JP6318573B2 - Battery power charge / discharge control system - Google Patents

Battery power charge / discharge control system Download PDF

Info

Publication number
JP6318573B2
JP6318573B2 JP2013239994A JP2013239994A JP6318573B2 JP 6318573 B2 JP6318573 B2 JP 6318573B2 JP 2013239994 A JP2013239994 A JP 2013239994A JP 2013239994 A JP2013239994 A JP 2013239994A JP 6318573 B2 JP6318573 B2 JP 6318573B2
Authority
JP
Japan
Prior art keywords
voltage
battery
unit
charging
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013239994A
Other languages
Japanese (ja)
Other versions
JP2015100238A (en
Inventor
泰弘 高林
泰弘 高林
謙二 馬場
謙二 馬場
徹 引地
徹 引地
陽介 樋口
陽介 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2013239994A priority Critical patent/JP6318573B2/en
Publication of JP2015100238A publication Critical patent/JP2015100238A/en
Application granted granted Critical
Publication of JP6318573B2 publication Critical patent/JP6318573B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、充電可能な電池で構成された電池電源と、この電池電源を充電する充電用電源で構成されるハイブリッド電源を備えたシステムにおいて、充電用電源により電池電源を充電しながら負荷へ電力を供給して運転するモード、または、電池電源の放電電力のみで負荷へ電力を供給して運転するモードにおける電池電源の充放電制御方式に関する。   The present invention relates to a system including a battery power source composed of a rechargeable battery and a hybrid power source composed of a charging power source for charging the battery power source, while charging the battery power source with the charging power source and supplying power to the load. The present invention relates to a charge / discharge control method for a battery power supply in a mode in which the battery is operated by supplying power or a mode in which power is supplied to a load only by the discharge power of the battery power supply.

リチウムイオン電池のような充電可能な電池と、この電池を充電する発電機で構成されるハイブリッド電源を備えた電気推進システム等の運転モードには、発電機で電池を充電しながら推進電動機、または、補機へ電力を供給して運転するモードと、発電機を停止して電池のみの放電電力で運転するモードの2モードがある。   In an operation mode such as an electric propulsion system equipped with a rechargeable battery such as a lithium ion battery and a generator that charges the battery, a propulsion motor while charging the battery with the generator, or There are two modes: a mode in which electric power is supplied to the auxiliary machine and a mode in which the generator is stopped and the battery is operated with discharge power only from the battery.

このような電気推進システム等に用いる大容量電池電源は充電可能な単電池を多数直並列接続して組電池を構成するのが一般的である。単電池は、電池素子単体、またはこの電池素子を複数個直列または並列接続してユニット化したものである。   In general, a large-capacity battery power source used in such an electric propulsion system or the like constitutes an assembled battery by connecting a large number of rechargeable cells in series and parallel. The single battery is a single battery element or a unit obtained by connecting a plurality of battery elements in series or in parallel.

発電機を運転して電池電源を充電しながら推進電動機、および、補機へも電力を供給する運転では、推進電動機の速度の大きな変化に伴う大きな負荷変動が発生しても、安定して電池電源の充電ができる発電機制御が必要となる。   In the operation of supplying power to the propulsion motor and auxiliary equipment while operating the generator and charging the battery power, the battery is stable even if a large load fluctuation occurs due to a large change in the speed of the propulsion motor. Generator control that can charge the power supply is required.

発電機は電池電源の残存充電量の少ない充電初期領域では電池電源に大きな充電電力を供給し、満充電に近い充電終止領域(満充電領域)では小さな充電電力を供給して充電する方法が一般的である。そして、満充電に近い充電終止領域では電池電圧が規定値を超えて過充電となることがあるため、電池電圧を監視して過充電にならないように発電機を制御することが重要である。   The generator is generally charged by supplying a large amount of charging power to the battery power source in the initial charging range where the remaining amount of charge of the battery power source is low, and supplying a small charging power in the charging termination region (full charging region) close to full charging. Is. In the charge termination region close to full charge, the battery voltage may exceed the specified value and become overcharged. Therefore, it is important to monitor the battery voltage and control the generator so as not to overcharge.

特に、リチウムイオン電池の単電池を多数個直列接続して構成したリチウムイオン組電池の場合は、個々の単電池の特性にバラツキがあるため、充電動作では一部の単電池の電圧が規定値を超えて過充電になること、また、放電動作では一部の単電池の電圧が規定値より低下して過放電になることが起こる。   In particular, in the case of lithium-ion battery packs configured by connecting a number of lithium-ion battery cells in series, the characteristics of individual cells vary, so the voltage of some of the battery cells is the specified value during charging operation. Overcharging, and in the discharging operation, the voltage of some of the single cells may fall below a specified value, resulting in overdischarging.

このように、個別の単電池の特性のバラツキによって個別の単電池に過充電・過放電が発生すると、単電池の特性劣化を招く。個別の単電池の特性劣化は組電池全体の充電量低下、寿命短縮、さらに、過充電、過放電による過熱などの重大障害の発生の原因となる。   As described above, when the individual unit cell is overcharged / discharged due to the variation in the individual unit cell characteristics, the unit cell characteristic is deteriorated. The deterioration of the characteristics of individual cells causes a decrease in the charge amount of the entire assembled battery, a shortened life, and a serious failure such as overheating due to overcharge and overdischarge.

このように、リチウムイオン電池を用いた電池電源では、各単電池の特性のバラツキを考慮して充放電制御を行うことが重要となり、その一つの方法が引用文献1で提案されている。   As described above, in a battery power source using a lithium ion battery, it is important to perform charge / discharge control in consideration of variations in characteristics of each unit cell, and one method is proposed in Reference Document 1.

特開2013‐106466号公報JP 2013-106466 A

しかし、この特許文献1に示された電池の充放電制御方式は、単電池を多数個直列接続した組電池において、個々の単電池または複数個の単電池を選択して補充電を行うことができるようにした個別充電装置を設け、組電池全体の充電を行う時、個別の単電池の電圧を監視し、既定の上限電圧に達した単電池を検出すると、その後は、充電量の少ない電池電圧の低い個別の単電池または複数個の単電池に順次個別充電装置を接続して補充電を行うことにより、個別に単電池の充電量の補正を行うものである。   However, in the battery charge / discharge control method disclosed in Patent Document 1, in an assembled battery in which a large number of unit cells are connected in series, an individual unit cell or a plurality of unit cells can be selected for auxiliary charging. When an individual battery charger is installed and the entire battery pack is charged, the voltage of each individual battery is monitored, and when a single battery that has reached the predetermined upper limit voltage is detected, the battery with a low charge is then detected. The charge amount of the single cell is individually corrected by performing an auxiliary charge by sequentially connecting an individual charging device to a low voltage individual cell or a plurality of single cells.

このような従来技術には、次のような改善すべき問題がある。
ア)1つでも単電池電圧が上限値を超過した後は、その他の単電池電圧が上限値に達していない単電池を選択して個別充電装置より順次充電量の補正を行うので、組電池全体を均等に充電するためには長時間の充電時間を要する問題がある。
イ)またこのような従来技術は、充電量の不足した単電池の補充電を行うために個別充電装置を組電池を構成する個々の単電池に切換接続する手段を必要とするので、装置の構成が複雑で大形になる問題もある。
Such conventional techniques have the following problems to be improved.
A) After one unit cell voltage exceeds the upper limit value, other unit cell voltages that have not reached the upper limit value are selected and the charge amount is corrected sequentially from the individual charger. In order to charge the whole evenly, there is a problem that a long charging time is required.
B) In addition, such prior art requires means for switching and connecting the individual charging device to the individual cells constituting the assembled battery in order to perform supplementary charging of the single cell having a shortage of charge. There is also a problem that the configuration is complicated and large.

この発明は、前記の従来技術における問題を解決して、構成が簡単で、比較的短時間で組電池を構成する複数の単電池を均等に充電することができ、かつ、充放電の際に、特性のバラツキがあっても単電池または組電池の過充電および過放電を防止することのできる電池電源の充放電制御方式を提供することを課題とするものである。   The present invention solves the above-mentioned problems in the prior art, has a simple configuration, can charge a plurality of single cells constituting the assembled battery in a relatively short time, and can be charged and discharged. It is an object of the present invention to provide a charge / discharge control method for a battery power source that can prevent overcharge and overdischarge of a single cell or an assembled battery even if there are variations in characteristics.

前記の課題を解決するため、請求項1の発明は、充電可能な複数個の単電池を直列接続して構成した組電池を少なくとも1組備えた電池電源と、この電池電源を充電する充電用電源と、前記電池電源の充放電を制御する充放電制御装置を備えたハイブリッド電源装置において、前記電池電源の各単電池の電圧を検出する単電池電圧検出手段、および組電池の電圧を検出する組電池電圧検出手段を設け、前記単電池電圧検出手段により検出された単電池電圧が予め設定した単電池上限電圧または単電池下限電圧に達しない間は、前記組電池電圧検出手段により検出された組電池電圧に基づいて、この組電池電圧が予め設定した組電池上限電圧または組電池下限電圧を超過しないように前記充放電制御装置により前記電池電源の充放電電流を制御し、前記単電池電圧検出手段により、単電池の何れかの電圧が、予め設定された単電池上限電圧または単電池下限電圧に達したことが検出されると、この単電池上限電圧または単電池下限電圧に達した単電池の電圧に基づいてこの単電池の電圧が前記単電池上限電圧または単電池下限電圧を超過しないように前記充放電制御装置により前記電池電源の充放電電流を制御することを特徴とするものである。   In order to solve the above-mentioned problems, the invention of claim 1 is directed to a battery power source provided with at least one set of battery packs formed by connecting a plurality of rechargeable single cells in series, and charging for charging the battery power source. In a hybrid power supply device including a power supply and a charge / discharge control device for controlling charge / discharge of the battery power supply, a single battery voltage detecting means for detecting a voltage of each single battery of the battery power supply, and detecting a voltage of the assembled battery An assembled battery voltage detecting means is provided, and the battery voltage detected by the assembled battery voltage detecting means is detected while the unit cell voltage detected by the unit cell voltage detecting means does not reach the preset unit cell upper limit voltage or unit cell lower limit voltage. Based on the assembled battery voltage, the charge / discharge current of the battery power source is controlled by the charge / discharge control device so that the assembled battery voltage does not exceed a preset assembled battery upper limit voltage or assembled battery lower limit voltage. When the unit cell voltage detecting means detects that any voltage of the unit cell has reached a preset unit cell upper limit voltage or unit cell lower limit voltage, the unit cell upper limit voltage or unit cell lower limit The charge / discharge current of the battery power source is controlled by the charge / discharge control device so that the voltage of the unit cell does not exceed the unit cell upper limit voltage or unit cell lower limit voltage based on the voltage of the unit cell that has reached the voltage. It is a feature.

請求項1の発明において、前記単電池電圧検出手段は、前記組電池の直列接続された複数の単電池を1個ずつ交互に順次走査する2組の選択手段を備え、何れか一方の選択手段で選択された単電池の電圧が単電池上限電圧または単電池下限電圧に達したことが検出されると、当該選択手段はその単電池の位置で走査を停止して当該単電池の電圧を継続して出力し、他方の選択手段が他の単電池の走査を継続して単電池電圧が単電池上限電圧または単電池下限電圧に達した単電池を選択すると、その位置で前記他方の選択手段の走査を停止してその位置の単電池の電圧を継続して出力し、前記一方の選択手段の走査を再開するようにすることができる(請求項2)。   In the invention of claim 1, the unit cell voltage detecting means comprises two sets of selecting means for alternately and sequentially scanning a plurality of unit cells connected in series of the assembled battery, one of the selecting means. When it is detected that the voltage of the unit cell selected in step 1 has reached the unit cell upper limit voltage or unit cell lower limit voltage, the selection means stops scanning at the unit cell position and continues the unit cell voltage. And the other selecting means continues to scan other cells, and when the unit cell voltage reaches the unit cell upper limit voltage or unit cell lower limit voltage, the other selection unit Can be stopped, the voltage of the single cell at that position can be continuously output, and the scanning of the one selection means can be restarted (claim 2).

請求項1または2の発明において、前記電池電源の充電動作を、定電圧で充電を行う定電圧モード、定電流で充電を行う定電流充電モード、および定電力で充電を行う定電力充電モードを選択して実行することができる(請求項3)。   In the invention of claim 1 or 2, charging operation of the battery power source includes a constant voltage mode in which charging is performed at a constant voltage, a constant current charging mode in which charging is performed at a constant current, and a constant power charging mode in which charging is performed at a constant power. It can be selected and executed (Claim 3).

請求項1または2の発明において、前記電池電源の放電動作中は、組電池電圧または単電池電圧が組電池下限電圧または単電池下限電圧に達したときは、この組電池電圧または単電池電圧が前記組電池下限電圧または単電池下限電圧より低下しないように前記電池電源から給電される負荷を減じるようにすることができる(請求項4)。この場合、単電池電圧を組電池電圧に換算した電圧と組電池電圧とを比較して低い方の電圧に基づいて制御を行うことができる(請求項5)。   In the invention of claim 1 or 2, when the assembled battery voltage or the single battery voltage reaches the assembled battery lower limit voltage or the single battery lower limit voltage during the discharging operation of the battery power source, the assembled battery voltage or the single battery voltage is The load fed from the battery power supply can be reduced so as not to drop below the assembled battery lower limit voltage or the unit cell lower limit voltage. In this case, the voltage obtained by converting the unit cell voltage into the assembled battery voltage is compared with the assembled battery voltage, and control can be performed based on the lower voltage.

請求項1または2の発明において、前記電池電源を充電する充電用電源を原動機駆動の発電機により構成し、この発電機の制御装置に発電機の出力電圧を前記電池電源の組電池の上限電圧以下に制限する電圧制限手段と、発電機の出力電流を所定の電流に制限する電流制限手段を設けることもできる(請求項6)。   In the invention of claim 1 or 2, a charging power source for charging the battery power source is constituted by a generator driven by a prime mover, and an output voltage of the generator is connected to an upper limit voltage of an assembled battery of the battery power source in a control device of the generator. Voltage limiting means for limiting to the following and current limiting means for limiting the output current of the generator to a predetermined current can also be provided.

さらに、請求項1〜6の発明において、それぞれの動作状態を監視、記録し、警報する動作監視手段を設けるようにしてもよい(請求項7)。   Furthermore, in the inventions of claims 1 to 6, operation monitoring means for monitoring, recording and alarming each operation state may be provided (claim 7).

この発明は、リチウムイオン電池等で構成された単電池を多数個直列接続して構成する電池電源においいて、特性のバラツキを有する単電池を順次切換えながら単電池の電圧を検出し、充電動作では、単電池電圧が上限値に達したときは、この単電池電圧が上限値を超えないように充電電流を制御して充電を行うことにより全ての単電池を均等に短時間で充電することができる。   The present invention relates to a battery power source configured by connecting a large number of unit cells composed of lithium ion batteries or the like in series, and detects the voltage of the unit cells while sequentially switching the unit cells having characteristic variations. When the cell voltage reaches the upper limit value, all the cells can be charged evenly in a short time by controlling the charging current so that the cell voltage does not exceed the upper limit value. it can.

