回転速度の制限制御を行い、単電池電圧Vbnが下限設定電圧VbLよりもその5%程度低下したVbL−δ1に低下したときは、電動機Mの速度を減速させて速度制限指令MnDが組電池換算下限電圧VbLMに一致するように制御する。   Thus, if the cell voltage Vbn> the cell lower limit setting voltage VbL, the holding voltage is passed as it is. Therefore, the speed control unit 14 performs control to limit the rotation speed of the propulsion motor M so that the cell voltage Vbn is maintained at the holding voltage VbLn. Each time Vbn = VbL is detected, the holding voltage is updated and the rotational speed limit control of the propulsion motor M is performed so as to be maintained at Vbn = VbL by the speed limit command MnD, and the unit cell voltage Vbn is lower than the lower limit set voltage VbL. When VbL-δ1 is reduced by about 5%, the speed of the electric motor M is reduced to control the speed limit command MnD so that it matches the assembled battery conversion lower limit voltage VbLM.

T4周期のt3点において、単電池b3の電圧Vb3が単電池下限電圧VbLよりその10%程度低いVBL−δ2の電圧以下に低下する。このとき、電圧判別部64Lがこれを検出して警報信号VbAL1を出力して監視制御部78に与える。   At the point t3 of the T4 cycle, the voltage Vb3 of the cell b3 drops below the voltage VBL-δ2 that is about 10% lower than the cell lower limit voltage VbL. At this time, the voltage discriminating unit 64L detects this, outputs an alarm signal VbAL1, and gives it to the monitoring control unit 78.

監視制御部78は警報信号VbAL1により警報を発するとともに、スイッチS1をオフにして電池電源2から推進装置4への給電を停止して、電池電源2の電池の放電を停止させるか、または、推進電動機Mを停止させるなどの処置をして単電池b3を過放電から保護する。   The supervisory control unit 78 issues an alarm by the alarm signal VbAL1, and turns off the switch S1 to stop the power supply from the battery power source 2 to the propulsion device 4, thereby stopping the discharge of the battery of the battery power source 2 or propulsion. The unit cell b3 is protected from overdischarge by taking measures such as stopping the electric motor M.

なお、監視制御部78は単電池電圧Vbnが下限設置電圧VbLに達する毎に電圧判別部64Lの判別出力VbLnによって電圧保持部65Lに保持されたデータを単電池番号を示すデータSnとともに、単電池電圧の下限設定電圧到達時間などの動作状態を示すデータと一緒に記録・表示を行い、操作員の運転状態の監視に供する。   In addition, every time the cell voltage Vbn reaches the lower limit installation voltage VbL, the monitoring controller 78 converts the data held in the voltage holding unit 65L by the determination output VbLn of the voltage determination unit 64L together with the data Sn indicating the cell number. Record and display together with data indicating the operating status such as the voltage lower limit voltage arrival time, etc., to provide monitoring of the operating status of the operator.

このように電池電源2の放電動作を制御することにより、複数の電池素子(単電池)を直並列接続して構成した電池電源の各電池素子(単電池)に放電動作による過放電による電圧の異常低下が生じると、単電池の電圧が設定された下限電圧以下に低下しないように電動機M等の負荷への供給電力を制限する制御を行うことにより、個々の電池素子の過剰電圧低下を防止して特性劣化を抑えることができるので、電池全体の寿命を延ばすことができる。   By controlling the discharge operation of the battery power supply 2 in this way, the voltage due to overdischarge due to the discharge operation is applied to each battery element (unit cell) of the battery power source configured by connecting a plurality of battery elements (unit cells) in series and parallel. By controlling the power supplied to the load such as the electric motor M so that the voltage of the unit cell does not drop below the set lower limit voltage when an abnormal drop occurs, the excessive voltage drop of each battery element is prevented. Thus, the deterioration of characteristics can be suppressed, so that the life of the entire battery can be extended.

図5にこの発明の実施例2を示す。この実施例は、図1に示したこの発明の実施例1における電池電源を構成する組電池を、さらに複数(N)組並列接続して電池電源2の容量を増大したものである。   FIG. 5 shows a second embodiment of the present invention. In this embodiment, the capacity of the battery power source 2 is increased by connecting a plurality (N) of the assembled batteries constituting the battery power source in the first embodiment of the present invention shown in FIG. 1 in parallel.

