JP5987298B2 - Lithium-ion battery charging method - Google Patents

Lithium-ion battery charging method Download PDF

Info

Publication number
JP5987298B2
JP5987298B2 JP2011249803A JP2011249803A JP5987298B2 JP 5987298 B2 JP5987298 B2 JP 5987298B2 JP 2011249803 A JP2011249803 A JP 2011249803A JP 2011249803 A JP2011249803 A JP 2011249803A JP 5987298 B2 JP5987298 B2 JP 5987298B2
Authority
JP
Japan
Prior art keywords
charging
lithium ion
battery
voltage
batteries
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011249803A
Other languages
Japanese (ja)
Other versions
JP2013106466A (en
Inventor
泰弘 高林
泰弘 高林
謙二 馬場
謙二 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2011249803A priority Critical patent/JP5987298B2/en
Publication of JP2013106466A publication Critical patent/JP2013106466A/en
Application granted granted Critical
Publication of JP5987298B2 publication Critical patent/JP5987298B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Description

この発明は、複数のリチウムイオン電池(以下、単に電池ともいう)を直列接続して構成されるリチウムイオン電池の充放電方式、特にその監視・管理を容易にするための充放電方式に関する。   The present invention relates to a charge / discharge system for a lithium ion battery configured by connecting a plurality of lithium ion batteries (hereinafter also simply referred to as batteries) in series, and more particularly to a charge / discharge system for facilitating monitoring and management.

電池を主電源とする大電力システムでは、多数の単電池を直並列接続して容量の増大を図るのが一般的である。
ところで、直並列接続された多数の電池からなる電池電源を一括して充電すると、各電池の特性ばらつきにより充電量にばらつきが発生し、総充電量が低下するという問題がある。また、この場合、充電量が低下した電池の充電量を増加させるために充電を継続すると、既に満充電になっている電池が過充電になるという問題もある。
In a high-power system using a battery as a main power source, it is common to increase the capacity by connecting a large number of single cells in series and parallel.
By the way, when a battery power source composed of a large number of batteries connected in series and parallel is collectively charged, there is a problem in that the amount of charge varies due to the characteristic variation of each battery and the total amount of charge decreases. In this case, if charging is continued to increase the charge amount of the battery whose charge amount has decreased, there is a problem that the battery that is already fully charged becomes overcharged.

図8に、10個の電池B1〜B10を直列接続した場合の充放電動作例を示す。同図(a)は放電初期状態、同(b)は放電終止状態、同(c)は充電動作1の状態、同(d)は充電動作2の状態をそれぞれ示している。
ここで、放電初期状態は新品時または満充電時を想定している。放電動作は次式のように表わすことができる
VBd=eB−IB×RB…(1)
ここに、VBd:放電時電池端子電圧、eB:電池起電圧、−IB:放電電流、RB:内部抵抗をそれぞれ示す。
FIG. 8 shows an example of charge / discharge operation when 10 batteries B1 to B10 are connected in series. FIG. 4A shows an initial discharge state, FIG. 4B shows a discharge end state, FIG. 3C shows a state of the charging operation 1, and FIG.
Here, the initial discharge state is assumed to be new or fully charged. The discharge operation can be expressed as follows: VBd = eB−IB × RB (1)
Here, VBd: battery terminal voltage during discharge, eB: battery electromotive voltage, -IB: discharge current, and RB: internal resistance, respectively.

いま、放電電流−IBが流れると、B1電池電圧VB1は、起電圧eB1=レベル−1、電池内部抵抗による電圧降下IB×RB1=レベル−1、よって電池電圧VB1=レベル−2となる。また、B2電池電圧VB2は、起電圧eB2=レベル−2、電池内部抵抗による電圧降下IB×RB2=レベル−2、よって電池電圧VB2=レベル−4となり、同様にB3電池電圧VB3は、起電圧eB3=レベル−3、電池内部抵抗による電圧降下IB×RB3=レベル−3、よって電池電圧VB3=レベル−6となる。
他の電池B4〜B10も同様で、個別電池の内部抵抗ばらつきによって、電池内部電圧降下値が黒枠で示すように相違する結果、個別電池電圧VB1〜VB10に差が生じることになる。なお、直列電池の両端電圧VBdは、
VBd=VB1+VB2+VB3+VB4+VB5+VB6+VB7+VB8+VB9VB10
である。
Now, when the discharge current -IB flows, the B1 battery voltage VB1 becomes the electromotive voltage eB1 = level-1 and the voltage drop IB × RB1 = level-1 due to the battery internal resistance, so that the battery voltage VB1 = level-2. Further, the B2 battery voltage VB2 is the electromotive voltage eB2 = level-2, the voltage drop IB × RB2 = level-2 due to the battery internal resistance, and thus the battery voltage VB2 = level-4. Similarly, the B3 battery voltage VB3 is the electromotive voltage. eB3 = level-3, voltage drop due to battery internal resistance IB × RB3 = level-3, and thus battery voltage VB3 = level-6.
The same applies to the other batteries B4 to B10. Due to variations in the internal resistance of the individual batteries, the battery internal voltage drop values differ as indicated by the black frame, resulting in differences in the individual battery voltages VB1 to VB10. The voltage VBd across the series battery is
VBd = VB1 + VB2 + VB3 + VB4 + VB5 + VB6 + VB7 + VB8 + VB9VB10
It is.

図9に電池の内部抵抗変化と充電容量(残存量)との関係を示す。
図示のように、残存量多(満充電)では内部抵抗RBは小さく、残存量少(放電終止)では内部抵抗RBは大きくなる傾向にあることが分る。また、内部抵抗RBはサイクル寿命,カレンダー寿命によっても増加する。
図8(b)に示す放電終止状態は、複数回の充放電動作により、各電池の内部抵抗ばらつきが拡大した様子を示している。すなわち、B1電池の電圧降下=レベル−1⇒レベル−4に増加、B2電池の電圧降下=レベル−2⇒レベル−8に増加、B3電池の電圧降下=レベル−3⇒レベル−12に増加しており、特に電池B3,B6,B9の特性ばらつきの多いことが分る。
FIG. 9 shows the relationship between the internal resistance change of the battery and the charge capacity (remaining amount).
As shown, the internal resistance RB tends to be small when the remaining amount is large (full charge), and the internal resistance RB tends to be large when the remaining amount is small (end of discharge). Further, the internal resistance RB increases with cycle life and calendar life.
The end-of-discharge state shown in FIG. 8B shows a state in which the variation in internal resistance of each battery is expanded by a plurality of charge / discharge operations. That is, the voltage drop of the B1 battery is increased from level-1 to level-4, the voltage drop of the B2 battery is increased from level-2 to level-8, and the voltage drop of the B3 battery is increased from level-3 to level-12. In particular, it can be seen that the battery B3, B6, B9 has a large variation in characteristics.