また、この発明に係る充放電方式によれば、特性のバラツキを有する単電池で構成された組電池の各単電池を均等充電することができ、かつ、過充電、過放電を防止することができるので電池の充電容量低下の防止および寿命延伸の効果を得ることができる。   In addition, according to the charge / discharge system according to the present invention, each unit cell of the assembled battery composed of unit cells having variation in characteristics can be uniformly charged, and overcharge and overdischarge can be prevented. Therefore, it is possible to obtain the effect of preventing the battery charge capacity from being lowered and extending the life.

この発明の実施例を示す基本回路構成を示すブロック回路図。1 is a block circuit diagram showing a basic circuit configuration showing an embodiment of the present invention. この発明による定電流充電モードでの主要回路構成を示すブロック回路図。The block circuit diagram which shows the main circuit structure in the constant current charge mode by this invention. この発明の実施例における定電流充電モードでの充電動作時の各部の電圧、電流の時系列的な変化を示す図。The figure which shows the time-sequential change of the voltage of each part at the time of charge operation in the constant current charge mode in an Example of this invention, and an electric current. この発明の実施例における定電力充電モードでの充電動作時の各部の電圧、電流の時系列的な変化を示す図。The figure which shows the time-sequential change of the voltage of each part at the time of charge operation in the constant power charge mode in the Example of this invention, and an electric current. この発明による定電力充電モードでの主要回路構成を示すブロック回路図。The block circuit diagram which shows the main circuit structure in the constant power charge mode by this invention. この発明の実施例における定電流充電モードでの充電動作時の単電池電圧および組電池電圧の時系列的な変化を示す図。The figure which shows the time-sequential change of the cell voltage and assembled battery voltage at the time of charge operation in the constant current charge mode in the Example of this invention. この発明による定電圧充電モードでの主要回路構成を示すブロック回路図。The block circuit diagram which shows the main circuit structure in the constant voltage charge mode by this invention. この発明の実施例における定電圧充電モードでの充電動作時の各部の電圧、電流の時系列的な変化を示す図。The figure which shows the time-sequential change of the voltage of each part at the time of charge operation in the constant voltage charge mode in the Example of this invention, and an electric current. この発明の説明に用いる組電池/単電池の充電残存量と組電池/単電池の電圧特性を示す図。The figure which shows the charge remaining amount of the assembled battery / unit cell used for description of this invention, and the voltage characteristic of an assembled battery / unit cell. この発明に使用する電動機速度制限信号を発生するための速度制限線MnLを示す線図。The diagram which shows the speed limit line MnL for generating the motor speed limit signal used for this invention. この発明の説明に使用する推進電動機の電動機速度に対する電動機電流特性を示す線図。The diagram which shows the motor current characteristic with respect to the motor speed of the propulsion motor used for description of this invention.

この発明の実施の形態を図に示す実施例について説明すする。   Embodiments of the present invention will be described with reference to examples shown in the drawings.

図1は、この発明による充放電制御方式の実施例を示す基本回路構成図である。   FIG. 1 is a basic circuit configuration diagram showing an embodiment of a charge / discharge control system according to the present invention.

図1において、1は電池電源であり、電池素子単体、またはこの電池素子を複数個直並列接続してユニット化した単電池Bを複数個、ここでは10個(B1〜B10)直列接続して構成した組電池を備える。2は、この電池電源1、したがって組電池の端子電圧VBiを検出する電池電源電圧検出器、3は、電池電源1の充放電電流IBiを検出する電流検出器、4は、電池電源1の各単電池の電圧VBs1〜VBs10を検出する単電池電圧検出器、8は、ディーゼルエンジンなどの原動機5で駆動される交流発電機6とこの発電機の交流出力を整流する整流器7で構成された電池電源1を充電するための充電用電源である。電池電源1と充電用電源8は、それぞれスイッチSW1とSW2を介して給電母線Lに接続されている。給電母線Lには、更にスイッチSW3を介して補助機器15が接続され、スイッチSW4を介してインバータ等で構成された電動機駆動制御部13を通して推進電動機14が接続される。電気推進船舶の場合であれば、この推進電動機14は船舶の推進機を駆動し、電動機駆動制御部13に通じて推進電動機の速度を制御することにより船舶速度を制御する。   In FIG. 1, reference numeral 1 denotes a battery power source, which is a single battery element or a plurality of unit cells B that are unitized by connecting a plurality of battery elements in series and parallel, here 10 (B1 to B10) connected in series. The assembled battery is provided. 2 is a battery power supply voltage detector for detecting the battery power supply 1 and therefore the terminal voltage VBi of the assembled battery, 3 is a current detector for detecting the charge / discharge current IBi of the battery power supply 1, and 4 is each of the battery power supply 1 A cell voltage detector 8 for detecting voltages VBs1 to VBs10 of the cell, and a battery 8 comprising an AC generator 6 driven by a prime mover 5 such as a diesel engine and a rectifier 7 for rectifying the AC output of the generator. This is a charging power source for charging the power source 1. The battery power source 1 and the charging power source 8 are connected to the power supply bus L via switches SW1 and SW2, respectively. An auxiliary device 15 is further connected to the power supply bus L via a switch SW3, and a propulsion motor 14 is connected via a switch SW4 through an electric motor drive control unit 13 constituted by an inverter or the like. In the case of an electric propulsion ship, the propulsion motor 14 drives the ship's propulsion machine and controls the speed of the propulsion motor through the motor drive control unit 13 to control the ship speed.

充電用電源8の出力端には、この電源8の出力電圧VGiを検出する電圧検出器9および出力電流IGiを検出する電流検出器10が接続される。また、電動機駆動制御部13の入力には入力端電圧VMiを検出する電圧検出器11と入力電流IMiを検出する電流検出器12が接続され、電動機14には、その速度Nを検出する速度検出器15が結合されている。   A voltage detector 9 that detects the output voltage VGi of the power supply 8 and a current detector 10 that detects the output current IGi are connected to the output terminal of the charging power supply 8. A voltage detector 11 that detects the input terminal voltage VMi and a current detector 12 that detects the input current IMi are connected to the input of the motor drive control unit 13, and a speed detection that detects the speed N is connected to the motor 14. A vessel 15 is coupled.

更に、電池電源1の充放電を監視、制御するための充放電制御部20、充電電源8の発電機6を制御する発電機制御部50および装置全体の動作を監視制御する監視制御、記録する動作監視部70が設けられている。   In addition, a charging / discharging control unit 20 for monitoring and controlling charging / discharging of the battery power source 1, a generator control unit 50 for controlling the generator 6 of the charging power source 8, and monitoring control for monitoring and controlling the operation of the entire apparatus, and recording An operation monitoring unit 70 is provided.

次に充放電制御部20の構成を説明する。   Next, the configuration of the charge / discharge control unit 20 will be described.

充電電圧設定部21V、充電電流設定部21I、充電電力設定部21Pは、電池電源1を充電するときの3つのモード、すなわち、定電圧充電モード、定電流充電モード、定電力充電モードの各モードにおける充電電圧設定値VBS、充電電流設定値IBS、充電電力設定値PBSをそれぞれ設定する設定部である。単電池上限電圧設定部22には、電池電源1を構成する単電池Bの規定の上限電圧VBUが設定され、単電池下限電圧設定部23には、単電池Bの規定の下限電圧VBLが設定される。   The charging voltage setting unit 21V, the charging current setting unit 21I, and the charging power setting unit 21P are three modes when charging the battery power source 1, that is, each mode of a constant voltage charging mode, a constant current charging mode, and a constant power charging mode. Is a setting unit for setting a charging voltage setting value VBS, a charging current setting value IBS, and a charging power setting value PBS. The cell upper limit voltage setting unit 22 is set with a specified upper limit voltage VBU of the cell B constituting the battery power supply 1, and the cell lower limit voltage setting unit 23 is set with a specified lower limit voltage VBL of the cell B. Is done.

第1選択部24、第2選択部25は、それぞれ、クロックパルス発生器26で発生されるクロックパルスCPに同期して、各単電池の電圧を検出する単電池電圧検出器4の各出力端を1個ずつ交互に走査し、各単電池電圧VBsを選択して取り出す手段である。   The first selection unit 24 and the second selection unit 25 are respectively output terminals of the unit cell voltage detector 4 that detects the voltage of each unit cell in synchronization with the clock pulse CP generated by the clock pulse generator 26. Are alternately scanned one by one, and each cell voltage VBs is selected and extracted.

第1電圧判別部27と第2電圧判別部28は、それぞれ第1選択部24、第2選択部25で選択された単電池選択電圧VBs1、VBs2を、単電池上限電圧設定部22および単電池下限電圧設定部23に設定された上限設定電圧VBUおよび下限電圧設定値VBLと比較して単電池電圧を判別するものである。第1電圧判別部27は、第1選択部24で選択された単電池選択電圧VBs1が上限設定電圧VBU以上、または下限電圧設定値VBL以下になったとき、上、下限電圧を超過したことを示す判別信号S1と、判別信号S1が上限を超過したことを示す上限判別信号S1Uまたは下限を超過したことを示す下限判別信号S1Lとを発生する。また、第2電圧判別部28も同様に、第2選択部25で選択された単電池選択電圧VBs2が上限設定電圧VBU以上、または下限電圧設定値VBL以下になったとき、上、下限電圧を超過したことを示す判別信号S2と、この判別信号S2が上限を超過したことを示す上限判別信号S2Uまたは下限を超過したことを示す下限判別信号S2Lとを発生する。   The first voltage discriminating unit 27 and the second voltage discriminating unit 28 use the unit cell selection voltages VBs1 and VBs2 selected by the first selection unit 24 and the second selection unit 25, respectively, and the unit cell upper limit voltage setting unit 22 and unit cell. Compared with the upper limit set voltage VBU and the lower limit voltage set value VBL set in the lower limit voltage setting unit 23, the cell voltage is determined. The first voltage determination unit 27 determines that the upper limit voltage has been exceeded when the unit cell selection voltage VBs1 selected by the first selection unit 24 is equal to or higher than the upper limit setting voltage VBU or lower limit voltage setting value VBL. A determination signal S1 and an upper limit determination signal S1U indicating that the determination signal S1 has exceeded the upper limit, or a lower limit determination signal S1L indicating that the determination signal S1 has exceeded the lower limit. Similarly, the second voltage determination unit 28 sets the upper and lower limit voltages when the unit cell selection voltage VBs2 selected by the second selection unit 25 is equal to or higher than the upper limit set voltage VBU or lower limit voltage set value VBL. A determination signal S2 indicating that it has been exceeded and an upper limit determination signal S2U indicating that the determination signal S2 has exceeded the upper limit or a lower limit determination signal S2L indicating that the lower limit has been exceeded are generated.

第1および第2電圧判別部27および28で発生された判別信号S1およびS2は、それぞれ第1選択部24および第2選択部25に与えられるとともに、検出切換部30に与えられる。   The determination signals S1 and S2 generated by the first and second voltage determination units 27 and 28 are applied to the first selection unit 24 and the second selection unit 25, respectively, and also to the detection switching unit 30.

第1選択部24は、判別信号S1を受取ると、その時点で走査を停止して、停止した位置の単電池電圧VBs1を継続して出力するとともに、他方の第2の選択部25に走査停止を示す信号S5を与える。第2選択部25は、信号S5を受取ると、第1選択部24が走査を停止した位置の次の位置から単電池を単独でクロックパルスCPに同期して順次走査し、順次単電池電圧VBs2を出力する。   When receiving the determination signal S1, the first selection unit 24 stops scanning at that time, continuously outputs the single cell voltage VBs1 at the stopped position, and stops scanning to the other second selection unit 25. A signal S5 indicating is given. When receiving the signal S5, the second selection unit 25 sequentially scans the cells from the position next to the position where the first selection unit 24 stopped scanning, in synchronization with the clock pulse CP, and sequentially outputs the cell voltage VBs2. Is output.

判別切換部29は、電圧判別部27または28から上限判別信号S1UまたはS2Uを受取ると、上限切換信号S3Uを発生し、下限判別信号S1LまたはS2Lを受取ると、下限切換信号S3Lを発生する。上限切換信号S3Uは、設定切換部33V,33I,33P、組電池上限制限指令部37等に与えられる。そして、下限判別信号S3Lは、組電池電圧下限指令部38および組電池電圧換算部40に与えられる。   The determination switching unit 29 generates an upper limit switching signal S3U when receiving the upper limit determination signal S1U or S2U from the voltage determination unit 27 or 28, and generates a lower limit switching signal S3L when receiving the lower limit determination signal S1L or S2L. The upper limit switching signal S3U is given to the setting switching units 33V, 33I, 33P, the assembled battery upper limit limiting command unit 37, and the like. The lower limit determination signal S3L is given to the assembled battery voltage lower limit command unit 38 and the assembled battery voltage conversion unit 40.

検出切換部30は、受取った判別信号が第1電圧判別部27からの判別信号S1であれば、第1選択部24から出力される単電池電圧VBs1を選択して単電池選択電圧VBssとして補正演算部31に与え、そして判別信号が第2電圧判別部28からの判別信号S2であれば、第2選択部25から出力される単電池電圧VBs2を選択して単電池選択電圧VBssとして補正演算部31に与えるような第1選択部24の選択電圧と第2選択部25の選択電圧の切換選択動作を行う。   If the received determination signal is the determination signal S1 from the first voltage determination unit 27, the detection switching unit 30 selects the single cell voltage VBs1 output from the first selection unit 24 and corrects it as the single cell selection voltage VBss. If the determination signal is provided to the calculation unit 31 and the determination signal is the determination signal S2 from the second voltage determination unit 28, the unit cell voltage VBs2 output from the second selection unit 25 is selected and corrected as the unit cell selection voltage VBss. The selection selection operation of the selection voltage of the first selection unit 24 and the selection voltage of the second selection unit 25 as given to the unit 31 is performed.

補正演算部31は、図2に示すように、単電池上限電圧設定部22から与えられる上限設定電圧VBUと検出切換部30から与えられる単電池選択電圧VBssとの差VBsd=VBU−VBssを求めて、充電電圧、電流、電力を記憶補正する記憶補正演算部32V、32I、32Pに与える。この記憶補正演算部32内の電流記憶補正演算部32Iは、図2に示すように、電圧判別部27または28から判別信号S1またはS2が与えられたとき、電流検出器3で検出された電池電源1の充放電電流の実際値IBiを読取って電流記憶部MIに記憶し、電流補正演算部CIで、この記憶した充電電流IBiと、補正演算部31で求められた差電圧VBsdに電流定数設定部GIに設定された電流補正定数Kiを乗じて求めた電流補正値Icとの差を演算して電流補正設定値IBdを求める。   As shown in FIG. 2, the correction calculation unit 31 obtains a difference VBsd = VBU−VBss between the upper limit setting voltage VBU given from the unit cell upper limit voltage setting unit 22 and the unit cell selection voltage VBss given from the detection switching unit 30. The charging voltage, current, and power are supplied to the storage correction calculation units 32V, 32I, and 32P that store and correct the charging voltage, current, and power. As shown in FIG. 2, the current storage correction calculation unit 32I in the storage correction calculation unit 32 is a battery detected by the current detector 3 when the determination signal S1 or S2 is given from the voltage determination unit 27 or 28. The actual value IBi of the charging / discharging current of the power source 1 is read and stored in the current storage unit MI, and the current correction calculation unit CI determines the current constant between the stored charging current IBi and the difference voltage VBsd obtained by the correction calculation unit 31. A current correction set value IBd is obtained by calculating a difference from the current correction value Ic obtained by multiplying the current correction constant Ki set in the setting unit GI.