この実施例2におけるハイブリッド電源1の電池電源2は、複数(N)組の組電池B1〜BNを並列に接続して構成されている。 The battery power source 2 of the hybrid power source 1 in the second embodiment is configured by connecting a plurality (N) of assembled batteries B1 to BN in parallel.

並列接続した各組電池B1〜BNの電圧VBiは同値であるから、各組電池の動作状態を電圧で監視することはできない。   Since the voltage VBi of each of the assembled batteries B1 to BN connected in parallel has the same value, the operating state of each assembled battery cannot be monitored by voltage.

そのため、並列接続の個別組電池の保護は、特許文献2に示すように組電池ごとに検出した組電池電流に基づいて行われている。このため、この実施例2においても、各組電池B1〜BNのそれぞれに直列に組電池電流検出器ID1〜IDNを接続して各組電池の電流IB1〜IBNを検出するようにしている。   Therefore, as shown in Patent Document 2, protection of individual battery packs connected in parallel is performed based on battery pack current detected for each battery pack. For this reason, also in the second embodiment, the battery pack current detectors ID1 to IDN are connected in series to the battery packs B1 to BN to detect the currents IB1 to IBN of the battery packs.

実施例2のその他の発電装置3、推進装置4、速度制御部14、充放電制御部5等の構成は、実施例1と同一であり、充放電制御部5の内部の構成は省略して1つのブロックで示している。   The other configurations of the power generation device 3, the propulsion device 4, the speed control unit 14, the charge / discharge control unit 5 and the like of the second embodiment are the same as those of the first embodiment, and the internal configuration of the charge / discharge control unit 5 is omitted. Shown in one block.

この実施例2において、電池電源2の並列接続した複数の組電池B1〜BNを一括して定電流充電モードまたは定電力充電モードで充電するとき、電圧検出器9で検出した電池電圧VBiが上限設定電圧VGUに達したときは、充放電制御部5が、電池電圧VBiが上限電圧設定器35に設定された組電池上限設定電圧VGUを超過しないよう発電機Gの電圧制限制御を行う。これにより、組電池の過充電が抑制される。   In the second embodiment, when a plurality of assembled batteries B1 to BN connected in parallel with the battery power source 2 are charged together in the constant current charging mode or the constant power charging mode, the battery voltage VBi detected by the voltage detector 9 is the upper limit. When the set voltage VGU is reached, the charge / discharge control unit 5 performs voltage limit control of the generator G so that the battery voltage VBi does not exceed the assembled battery upper limit set voltage VGU set in the upper limit voltage setter 35. Thereby, the overcharge of an assembled battery is suppressed.

また、組電池電圧VBiが上限設定電圧VGUを大幅に、例えばその10%以上超過したときは、スイッチS1をオフにして、組電池を発電装置3から切離すか、または、発電装置3を停止して電池電源2の電池の充電を停止して、組電池を過充電から保護する。   Further, when the assembled battery voltage VBi significantly exceeds the upper limit setting voltage VGU, for example, 10% or more, the switch S1 is turned off and the assembled battery is disconnected from the power generator 3 or the power generator 3 is stopped. Then, charging of the battery of the battery power source 2 is stopped, and the assembled battery is protected from overcharging.

充電動作のとき、各組電池B1〜BNに設けた単電池電圧検出器63−1〜63−nにより各単電池の電圧Vbnを検出し、単電池電圧Vbnの何れかが、上限設定電圧VbUに達しときは、この単電池電圧Vbnが上限設定電圧VbUを超過しないように発電機Gの電圧制限制御を行う。これにより、組電池を構成する単電池の過充電が抑制される。   During the charging operation, the unit cell voltage detectors 63-1 to 63-n provided in each of the assembled batteries B1 to BN detect the voltage Vbn of each unit cell, and any one of the unit cell voltages Vbn is the upper limit set voltage VbU. Is reached, the voltage limit control of the generator G is performed so that the unit cell voltage Vbn does not exceed the upper limit set voltage VbU. Thereby, the overcharge of the cell which comprises an assembled battery is suppressed.