この状態から、10個直列接続電池群を一括充電したときの充電動作1を、図8(c)に示す。
充電動作は次式で示される。
VBc=eB+IB×RB…(2)
ここに、VBc:充電時電池端子電圧、eB:電池起電圧、+IB:充電電流、RB:内部抵抗を示す。
充電電流+IBにより、B1電池の印加電圧VB1=レベル+1、電池内部抵抗による電圧降下IB×RB1=レベル+1⇒レベル−1(黒枠)、よって起電圧eB1=レベル−1となる。また、B2電池の印加電圧VB2=レベル0、電池内部抵抗による電圧降下IB×RB2=レベル0⇒レベル−3(黒枠)、よって起電圧eB2=レベル−3となり、同様にB3電池の印加電圧VB3=レベル−1、電池内部抵抗による電圧降下IB×RB3=レベル−1⇒レベル−5(黒枠)、よって起電圧eB3=レベル−5となる。
FIG. 8C shows a charging operation 1 when 10 series-connected battery groups are collectively charged from this state.
The charging operation is expressed by the following equation.
VBc = eB + IB × RB (2)
Here, VBc: battery terminal voltage during charging, eB: battery electromotive voltage, + IB: charging current, RB: internal resistance.
Due to the charging current + IB, the applied voltage VB1 of the B1 battery = level + 1, and the voltage drop IB × RB1 = level + 1⇒level-1 (black frame) due to the battery internal resistance, so that the electromotive voltage eB1 = level-1. Further, the applied voltage VB2 of the B2 battery = level 0, the voltage drop IB × RB2 = level 0 → level-3 (black frame) due to the battery internal resistance, and therefore the electromotive voltage eB2 = level-3, and similarly the applied voltage VB3 of the B3 battery = Level-1, voltage drop due to battery internal resistance IB × RB3 = level-1 => level-5 (black frame), therefore, electromotive voltage eB3 = level-5.

このように、電池内部抵抗ばらつきの相違により電池内部電圧降下値(黒枠)に差が発生して、各電池の端子電圧VBおよび起電圧eBに差が生じる。つまり、B1電池起電圧=eB1、B2電池起電圧=eB2、B3電池起電圧=eB3…のように、起電圧にばらつきが生じる。なお、このときの直列電池の両端電圧VBcは、
VBc=VB1+VB2+VB3+VB4+VB5+VB6+VB7+VB8+VB9VB10
である。
As described above, the difference in battery internal resistance causes a difference in the battery internal voltage drop value (black frame), resulting in a difference in the terminal voltage VB and the electromotive voltage eB of each battery. That is, the electromotive voltages vary as follows: B1 battery electromotive voltage = eB1, B2 battery electromotive voltage = eB2, B3 battery electromotive voltage = eB3. Note that the voltage VBc across the series battery at this time is
VBc = VB1 + VB2 + VB3 + VB4 + VB5 + VB6 + VB7 + VB8 + VB9VB10
It is.

起電圧値は充電量を示すから、B1電池は充電量が多く、B2電池の充電量は中で、B3電池の充電量は少のように、各電池の充電ばらつきが生じ、B1〜B10電池の合計起電圧=合計充電量が低下することになる。
ここで、充電量が少ないB3電池の充電量を増加させるために、充電電圧VBcを上昇させて充電すると、B3電池起電圧eB3レベル−5⇒レベル−1へ4段階電圧が上昇(点線枠表示)するが、B1電池起電圧eB1レベル−1⇒レベル+3、B2電池起電圧eB2レベル−3⇒レベル+1へ上昇するから、B1,B2電池は過充電動作状態になる。このように、直列接続リチウムイオン電池を一括充電すると、個別電池特性ばらつきによって合計容量が低下し、容量低下した電池を追加充電すると、容量低下していない他の電池は過充電となる。
Since the electromotive voltage value indicates the amount of charge, the B1 battery has a large charge amount, the charge amount of the B2 battery is medium, and the charge amount of the B3 battery is small. Total electromotive voltage = total charge amount decreases.
Here, in order to increase the charge amount of the B3 battery with a small charge amount, when the charge voltage VBc is increased and charged, the four-step voltage increases from the B3 battery electromotive voltage eB3 level-5 to the level-1 (dotted line frame display) However, since the B1 battery electromotive voltage eB1 level-1 rises to +3 and the B2 battery electromotive voltage eB2 level-3 rises to the level + 1, the B1 and B2 batteries are in an overcharge operation state. In this way, when the series-connected lithium ion batteries are collectively charged, the total capacity is reduced due to variations in individual battery characteristics, and when the batteries with reduced capacity are additionally charged, other batteries that have not been reduced in capacity are overcharged.

ところで、充電ばらつきを是正するための補充電方法として、例えば特許文献1(特許第4148468号公報)に記載のものがある。   By the way, as a supplementary charging method for correcting the charging variation, for example, there is a method described in Patent Document 1 (Japanese Patent No. 4148468).

特許第4148468号公報Japanese Patent No. 4148468

しかし、特許文献1に記載のものは電池が複数個並列接続されるものに対してなされたものであり、電池が複数個直列接続されるものに対してではない。
従って、この発明は複数の個別電池を直列接続した電池電源において、個別電池の特性ばらつきによって生じる充電量の低下を補充電により是正するとともに、個別電池に過充電が発生しないようにすることにある。また、各電池の内部抵抗,起電圧を監視・管理できるようにし、異常が発生したときは充放電動作を停止させるとともに、警報を発せられるようにすることにある。
However, the one described in Patent Document 1 is made for a case where a plurality of batteries are connected in parallel, not for a case where a plurality of batteries are connected in series.
Therefore, in the battery power source in which a plurality of individual batteries are connected in series, the present invention is to correct the decrease in the amount of charge caused by the characteristic variation of the individual batteries by supplementary charging and to prevent overcharging of the individual batteries. . Also, the internal resistance and electromotive voltage of each battery can be monitored and managed, and when an abnormality occurs, the charge / discharge operation is stopped and an alarm can be issued.