電圧記憶補正演算部32Vの場合は、図7に示すように、判別信号S1またはS2が与えられたとき、電圧検出器2で検出された電池電源1の電池電圧実際値VBiを読取って電圧記憶部MVに記憶し、電圧補正演算部VCで、この記憶した電池電圧実際値VBiと、補正演算部31で求められた差電圧VBsdに電圧補正定数設定部GVに設定した電圧補正定数Kvを乗じて求めた電圧補正値Vcとの差を演算して電圧補正設定値VBdを求める。   In the case of the voltage storage correction calculation unit 32V, as shown in FIG. 7, when the determination signal S1 or S2 is given, the battery voltage actual value VBi of the battery power source 1 detected by the voltage detector 2 is read and stored. The voltage correction calculation unit VC multiplies the stored battery voltage actual value VBi and the difference voltage VBsd obtained by the correction calculation unit 31 by the voltage correction constant Kv set in the voltage correction constant setting unit GV. The voltage correction set value VBd is obtained by calculating the difference from the voltage correction value Vc obtained in this way.

電力記憶補正演算部32Pの場合は、図5に示すように、判別信号S1またはS2が与えられたとき、電力演算部34から、これによって電池電源1の電池電圧実際値VBiと充電電流実際値IBiとから演算により求めた充電電力実際値PBi(=VBi×IBi)を読取って、電力記憶部MPに記憶し、電力補正演算部PCで、この記憶した充電電力PBiと、補正演算部31で求められた差電圧VBsdに電力補正定数設定部GPに設定した電力補正定数Kpを乗じて求めた電力補正値Pcとの差を演算して電力補正設定値PBdを求める。   In the case of the power storage correction calculation unit 32P, as shown in FIG. 5, when the determination signal S1 or S2 is given, the battery voltage actual value VBi and the charging current actual value of the battery power source 1 are thereby supplied from the power calculation unit 34. The charge power actual value PBi (= VBi × IBi) obtained by calculation from IBi is read and stored in the power storage unit MP, and the stored charge power PBi and the correction calculation unit 31 are stored in the power correction calculation unit PC. A power correction set value PBd is obtained by calculating a difference from the power correction value Pc obtained by multiplying the obtained difference voltage VBsd by the power correction constant Kp set in the power correction constant setting unit GP.

電圧、電流、電力記憶補正演算部(32V、32I、32P)で求められた電圧、電流、電力補正設定値(VBd、IBd、PBd)は、それぞれ充電電圧設定部21Vに設定された充電電圧設定値VBS,充電電流設定部21Iに設定された充電電流設定値IBS、充電電力設定部22Pに設定された充電電力設定値PBSの加えられた設定値切換部33V、33I、33Pに加えられる。設定切換部33V、33I、33Pは、通常は、充電設定値VBS、IBS、PBSを選択して充電電圧調節部35V、充電電流調節部35I、充電電力調節部35Pに充電電圧、充電電流、充電電力指令値として出力するが、判別切換部29から上限判別信号S3Uが与えられたとき、電圧補正設定値VBd、電流補正設定値IBd、電力補正設定値PBdに切換えて出力する。   The voltage, current, and power correction setting values (VBd, IBd, and PBd) obtained by the voltage, current, and power memory correction calculation units (32V, 32I, and 32P) are set to the charging voltage setting unit 21V, respectively. The value VBS, the charging current setting value IBS set in the charging current setting unit 21I, and the charging power setting value PBS set in the charging power setting unit 22P are added to the setting value switching units 33V, 33I, and 33P. The setting switching units 33V, 33I, and 33P normally select the charging set values VBS, IBS, and PBS and charge the charging voltage, charging current, and charging to the charging voltage adjusting unit 35V, the charging current adjusting unit 35I, and the charging power adjusting unit 35P. Although it is output as a power command value, when the upper limit determination signal S3U is given from the determination switching unit 29, it is switched to the voltage correction set value VBd, current correction set value IBd, and power correction set value PBd.

充電電圧調節部35V、充電電流調節部35I、充電電力調節部35Pの入力の突合せ点e、f、gで、それぞれ設定値切換部33V、33I、33Pを介して加えられる充電電圧設定値VBD、充電電流設定値IBD、充電電力設定値PBDと検出または演算により求められた電池電圧実際値VBi、電池電流実際値IBi、電池電力実際値PBiとの偏差に応じた充電用電源8の発電機6に対する発電電圧指令値VGsを求めて発電制御部50に与える。   Charging voltage set value VBD applied via set value switching units 33V, 33I, and 33P at the matching points e, f, and g of charging voltage adjusting unit 35V, charging current adjusting unit 35I, and charging power adjusting unit 35P, respectively. The generator 6 of the charging power source 8 according to the deviation between the charging current set value IBD, the charging power setting value PBD and the battery voltage actual value VBi, the battery current actual value IBi, and the battery power actual value PBi obtained by detection or calculation. A power generation voltage command value VGs is obtained and supplied to the power generation control unit 50.

充放電制御部20には、その他に、電池電源1の組電池電圧の上限を制限する上限電圧制限値VGULを形成する組電池上限電圧制限指令部37、組電池電圧の下限を制限する下限電圧制限値MnDを形成する組電池下限電圧制限指令部38、組電池電圧換算部40、および充電モード切換部44等を備える。組電池電圧換算部40は、単電池電圧VBsiが下限設定電圧VBL以下になったことを示す下限判別信号S3Lを受取ったとき、検出切換部30から選択出力される単電池電圧VBssを電池電源1の組電池を構成する単電池の直列接続個数(n)倍して、組電池換算電圧VBsnを求める。   The charge / discharge control unit 20 includes an assembled battery upper limit voltage limit command unit 37 that forms an upper limit voltage limit value VGUL that limits the upper limit of the assembled battery voltage of the battery power supply 1, and a lower limit voltage that limits the lower limit of the assembled battery voltage. An assembled battery lower limit voltage restriction command unit 38, an assembled battery voltage conversion unit 40, a charging mode switching unit 44, and the like that form the limit value MnD are provided. When the battery voltage conversion unit 40 receives the lower limit determination signal S3L indicating that the unit cell voltage VBsi has become equal to or lower than the lower limit set voltage VBL, the battery voltage conversion unit 40 selects the unit cell voltage VBss selected and output from the detection switching unit 30 as the battery power source 1. The battery pack converted voltage VBsn is obtained by multiplying the number of cells connected in series (n).

組電池上限電圧制限指令部37には、制御信号として単電池電圧VBsが単電池上限設定電圧VBU以上になったときの上限切換信号S3Uと、発電機運転指令器50aに連動した接点50cから出力される電池電源1の充電運転を示す充電信号BCが入力されており、この両方の信号S3UとBCとが入力されたとき、入力に加わる電圧検出器2で検出された電池電源1の出力電圧実際値VBiを組電池電圧上限制限値VGULとして出力し、後述する発電制御部50への電圧指令値VGsを制限する制限部51に加える。   The battery pack upper limit voltage limit command unit 37 outputs an upper limit switching signal S3U when the unit cell voltage VBs becomes equal to or higher than the unit cell upper limit set voltage VBU as a control signal, and a contact 50c linked to the generator operation command unit 50a. When the charging signal BC indicating the charging operation of the battery power source 1 is input and both the signals S3U and BC are input, the output voltage of the battery power source 1 detected by the voltage detector 2 applied to the input The actual value VBi is output as the assembled battery voltage upper limit limit value VGUL, and is added to the limiter 51 that limits a voltage command value VGs to the power generation control unit 50 described later.

また、組電池下限電圧制限指令部38は、判別切換部29からの単電池電圧VBsが単電池下限電圧設定値VBL以下に低下したことを示す下限判別信号S3Lと、発電機運転指令器50aに連動した接点50cからの電池電源1の放電運転を示す放電信号BDとが加わったとき、入力に加わる組電池換算部で求められた組電池換算電圧VBsnと、電池電源1の出力電圧実際値VBiとを比較して小さい方の電圧を下限制限電圧MnDとして電動機駆動制御部13に加える。   Further, the battery pack lower limit voltage limit command unit 38 sends a lower limit determination signal S3L indicating that the unit cell voltage VBs from the determination switching unit 29 has decreased to the unit cell lower limit voltage set value VBL or less, and the generator operation command unit 50a. When a discharge signal BD indicating discharge operation of the battery power source 1 from the interlocked contact 50c is added, the assembled battery conversion voltage VBsn obtained by the assembled battery conversion unit applied to the input and the actual output voltage VBi of the battery power source 1 And the smaller voltage is applied to the motor drive control unit 13 as the lower limit voltage MnD.

次に、発電制御部50の構成を説明する。   Next, the configuration of the power generation control unit 50 will be described.

発電制御部50は、自動運転と手動運転を切換える運転切換器53を備える。自動運転のときはこの運転切換器53を自動側に切換えて、充電制御部20から発電機電圧指令値VGsを、発電電圧指令制限器51を介して取り込む。手動運転のときは、運転切換器53を手動側に切換えて、発電電圧を手動で設定する発電電圧手動設定器52に設定された発電電圧手動設定値VGsHを取り込む。   The power generation control unit 50 includes an operation switching unit 53 that switches between automatic operation and manual operation. At the time of automatic operation, the operation switching unit 53 is switched to the automatic side, and the generator voltage command value VGs is taken in from the charging control unit 20 via the generated voltage command limiter 51. At the time of manual operation, the operation switching unit 53 is switched to the manual side, and the power generation voltage manual setting value VGsH set in the power generation voltage manual setting unit 52 for manually setting the power generation voltage is taken in.

運転切換器53により選択的に取り込まれた発電電圧設定値は、発電電圧指令値VGsとして発電電圧制限器54を介して発電電圧調節部56に入力される。発電電圧調節部56は、突合せ点bで発電機電圧指令値VGsと電圧検出器9により検出された発電機電圧実際値VGiとを突合せて両者の偏差を求め、この偏差がゼロになる発電機電流指令値IGsを演算する。発電電圧指令制限器51は、発電電圧指令値VGsを、組電池上限電圧制限指令部37から加えられた上限制限電圧VGULを越えないように制限する。発電電圧制限器54は、同様に、発電機圧指令値VGsを、発電上限電圧設定部55から加えられた発電機限設定電圧VGU以下に制限する。   The power generation voltage setting value selectively taken in by the operation switching unit 53 is input to the power generation voltage adjusting unit 56 via the power generation voltage limiter 54 as the power generation voltage command value VGs. The generated voltage adjusting unit 56 matches the generator voltage command value VGs at the butt point b with the generator voltage actual value VGi detected by the voltage detector 9 to obtain a deviation between the two, and the generator in which the deviation becomes zero. The current command value IGs is calculated. The generated voltage command limiter 51 limits the generated voltage command value VGs so as not to exceed the upper limit voltage VGUL added from the assembled battery upper limit voltage limit command unit 37. Similarly, the generated voltage limiter 54 limits the generator pressure command value VGs to the generator limit set voltage VGU applied from the power generation upper limit voltage setting unit 55.

発電電圧調節部56で求められた発電電流指令値IGsは、発電電流制限器57を介して発電電流調節部58に入力される。発電電流調節部58は、突合せ点cで入力の発電電流指令値IGsと発電機電流を検出する電流検出器10から加わる発電電流実際値IGiを突合せてその偏差を求め、この偏差がゼロになる発電機の界磁電流指令値IFsを求める調節演算を行う。   The generated current command value IGs obtained by the generated voltage adjusting unit 56 is input to the generated current adjusting unit 58 via the generated current limiter 57. The generated current adjustment unit 58 matches the input generated current command value IGs at the matching point c with the actual generated current value IGi applied from the current detector 10 that detects the generator current, finds the deviation, and this deviation becomes zero. The adjustment calculation which calculates | requires the field current command value IFs of a generator is performed.

発電電流調節部58で求められた界磁電流指令値IFsは、界磁電流調節部59に入力される。界磁電流調節部59は、突合せ点dで入力された界磁電流指令値IFsと界磁電流検出器64で検出された界磁電流実際値とを突合せて両者の偏差を求め、この偏差がゼロになる界磁電流指令信号IFeを求める調節演算を行う。この界磁電流調節部59で求められた界磁電流指令信号IFeは、界磁電流制御部63に加えられる。界磁電流制御部63は、発電機6の界磁巻線65に供給する界磁電流IFiを、界磁電流指令信号IFeに対応した電流に制御する動作を行う。   The field current command value IFs obtained by the generated current adjustment unit 58 is input to the field current adjustment unit 59. The field current adjusting unit 59 matches the field current command value IFs input at the butt point d with the field current actual value detected by the field current detector 64, and obtains a deviation between the two. An adjustment calculation is performed to obtain a field current command signal IFe that becomes zero. The field current command signal IFe obtained by the field current adjustment unit 59 is applied to the field current control unit 63. The field current control unit 63 performs an operation of controlling the field current IFi supplied to the field winding 65 of the generator 6 to a current corresponding to the field current command signal IFe.

その外に、発電電流の上限制限電流IGUを求める発電電流上限制限指令部62が設けられている。この発電電流上限制限指令部62には、発電機の出力を設定する発電機出力設定器61に設定された出力設定値PGsと電圧検出器9により検出された発電出力電圧実際値VGiとから、PGs÷VGiを演算し、設定電力PGsに対する発電出力制限電流IGUを求め、これを、電流調節部58の入力に設けた発電電流制限器57に加え、電流指令値IGsがこの電流制限値IGUを越えないように制限動作を行い、発電機出力を設定された出力PGsを越えないように制御する。   In addition, a power generation current upper limit command unit 62 for obtaining the power generation current upper limit current IGU is provided. The generated current upper limit restriction command unit 62 uses the output set value PGs set in the generator output setter 61 for setting the output of the generator and the generated output voltage actual value VGi detected by the voltage detector 9. PGs ÷ VGi is calculated to obtain a power generation output limit current IGU for the set power PGs, and this is added to the power generation current limiter 57 provided at the input of the current adjustment unit 58, and the current command value IGs calculates the current limit value IGU. Limiting operation is performed so as not to exceed, and control is performed so that the generator output does not exceed the set output PGs.

発電制御部50は、これらの発電電圧調節部56、発電電流調節部58、界磁電流調節部59を通して発電機の出力電圧VGを発電機電圧指令値VGsになるように制御する。   The power generation control unit 50 controls the output voltage VG of the generator to become the generator voltage command value VGs through the generated voltage adjusting unit 56, the generated current adjusting unit 58, and the field current adjusting unit 59.