また、単電池電圧Vbnが上限設定電圧VbUを大幅に、例えばその10%以上超過したときは、その単電池の所属する組電池に接続したスイッチS21〜S2Nをオフして、該当する組電池をハイブリッド電源1の母線P,Nから切離して、単電池を過充電から保護する。   In addition, when the unit cell voltage Vbn greatly exceeds the upper limit set voltage VbU, for example, 10% or more, the switches S21 to S2N connected to the unit cell to which the unit cell belongs are turned off, and the corresponding unit cell is turned off. Disconnect from the buses P and N of the hybrid power supply 1 to protect the unit cell from overcharging.

電池電源2の放電動作、すなわち電池電源2から推進装置4に駆動電流を供給して運転する状態において、電池電源2の電圧VBiが組電池下限電圧設定器36に設定された下限設定電圧VGLに達したときは、組電池電圧VBiがこの下限設定電圧VGLより低下しないように速度制御部14を介して推進装置4への供給電力の制限制御を行い、電動機Mの回転速度を減速させて放電電流を減少させる。これにより、電池電源2を構成する組電池B1〜BNの過放電が抑制される。   In the discharge operation of the battery power source 2, that is, in the state where the battery power source 2 is operated by supplying a drive current to the propulsion device 4, the voltage VBi of the battery power source 2 becomes the lower limit set voltage VGL set in the assembled battery lower limit voltage setting unit 36. When the voltage reaches the limit, the battery pack voltage VBi is controlled to limit the power supplied to the propulsion device 4 via the speed controller 14 so that the assembled battery voltage VBi does not drop below the lower limit set voltage VGL, and the electric motor M is decelerated to reduce the rotational speed. Reduce the current. Thereby, the overdischarge of assembled battery B1-BN which comprises the battery power supply 2 is suppressed.

また、組電池を構成する何れかの単電池の電圧Vbiが、単電池下限電圧設定器62に設定された下限設定電圧VbLに達しときは、単電池電圧Vbiが下限設定電圧VbLより低下しないように速度制御部14を介して推進装置4への供給電力の制限制御を行い、電動機回転速度を減速させる。これにより、電池電源2を構成する単電池b1〜bNnの過放電が抑制される。   Further, when the voltage Vbi of any single cell constituting the assembled battery reaches the lower limit set voltage VbL set in the single cell lower limit voltage setting unit 62, the single cell voltage Vbi is not lowered below the lower limit set voltage VbL. In addition, limit control of the power supplied to the propulsion device 4 is performed via the speed control unit 14 to decelerate the motor rotation speed. Thereby, the overdischarge of the cells b1 to bNn constituting the battery power source 2 is suppressed.

また、単電池電圧Vbiが単電池下限設定電圧VbLを大幅に、例えばその10%以下低下したときは、単電池の所属する組電池のスイッチS21〜S2Nをオフにして、該当する組電池をハイブリッド電源1の母線P、Nからの切離し、単電池の過放電による異常電圧低下から保護する。   In addition, when the unit cell voltage Vbi significantly decreases the unit cell lower limit setting voltage VbL, for example, by 10% or less, the switches S21 to S2N of the unit cell to which the unit cell belongs are turned off, and the corresponding unit cell is hybridized. Protection from the abnormal voltage drop due to disconnection from the buses P and N of the power supply 1 and overdischarge of the unit cell.

1:ハイブリッド電源、2:電池電源、B、B1〜BN:組電池、b1〜bNn:電池素子(単電池)、3:通常電源(発電装置)、4:推進装置、5:充放電制御部、14:速度制御部、78:監視制御部、80:電池電圧監視制御部。   1: Hybrid power source, 2: Battery power source, B, B1-BN: Battery pack, b1-bNn: Battery element (single cell), 3: Normal power source (power generation device), 4: Propulsion device, 5: Charge / discharge control unit , 14: speed control unit, 78: monitoring control unit, 80: battery voltage monitoring control unit.