このような課題を解決するため、請求項1の発明では、複数のリチウムイオン電池を直列接続した1群のリチウムイオン電池と、この1群のリチウムイオン電池の充電を行う充放電装置と、この充放電装置を前記1群のリチウムイオン電池、または個別のリチウムイオン電池に個別に選択して接続するスイッチング手段を設け、このスイッチング手段により、前記充放電装置を前記1群のリチウムイオン電池、または個別のリチウムイオン電池に個別に接続して前記1群のリチウムイオン電池、または個別のリチウムイオン電池の充電を行うようにしたリチウムイオン電池の充電方法において、
前記充放電装置を発電機とこの発電機の出力電圧を前記個別のリチウムイオン電池の電圧に降圧するチョッパとにより構成し、前記充放電装置の発電機により、前記1群のリチウムイオン電池を一括して充電を行った後、前記個別のリチウムイオン電池の充放電状態を個別に監視し、電池電圧が予め設定された規定値より低いリチウムイオン電池を検出したときは、この検出した電圧の低い個別のリチウムイオン電池に個別に、前記充放電装置の前記発電機を前記チョッパを介して順次切り換えて接続して補充電を行うことを特徴とする。
In order to solve such a problem, in the invention of claim 1, a group of lithium ion batteries in which a plurality of lithium ion batteries are connected in series, a charging / discharging device for charging the group of lithium ion batteries, Switching means for individually selecting and connecting the charging / discharging device to the first group of lithium ion batteries or the individual lithium ion batteries is provided, and the charging / discharging device is connected to the first group of lithium ion batteries by the switching means, or In the method of charging a lithium ion battery that is individually connected to an individual lithium ion battery to charge the group of lithium ion batteries or the individual lithium ion battery,
The charging / discharging device is constituted by a generator and a chopper that lowers the output voltage of the generator to the voltage of the individual lithium ion battery, and the group of lithium ion batteries is collectively collected by the generator of the charging / discharging device. after charging to the monitored individually charge and discharge states of the individual lithium ion battery, when the battery voltage is detected low lithium ion battery than a preset specified value, the detected voltage The auxiliary charging is performed by individually switching and connecting the generator of the charging / discharging device to the low individual lithium ion battery through the chopper .

請求項2の発明は、複数のリチウムイオン電池を直列接続した1群のリチウムイオン電池と、この1群のリチウムイオン電池の充電を行う充放電装置と、この充放電装置を前記1群のリチウムイオン電池、または個別のリチウムイオン電池に個別に選択して接続するスイッチング手段を設け、このスイッチング手段により、前記充放電装置を前記1群のリチウムイオン電池、または個別のリチウムイオン電池に個別に接続して前記1群のリチウムイオン電池、または個別のリチウムイオン電池の充電を行うようにしたリチウムイオン電池の充電方法において、
前記充放電装置を発電機とこの発電機の出力電圧を前記個別のリチウムイオン電池の電圧に降圧するチョッパとにより構成し、前記充放電装置の発電機により、前記複数のリチウムイオン電池を直列接続した1群のリチウムイオン電池を一括して充電を行った後、前記リチウムイオン電池の充放電状態を個別に監視し、電池電圧が予め設定された規定値より低い個別のリチウムイオン電池を検出したときは、前記1群のリチウムイオン電池の個別のリチウムイオン電池の相互の直列接続を切り離して、前記検出された電圧の低い個別のリチウムイオン電池の全部に、前記充放電装置の発電機を、前記チョッパを介して並列に接続して補充電を行うことを特徴とする
前記請求項1または2の発明において、充電時と放電時とで同じ電流を流したときの電池電圧から電池内部抵抗,電池起電圧を求め、リチウムイオン電池を個別接続状態または直列接続状態のいずれにおいても、各電池の特性状態の監視・管理を可能にすることができる(請求項の発明)。
The invention of claim 2 includes a group of lithium ion batteries in which a plurality of lithium ion batteries are connected in series, a charging / discharging device for charging the group of lithium ion batteries, and the charging / discharging device of the group of lithium ions. Switching means for individually selecting and connecting to an ion battery or an individual lithium ion battery is provided, and the charging / discharging device is individually connected to the group of lithium ion batteries or the individual lithium ion batteries by the switching means. In the method of charging a lithium ion battery in which the first group of lithium ion batteries or an individual lithium ion battery is charged,
The charging / discharging device comprises a generator and a chopper that steps down the output voltage of the generator to the voltage of the individual lithium ion battery, and the plurality of lithium ion batteries are connected in series by the generator of the charging / discharging device. After charging the group of lithium ion batteries collectively, the charge / discharge state of the lithium ion batteries was individually monitored, and individual lithium ion batteries having a battery voltage lower than a preset specified value were detected. When disconnecting the series connection of the individual lithium ion batteries of the first group of lithium ion batteries, the generator of the charge / discharge device is connected to all of the detected individual lithium ion batteries having a low voltage, Supplementary charging is performed by connecting in parallel via the chopper .
In the first or second aspect of the present invention, the battery internal resistance and the battery electromotive voltage are obtained from the battery voltage when the same current is passed during charging and discharging, and the lithium ion battery is either individually connected or connected in series. In this case, it is possible to monitor and manage the characteristic state of each battery (invention of claim 3 ).

この発明によれば、複数個の個別電池を直列接続した電池電源において、補充電を個別にできる構成とすることで、ばらつきの個別修正を可能とし、直列接続電池の総充電量の低下を抑制する。また、充電と放電とで同値の電流を通電した際の個別電池または直列接続電池群の端子電圧から、電池の内部抵抗,起電圧を算出し、個別接続または直列接続状態のいずれでも電池状態の監視・管理ができるようにする。
さらに、並列接続電池のばらつき修正のための充電方式については、上記特許文献1に示すものがあるので、これとこの発明方式とを併用することで直並列電池の特性ばらつきのための補充電ができ、全電池の総充電量の低下を抑制することが可能となる。
According to the present invention, in a battery power source in which a plurality of individual batteries are connected in series, a configuration in which supplementary charging can be performed individually enables individual correction of variations and suppresses a decrease in the total charge amount of series-connected batteries. To do. In addition, the internal resistance and electromotive force of the battery are calculated from the terminal voltage of the individual battery or series-connected battery group when the same current is passed between charge and discharge, and the battery state is determined in either the individual connection or series connection state. Enable monitoring and management.
Furthermore, since there is a charging method for correcting variations in parallel-connected batteries as described in Patent Document 1, supplementary charging for variation in characteristics of series-parallel batteries can be performed by using this and this invention method in combination. It is possible to suppress a decrease in the total charge amount of all the batteries.