動作監視部70の入力端子(1)〜(5)は、それぞれ、充電制御部20の同じ符号の出力端子(1)〜(5)と接続され、電池電源1の電圧VBi、電流IBi、単電池選択電圧VBss、電圧判別信号S1およびS2、充電用電源8の発電機電圧VGi、電流IGi、発電上限制限電流IGU等を読取って、システム全体の動作状態を監視し、異常時には警報を発する等の監視制御と、これらのデータの記録を行うものである。   The input terminals (1) to (5) of the operation monitoring unit 70 are respectively connected to the output terminals (1) to (5) of the same sign of the charging control unit 20, and the voltage VBi, current IBi, The battery selection voltage VBss, the voltage determination signals S1 and S2, the generator voltage VGi of the charging power supply 8, the current IGi, the power generation upper limit current IGU, etc. are read to monitor the operating state of the entire system, and an alarm is issued when there is an abnormality. Monitoring control and recording of these data.

このような電池電源の充放電制御装置において電池電源1の組電池の充電を行う場合は、充電電圧を一定にして充電を行う「定電圧充電モード」、充電電流を一定にして充電を行う「定電流充電モード」、充電電力を一定にして充電を行う「定電力充電モード」の何れかの充電モードで充電を行うが、充電モード切換スイッチ44を切換えて何れかの充電モードを選択して充電動作を制御する。   When charging an assembled battery of the battery power source 1 in such a battery power source charge / discharge control device, charging is performed with a constant charging voltage and a constant voltage charging mode, and charging is performed with a constant charging current. Charging is performed in any of the charging modes of “constant current charging mode” and “constant power charging mode” in which charging is performed with constant charging power, but the charging mode changeover switch 44 is switched to select any of the charging modes. Control the charging operation.

また、充電終止領域では、微細な電流制御が必要なため、「定電流充電モード」または「定電力充電モード」の何れかの充電モードを用いるのが一般的である。   Further, since fine current control is necessary in the charge termination region, it is common to use a charge mode of “constant current charge mode” or “constant power charge mode”.

このとき、図6に示すように単電池電圧が、設定された単電池上限設定電圧VBU、または、組電池電圧が、設定された組電池上限設定電圧VGUを超過すれば過充電動作となるのでこれを防止することが必要になる。   At this time, as shown in FIG. 6, if the unit cell voltage exceeds the set unit cell upper limit set voltage VBU or the assembled battery voltage exceeds the set assembly battery upper limit set voltage VGU, an overcharge operation is performed. It is necessary to prevent this.

そして、放電動作のとき単電池、組電池双方の電圧が下限設定電圧を超過して過放電にならないようにすることも必要となる。   In the discharging operation, it is necessary to prevent both the unit cell and the assembled battery from exceeding the lower limit set voltage and causing overdischarge.

この発明は、充電動作のときは単電池、組電池双方の電圧が上限設定電圧を超過しないように充電用電源の発電電圧を制御して単電池、組電池双方の過充電を防止し、また、放電動作のときは単電池、組電池双方の電圧が下限設定電圧を超過しないように負荷となる推進電動機の速度を減速させて電池電源に対する負荷を低減することにより単電池、組電池双方の過放電を防止するものである。   The present invention prevents overcharging of both the unit cell and the assembled battery by controlling the power generation voltage of the charging power source so that the voltage of both the unit cell and the assembled battery does not exceed the upper limit set voltage during the charging operation. In the discharging operation, both the unit cell and the assembled battery are reduced by reducing the load on the battery power source by reducing the speed of the propulsion motor as a load so that the voltage of both the unit cell and the assembled battery does not exceed the lower limit set voltage. It prevents overdischarge.

以下に、この発明の制御装置の動作を動作項目ごとに説明する。   Below, operation | movement of the control apparatus of this invention is demonstrated for every operation item.

1)定電流充電動作
この動作は、いわゆる、定電流充電モードによる充電動作であり、図1の充放電制御装置において、充電モード切換スイッチ44で充電電流調節部35Iが選択され、発電機運転指令器50aから発電機運転が指令されおり、これ連動して接点50cのa接点がオンし、充電信号BCが、組電池電圧上限制限指令部37に出力されている。このとき動作する主要回路だけを取り出して示すものが図2に示す回路である。
1) Constant Current Charging Operation This operation is a so-called constant current charging mode charging operation. In the charging / discharging control device of FIG. 1, the charging current control unit 35I is selected by the charging mode changeover switch 44, and the generator operation command is selected. The generator operation is instructed from the battery 50 a, the contact a of the contact 50 c is turned on in conjunction with this, and the charging signal BC is output to the assembled battery voltage upper limit restriction command unit 37. FIG. 2 shows only the main circuit that operates at this time.

図3は、定電流充電動作における個々の単電池の電圧およびその他の電圧、電流の時間的な変化を示し、図6は、定電流充電動作における電池電源1の組電池および単電池の充電電圧の時間的な変化を示すものである。   3 shows the voltage of individual cells and other voltage and current over time in the constant current charging operation, and FIG. 6 shows the assembled voltage of the battery power source 1 and the charging voltage of the single cells in the constant current charging operation. This shows the change over time.

図6に示す定電流充電動作において、t1時点から充電電流IBを一定の1Aで充電を開始すると組電池電圧VBおよび単電池電圧VBssは時間とともに上昇してt2時点で電組池電圧VBがVBi0に達して充電電流IBを1Bへ低下させて充電を継続させると電池電圧VB、VBssは緩やかに更に上昇する。   In the constant current charging operation shown in FIG. 6, when the charging current IB starts charging at a constant 1A from time t1, the assembled battery voltage VB and the single battery voltage VBss increase with time, and at time t2, the battery voltage VB becomes VBi0. When the charging current IB is reduced to 1B and charging is continued, the battery voltages VB and VBss gradually increase further.

このとき、特性のバラツキによって単電池に電圧差が生じ、t3時点において一部の単電池電圧VBssが上限設定電圧VBUに達する。しかし、組電池電圧VBi1は組電池上限設定値VGUに達していない。その理由は、組電池電圧VBi1は直列接続した単電池電圧の合計値であるから、一部の単電池だけが単電池電圧上限設定電圧に達し、他の単電池が単電池電圧上限設定電圧に達していなければ組電池電圧VBiは組電池電圧上限設定電圧VGUより低い電圧になるからである。   At this time, a voltage difference is generated in the single cells due to variation in characteristics, and a part of the single cell voltages VBss reaches the upper limit set voltage VBU at time t3. However, the assembled battery voltage VBi1 does not reach the assembled battery upper limit set value VGU. The reason is that the assembled battery voltage VBi1 is the total value of the unit cell voltages connected in series, so that only some of the unit cells reach the unit cell voltage upper limit set voltage, and the other unit cells reach the unit cell voltage upper limit set voltage. This is because the assembled battery voltage VBi is lower than the assembled battery voltage upper limit setting voltage VGU if not reached.

また、組電池構成する単電池の直列接続個数が多いほど単電池電圧の変化量を、組電池電圧変化量で検出、判別することが困難となるから、常時、単電池電圧を個々に監視して単電池電圧が上限設定電圧VBUを超えないように発電電圧を制御することが望ましい。   Also, as the number of cells connected in series in the assembled battery increases, it becomes more difficult to detect and discriminate the amount of change in the cell voltage from the amount of change in the assembled battery voltage. Therefore, it is desirable to control the generated voltage so that the cell voltage does not exceed the upper limit set voltage VBU.

当然、組電池電圧についても同様の監視を行って組電池電圧VBiが組電池上限設定電圧VGUを超えないように発電電圧を制御すれば、単電池、組電池双方の過充電を防止することができる。   Of course, if the generated voltage is controlled so that the assembled battery voltage VBi does not exceed the assembled battery upper limit set voltage VGU by monitoring the assembled battery voltage in the same manner, overcharging of both the unit cell and the assembled battery can be prevented. it can.

以上の動作を図1、図2を用いて説明する。   The above operation will be described with reference to FIGS.

単電池電圧はクロックパルス発生部26のクロックパルスCPに同期して、第1選択部24、および第2選択部25が単電池電圧検出部4によって検出された各単電池の検出電圧を1つずつ交互に選択して単電池検出電圧VBs1、VBs2として取り出し、それぞれ第1電圧判別部27、第2電圧判別部28に与えるとともに、検出切換部30に与える。   The single cell voltage is synchronized with the clock pulse CP of the clock pulse generator 26, and the first selection unit 24 and the second selection unit 25 have one detected voltage of each single cell detected by the single cell voltage detection unit 4. They are alternately selected one by one and taken out as single cell detection voltages VBs1 and VBs2, which are given to the first voltage discriminating unit 27 and the second voltage discriminating unit 28, respectively, and to the detection switching unit 30.

第1電圧判別部27、第2電圧判別部28は、それぞれ単電池上限電圧設定部22に設定された単電池上限設定電圧VBU、単電池下限電圧設定部23に設定された単電池下限設定電圧VBLと、取り出した単電池検出電圧VBs1、VBs2とを比較して、充電動作時には、単電池検出電圧VBs1、VBs2の何れかが上限設定電圧VBUに達したときは判別信号S1、またはS2を出力する。第1電圧判別部27、第2電圧判別部28は、この時、判別信号S1、S2が上限を超過して発生されていることを示す上限判別信号S1Uを同時に発生する。   The first voltage discriminating unit 27 and the second voltage discriminating unit 28 are respectively the unit cell upper limit set voltage VBU set in the unit cell upper limit voltage setting unit 22 and the unit cell lower limit set voltage set in the unit cell lower limit voltage setting unit 23. VBL is compared with the taken out cell detection voltages VBs1 and VBs2, and at the time of charging operation, when any of the cell detection voltages VBs1 and VBs2 reaches the upper limit setting voltage VBU, a determination signal S1 or S2 is output. To do. At this time, the first voltage determination unit 27 and the second voltage determination unit 28 simultaneously generate an upper limit determination signal S1U indicating that the determination signals S1 and S2 are generated exceeding the upper limit.

いま、単電池検出電圧VBs1が上限設定電圧VBUに達したとすれば第1電圧判別部27が判別信号S1、上限判別信号S1Uを発生する。判別信号S1は、第1選択部24に与えられる。第1選択部24は、判別信号S1を受取ると、その位置で走査動作を停止し、停止位置の単電池の検出電圧VBs1を継続して出力し、同時に走査動作を停止したことを示す信号S5を他方の第2選択部25に与える。信号S5を受信した第2選択部25は、第1判別部24が走査を停止した位置の次の位置から走査動作を継続する。   If the cell detection voltage VBs1 reaches the upper limit set voltage VBU, the first voltage determination unit 27 generates a determination signal S1 and an upper limit determination signal S1U. The determination signal S1 is given to the first selection unit 24. When receiving the determination signal S1, the first selection unit 24 stops the scanning operation at that position, continuously outputs the detection voltage VBs1 of the single cell at the stop position, and simultaneously outputs a signal S5 indicating that the scanning operation has been stopped. To the other second selection unit 25. The second selection unit 25 that has received the signal S5 continues the scanning operation from the position next to the position where the first determination unit 24 stopped scanning.

判別信号S1は、検出切換部30にも与えられる。判別信号S1を受信した検出切換部30は、第1選択部24側の出力に切換えて、その単電池検出電圧VBs1を単電池選択電圧VBssとして補正演算部31に与える。補正演算部31は単電池上限設定電圧VBUと単電池検出電圧VBssを比較し、その差となる補正信号VBsdを出力して電流記憶補正部32Iに与える(図2参照)。   The determination signal S1 is also given to the detection switching unit 30. The detection switching unit 30 that has received the determination signal S1 switches to the output on the first selection unit 24 side, and supplies the single cell detection voltage VBs1 to the correction calculation unit 31 as the single cell selection voltage VBss. The correction calculation unit 31 compares the single cell upper limit setting voltage VBU and the single cell detection voltage VBss, outputs a correction signal VBsd that is the difference between them, and provides the current storage correction unit 32I (see FIG. 2).

また、電流記憶補正部32Iは、受信した信号S1またはS2によって受信時点で電池電源1の電流実際値IBiを読取って記憶し、この記憶した電流実際値IBiと補正演算部31から出力される補正信号VBsdに電流補正定数Kiを乗じて求めた補正電流Icとを比較して両者の偏差を電流補正設定値IBdとして出力する。   In addition, the current storage correction unit 32I reads and stores the actual current value IBi of the battery power supply 1 at the time of reception by the received signal S1 or S2, and stores the stored current actual value IBi and the correction output from the correction calculation unit 31. The correction current Ic obtained by multiplying the signal VBsd by the current correction constant Ki is compared, and the difference between the two is output as the current correction set value IBd.

設定切換部33Iは、判別切換部29から切換信号S3Uを受取ると、充電電流調節部35Iに加える充電電流指令値IBDを電流設定部21Iに設定された充電電流設定値IBSから電流記憶補正部32Iで求めた電流補正設定値IBdに切換える動作を行う。これにより、判別切換信号S3Uによって定電流充電モードにおける充電電流設定値IBSを判別信号S1の受信時点の電池電源電流実勢値IBiに基づいて求められた充電電流補正設定値IBdへ切換えて、定電流充電動作が継続される。   When the setting switching unit 33I receives the switching signal S3U from the discrimination switching unit 29, the current storage correction unit 32I uses the charging current command value IBD applied to the charging current adjustment unit 35I from the charging current setting value IBS set in the current setting unit 21I. The operation of switching to the current correction set value IBd obtained in step 1 is performed. As a result, the charging current setting value IBS in the constant current charging mode is switched to the charging current correction setting value IBd obtained based on the battery power supply current actual value IBi at the time of reception of the determination signal S1 by the determination switching signal S3U. Charging operation continues.

充電電流調節部35Iは、通常は、充電電流設定部21に設定された充電電流設定値IBSと電池電源1の充電電流実際値IBiをf点で突合せて両者の偏差を求め、この偏差がゼロとなる発電電圧指令値VGsを演算し、発電制御部50の発電機電圧調節部51に電圧指令値として与えてフィードバック制御による発電制御を行う。   The charging current adjustment unit 35I normally obtains a deviation between the charging current setting value IBS set in the charging current setting unit 21 and the charging current actual value IBi of the battery power source 1 at the point f, and this deviation is zero. The power generation voltage command value VGs is calculated and given as a voltage command value to the generator voltage adjustment unit 51 of the power generation control unit 50 to perform power generation control by feedback control.

単電池電圧VBs1が上限設定電圧VBUに達したときは、電流記憶補正部32Iが、判別信号S1によってその時点で読取り記憶した電池電源1の充電電流実際値IBiと補正演算部31で求められた電圧補正値VBsdとに基づいて求めた充電電流補正設定値IBdを出力する。上限切換信号S3Uを受信した設定切換部33iが、充電電流調節部35Iの充電電流指令値IBDを充電電流設置部21Iに設定された充電電流設定値IBSから電流記憶補正部32Iで求めた充電電流補正設定値IBdへ切換える切換動作は、切換え時点での充電電流設定値IBSと充電電流実際値IBiとは一致しているから、衝撃なく円滑に行うことができる。   When the unit cell voltage VBs1 reaches the upper limit set voltage VBU, the current storage correction unit 32I is obtained by the correction calculation unit 31 and the charging current actual value IBi of the battery power source 1 read and stored at that time by the determination signal S1. The charging current correction set value IBd obtained based on the voltage correction value VBsd is output. The setting switching unit 33i that has received the upper limit switching signal S3U obtains the charging current command value IBD of the charging current adjustment unit 35I from the charging current setting value IBS set in the charging current installation unit 21I by the current storage correction unit 32I. The switching operation for switching to the correction set value IBd can be performed smoothly without impact because the charge current set value IBS and the actual charge current value IBi at the time of switching match.