Claims (3)

複数の充電可能な電池素子(単電池)を直列接続して構成された組電池を複数組並列接続して構成された電池電源と、この電池電源の電池を充電する発電装置で構成された通常電源とを備えるハイブリッド電源により電動機の負荷を駆動するようにした電気駆動システムにおいて、
前記電池電源の充放電時に、この電池電源を構成する個々の電池素子(単電池)の電圧(単電池電圧)および組電池の電圧(組電池電圧)をそれぞれ検出する電池電圧検出手段と、
前記電池電圧検出手段によって検出された単電池電圧および組電池電圧をそれぞれ単電池上限設定電圧または単電池下限設定電圧および組電池上限設定電圧または組電池下限設定電圧と比較する電圧判定手段と、
前記電池電圧検出手段により検出された単電池電圧に、前記電池電源における単電池の直列接続個数倍して組電池換算電圧を求める組電池電圧換算手段と、
前記電池電源の充電時に、前記単電池電圧または組電池電圧が前記単電池上限設定電圧または組電池上限設定電圧を超えたとき、前記組電池電圧換算手段よって求められた組電池換算電圧と前記電池電圧検出手段で検出された組電池電圧のどちらか高い方の電圧に基づいて前記単電池圧および組電池電圧の双方また何れか一方の電圧が前記単電池上限設定電圧または組電池上限設定電圧を超えないように前記通常電源から供給する充電電圧を制限する手段と、
前記電池電源の放電時に、前記単電池電圧または組電池電圧が前記単電池下限設定電圧または組電池下限設定電圧を超えたとき、前記組電池電圧換算手段よって求められた組電池換算電圧と前記電池電圧検出手段で検出された組電池電圧とを比較し、どちらか低い方の電圧に基づいて前記単電池圧および組電池電圧の双方また何れか一方の電圧が前記単電池下限設定電圧または組電池下限設定電圧を超えないように前記電池電源から負荷への供給電力を制限する手段と、
を備えることを特徴とする電池電源の充放電制御装置。
Usually composed of a battery power source configured by connecting a plurality of rechargeable battery elements (single cells) connected in series to each other in parallel, and a power generator for charging the battery of this battery power source In an electric drive system in which a load of an electric motor is driven by a hybrid power source including a power source,
Battery voltage detecting means for detecting the voltage (unit cell voltage) of each battery element (unit cell) and the voltage of the assembled battery (assembled battery voltage) constituting the battery power source when charging and discharging the battery power source;
Voltage determination means for comparing the cell voltage and the assembled battery voltage detected by the battery voltage detection means with the cell upper limit set voltage or the cell lower limit set voltage and the battery pack upper limit set voltage or the battery pack lower limit set voltage, respectively.
An assembled battery voltage converting means for obtaining an assembled battery converted voltage by multiplying the unit cell voltage detected by the battery voltage detecting means by the number of cells connected in series in the battery power supply;
During charging of the battery power supply, when said single cell voltage or the battery pack voltage exceeds the single battery upper limit set voltage or the battery pack upper limit set voltage, the on thus assembled battery referred voltage obtained as the assembled battery voltage converting means either higher voltage the unit cell voltage and the voltage of the battery module both or either one of voltages above unit cell upper limit set voltage or battery pack limit based on the of the detected voltage of the battery module in the battery voltage detection means Means for limiting a charging voltage supplied from the normal power supply so as not to exceed a set voltage;
During discharge of the battery power supply, when said single cell voltage or the battery pack voltage exceeds the unit cell lower limit setting voltage or the battery pack lower limit setting voltage, the on thus assembled battery referred voltage obtained as the assembled battery voltage converting means comparing the assembled battery voltage detected by the battery voltage detection means, whichever is lower the unit cell voltage and the battery pack voltage based on the voltage of both or one of voltage the unit cell lower limit setting voltage Or means for limiting the power supplied from the battery power source to the load so as not to exceed the battery pack lower limit setting voltage,
A charge / discharge control device for a battery power source comprising:
請求項1に記載の電池電源の充放電制御装置において、前記組電池換算電圧および組電池電圧の双方または何れか一方が前記上限設定電圧または下限設定電圧を超過したときは、当該電池を有する組の組電池を給電電路から切離して、これを保護することを特徴とする電池電源の充放電制御装置。 The charge / discharge control device for a battery power source according to claim 1, wherein when the battery pack converted voltage and / or battery battery voltage exceeds the upper limit set voltage or the lower limit set voltage , the set having the battery. A battery power supply charge / discharge control device that protects the assembled battery by disconnecting the assembled battery from the power supply circuit. 請求項1または2に記載の電池電源の充放電制御装置において、前記電池電源を構成する単電池および組電池双方の電池番号および電池電圧、ならびに前記上限設定電圧または下限設定電圧への到達日時を記録・表示することを特徴とする電池電源の充放電制御装置。
In the charge and discharge control device for a battery power source according to claim 1 or 2, the single cells and a battery both cell number and cell voltage constituting the battery power source, and upon reaching the date of the upper limit set voltage or lower limit set voltage A battery power supply charge / discharge control device characterized by recording and displaying.
JP2012129167A 2012-06-06 2012-06-06 Battery power supply charge / discharge control device Active JP6056205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012129167A JP6056205B2 (en) 2012-06-06 2012-06-06 Battery power supply charge / discharge control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012129167A JP6056205B2 (en) 2012-06-06 2012-06-06 Battery power supply charge / discharge control device