この発明の第1の実施の形態を示す部分構成図Partial block diagram showing the first embodiment of the present invention 図1Aの変形例を示す部分構成図Partial configuration diagram showing a modification of FIG. 1A 図1Aのより具体的な構成図More specific configuration diagram of FIG. 1A この発明の第2の実施の形態を示す部分構成図Partial configuration diagram showing a second embodiment of the present invention 図1A,1Bや図2の場合の充電動作説明図Explanatory diagram of charging operation in the case of FIG. 1A, 1B and FIG. 図3の場合の充電動作説明図Charge operation explanatory diagram in the case of FIG. 直列接続電池の充放電動作を示す回路構成図Circuit diagram showing charge / discharge operation of series-connected batteries 図5の充放電動作説明図Explanatory diagram of charge / discharge operation of FIG. 図1A,1B,2に対応の応用例を示す詳細構成図Detailed configuration diagram showing an application example corresponding to FIGS. 1A, 1B, and 2 図1Bに対応の応用例を示す詳細構成図Detailed configuration diagram showing an application example corresponding to FIG. 1B 電池の充放電動作を説明するための説明図Explanatory drawing for demonstrating the charging / discharging operation | movement of a battery 電池の内部抵抗変化例を説明する説明図Explanatory drawing explaining the internal resistance change example of a battery

図1Aはこの発明の第1の実施の形態を示す構成図である。
同図において、B1〜B10は電池、12(SWL),17(SWG),SWP,SWN,SWPS,SWNSはスイッチ、13(L)は負荷、14(G)は発電機、23(CH)はチョッパを示す。
これは、各電池B1〜B10をチョッパ23を介して充電する例で、この場合は発電機14の出力電圧Gをチョッパ23により(1/直列電池接続数n)にし、接続点PS/NSを各電池に接続して充電を行なう。スイッチSWPS,SWNSとしては機械式接点スイッチでも良く、図1(b)に示す半導体スイッチ、または同(c)示す双方向半導体スイッチを用いても良い。なお、図1Bは図1Aからチョッパを省略しただけのものなので、以下では実質的に同じものとして扱うこととする。
FIG. 1A is a block diagram showing a first embodiment of the present invention.
In the figure, B1 to B10 are batteries, 12 (SWL), 17 (SWG), SWP, SWN, SWPS, and SWNS are switches, 13 (L) is a load, 14 (G) is a generator, and 23 (CH) is a switch. Shows chopper.
This is an example in which the batteries B1 to B10 are charged via the chopper 23. In this case, the output voltage G of the generator 14 is set to (1 / series battery connection number n) by the chopper 23, and the connection point PS / NS is set. Connect to each battery to charge. The switches SWPS and SWNS may be mechanical contact switches, or a semiconductor switch shown in FIG. 1B or a bidirectional semiconductor switch shown in FIG. In addition, since FIG. 1B is a thing which abbreviate | omitted the chopper from FIG. 1A, suppose that it treats as the substantially same thing below.

各電池の充放電動作状態の監視・管理は、図示されない電圧検出器で検出した電池電圧VB1〜VB10を、図示されない電池充放電&状態監視制御装置により取り込み、これを基に電池内部抵抗や起電圧を求め、これを規定値と比較するなどして行なわれる。その結果、例えば図8で、電池B3,B6,B9が規定値を超えたばらつき電池と判定したときは、これらの電池を選択し、発電機14またはチョッパ23の出力電圧を、スイッチSWPS−PS,SWNS−NSを介してB3電池へ印加して充電を行ない、B3電池の充電が完了したらB6電池へ切り換えて充電を行ない、その充電が完了したらB9電池へと切り換え、その充電が完了したら充電(補充電)を完了するようにして、ばらつきを是正することができる。   Monitoring and management of the charge / discharge operation status of each battery is performed by taking in battery voltages VB1 to VB10 detected by a voltage detector (not shown) by a battery charge / discharge & status monitoring control device (not shown), and based on this, the battery internal resistance and occurrence For example, the voltage is obtained and compared with a specified value. As a result, for example, when it is determined in FIG. 8 that the batteries B3, B6, B9 are the variation batteries exceeding the specified value, these batteries are selected, and the output voltage of the generator 14 or the chopper 23 is changed to the switch SWPS-PS. , SW3-NS is applied to the B3 battery for charging. When the charging of the B3 battery is completed, the battery is switched to the B6 battery. When the charging is completed, the battery is switched to the B9 battery. When the charging is completed, the battery is charged. Variations can be corrected by completing (supplementary charging).

図2は図1Aで双方向半導体スイッチを用いた例である。この双方向半導体スイッチは、
例えば特許第4333659号公報に示されている。
この回路で、例えば電池B1を充電する場合、双方向半導体スイッチSWB1のP側Q1,N側Q1をオンすると、電源PからダイオードD13⇒P側Q1⇒ダイオードD12⇒電池B1⇒ダイオードD1⇒N側Q1⇒ダイオードD14⇒電源Nへと充電電流が流れる。この回路では、同時には1個のみの充電を行なうものとする。これは、電池2個の双方向半導体スイッチを同時ONすると、2電池間で短絡が生じるからである。
FIG. 2 shows an example in which the bidirectional semiconductor switch is used in FIG. 1A. This bidirectional semiconductor switch
For example, it is shown in Japanese Patent No. 4333659.
In this circuit, for example, when the battery B1 is charged, when the P-side Q1 and the N-side Q1 of the bidirectional semiconductor switch SWB1 are turned on, the power supply P starts from the diode D13⇒P side Q1⇒diode D12⇒battery B1⇒diode D1⇒N side. Charging current flows from Q1 to diode D14 to power source N. In this circuit, only one charge is performed at the same time. This is because when two bidirectional semiconductor switches of two batteries are simultaneously turned ON, a short circuit occurs between the two batteries.

したがって、ここでの補充電は1個のみとし、その補充電が完了したら次の電池の補充電を完了させる、という具合に順次切り換えて補充電を行なう。この場合の、充電動作を図4Aに示す。
同図(a),(b)は定電圧充電動作を示し、発電機出力電圧VGをチョッパ23で調整してVBとした後、各電池に印加して充電する。図4Aの時刻t1でSWB3をオンしてB3電池の定電圧充電を開始し、充電電流IB3が予め設定したIBEに至ればSWB3をオフし、次にSWB6をオンしてB6電池の定電圧充電を開始し、充電電流IB6が予め設定したIBEに至ればSWB6をオフし、その後SWB9をオンしてB9電池の定電圧充電を開始し、充電電流IB9が予め設定したIBEに至ればSWB9をオフして、1群の電池の個別充電を完了する。
Therefore, only one auxiliary charge is used here, and when the auxiliary charge is completed, the auxiliary charge of the next battery is completed. FIG. 4A shows the charging operation in this case.
FIGS. 4A and 4B show a constant voltage charging operation, in which the generator output voltage VG is adjusted to VB by the chopper 23 and then applied to each battery for charging. At time t1 in FIG. 4A, SWB3 is turned on to start constant voltage charging of the B3 battery. When the charging current IB3 reaches a preset IBE, SWB3 is turned off, and then SWB6 is turned on to charge the B6 battery at constant voltage. When the charging current IB6 reaches the preset IBE, the SWB6 is turned off, and then the SWB9 is turned on to start constant voltage charging of the B9 battery. When the charging current IB9 reaches the preset IBE, the SWB9 is turned off. Then, individual charging of a group of batteries is completed.