補正演算部31は単電池上限設定電圧VBUと単電池検出信号VBssが一致するような電圧補正値VBsdを求めて電流記憶補正部32Iに与える。電流記憶補正部32Iは受信した補正値VBsdによって記憶した電池電源の充電電流実際値IBiを補正した充電電流補正設定値IBdを求めて、設定切換部33iを経由して充電電流指令値IBDとして充電電流調節部35Iに与えることにより、定電流充電の補正を行う。   The correction calculation unit 31 obtains a voltage correction value VBsd such that the unit cell upper limit setting voltage VBU and the unit cell detection signal VBss coincide with each other and supplies the voltage correction value VBsd to the current storage correction unit 32I. The current storage correction unit 32I obtains a charging current correction set value IBd obtained by correcting the charging current actual value IBi of the battery power stored by the received correction value VBsd, and is charged as the charging current command value IBD via the setting switching unit 33i. The constant current charging is corrected by giving the current adjusting unit 35I.

この補正動作は、単電池電圧VBs1=VBssが単電池電圧上限設定値VBUを超過しないように充電電流を減じて充電制御を行うことになる。   In this correction operation, the charging control is performed by reducing the charging current so that the unit cell voltage VBs1 = VBss does not exceed the unit cell voltage upper limit setting value VBU.

図3は単電池を10個直列接続した組電池の定電流充電動作における各部の電圧、電流の変化を示すものである。   FIG. 3 shows changes in voltage and current of each part in a constant current charging operation of an assembled battery in which 10 unit cells are connected in series.

図3において、t1時点以前では、単電池電圧VBs1が上限設定電圧VBUに達するものがないので、電池電源1の充電電流実際値IBiを充電電流設定部21Iに充電電流設定値IBSにして組電池の充電を定電流で行う。t1時点で単電池B4の電圧VBs1が上限設定電圧VBUに達すると、設定切換部33Iによって、充電電流指令値を設定部21Iに設定された充電電流指令値IBSから電流記憶補正部32Iで形成された充電電流補正設定値IBdに切換えることにより、単電池B4の電圧VBs1が上限設定電圧VBUを超えないように電圧補正値VBsdによって充電電流指令IBDを低下させながら充電を継続する。   In FIG. 3, before the time t1, the unit cell voltage VBs1 does not reach the upper limit set voltage VBU. Therefore, the battery pack 1 uses the charge current setting unit 21I to set the charge current actual value IBi of the battery power source 1 to the charge current set value IBS. Is charged at a constant current. When the voltage VBs1 of the unit cell B4 reaches the upper limit set voltage VBU at time t1, the setting switching unit 33I forms the charging current command value from the charging current command value IBS set in the setting unit 21I by the current storage correction unit 32I. By switching to the charging current correction setting value IBd, the charging is continued while the charging current command IBD is lowered by the voltage correction value VBsd so that the voltage VBs1 of the cell B4 does not exceed the upper limit setting voltage VBU.

発電機6の電圧VGiは、補正された充電電流指令値IBDと充電電流実際値IBiが一致するように充電電流調節部35Iを介して制御される。   The voltage VGi of the generator 6 is controlled via the charging current adjustment unit 35I so that the corrected charging current command value IBD and the charging current actual value IBi match.

このとき、図6に示すように、単電池B4がt3時点において単電池上限設定電圧VBUに達しても組電池電圧VBiは組電池上限設定電圧VGUに達していない。なぜなら、組電池電圧は単電池電圧の合計値であるから、単電池B4が単電池上限設定電圧VBUに達しても他の単電池の電圧が単電池設定電圧VBUに達しなければ、組電池電圧VBiは組電池上限設定電圧VGUに達しないのである。   At this time, as shown in FIG. 6, the assembled battery voltage VBi does not reach the assembled battery upper limit setting voltage VGU even when the single battery B4 reaches the unit cell upper limit setting voltage VBU at the time point t3. Because the assembled battery voltage is the total value of the unit cell voltages, if the unit cell B4 reaches the unit cell upper limit set voltage VBU, the voltage of the other unit cell does not reach the unit cell set voltage VBU. VBi does not reach the assembled battery upper limit setting voltage VGU.

図6のt3時点後は単電池B4の電圧VBs1が上限設定電圧VBUを超えないように充電電流指令値IBDを減じながら充電を継続すると、単電池B4以外の単電池は減じられた充電電流指令値IBDと等しい充電電流IBiによって充電されて単電池電圧が上昇し、これに伴って組電池電圧も上昇する。   After time t3 in FIG. 6, if charging is continued while reducing the charging current command value IBD so that the voltage VBs1 of the cell B4 does not exceed the upper limit set voltage VBU, the cells other than the cell B4 are charged with the reduced charging current command. The battery voltage is increased by charging with a charging current IBi equal to the value IBD, and the assembled battery voltage is increased accordingly.

図3におけるn2サイクルのt2時点において第2選択部25の走査で検出した単電池B10の電圧VBs2が上限設定電圧VBUに達したとすると第2電圧判定部28がこれを検知して判別信号S2および上限判別信号S2Uを発生して、第2選択部25および判別切換部29に与える。第2選択部25の走査が停止されるとともに信号S5を第1選択部24に与えて、第2選択部25の走査を停止した位置の次の位置から第1選択部24の走査を開始させる。なお、サイクルは、組電池の全部の単電池B1からB10を1回走査する期間である。   Assuming that the voltage VBs2 of the unit cell B10 detected by scanning of the second selection unit 25 reaches the upper limit set voltage VBU at time t2 of the n2 cycle in FIG. 3, the second voltage determination unit 28 detects this and determines the determination signal S2. The upper limit determination signal S2U is generated and supplied to the second selection unit 25 and the determination switching unit 29. The scanning of the second selection unit 25 is stopped and the signal S5 is given to the first selection unit 24 to start the scanning of the first selection unit 24 from the position next to the position where the scanning of the second selection unit 25 is stopped. . The cycle is a period in which all the unit cells B1 to B10 of the assembled battery are scanned once.

また、判別信号S2によって電圧記憶補正部32V、電流記憶補正部32I、電力記憶補正部32IPは、それぞれ、この時点の電圧実際値VBi、電流実際値IBi、電力実際値PBiを読取って記憶値を更新記憶する。   In addition, the voltage storage correction unit 32V, the current storage correction unit 32I, and the power storage correction unit 32IP read the actual voltage value VBi, the actual current value IBi, and the actual power value PBi at this time by the determination signal S2, respectively. Update memorize.

第1電圧判別部27と第2電圧判別部28間の信号S4は、走査を停止している方の選択部に接続された電圧判定部は判定動作を停止し、走査を継続している他方の選択部に接続された電圧判別部は判別動作を実行するように相互に動作をインターロックするインターロック信号である。   The signal S4 between the first voltage discriminating unit 27 and the second voltage discriminating unit 28 indicates that the voltage judging unit connected to the selection unit that has stopped scanning stops the judging operation and continues the scanning. The voltage determination unit connected to the selection unit is an interlock signal that interlocks the operations so as to execute the determination operation.

走査を停止している側の選択部に選択された単電池電圧VBs1、またはVBs2が上限設定電圧VBUを超えないように充電電流指令値IBDを減じて発電機で充電電流IBiを制御し、走査を継続している側の選択部と電圧判定部で他の単電池電圧の検出を継続させて、単電池上限設定電圧VBUに達した単電池を検出したときは走査を停止して検出側の単電池電圧が上限設定電圧VBUを超えないように充電電流指令値IBDを減じて発電機を制御する。   The charging current command value IBD is reduced so that the single cell voltage VBs1 or VBs2 selected by the selection unit on the side where scanning is stopped does not exceed the upper limit setting voltage VBU, and the charging current IBi is controlled by the generator, and scanning is performed. The selection unit and the voltage determination unit continue to detect other unit cell voltages, and when a unit cell that has reached the unit cell upper limit set voltage VBU is detected, the scanning is stopped and the detection unit side The generator is controlled by reducing the charging current command value IBD so that the unit cell voltage does not exceed the upper limit set voltage VBU.

このように、n2サイクルにおいて単電池B10電池電圧VBs2が上限設定電圧VBUに達すると電圧検出信号をVBs1からVBs2へ切換えて単電池B10の単電池電圧VBs2が上限設定電圧VBUを超えないように充電電流指令値IBDを減じて充電を行い、単電池B10の電圧が上限設定電圧VBUを越えないようにする。n3サイクルでは単電池B7が、n4サイクルでは単電池B2、B5、B9が上限設定電圧VBUに達したことが検出されるので、これらの限設定電圧VBUに達した単電池を順次交互に選択して充電電流指令値IBDを減じながら充電を継続して行うことによって、特性のバラツキを持つ全ての単電池をほぼ均等に充電を行って充電を完了する。   In this way, when the unit cell B10 battery voltage VBs2 reaches the upper limit set voltage VBU in the n2 cycle, the voltage detection signal is switched from VBs1 to VBs2 to charge the unit cell B10 so that the unit cell voltage VBs2 does not exceed the upper limit set voltage VBU. The current command value IBD is reduced to perform charging so that the voltage of the unit cell B10 does not exceed the upper limit set voltage VBU. Since it is detected that the unit cell B7 has reached the upper limit set voltage VBU in the n3 cycle and the unit cells B2, B5, B9 have reached the upper limit set voltage VBU in the n4 cycle, the cells that have reached these limit set voltages VBU are selected alternately. By continuously charging while reducing the charging current command value IBD, all the single cells having characteristic variations are charged almost evenly to complete the charging.

2)定電力充電動作
図4に示す定電力充電モードでの定電充電動作について説明する。定電力充電モードは、充電モード切換部44で、充電調節部を充電電力調節部35に切換えて充電動作を行う。
2) Constant power charging operation The constant power charging operation in the constant power charging mode shown in FIG. 4 will be described. In the constant power charging mode, the charging mode switching unit 44 switches the charging adjustment unit to the charging power adjustment unit 35 to perform a charging operation.

充電電力調節部35は、充電電力設定21Pで設定され電電力設定値PBSと、電力演算部34で求めた充電電力実際値PBi(=充電電圧実際値VBi×充電電流実際値IBi)とを突合せ点gで突合せて求めた両者の偏差がゼロになる発電制御部50への発電電圧指令値VGsを求めてフィードバック制御によって充電電力を一定にする調節動作を行う。   The charging power adjustment unit 35 matches the charging power setting value PBS set by the charging power setting 21P with the charging power actual value PBi (= charging voltage actual value VBi × charging current actual value IBi) obtained by the power calculation unit 34. An adjustment operation is performed to obtain a power generation voltage command value VGs to the power generation control unit 50 at which the deviation between the two obtained by matching at the point g becomes zero and to make the charging power constant by feedback control.

図4におけるn1サイクルで単電池B4が上限設定電圧VBUに達すると、前記した定電流動作と同様の補正制御を行う。   When the unit cell B4 reaches the upper limit setting voltage VBU in the n1 cycle in FIG. 4, the same correction control as that of the constant current operation described above is performed.

図5は、図2対応する定電力充電モードにおける主要回路構成を示すものである。   FIG. 5 shows a main circuit configuration in the constant power charging mode corresponding to FIG.

電力記憶補正部32Pは、第2電圧判別部28から単電池電圧が上限設定電圧VBUに達した判別信号S2を受信した時点で、電力演算部34からここで求められた電力実際値PBiを読取り電力記憶部PMに記憶する。一方で、補正演算部31で検出切換部30から出力された単電池選択電圧VBssが単電池上限設定電圧VBUを超えないようにする補正電圧VBsd(=VBU−VBi)を求め、これに電力補正定数設定器GPに設定された電力補正定数Kp乗じて電力補正値Pcを求める。   The power storage correction unit 32P reads the actual power value PBi obtained here from the power calculation unit 34 when the determination signal S2 is received from the second voltage determination unit 28 when the unit cell voltage reaches the upper limit set voltage VBU. It memorize | stores in the electric power memory | storage part PM. On the other hand, a correction voltage VBsd (= VBU−VBi) is obtained by the correction calculation unit 31 so that the unit cell selection voltage VBss output from the detection switching unit 30 does not exceed the unit cell upper limit set voltage VBU, and power correction is performed on this. The power correction value Pc is obtained by multiplying the power correction constant Kp set in the constant setter GP.

充電電力の補正は、単電池電圧が単電池上限値を超えないようする制御、すなわち、単電池上限電圧を基準とした制御であるから、補正演算部CPで電力記憶部MPに記憶された充電電力PBiから電力補正値Pcを減じて、電力補正設定値PBdを求める。設定切換部33Pが、判別切換部29からの切換信号S3Uにより、充電電力調節部35Pに加える電力設定値を充電電力設定器21Pに設定された充電電力設定値PBSから電力補正部32Pで求められた電力補正設定値PBdに切換える。これにより、充電電力調節部35Pで、充電電力実施値PBiが、補正電力設定値PBdに一致する充電電圧指令値VGsを求めて発電制御部50へ指令する。これに基づいて、発電制御部50の発電電圧調節部56、発電電流調節部58、界磁電流調節部59を介して充電電源8の充電電力が、単電池電圧VBiが上限設定電圧VBUを超過しないように制御され、単電池および組電池の過充電が防止される。   The correction of the charging power is control that prevents the unit cell voltage from exceeding the unit cell upper limit value, that is, control based on the unit cell upper limit voltage, and therefore the charge stored in the power storage unit MP by the correction operation unit CP. The power correction set value PBd is obtained by subtracting the power correction value Pc from the power PBi. Based on the switching signal S3U from the determination switching unit 29, the power switching unit 33P obtains the power setting value to be applied to the charging power adjustment unit 35P from the charging power setting value PBS set in the charging power setting unit 21P by the power correction unit 32P. The power correction set value PBd is switched to. As a result, the charging power adjustment unit 35P obtains the charging voltage command value VGs in which the charging power execution value PBi matches the correction power setting value PBd, and commands the power generation control unit 50. On the basis of this, the charging power of the charging power supply 8 exceeds the upper limit setting voltage VBU via the generated voltage adjusting unit 56, generated current adjusting unit 58, and field current adjusting unit 59 of the generation control unit 50. The overcharge of the single battery and the assembled battery is prevented.

3)定電圧充電動作
次に定電圧充電モードで充電をおこなう定電圧充電動作について図7および図8を用いて説明する。図7は、定電圧充電モードでの主要回路構成図であり、図8は定電圧充電モードでの電圧、電流の時間的変化を示すものである。
3) Constant Voltage Charging Operation Next, a constant voltage charging operation in which charging is performed in the constant voltage charging mode will be described with reference to FIGS. FIG. 7 is a main circuit configuration diagram in the constant voltage charging mode, and FIG. 8 shows temporal changes in voltage and current in the constant voltage charging mode.