Publications (2)

Publication Number Publication Date
JP2013255335A JP2013255335A (en) 2013-12-19
JP6056205B2 true JP6056205B2 (en) 2017-01-11

Family

ID=49952411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012129167A Active JP6056205B2 (en) 2012-06-06 2012-06-06 Battery power supply charge / discharge control device

Country Status (1)

Country Link
JP (1) JP6056205B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6318573B2 (en) * 2013-11-20 2018-05-09 富士電機株式会社 Battery power charge / discharge control system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3750412B2 (en) * 1999-04-12 2006-03-01 日産自動車株式会社 In-vehicle battery control system
JP4069720B2 (en) * 2002-10-10 2008-04-02 日産自動車株式会社 Overcharge / discharge monitoring device for battery pack
JP4096261B2 (en) * 2003-12-05 2008-06-04 富士電機システムズ株式会社 Battery protection system
JP4929389B2 (en) * 2010-10-14 2012-05-09 三菱重工業株式会社 Battery system

Also Published As

Publication number Publication date
JP2013255335A (en) 2013-12-19

Similar Documents

Publication Publication Date Title
JP6225986B2 (en) Power storage device and method for controlling power storage device
US8159186B2 (en) Power source system, power supply control method for the power source system, power supply control program for the power source system, and computer-readable recording medium with the power supply control program recorded thereon
EP0926799B1 (en) Power supply apparatus
TWI404291B (en) System and method for balancing battery cells
US20100174417A1 (en) Power supply system, and power supply control method and power supply control program employed in power supply system
US9331494B2 (en) Battery system
KR102253188B1 (en) Apparatus for controlling rapid charging of electric vehicle
JP4890110B2 (en) Battery management system
KR20180056428A (en) Apparatus for preventing over-discharging of battery
US20130020970A1 (en) Control System and Control Method for Electric Bicycle
CN103081281A (en) Power management system
US8890536B2 (en) Secondary battery with apparatus for checking the state of a service plug
US20120187899A1 (en) Power supply system, vehicle provided with same, and control method of power supply system
JPWO2010058468A1 (en) Power converter
KR20180104873A (en) Lithium battery protection system
US20180097376A1 (en) Battery pack and method of operation therefor
JP5361594B2 (en) Lithium ion secondary battery system and power supply method to management device
JP5489779B2 (en) Lithium-ion battery charging system and charging method
CA2360361A1 (en) Energy monitoring and charging system
JP6056205B2 (en) Battery power supply charge / discharge control device
JP2009071922A (en) Dc backup power supply device and method of controlling the same
WO1993010590A1 (en) Battery management system
JP6318573B2 (en) Battery power charge / discharge control system
KR100902464B1 (en) Inverter circuit module with built in battery management system and Apparatus for control thereof
JP6003225B2 (en) Control method and control apparatus for electric propulsion system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161121

R150 Certificate of patent or registration of utility model

Ref document number: 6056205

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250