図4A(c),(d)は定電流充電動作を示し、発電機出力電流IGをチョッパで調整した後各電池に印加して充電する。時刻t1でSWB3をオンしてB3電池の定電流充電を開始し、電池電圧VB3が予め設定したVBEに至ればSWB3をオフし、次にSWB6をオンしてB6電池の定電流充電を開始し、電池電圧VB6が予め設定したVBEに至ればSWB6をオフし、その後SWB9をオンしてB6電池の定電流充電を開始し、電池電圧VB9が予め設定したVBEに至ればSWB9をオフして全電池の個別充電を完了する。
このような補充電により、図8でばらつきが大きい電池B3,B6,B9の起電圧レベル−4⇒レベル−2になるようにする例を、充電動作2として図8(d)に示している。
4A (c) and 4 (d) show a constant current charging operation, in which the generator output current IG is adjusted with a chopper and then applied to each battery for charging. At time t1, SWB3 is turned on to start constant current charging of the B3 battery. When the battery voltage VB3 reaches a preset VBE, SWB3 is turned off, and then SWB6 is turned on to start constant current charging of the B6 battery. When the battery voltage VB6 reaches the preset VBE, the SWB6 is turned off, and then the SWB9 is turned on to start constant current charging of the B6 battery. When the battery voltage VB9 reaches the preset VBE, the SWB9 is turned off Complete individual charging of the battery.
FIG. 8D shows an example of charging operation 2 in which the electromotive voltage level of the batteries B3, B6, and B9 having large variations in FIG. .

次に、各電池の特性状態の監視・管理方法について説明する。ここでは、充電時と放電時で同じ値の電流を流して各電池の端子電圧を検出する。
放電時には、スイッチSWGをオフして発電機14を切り離し、チョッパ23を停止させる一方、スイッチSWLをオンし、選択すべき電池のスイッチSWBをオンにし、充電電流と同値の放電電流(負荷13で調整)を流し、電池の端子電圧を計測する。充放電時の電池端子電圧は、先の(1),(2)式のように表わされる。
放電時:VBd=eB−IB×RB…(1)
充電時:VBc=eB+IB×RB…(2)
Next, a method for monitoring and managing the characteristic state of each battery will be described. Here, the terminal voltage of each battery is detected by supplying the same current during charging and discharging.
At the time of discharging, the switch SWG is turned off to disconnect the generator 14 and the chopper 23 is stopped. On the other hand, the switch SWL is turned on and the switch SWB of the battery to be selected is turned on. Adjust) and measure the battery terminal voltage. The battery terminal voltage at the time of charging / discharging is represented by the above formulas (1) and (2).
During discharge: VBd = eB−IB × RB (1)
During charging: VBc = eB + IB × RB (2)

上記(1),(2)式より、充電時の起電圧eBは端子電圧VBcより電圧降下分だけ低い電圧であり、放電時の起電圧eBは端子電圧VBdより電圧降下分だけ高い電圧になる。従って、充電時と放電時でほぼ同値の電流を流したときの端子電圧VBc,VBdから、
電圧差ΔVB=VBd−VBc=2×(IB×RB)…(3)
内部抵抗値RB=(ΔVB÷IB)÷2 …(4)
起電圧eB=VB−IB×RB …(5)
以上より、充放電動作における各電池の端子電圧から内部抵抗および起電圧が算出できるから、これを用いて各電池の特性を監視・管理することが可能となる。
From the above formulas (1) and (2), the electromotive voltage eB during charging is lower than the terminal voltage VBc by a voltage drop, and the electromotive voltage eB during discharging is higher than the terminal voltage VBd by a voltage drop. . Therefore, from the terminal voltages VBc and VBd when substantially the same current flows at the time of charging and discharging,
Voltage difference ΔVB = VBd−VBc = 2 × (IB × RB) (3)
Internal resistance value RB = (ΔVB ÷ IB) / 2 (4)
Electromotive voltage eB = VB−IB × RB (5)
As described above, since the internal resistance and the electromotive voltage can be calculated from the terminal voltage of each battery in the charge / discharge operation, the characteristics of each battery can be monitored and managed using this.

図3に、図1A,1Bや図2とは異なる例を示す。これは、図2に示すものに対し、各電池間にスイッチDS1〜DS10を挿入して、充電を行なうものである。この回路では短絡回路が形成されないから、選択した複数個の電池を並列状態にして、同時に補充電を行なうことができる。例えば、スイッチSWB3,SWB6,SWB9を同時にオンして補充電が可能となる。   FIG. 3 shows an example different from FIGS. 1A and 1B and FIG. This is different from that shown in FIG. 2 in that switches DS1 to DS10 are inserted between the batteries to perform charging. Since this circuit does not form a short circuit, a plurality of selected batteries can be placed in parallel to perform supplementary charging at the same time. For example, the switches SWB3, SWB6, and SWB9 are simultaneously turned on to enable supplementary charging.

図3の場合の充電動作を図4Bに示す。図4B(a),(b)は定電圧充電動作を示し、チョッパを定電圧制御してその出力電圧VBCHで各電池を充電する。
図4Bのt1時点において、スイッチSWB3,SWB6,SWB9を同時にオンして定電圧充電を開始する。そして、各電池の充電電流が予め設定したIBEに達したら、対応する電池のスイッチをオフして充電を完了させる。例えば、B3電池がIBEに至ればSWB3をオフし、次にB6電池がIBEに至ればSWB6をオフし、その後B9電池がIBEに至ればSWB9をオフして充電を完了する。
図4B(c),(d)は定電流充電動作を示し、チョッパを定電流制御して各電池を充電する。ここで、3個の電池B3,B6,B9を並列接続した状態で定電流充電を行なうが、この場合はパルス充電方式とするのが好ましい。なぜなら、並列接続される電池の端子電圧は同電位であり、個別電池の充電状態の監視ができないので、先の特許文献1等によりよく知られているパルス充電方式を用いた充電方式が最適である。
The charging operation in the case of FIG. 3 is shown in FIG. 4B. 4B (a) and 4 (b) show a constant voltage charging operation, in which the chopper is controlled at a constant voltage and each battery is charged with the output voltage VBCH.
At time t1 in FIG. 4B, the switches SWB3, SWB6, and SWB9 are simultaneously turned on to start constant voltage charging. When the charging current of each battery reaches the preset IBE, the corresponding battery is turned off to complete charging. For example, when the B3 battery reaches IBE, the SWB3 is turned off, and then when the B6 battery reaches IBE, the SWB6 is turned off. When the B9 battery reaches IBE, the SWB9 is turned off to complete the charging.
4B (c) and 4 (d) show a constant current charging operation, in which each battery is charged by performing constant current control of the chopper. Here, constant current charging is performed in a state where three batteries B3, B6, and B9 are connected in parallel. In this case, a pulse charging method is preferable. This is because the terminal voltages of the batteries connected in parallel are the same potential, and the charging state of the individual batteries cannot be monitored, so the charging method using the pulse charging method well known from the above-mentioned Patent Document 1 is optimal. is there.