定電圧充電モードでの充電は、図2の充電モード切換器44で、充電電圧調節部35Vを選択して、図7に示すような回路構成で充電動作が行われる。   For charging in the constant voltage charging mode, the charging mode switching unit 44 in FIG. 2 selects the charging voltage adjustment unit 35V, and charging operation is performed with a circuit configuration as shown in FIG.

通常の定電圧充電動作中は、設定切換部33Vが、充電電圧設定器21V側に切換えられており、この充電電圧設定器21Vに設定された充電電圧設定値VBSが充電電圧調節部35Vに充電電圧指令値として加えられる。充電電圧調節部35Vは、この充電電圧指令値VBSと電圧検出器2で検出される電池電源1の電圧実際値VBiとを比較し、両者を一致させる発電電圧指令値VGsを求めて発電制御部50に指令することにより充電電圧VBiを設定された電圧VBSに一定に保って充電が行われる。   During the normal constant voltage charging operation, the setting switching unit 33V is switched to the charging voltage setting unit 21V side, and the charging voltage setting value VBS set in the charging voltage setting unit 21V charges the charging voltage adjustment unit 35V. It is added as a voltage command value. The charging voltage adjustment unit 35V compares the charging voltage command value VBS with the actual voltage value VBi of the battery power source 1 detected by the voltage detector 2, and obtains a power generation voltage command value VGs that matches the two, and the power generation control unit By instructing 50, charging is performed with the charging voltage VBi kept constant at the set voltage VBS.

このような定電圧充電動作において、図8のn1サイクルのt1時点で、単電池B4の電圧が単電池上限設定電圧VBUに達すると、第2電圧判定部28がこれを検知して、判別信号S2を発生する。この判別信号S2により、記憶補正演算部32Vで、電圧検出器2で検出されたその時点の充電電圧実際値VBiが読取られ、電圧記憶部MVに記憶保持される。これとともに、検出切換部30から第2選択部25で選択された単電池B4の電圧が選択電圧VBssとして取り出され、補正演算部31で、この単電池選択電圧VBssと上限設定電圧VBUとを比較して単電池選択電圧VBssが上限設定電圧VBUを超えないようする補正電圧VBsdが求められる。   In such a constant voltage charging operation, when the voltage of the unit cell B4 reaches the unit cell upper limit set voltage VBU at the time t1 of the n1 cycle in FIG. 8, the second voltage determination unit 28 detects this and determines the determination signal. S2 is generated. Based on the determination signal S2, the storage correction calculation unit 32V reads the current charging voltage actual value VBi detected by the voltage detector 2 and stores it in the voltage storage unit MV. At the same time, the voltage of the unit cell B4 selected by the second selection unit 25 is extracted from the detection switching unit 30 as the selection voltage VBss, and the correction calculation unit 31 compares the unit cell selection voltage VBss with the upper limit set voltage VBU. Thus, the correction voltage VBsd is obtained so that the unit cell selection voltage VBss does not exceed the upper limit setting voltage VBU.

電圧記憶補正演算部32Vに記憶した充電電圧実際値VBiは、各単電池の電圧VB1、VB2…VB10の合計値であるから、図8に示すように単電池B4の電圧が上限設定電圧VBUに達しても他の単電池電圧は上限設定電圧VBUに達していないから組電池電圧VBiは組電池上限設定電圧VGUには達しない。しかし、このまま充電電圧設定器21Vに設定された充電電圧設定値VBSのまま充電を継続すると、そのときの充電電流によって単電池電圧が上昇する結果、組電池電圧VBiが上昇して単電池電圧VBsを上限設定電圧VBUに制限することができなくなるから、定電圧充電モードの場合は、判別信号S1またはS2を受信した時点の充電電圧実際値VBiに以下に保つ制御を行うことになる。   The charging voltage actual value VBi stored in the voltage storage correction calculation unit 32V is the total value of the voltages VB1, VB2,... VB10 of each unit cell, so that the voltage of the unit cell B4 becomes the upper limit set voltage VBU as shown in FIG. Even if it reaches, the other unit cell voltage does not reach the upper limit set voltage VBU, so the assembled battery voltage VBi does not reach the assembled battery upper limit set voltage VGU. However, if the charging is continued with the charging voltage setting value VBS set in the charging voltage setting device 21V as it is, the unit cell voltage increases due to the charging current at that time, and as a result, the assembled battery voltage VBi increases and the unit cell voltage VBs. Cannot be limited to the upper limit set voltage VBU. Therefore, in the constant voltage charging mode, the control is performed to keep the charging voltage actual value VBi at the time of receiving the determination signal S1 or S2 below.

このために、電圧記憶補正演算部32Vで、電圧記憶部MVに記憶された充電電圧実施値VBiを充電電圧の基準設定値とし、電圧補正演算部CVで、この充電電圧の基準設定値から、補正演算部31で求めた補正電圧VBsdに電圧補正定数設定器GVに設定された電圧補正定数Kvを乗じて求めた電圧補正値Vcを減じて電圧補正設定値VBdを求める。判別信号S2に基づいて判別切換部29で発生された切換判別信号S3Uにより設定切換部33Vで切換接点を、充電電圧設定器21V側から記憶補正演算部32V側に切換え、記憶補正演算部32Vで求めた電圧補正設定値VBdが充電電圧指令値VBDとして充電電圧調節部35Vに加えられる。   For this purpose, in the voltage storage correction calculation unit 32V, the charging voltage execution value VBi stored in the voltage storage unit MV is set as a reference setting value for the charging voltage, and in the voltage correction calculation unit CV, from the reference setting value for the charging voltage, A voltage correction set value VBd is obtained by subtracting the voltage correction value Vc obtained by multiplying the correction voltage VBsd obtained by the correction calculation unit 31 by the voltage correction constant Kv set in the voltage correction constant setting unit GV. Based on the determination signal S2, the switching contact is switched by the setting switching unit 33V from the charge voltage setting device 21V side to the storage correction calculating unit 32V side by the switching determination signal S3U generated by the determination switching unit 29, and the storage correction calculating unit 32V The obtained voltage correction setting value VBd is added to the charging voltage adjustment unit 35V as the charging voltage command value VBD.

充電電圧調節部35Vは、この充電電圧指令値VBDと電圧検出器2で検出された充電電圧実際値VBiとが等しくなる発電電圧指令値VGsを求めて発電制御部50の発電電圧調節部56に指令する。発電制御部50は、この発電電圧指令値VBsに基づいて、発電電圧調節部56、発電電流調節部58、界磁電流調節部59を介して発電機6の電圧VGを制御する。   The charging voltage adjustment unit 35V obtains a generation voltage command value VGs in which the charging voltage command value VBD and the charging voltage actual value VBi detected by the voltage detector 2 are equal to each other, and sends the generation voltage command value VGs to the generation voltage adjustment unit 56 of the generation control unit 50. Command. The power generation control unit 50 controls the voltage VG of the generator 6 through the power generation voltage adjustment unit 56, the power generation current adjustment unit 58, and the field current adjustment unit 59 based on the power generation voltage command value VBs.

これにより、充電電圧調節部35Vに加えられる充電電圧指令値VBDは、当初の充電電圧設定器21Vに設定された充電電圧設定値VBSより低減されるため、発電機6から電池電源1の組電池への印加電圧が低下されて、組電池の充電電流が低減されることにより、単電池の電圧が上限設定電圧を超過しなうように充電を行うことができる。   As a result, the charging voltage command value VBD applied to the charging voltage adjustment unit 35V is reduced from the charging voltage setting value VBS set in the initial charging voltage setting device 21V, and therefore the assembled battery of the battery power source 1 from the generator 6 is used. By reducing the voltage applied to the battery and reducing the charging current of the assembled battery, charging can be performed so that the voltage of the unit cell does not exceed the upper limit set voltage.

なお、組電池電圧上限制限指令部37は判別切換信号S3Cと発電機運転指令部50aから充放電切換接点50cから与えられる充電指令信号BCの両方の信号が加わったとき、電圧検出器2で検出されたそのときの充電電圧実際値VBiを組電池上限制限電圧VGULとして、発電電圧指令値制限器51に与えて、発電機6の電圧VGが現在の充電電圧実際値VBiを越えないように電圧制限を行うことによって、単電池電圧を上限設定電圧VBUが超過しないように抑制することができる。   The assembled battery voltage upper limit restriction command unit 37 is detected by the voltage detector 2 when both the determination switching signal S3C and the charge command signal BC given from the charge / discharge switching contact 50c from the generator operation command unit 50a are applied. The charged voltage actual value VBi at that time is given as the assembled battery upper limit voltage VGUL to the generated voltage command value limiter 51 so that the voltage VG of the generator 6 does not exceed the current charged voltage actual value VBi. By performing the restriction, the unit cell voltage can be suppressed so as not to exceed the upper limit set voltage VBU.

4)放電動作
さらに、電池電源1の放電動作を図9に示す電池電圧―充電残存量特性図を用いて説明する。
4) Discharge Operation Further, the discharge operation of the battery power source 1 will be described with reference to the battery voltage-charge remaining amount characteristic diagram shown in FIG.

電池電源1のみの放電電流で負荷の推進電動機14を駆動し、電池電源1の組電池の放電電流が増加し、放電が進行すると、組電電池電圧VBiおよび単電池電圧VBsは図9に示すように次第に低下し、さらに、放電終止領域では電池電圧は急激に低下して過放電となる。   When the propulsion motor 14 of the load is driven by the discharge current of only the battery power supply 1 and the discharge current of the battery pack of the battery power supply 1 increases and the discharge proceeds, the battery pack voltage VBi and the single battery voltage VBs are shown in FIG. Thus, the battery voltage gradually decreases in the end-of-discharge region, and overdischarge occurs.

特に、リチウムイオン電池を用いた電池電源では、過充電、過放電が電池特性の劣化を増進させ、充電量の低下、寿命短縮を招き、さらに、過充電、過放電による過熱状態引き起こし電池素子の焼損障害に発展することが予想されることから、電池電源のみで負荷となる推進電動機を運転するときは過放電にならないように監視、抑制する必要がある。   In particular, in a battery power source using a lithium ion battery, overcharge and overdischarge promote deterioration of battery characteristics, leading to a decrease in charge amount and a shortened life, and further, an overheat state due to overcharge and overdischarge is caused. Since it is expected to develop into a burnout failure, it is necessary to monitor and suppress so as not to cause overdischarge when operating a propulsion motor that is a load with only a battery power source.

図9の組電池または単電池の充電残存量に対する電池電圧特性線図において、P1点の充電残存量100からP3点の充電残存量30%の範囲は通常に使用可能な通常使用範囲とし、その下限の充電量30%となるP1点の例えば85%電圧となる組電池電圧を通常使用下限電圧VGL1として設定する。充電残存量が30〜20%となるP1点からP2点を使用監視範囲とし、その下限のP2点の例えば80%電圧となる組電池電圧を警報電圧VGL2およびVBL2として設定する。そして、充電残存量20〜10%となるP2点からP3点を使用禁止範囲として下限のP3点の例えば70%電圧となる組電池電圧お使用禁止電圧VGL3として設定する。   In the battery voltage characteristic diagram with respect to the remaining charge amount of the assembled battery or single battery in FIG. 9, the range from the remaining charge amount 100 at P1 to the remaining charge amount 30% at P3 is a normal use range that can be used normally. An assembled battery voltage that becomes, for example, 85% voltage at the P1 point where the lower limit charge amount is 30% is set as the normal use lower limit voltage VGL1. The P1 point to the P2 point where the remaining charge amount is 30 to 20% is set as the use monitoring range, and the assembled battery voltage that is, for example, 80% voltage at the lower limit P2 point is set as the alarm voltages VGL2 and VBL2. Then, from the P2 point to the P3 point where the remaining charge amount is 20 to 10%, the use prohibition range is set as the assembled battery voltage use prohibition voltage VGL3 which is, for example, 70% voltage at the lower limit P3 point.

放電動作中は、組電池電圧VBiまたは単電池電圧VBsの電圧レベルが、前記の通常使用範囲レベル、使用監視範囲レベル、および使用禁止範囲レベルの何れにあるかを常時監視して放電電流の制御を行うことによって電池電圧低下に伴うシステムの不安定動作を防止し、また、電池の過放電を防止することができる。   During the discharging operation, discharge voltage is controlled by constantly monitoring whether the voltage level of the assembled battery voltage VBi or the single battery voltage VBs is in the normal use range level, use monitoring range level, or use prohibition range level. By performing the above, it is possible to prevent an unstable operation of the system due to a battery voltage drop and to prevent overdischarge of the battery.

図1に示す駆動システムにおいては、最も電力を必要とする負荷は推進電動機14であり、組電池(電池電源)1の動作状態と推進電動機14の負荷状態と密接な関係がある。   In the drive system shown in FIG. 1, the load that requires the most electric power is the propulsion motor 14, and the operation state of the assembled battery (battery power source) 1 and the load state of the propulsion motor 14 are closely related.

また、図10に、電池電源1の組電池電圧または単電池電圧に対する電動機速度制限値との関係を示す。図11に示すように推進電動機1の電流は電動機速度の3乗に比例して変化する
図1の第1選択部24、および第2選択部25による走査によって選択した単電池電圧VBs1、またはVBs2が単電池電圧下限設定部23の下限設定電圧VBLに達すれば、第1電圧判別部27、または第2電圧判別部28がこれを検出して判別信号S1、またはS2を出力する。
FIG. 10 shows the relationship between the assembled battery voltage or single cell voltage of the battery power supply 1 and the motor speed limit value. As shown in FIG. 11, the electric current of the propulsion motor 1 changes in proportion to the cube of the motor speed. The cell voltage VBs1 or VBs2 selected by scanning by the first selection unit 24 and the second selection unit 25 in FIG. Reaches the lower limit setting voltage VBL of the unit cell voltage lower limit setting unit 23, the first voltage determination unit 27 or the second voltage determination unit 28 detects this and outputs the determination signal S1 or S2.

第1選択部24の選択電圧VBs1を第1電圧判別部27で判別した場合、判別信号S1が下限側判別信号であることを示すS1Lを判別切換部29与える。判別切換部29がこれを受けて下限切換信号S3Lを出力する。第1選択部24は、判別信号S1を受けてその走査動作を停止してその選択位置の電圧VBS1を継続して出力する。また、第1選択部24からの信号S5によって第2選択部25に次の位置から連続して走査を継続させ次の位置以降の単電池電圧の選択監視を行う。   When the selection voltage VBs1 of the first selection unit 24 is determined by the first voltage determination unit 27, the determination switching unit 29 is provided with S1L indicating that the determination signal S1 is a lower limit side determination signal. The determination switching unit 29 receives this and outputs a lower limit switching signal S3L. The first selection unit 24 receives the determination signal S1, stops the scanning operation, and continuously outputs the voltage VBS1 at the selected position. Further, the second selection unit 25 continuously continues scanning from the next position by the signal S5 from the first selection unit 24, and performs selection monitoring of the cell voltage after the next position.

第1選択部24で選択された単電池電圧VBs1は検出切換部30によって選択単電池電圧VBssとして組電池電圧換算部40に与えられる。組電池電圧換算部40は判別切換信号S3Lによって動作を開始し、単電池電圧VBssを、組電池相当電圧VBsnに換算する演算を行う。組電池相当電圧VBsnは単電池電圧VBss=VBs1に、次の(1)式で示す通り、電池電源1の組電池の単電池直列接続個数nを乗じて求める。   The unit cell voltage VBs1 selected by the first selection unit 24 is given to the assembled battery voltage conversion unit 40 by the detection switching unit 30 as the selected unit cell voltage VBss. The assembled battery voltage conversion unit 40 starts to operate in response to the discrimination switching signal S3L, and performs an operation for converting the single battery voltage VBss to the assembled battery equivalent voltage VBsn. The assembled battery equivalent voltage VBsn is obtained by multiplying the unit cell voltage VBss = VBs1 by the number n of unit cells connected in series of the assembled battery of the battery power source 1 as shown in the following equation (1).

VBsn=VBss×n (1)
組電池電圧換算部40で求めた組電池相当電圧VBsnは単電池電圧下限制限指令部38に与える。単電池電圧下限制限指令38には、電池電源電圧、したがって組電池電圧VBiも加えられる。そしてこれには、予め、図10に示すような組電池電圧VGまたは組電池相当電圧VBsnと速度制限信MnDとの関係を示す速度制限線MnLが設定され、信号S3Lと発電運手指令部50からの放電運転信号BDとが加わっていることを条件に、この速度制限MnLから組電池相当電圧VBsnと組電池電圧VBiの小さい方の電圧に対応する速度制限号値MnDを求めて電動機駆動制御部13に与える。速度制限信号MnDは、図10に示すように、例えば、組電池電圧VGL1であればP1点の制限信号MnD1、VGL2であればP2点の制限信号MnD2、VGL3であればP3点の制限信号MnD3となる。使用禁止電圧VGL3に対する速度制限信MnD3は推進電動機の駆動を停止するため、実質的に0%の推進電動機速度を示す制限信号となる。
VBsn = VBss × n (1)
The assembled battery equivalent voltage VBsn obtained by the assembled battery voltage conversion unit 40 is supplied to the unit cell voltage lower limit restriction command unit 38. The battery power supply voltage, and therefore the assembled battery voltage VBi, is also added to the unit cell voltage lower limit restriction command 38. For this purpose, a speed limit line MnL indicating the relationship between the assembled battery voltage VG or the assembled battery equivalent voltage VBsn and the speed limit signal MnD as shown in FIG. 10 is set in advance, and the signal S3L and the power generation operator command unit 50 are set. On the condition that the discharge operation signal BD from is added, the speed limit value MnD corresponding to the smaller one of the assembled battery equivalent voltage VBsn and the assembled battery voltage VBi is obtained from the speed limit MnL to drive the motor. Part 13 is given. As shown in FIG. 10, the speed limit signal MnD is, for example, a limit signal MnD1 at the point P1 if the battery pack voltage VGL1, a limit signal MnD2 at the point P2 if VGL2, and a limit signal MnD3 at the point P3 if VGL3. It becomes. The speed limit signal MnD3 with respect to the use prohibition voltage VGL3 stops the driving of the propulsion motor, and therefore becomes a limit signal that substantially indicates the propulsion motor speed of 0%.

速度制限信号MnDを受信した電動機駆動制御部13は、電池電源1から電動機駆動制御部13に入力される電動機速度Niが速度制限信号にMnDを越えないように推進電動機14の速度Niを低下させて電池電源1にかかる負荷を軽減する。   The motor drive control unit 13 that has received the speed limit signal MnD reduces the speed Ni of the propulsion motor 14 so that the motor speed Ni input from the battery power source 1 to the motor drive control unit 13 does not exceed MnD in the speed limit signal. The load on the battery power source 1 is reduced.

例えば、推進電動機14を図11におけるP0点、すなわち、推進電動機速度を定格速度の100%速度で、推進電動機電流がIM0となる電圧で運転しているとき、組電池電圧VBiまたは組電池相当電圧VBsnがVGL1に低下すると、組電池下限制限指令部38で速度制限信号MnD1が発生され、電動機駆動制御部13に与えられ、電動機速度Niが速度制限信号MnD1以下に低下される。これによって電動機速度Niが図11のP1点の速度MnD1に低下すると、これに伴って、電動機電流IMはIM0から定格電流の10%以下のIM1に大幅に低減されるため、組電池電圧VBiが現在値より低下されることが抑制され、下限電圧VBL、VGL以下となって過放電になることが防止される。   For example, when the propulsion motor 14 is operated at point P0 in FIG. 11, that is, the propulsion motor speed is 100% of the rated speed and the propulsion motor current is IM0, the assembled battery voltage VBi or the assembled battery equivalent voltage When VBsn decreases to VGL1, a speed limit signal MnD1 is generated by the assembled battery lower limit limit command unit 38 and is supplied to the motor drive control unit 13, and the motor speed Ni is decreased to a speed limit signal MnD1 or less. As a result, when the motor speed Ni decreases to the speed MnD1 at the point P1 in FIG. 11, the motor current IM is greatly reduced from IM0 to IM1 of 10% or less of the rated current. Lowering from the current value is suppressed, and overdischarge is prevented from being lower than the lower limit voltages VBL and VGL.

さらに、走査中の第2選択部25が他の単電池電圧が、下限設定電圧VBLに達し、これが第2電圧判別部28で判別されると、そのとき発生される判別信号S2によって、検出切換部30が選択電圧を、第1選択部24のVBs1からから第2選択部25のVBs2へ切換える。この場合も、単電池選択電圧VBs1のときと同様にして、単電池選択電圧VBs2が下限設定電圧BVL以下にならないように組電池電圧下限制限指令部38が、VBs2の組電池換算電圧VBsnまたは、組電池電圧VBiの何れか低い方の電圧に対応する速度制限信号MnDを求めて、推進電動機14の速度を減速させる制御を行い、電動機電流IMを低減して、単電池電圧の低下を抑制する。   Further, when the second selection unit 25 during scanning reaches the lower limit set voltage VBL when the other cell voltage reaches the lower limit set voltage VBL, and this is determined by the second voltage determination unit 28, the detection switching is performed by the determination signal S2 generated at that time. The unit 30 switches the selection voltage from VBs1 of the first selection unit 24 to VBs2 of the second selection unit 25. In this case as well, as in the case of the unit cell selection voltage VBs1, the assembled battery voltage lower limit restriction command unit 38 sends the assembled battery conversion voltage VBsn of VBs2 so that the unit cell selection voltage VBs2 does not become the lower limit set voltage BVL or less. The speed limit signal MnD corresponding to the lower one of the assembled battery voltage VBi is obtained, and the speed of the propulsion motor 14 is controlled to be reduced, the motor current IM is reduced, and the decrease in the cell voltage is suppressed. .

また、第1選択部24は、第2選択部25からの信号S5によって、第2選択部25が走査を停止した位置の次の位置の単電池から走査を再開し、他の単電池電圧の選択監視を継続して行う。   In addition, the first selection unit 24 restarts scanning from the single cell at the position next to the position where the second selection unit 25 stopped scanning by the signal S5 from the second selection unit 25, and the other single cell voltage Continue selective monitoring.

なお、単電池選択電圧VBssが刻々低下を続ければ、単電池電圧が下限設定電圧VBLよりも低下しないように動機駆動制御部13への速度制限信号MnDも刻々低下することになる。   If the unit cell selection voltage VBss continues to decrease, the speed limit signal MnD to the motivation drive control unit 13 also decreases so that the unit cell voltage does not decrease below the lower limit setting voltage VBL.

組電池電圧VBiが低下した場合も、前記の単電池電圧VBsが低下したときと同様に、組電池電圧下限制限指令部38に用意した図10に示す電圧制限線VLと組電圧実際値VBiとの交点から速度制限信号MnDを求めて、電動機駆動制御部13に与えて推進電動機14の速度Nを低下させて電動機電流を低減し、負荷を軽減する制御を行う。   When the assembled battery voltage VBi is lowered, the voltage limit line VL and the assembled voltage actual value VBi shown in FIG. 10 prepared in the assembled battery voltage lower limit restriction command unit 38 are provided, as in the case where the unit cell voltage VBs is lowered. The speed limit signal MnD is obtained from the intersection of the two and given to the motor drive control unit 13 to reduce the speed N of the propulsion motor 14 to reduce the motor current and control to reduce the load.

組電池電圧VBiまたは組電池相相当電圧VBsnが禁止電圧VGL3に低下すると、推進電動機の速度を0%速度に制限する速度制限信号MnD3が推進電動機駆動制御部13に与えられることにより、推進電動機14の駆動電流IMをゼロにして、推進電動機の駆動を停止して、電池電源1のそれ以上の放電を停止し、過放電を防止する。   When the assembled battery voltage VBi or the assembled battery phase equivalent voltage VBsn decreases to the prohibition voltage VGL3, a speed limit signal MnD3 that limits the speed of the propulsion motor to 0% speed is supplied to the propulsion motor drive control unit 13, whereby the propulsion motor 14 The driving current IM is set to zero, the driving of the propulsion motor is stopped, the further discharging of the battery power supply 1 is stopped, and the overdischarge is prevented.

5)監視制御記録動作
監視制御記録部70は単電池電圧VBs、組電池電圧VBiを監視し、充電動作では上限設定電圧VBU、放電動作では下限設定電圧VBLと比較して、制限電圧に達したとき、単電池電圧、単電池番号を記録するとともに、組電池電圧状態を監視して警報、警告レベルに達したときは警報・警告を発すると共に、動作状態の記録を行う。この記録に基づいて、電池電源1の異常の解析や、不良単電池の交換などの電池電源のメンテナンスを実施する。
5) Monitoring control recording operation The monitoring control recording unit 70 monitors the unit cell voltage VBs and the assembled battery voltage VBi, and reaches the limit voltage compared to the upper limit setting voltage VBU in the charging operation and the lower limit setting voltage VBL in the discharging operation. At the same time, the unit cell voltage and unit cell number are recorded, the assembled battery voltage state is monitored, an alarm / warning is issued when the alarm / warning level is reached, and the operation state is recorded. Based on this record, maintenance of the battery power source such as analysis of abnormality of the battery power source 1 and replacement of defective cells is performed.

6)発電機の電圧、電流制限動作
発電機の電圧制限のために電圧制限器51と電圧制限器54を備える。
6) Voltage and current limiting operation of the generator A voltage limiter 51 and a voltage limiter 54 are provided to limit the voltage of the generator.

電圧制限器51は、定電圧充電モードで単電池電圧VBsが上限設定電圧VBLに達したときは判別切換信号S3Cによって電圧上限制限指令部37から与えられるその時点の組電池実施値VBiに基づく上限制限電圧VGULにしたがって、発電機電圧指令値VGsがこれを越えないように制限を行う。   When the single battery voltage VBs reaches the upper limit set voltage VBL in the constant voltage charging mode, the voltage limiter 51 is the upper limit based on the battery pack implementation value VBi at that time given from the voltage upper limit limit command unit 37 by the determination switching signal S3C. In accordance with the limit voltage VGUL, the generator voltage command value VGs is limited so as not to exceed it.

電圧制限器54は、自動、手動運転切換部53から出力される発電機電圧指令値VGsを、発電機の電圧上限設定部55から加えられる制限電圧VGLを越えないように制限して発電機の出力電圧VGiが過電圧にならないようにして、単電池、組電池の過充電を防止する。   The voltage limiter 54 limits the generator voltage command value VGs output from the automatic / manual operation switching unit 53 so as not to exceed the limit voltage VGL applied from the voltage upper limit setting unit 55 of the generator. By preventing the output voltage VGi from becoming an overvoltage, overcharging of the unit cell and the assembled battery is prevented.

たとえば、充放電制御部20の単電池電圧検出部4、電池電源(組電池)電圧検出器2の断線等により電圧フードバック信号が喪失すると、発電機電圧が無限大に上昇し、発電機電圧が過電圧となる。また、発電機電圧を手動で制御する場合、操作ミスによって発電機が過電圧を発生することも予想される。   For example, when the voltage foodback signal is lost due to disconnection of the single battery voltage detection unit 4 of the charge / discharge control unit 20 or the battery power supply (assembled battery) voltage detector 2, the generator voltage rises to infinity, and the generator voltage Becomes overvoltage. In addition, when the generator voltage is controlled manually, it is also expected that the generator will generate an overvoltage due to an operation error.

発電機電圧の過電圧は発電機自信に損傷を与え、また発電機制御機器、給電電路機器及び、電池電源1の電池などへ障害を与えるから、電圧制限器51および54によって発電機電圧が過電圧になることを防止することは重要である。   The overvoltage of the generator voltage damages the generator self-confidence, and also damages the generator control device, the power supply circuit device, the battery of the battery power supply 1, etc., so that the generator voltage is overvoltaged by the voltage limiters 51 and 54. It is important to prevent

また、発電機の上限電流を制限する電流制限器57には、発電機出力設定器61で設定された出力(電力)設定値PGsと発電機出力電圧実際値VGiに基づいて発電機電流演算部62により求めた発電機の電流IGU(=PGs÷VGi)が発電機電流の上限制限値IGUとして与えられる。これによって、発電機電流調節部58に与えられる電流指令値IGsがこの電流制限値IGU以下に制限され、発電機電流の上限が制限されるので、発電機6を駆動する原動機5が過負荷になることを防止することができる。   The current limiter 57 that limits the upper limit current of the generator includes a generator current calculation unit based on the output (power) set value PGs set by the generator output setter 61 and the generator output voltage actual value VGi. The generator current IGU (= PGs / VGi) obtained by 62 is given as the upper limit IGU of the generator current. As a result, the current command value IGs given to the generator current adjustment unit 58 is limited to the current limit value IGU or less, and the upper limit of the generator current is limited, so that the prime mover 5 that drives the generator 6 is overloaded. Can be prevented.