定電流制御されたチョッパの出力電流を、並列接続の電池B3,B6,B9に供給するとき、t1時点からB3⇒B6⇒B9のように時系列的に各電池を切り換えて定電流制御を行なう。t2時点でB3の電池電圧が予め設定したVBEに至れば、B3のスイッチSWB3をオフして充電を完了させ、t2時点からはB6⇒B9の時系列順に切り換えて定電流充電を行ない、t3時点でB6の電池電圧が予め設定したVBEに至れば、B6のスイッチSWB6をオフして充電を完了させ、t3時点からはB9のみの充電を行ない、t4時点でB9の電池電圧が予め設定したVBEに至れば充電を完了する。
なお、この充電動作におけるチョッパの出力電流値は、個別電池数により変更することとする。また、連続して定電流充電をする場合は、個別電池の充電状態は充電電流によって判定するものとする。
なお、放電動作は図1A,1Bや図2と変わらないので、説明は省略する。
When the output current of the chopper subjected to constant current control is supplied to the batteries B3, B6, B9 connected in parallel, the constant current control is performed by switching each battery in time series from time t1 as B3⇒B6⇒B9. . When the battery voltage of B3 reaches the preset VBE at time t2, the switch SWB3 of B3 is turned off to complete charging, and from time t2, B6⇒B9 are switched in chronological order to perform constant current charging, and time t3 When the battery voltage of B6 reaches the preset VBE, the switch SWB6 of B6 is turned off to complete charging, and only B9 is charged from time t3, and the battery voltage of B9 is preset to VBE at time t4. When it reaches, charging is completed.
Note that the output current value of the chopper in this charging operation is changed depending on the number of individual batteries. Moreover, when carrying out constant current charge continuously, the charging state of an individual battery shall be determined with a charging current.
The discharge operation is the same as in FIGS. 1A, 1B, and FIG.

図5は、直列接続電池の充放電動作を示す回路図である。これは、図2に示すものに対し、スイッチ3(SWP2)4(SWQ),22(SWT)、電圧検出器7(VD1),8、電流検出器10(SHB)および上述の電池充放電&状態監視制御装置50などを付加した点で相違し、他は同様である。
図5において個別に補充電を行なう場合は、スイッチSWP1とSWN1やSWQはオフ、スイッチSWP2とSWN2はオンとし、スイッチSWTをチョッパ(CH)23側に切り換える。これにより、チョッパ(CH)23の出力電圧VBCHがスイッチ22(SWT)を介して各電池に印加される。
電池充放電&状態監視制御装置50は、充電電流や充電電圧を指示するための制御信号66をチョッパ(CH)23に与え、選択信号をスイッチ5に与えることで、チョッパ出力電圧VBCHを各電池に印加し、各電池の充電を行なう。なお、通常の充放電はスイッチ22(SWT)を通常側とし、スイッチSWP2とSWN2はオフ、スイッチSWP1とSWN1はオンで、スイッチSWQをオン・オフさせて行なう。
FIG. 5 is a circuit diagram showing the charge / discharge operation of the series-connected batteries. This is different from that shown in FIG. 2 in that switches 3 (SWP2) 4 (SWQ) and 22 (SWT), voltage detectors 7 (VD1) and 8, current detector 10 (SHB) and the above-described battery charge / discharge & The difference is that a state monitoring control device 50 is added, and the others are the same.
In FIG. 5, when supplementary charging is performed individually, the switches SWP1, SWN1, and SWQ are turned off, the switches SWP2 and SWN2 are turned on, and the switch SWT is switched to the chopper (CH) 23 side. Thereby, the output voltage VBCH of the chopper (CH) 23 is applied to each battery via the switch 22 (SWT).
The battery charging / discharging & state monitoring control device 50 gives a control signal 66 for instructing a charging current and a charging voltage to the chopper (CH) 23 and gives a selection signal to the switch 5 so that the chopper output voltage VBCH is supplied to each battery. To charge each battery. Note that normal charging / discharging is performed by setting the switch 22 (SWT) to the normal side, the switches SWP2 and SWN2 are off, the switches SWP1 and SWN1 are on, and the switch SWQ is on and off.

図5の充放電動作の例を図6に示す。図6(a)は充電動作、同(b)は放電動作を示す。
電池充放電&状態監視制御装置50は、図5の電圧検出器7(VD1)で検出した電圧信号VB1と、電圧検出器8で検出した電圧信号VBinを受信し、これらの値が予め設定されているVBme(基準値),VBmx(許容最高値),VBmn(許容最低値),VBo(許容超過高),VBu(許容超過低)と比較し、図6(a)で電圧がVBmx〜VBmnの範囲の電池a,b,cは正常、この範囲外の電池d,eおよびfは異常と判定する。ここで、充電時の動作式は先の(2)式のように、
VBc=eB+IB×RB…(2)で示され、図6(a)では電池dは起電圧eBが許容値を超過しているとして、過充電状態と判定する。また、電池eは内部抵抗が大きく、起電圧eBが低い電池と判断し、電池fは起電圧eBが異常低下しており、異常電池と判断する。

An example of the charge / discharge operation of FIG. 5 is shown in FIG. FIG. 6A shows a charging operation, and FIG. 6B shows a discharging operation.
The battery charge / discharge & state monitoring control device 50 receives the voltage signal VB1 detected by the voltage detector 7 (VD1) of FIG. 5 and the voltage signal VBin detected by the voltage detector 8, and these values are preset. Compared with VBme (reference value), VBmx (allowable maximum value), VBmn (allowable minimum value), VBo (allowable excess high), and VBu (allowable excess low), the voltage is VBmx to VBmn in FIG. The batteries a, b, and c in the range are determined to be normal, and the batteries d, e, and f outside the range are determined to be abnormal. Here, the equation of operation at the time of charging is as in equation (2) above,
VBc = eB + IB × RB (2). In FIG. 6A, the battery d determines that the electromotive voltage eB exceeds the allowable value, and determines that it is in an overcharged state. Further, the battery e is determined to be a battery having a large internal resistance and a low electromotive voltage eB, and the battery f is determined to be an abnormal battery because the electromotive voltage eB is abnormally decreased.