1:電池電源(組電池)
B1〜B10(Bn):単電池
2:電池電源電圧検出器
3:電池電源電流検出器
4:単電池電圧検出部
5:原動機
6:発電機
7:整流器
8:充電用電源
9:充電用電源電圧検出器
10:充電用電源電流検出器
11:電動機駆動制御部入力電圧検出器
12:電動機駆動制御部電流検出器
13:電動機駆動制御部
14:推進電動機
15:速度検出器
16:電動機速度設定器
20:充電制御部
21V:充電電圧設定部
21I:充電電流設定部
21P:充電電力設定部
22:単電池上限電圧設定部
23:単電池下限電圧設定部
24:第1選択部
25:第2選択部
26:クロックパルス発生部
27:第1電圧判定部
28:第2電圧判定部
29:判別信号切換部
30:検出切換部
31:補正演算部
32V:電圧記憶補正演算部
32I:電流記憶補正演算部
32P:電力記憶補正演算部
33V:電圧設定値切換部
33I:電流設定値切換部
33P:電力設定値切換部
34:電力演算部
35V:充電電圧調節部
35I:充電電流調節部
35P:充電電力調節部
37:組電池上限電圧制限指令部
38:組電池下限電圧制限指令部
40:組電池(電池電源)電圧換算部
44:充電モード切換部
50:発電制御部
50a:発電機運転指令器
50c:充放電指令接点
51:発電電圧指令制限器
52:手動発電機電圧設定器
53:運転切換器
54:発電電圧制限器
55:発電電圧上限設定部
56:発電機電圧調節部
57:発電機電流制限部
58:発電機電流調節部
59:界磁電流直接部
61:発電機出力設置器
62:発電機電流上限制限指令部
63:界磁電流制御部
64:界磁電流検出器
65:発電機界磁
70:動作監視制御部
1: Battery power (assembled battery)
B1 to B10 (Bn): single battery 2: battery power supply voltage detector 3: battery power supply current detector 4: single battery voltage detector 5: prime mover 6: generator 7: rectifier 8: power supply 9 for charging 9: power supply for charging Voltage detector 10: Charging power supply current detector 11: Motor drive control unit Input voltage detector 12: Motor drive control unit Current detector 13: Motor drive control unit 14: Propulsion motor 15: Speed detector 16: Motor speed setting 20: Charge control unit 21V: Charging voltage setting unit 21I: Charging current setting unit 21P: Charging power setting unit 22: Single cell upper limit voltage setting unit 23: Single cell lower limit voltage setting unit 24: First selection unit 25: Second Selection unit 26: clock pulse generation unit 27: first voltage determination unit 28: second voltage determination unit 29: discrimination signal switching unit 30: detection switching unit 31: correction calculation unit 32V: voltage storage correction calculation unit 32I: current storage correction Calculation unit 2P: Power storage correction calculation unit 33V: Voltage set value switching unit 33I: Current set value switching unit 33P: Power set value switching unit 34: Power calculation unit 35V: Charging voltage adjusting unit 35I: Charging current adjusting unit 35P: Charging power adjusting Unit 37: assembled battery upper limit voltage limit command unit 38: assembled battery lower limit voltage limit command unit 40: assembled battery (battery power supply) voltage conversion unit 44: charge mode switching unit 50: power generation control unit 50a: generator operation command unit 50c: Charge / discharge command contact 51: Generation voltage command limiter 52: Manual generator voltage setting unit 53: Operation switching unit 54: Generation voltage limiter 55: Generation voltage upper limit setting unit 56: Generator voltage adjustment unit 57: Generator current limit Unit 58: Generator current adjusting unit 59: Field current direct unit 61: Generator output setting device 62: Generator current upper limit limiting command unit 63: Field current control unit 64: Field current detector 65: Generator field Magnetism 70 Operation monitoring control unit

Claims (7)

充電可能な複数個の単電池を直列接続して構成した組電池を少なくとも1組備えた電池電源と、この電池電源を充電する充電用電源と、前記電池電源の充放電を制御する充放電制御装置を備えたハイブリッド電源装置において、
前記電池電源の各単電池の電圧を検出する単電池電圧検出手段、および組電池の電圧を検出する組電池電圧検出手段を設け、
前記単電池電圧検出手段は、前記組電池の直列接続された複数の単電池を1個ずつ交互に順次走査する2組の選択手段を備え、
前記2組の選択手段による走査によって選択した単電池電圧が予め設定した単電池上限電圧または単電池下限電圧に達しない間は、前記組電池電圧検出手段により検出された組電池電圧に基づいて、この組電池電圧が予め設定した組電池上限電圧または組電池下限電圧を超過しないように前記充放電制御装置により前記電池電源の充放電電流を制御し、
何れか一方の選択手段で選択した単電池の電圧が、予め設定された単電池上限電圧または単電池下限電圧に達したことが検出されると、当該選択手段はその単電池の位置で走査を停止して当該単電池の電圧を継続して出力し、
他方の選択手段が他の単電池の走査を継続して単電池電圧が単電池上限電圧または単電池下限電圧に達した単電池を選択すると、その位置で前記他方の選択手段の走査を停止してその位置の単電池の電圧を継続して出力し、前記一方の選択手段の走査を再開するとともに、
走査を停止している側の選択手段で選択された単電池の電圧に基づいてこの単電池の電圧が前記単電池上限電圧または単電池下限電圧を超過しないように前記充放電制御装置により前記電池電源の充放電電流を制御することを特徴とする電池電源の充放電制御方式。
A battery power source provided with at least one set of battery packs configured by connecting a plurality of rechargeable cells in series, a charging power source for charging the battery power source, and a charge / discharge control for controlling charging / discharging of the battery power source In a hybrid power supply device equipped with a device,
A battery cell voltage detecting means for detecting the voltage of each battery cell of the battery power supply, and a battery pack voltage detecting means for detecting the voltage of the battery pack;
The unit cell voltage detection means includes two sets of selection units that alternately and sequentially scan a plurality of unit cells connected in series with each other.
While the voltage of the single cell selected by the scanning by the two sets of selection means does not reach the preset single cell upper limit voltage or single cell lower limit voltage, it is based on the assembled battery voltage detected by the assembled battery voltage detection means. The charging / discharging control device controls the charging / discharging current of the battery power source so that the assembled battery voltage does not exceed the preset assembled battery upper limit voltage or the assembled battery lower limit voltage,
When it is detected that the voltage of the unit cell selected by any one of the selection means has reached a preset unit cell upper limit voltage or unit cell lower limit voltage, the selection unit scans at the position of the unit cell. Stop and continue to output the voltage of the cell,
When the other selection means continues to scan other cells and selects a cell whose cell voltage has reached the cell upper limit voltage or the cell lower limit voltage, scanning of the other selection means is stopped at that position. And continuously output the voltage of the single cell at that position, restart the scanning of the one selection means,
Based on the voltage of the unit cell selected by the selection means on the side where scanning is stopped, the battery is controlled by the charge / discharge control device so that the voltage of the unit cell does not exceed the unit cell upper limit voltage or unit cell lower limit voltage. A charge / discharge control system for a battery power supply, characterized by controlling a charge / discharge current of the power supply.
前記電池電源の充電動作を、定電圧で充電を行う定電圧モード、定電流で充電を行う定電流充電モード、および定電力で充電を行う定電力充電モードを選択して実行することを特徴とする請求項に記載の電池電源の充放電制御方式。 The battery power supply charging operation is performed by selecting a constant voltage mode in which charging is performed at a constant voltage, a constant current charging mode in which charging is performed at a constant current, and a constant power charging mode in which charging is performed at a constant power. The charge / discharge control system for a battery power source according to claim 1 . 前記電池電源の放電動作中は、組電池電圧または単電池電圧が組電池下限電圧または単電池下限電圧に達したときは、この組電池電圧または単電池電圧が前記組電池下限電圧または単電池下限電圧より低下しないように前記電池電源から給電される負荷を減じることを特徴とする請求項に記載の電池電源の充放電制御方式。 During the discharging operation of the battery power source, when the assembled battery voltage or the single battery voltage reaches the assembled battery lower limit voltage or the single battery lower limit voltage, the assembled battery voltage or the single battery voltage is changed to the assembled battery lower limit voltage or the single battery lower limit voltage. charge and discharge control method of a battery power source according to claim 1, characterized in that reducing the load to be powered from the battery power supply so as not lower than the voltage. 単電池電圧を組電池電圧に換算した電圧と組電池電圧とを比較して低い方の電圧に基づいて制御を行うことを特徴とする請求項に記載の電池電源の充放電制御方式。 4. The charge / discharge control system for a battery power source according to claim 3 , wherein a voltage obtained by converting the unit cell voltage into an assembled battery voltage is compared with the assembled battery voltage, and control is performed based on the lower voltage. 充電可能な複数個の単電池を直列接続して構成した組電池を少なくとも1組備えた電池電源と、この電池電源を充電する充電用電源と、前記電池電源の充放電を制御する充放電制御装置を備えたハイブリッド電源装置において、
前記電池電源の各単電池の電圧を検出する単電池電圧検出手段、および組電池の電圧を検出する組電池電圧検出手段を設け、
前記単電池電圧検出手段により検出された単電池の電圧が予め設定した単電池上限電圧または単電池下限電圧に達しない間は、前記組電池電圧検出手段により検出された組電池電圧に基づいて、この組電池電圧が予め設定した組電池上限電圧または組電池下限電圧を超過しないように前記充放電制御装置により前記電池電源の充放電電流を制御し、
前記単電池電圧検出手段により、単電池の何れかの電圧が、予め設定された単電池上限電圧または単電池下限電圧に達したことが検出されると、この単電池上限電圧または単電池下限電圧に達した単電池の電圧に基づいてこの単電池の電圧が前記単電池上限電圧または単電池下限電圧を超過しないように前記充放電制御装置により前記電池電源の充放電電流を制御し、
前記電池電源の放電動作中は、
組電池電圧が組電池下限電圧に達したときは、この組電池電圧が前記組電池下限電圧より低下しないように前記電池電源から給電される負荷を減じるとともに、
単電池電圧が単電池下限電圧に達したときは、単電池電圧を組電池電圧に換算した電圧と組電池電圧とを比較して低い方の電圧に基づいて制御を行うことにより、この単電池電圧が前記単電池下限電圧より低下しないように前記電池電源から給電される負荷を減じることを特徴とする電池電源の充放電制御方式。
A battery power source provided with at least one set of battery packs configured by connecting a plurality of rechargeable cells in series, a charging power source for charging the battery power source, and a charge / discharge control for controlling charging / discharging of the battery power source In a hybrid power supply device equipped with a device,
A battery cell voltage detecting means for detecting the voltage of each battery cell of the battery power supply, and a battery pack voltage detecting means for detecting the voltage of the battery pack;
While the voltage of the single cell detected by the single cell voltage detection means does not reach the preset single cell upper limit voltage or single cell lower limit voltage, based on the assembled battery voltage detected by the assembled battery voltage detection means, The charge / discharge current of the battery power source is controlled by the charge / discharge control device so that the assembled battery voltage does not exceed a preset assembled battery upper limit voltage or an assembled battery lower limit voltage,
When it is detected by the unit cell voltage detection means that any voltage of the unit cell has reached a preset unit cell upper limit voltage or unit cell lower limit voltage, the unit cell upper limit voltage or unit cell lower limit voltage The charge / discharge current of the battery power supply is controlled by the charge / discharge control device so that the voltage of the cell does not exceed the cell upper limit voltage or the cell lower limit voltage based on the voltage of the cell that has reached
During the discharging operation of the battery power source,
When the assembled battery voltage reaches the assembled battery lower limit voltage, the load supplied from the battery power source is reduced so that the assembled battery voltage does not fall below the assembled battery lower limit voltage,
When the unit cell voltage reaches the unit cell lower limit voltage, by performing the control based on the lowest voltage present by comparing the voltage and the battery pack voltage obtained by converting the single-cell voltage to the voltage of the battery module, the unit cell A charge / discharge control system for a battery power supply, wherein a load supplied from the battery power supply is reduced so that a voltage does not fall below the unit cell lower limit voltage .
前記電池電源を充電する充電用電源を原動機駆動の発電機により構成し、この発電機の制御装置に発電機の出力電圧を前記電池電源の組電池の上限電圧以下に制限する電圧制限手段と、発電機の出力電流を所定の電流に制限する電流制限手段を設けることを特徴とする請求項に記載の電池電源の充放電制御方式。 A voltage limiting means for limiting the output voltage of the generator to an upper limit voltage of the battery pack of the battery power source in the generator control device, comprising a power source for charging for charging the battery power source by a generator driven by a motor. 2. The charging / discharging control system for a battery power source according to claim 1 , further comprising current limiting means for limiting the output current of the generator to a predetermined current. それぞれの動作状態を監視し、記録し、警報する動作監視制御手段を設けることを特徴とする請求項1ないし6の何れか1項に記載の電池電源の充放電制御方式。

The battery power supply charge / discharge control system according to any one of claims 1 to 6, further comprising operation monitoring control means for monitoring, recording, and alarming each operation state.

JP2013239994A 2013-11-20 2013-11-20 Battery power charge / discharge control system Active JP6318573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013239994A JP6318573B2 (en) 2013-11-20 2013-11-20 Battery power charge / discharge control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013239994A JP6318573B2 (en) 2013-11-20 2013-11-20 Battery power charge / discharge control system

Publications (2)

Publication Number Publication Date
JP2015100238A JP2015100238A (en) 2015-05-28
JP6318573B2 true JP6318573B2 (en) 2018-05-09

Family

ID=53376534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013239994A Active JP6318573B2 (en) 2013-11-20 2013-11-20 Battery power charge / discharge control system

Country Status (1)

Country Link
JP (1) JP6318573B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104979880A (en) * 2015-07-23 2015-10-14 成都博德恒宝科技有限公司 Three-state overcharge protection method of multi-section-series-connection battery charging
JP7054453B2 (en) * 2018-11-29 2022-04-14 トヨタ自動車株式会社 Power system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001136666A (en) * 1999-11-09 2001-05-18 Toyota Motor Corp Battery controller
JP4069720B2 (en) * 2002-10-10 2008-04-02 日産自動車株式会社 Overcharge / discharge monitoring device for battery pack
JP2012050294A (en) * 2010-08-30 2012-03-08 Fuji Electric Co Ltd Control system for power generator
JP6056205B2 (en) * 2012-06-06 2017-01-11 富士電機株式会社 Battery power supply charge / discharge control device

Also Published As

Publication number Publication date
JP2015100238A (en) 2015-05-28

Similar Documents

Publication Publication Date Title
KR101846680B1 (en) Battery management system for vehicle
JP5782803B2 (en) Battery charging device and battery charging method
JP5267675B2 (en) VEHICLE CHARGE SYSTEM AND ELECTRIC VEHICLE HAVING THE SAME
EP2645527A1 (en) Battery pack
KR101866037B1 (en) Battery management system for vehicle
WO2012043134A1 (en) Storage battery charging/discharging control device and storage battery charging/discharging control method
KR102196639B1 (en) Energy storage device using lithium battery and supercapacitor and method of output stabilizing thereof
KR101342602B1 (en) Battery pack
US9413037B2 (en) Cell capacity adjusting device
KR20180056428A (en) Apparatus for preventing over-discharging of battery
JP4845756B2 (en) Power supply for vehicle
JP4148468B2 (en) Battery charge control device
JP4717856B2 (en) Battery system, battery system control method, battery system control program, and program recording medium
JP6318573B2 (en) Battery power charge / discharge control system
TWI584555B (en) Power storage system
CN109120059B (en) Method for controlling an uninterruptible power supply system and associated power supply system
JP2009071922A (en) Dc backup power supply device and method of controlling the same
JP6478293B2 (en) Battery management unit and control method thereof
JP4092656B2 (en) Battery floating charge control system
JP6003225B2 (en) Control method and control apparatus for electric propulsion system
JP5525199B2 (en) Battery capacity control device for battery pack
JP5987298B2 (en) Lithium-ion battery charging method
KR102538244B1 (en) Device and method for preventing battery abnormalities using diodes
JP6056205B2 (en) Battery power supply charge / discharge control device
US20240149813A1 (en) Vehicle electric power supply device, control method, and storage medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170913

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180130

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180319

R150 Certificate of patent or registration of utility model

Ref document number: 6318573

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250