このように、充電動作中に個別電池電圧が許容範囲を超えたとき、例えばdのような電池が検出されたら充電電流または充電電圧を低下させて過充電を抑制する。しかし、過充電状態が改善されないときは、警報を発するとともにスイッチSWP1,SWN1またはSWQをオフさせて充電動作を停止させる。また、eのような電池が検出されたときは、充電電流または充電電圧を増加させる。しかし、電圧状態が改善されないときは、スイッチSWP1,SWN1またはSWQをオフさせて充電動作を停止させる。さらに、fのような電池が検出されたときは異常であるから、警報を発するとともにスイッチSWP1,SWN1またはSWQをオフさせて充電動作を停止させる。   Thus, when the individual battery voltage exceeds the allowable range during the charging operation, for example, when a battery such as d is detected, the charging current or the charging voltage is reduced to suppress overcharging. However, if the overcharge state is not improved, an alarm is issued and the switch SWP1, SWN1, or SWQ is turned off to stop the charging operation. When a battery such as e is detected, the charging current or charging voltage is increased. However, when the voltage state is not improved, the switch SWP1, SWN1 or SWQ is turned off to stop the charging operation. Further, when a battery such as f is detected, it is abnormal, so that an alarm is issued and the switch SWP1, SWN1, or SWQ is turned off to stop the charging operation.

次に、図5の放電動作について、図6(b)を参照して説明する。その動作式は、次式のようになる。
VBd=eB−IB×RB…(1)
電池電圧の管理レベルは上記充電の場合と同じく、VBmx〜VBmnの範囲の電池a,b,cは正常、この範囲外の電池d,e,fおよびgは異常レベルとする。この場合、電池dは起電圧eBが許容値を超過して、過負荷放電状態であると判定する。また、電池eは内部抵抗が大きく起電圧eBが低いので、過放電状態であると判定する。fは起電圧eBが異常に低下して電池と判定し、さらにgは起電圧が0状態のため、放電電流による逆充電異常低下電池と判定する。
このように、直列接続電池の放電動作中に個別電池の電圧が許容範囲を超えたときは、放電電流を低下させるか、または警報を発するとともにスイッチSWP1,SWN1またはSWQをオフさせて放電動作を停止させる。
Next, the discharge operation of FIG. 5 will be described with reference to FIG. The operation equation is as follows.
VBd = eB−IB × RB (1)
As in the case of the above charging, the battery voltage management level is normal for the batteries a, b, and c in the range of VBmx to VBmn, and the batteries d, e, f, and g outside this range are abnormal levels. In this case, the battery d determines that the electromotive voltage eB exceeds the allowable value and is in an overload discharge state. Further, since the battery e has a large internal resistance and a low electromotive voltage eB, it is determined that the battery e is in an overdischarged state. f is determined to be a battery with an abnormally low electromotive voltage eB, and g is determined to be a reverse charge abnormally decreased battery due to a discharge current because the electromotive voltage is zero.
As described above, when the voltage of the individual battery exceeds the allowable range during the discharge operation of the series-connected batteries, the discharge current is reduced or the alarm is issued and the switch SWP1, SWN1 or SWQ is turned off to perform the discharge operation. Stop.

電池状態の監視・管理は、直列接続電池の充放電動作においてもこれまでの場合と同様に可能なのは勿論である。
すなわち、充電時と放電時でほぼ同値の電流を流したときの直列接続端子電圧VBc,VBdから、先の(3)〜(5)式と同じく、次式のように表わされる。
電圧差ΔVB=VBd−VBc=2×(IB×ΣRB)…(6)
内部抵抗値RB=(ΔVB÷IB)÷Σ …(7)
起電圧ΣeB=VB−IB×ΣRB …(8)
(Σ:直列接続電池の合計値)
以上より、電池直列接続状態の端子電圧から内部抵抗および起電圧が算出できるから、これを用いて直列接続状態で各電池の特性を監視・管理することが可能となる。
Obviously, the battery state can be monitored and managed in the charge / discharge operation of the series-connected batteries as well as in the past.
That is, from the series connection terminal voltages VBc and VBd when substantially the same current flows at the time of charging and discharging, it is expressed as the following equation, as in the previous equations (3) to (5).
Voltage difference ΔVB = VBd−VBc = 2 × (IB × ΣRB) (6)
Internal resistance value RB = (ΔVB ÷ IB) ÷ Σ (7)
Electromotive voltage ΣeB = VB−IB × ΣRB (8)
(Σ: Total value of series-connected batteries)
As described above, since the internal resistance and the electromotive voltage can be calculated from the terminal voltage in the battery series connection state, it is possible to monitor and manage the characteristics of each battery in the series connection state using this.

図7Aは先の図1A,2および5に対応する応用例図、7Bは図1Bに対応する応用例図で、図7Bはチョッパを持たないほかは図7Aと同じなので、ここでは図7Aを参照して説明する。
図7Aは、モ−タを用いて電気自動車や電気推進船舶などを駆動するシステムへの応用例を想定したもので、モ−タ20(M)の他に、発電機制御装置63などを備えた点が特徴である。また、同図の符号6(SHB1,SHBN),18(SHG)は電流検出器、9(VBD),19(VDG)は電圧検出器、11(SWB),21(SWM)、51(SWC),52(SWS),54(SWP),55(SWS1),64(SWGE)はスイッチ、15は発電機界磁(Gf)、53(SCB)は電池選択器、56(VRV)は電圧設定器、57(VRI)は電流設定器をそれぞれ示す。
7A is an application diagram corresponding to FIGS. 1A, 2 and 5 above, 7B is an application diagram corresponding to FIG. 1B, and FIG. 7B is the same as FIG. 7A except that it does not have a chopper. The description will be given with reference.
FIG. 7A assumes an application example to a system for driving an electric vehicle, an electric propulsion ship or the like using a motor, and includes a generator control device 63 in addition to the motor 20 (M). The point is the feature. Also, reference numerals 6 (SHB1, SHBN), 18 (SHG) in the figure are current detectors, 9 (VBD), 19 (VDG) are voltage detectors, 11 (SWB), 21 (SWM), 51 (SWC). , 52 (SWS), 54 (SWP), 55 (SWS1), 64 (SWGE) are switches, 15 is a generator field (Gf), 53 (SCB) is a battery selector, and 56 (VRV) is a voltage setter. , 57 (VRI) indicate current setting devices, respectively.

いま、図7Aでモータ20(M)の動作を停止させると、個別電池の充放電や直列接続電池の充放電は、上述の通りである。ここでは、直列接続した全電池の充放電動作について説明する。
全電池を充電する場合、個別の充電と同様、スイッチ(SWC)51により「定電圧」,「定電流」または「定出力(定電力)」のいずれかに設定する。そして、スイッチ2(SWP1)オフ、スイッチ(SWN1)オン、スイッチ3(SWP2,SWN2)オフ、スイッチ4(SWQ)オン,オフ状態にし、スイッチ22(SWT)は発電機14(G)側に切り換える。発電機14(G)は、所定の出力電圧(定電圧充電時),出力電流(定電流充電時)または出力電力(定電力充電時)に応じて、正極(P)⇒スイッチ4(SWQ)オン⇒電池1(B11〜B10)⇒スイッチSWN1⇒負極(N)なる経路を介して全電池の充電を行なう。その後、電圧検出器7(VD1)で検出した電池電圧VB1〜VBN、または電流検出器6(SHB1)で検出電流IB1〜IBNが所定値に達したことを、電池充放電&状態監視制御装置50が判定すると、信号60によりスイッチ4(SWQ)をオフして充電を完了する。
Now, when the operation of the motor 20 (M) is stopped in FIG. 7A, charging / discharging of the individual batteries and charging / discharging of the series-connected batteries are as described above. Here, the charge / discharge operation of all the batteries connected in series will be described.
When charging all the batteries, the switch (SWC) 51 is set to “constant voltage”, “constant current” or “constant output (constant power)” as in the case of individual charging. Then, switch 2 (SWP1) is turned off, switch (SWN1) is turned on, switch 3 (SWP2, SWN2) is turned off, switch 4 (SWQ) is turned on and turned off, and switch 22 (SWT) is switched to the generator 14 (G) side. . The generator 14 (G) has a positive output (P) → switch 4 (SWQ) according to a predetermined output voltage (at constant voltage charging), output current (at constant current charging) or output power (at constant power charging). All batteries are charged through a path of ON → Battery 1 (B11 to B10) → Switch SWN1 → Negative electrode (N). Thereafter, the battery charge / discharge & state monitoring control device 50 indicates that the battery voltages VB1 to VBN detected by the voltage detector 7 (VD1) or the detected currents IB1 to IBN have reached a predetermined value by the current detector 6 (SHB1). Is determined, the switch 4 (SWQ) is turned off by the signal 60 to complete the charging.

放電動作については、スイッチ22(SWT)をチョッパ側に切り換えてチョッパ23(CH)を停止し、スイッチ4(SWQ)をオンにして電池電圧を負荷13(L)に放電させ、充電と放電で同値の電流を流したときの電池電圧から電池状態の監視・管理をする点は上記と同様である。
なお、全電池充放電の場合の電圧は電圧検出器8によって検出されるから、全電池および個別電池の動作状態の監視・管理も可能なのは勿論である。
As for the discharging operation, the switch 22 (SWT) is switched to the chopper side, the chopper 23 (CH) is stopped, the switch 4 (SWQ) is turned on to discharge the battery voltage to the load 13 (L), and charging and discharging are performed. The point of monitoring and managing the battery state from the battery voltage when the same current is passed is the same as described above.
In addition, since the voltage in the case of charging / discharging of all the batteries is detected by the voltage detector 8, it is of course possible to monitor and manage the operating states of all the batteries and the individual batteries.

1(B1〜B10)…電池、2,3,4,5,17,11,12,21,22…スイッチ(SW)、6,10,18…電流検出器(SH)、7,8,9,19…電圧検出器(VD)、13…負荷(L)、14…発電機(G)、15…発電機界磁(Gf)、16…整流器、20(M)…電動機、23…チョッパ(CH)、50…電池充放電&状態監視制御装置、51…充電切替スイッチ(SWC)、52…個別充電スイッチ(SWS)、53…電池選択器(SCB)、54…パルス充電スイッチ(SWP)、55…個別放電スイッチ(SWS1)、56…電圧設定器(VRV)、57…電流設定器(VRI)、58…電池状態表示器、63…発電機制御装置、64…運転スイッチ(SWG)。   1 (B1 to B10) ... battery, 2,3,4,5,17,11,12,21,22 ... switch (SW), 6,10,18 ... current detector (SH), 7,8,9 , 19 ... Voltage detector (VD), 13 ... Load (L), 14 ... Generator (G), 15 ... Generator field (Gf), 16 ... Rectifier, 20 (M) ... Electric motor, 23 ... Chopper ( CH), 50 ... Battery charge / discharge & status monitoring and control device, 51 ... Charge switch (SWC), 52 ... Individual charge switch (SWS), 53 ... Battery selector (SCB), 54 ... Pulse charge switch (SWP), 55 ... Individual discharge switch (SWS1), 56 ... Voltage setter (VRV), 57 ... Current setter (VRI), 58 ... Battery status indicator, 63 ... Generator controller, 64 ... Operation switch (SWG).

Claims (3)

複数のリチウムイオン電池を直列接続した1群のリチウムイオン電池と、この1群のリチウムイオン電池の充電を行う充放電装置と、この充放電装置を前記1群のリチウムイオン電池、または個別のリチウムイオン電池に個別に選択して接続するスイッチング手段を設け、このスイッチング手段により、前記充放電装置を前記1群のリチウムイオン電池、または個別のリチウムイオン電池に個別に接続して前記1群のリチウムイオン電池、または個別のリチウムイオン電池の充電を行うようにしたリチウムイオン電池の充電方法において、
前記充放電装置を発電機とこの発電機の出力電圧を前記個別のリチウムイオン電池の電圧に降圧するチョッパとにより構成し、前記充放電装置の発電機により、前記1群のリチウムイオン電池を一括して充電を行った後、前記個別のリチウムイオン電池の充放電状態を個別に監視し、電池電圧が予め設定された規定値より低いリチウムイオン電池を検出したときは、この検出した電圧の低い個別のリチウムイオン電池に個別に、前記充放電装置の前記発電機を前記チョッパを介して順次切り換えて接続して補充電を行うことを特徴とするリチウムイオン電池の充電方法
A group of lithium ion batteries in which a plurality of lithium ion batteries are connected in series, a charging / discharging device for charging the group of lithium ion batteries, and the charging / discharging device as the group of lithium ion batteries or individual lithium batteries Switching means for individually selecting and connecting to the ion battery is provided, and by this switching means, the charging / discharging device is individually connected to the group of lithium ion batteries or the individual lithium ion batteries to connect the group of lithium ions. In a method of charging a lithium ion battery that is charged with an ion battery or an individual lithium ion battery,
The charging / discharging device is constituted by a generator and a chopper that lowers the output voltage of the generator to the voltage of the individual lithium ion battery, and the group of lithium ion batteries is collectively collected by the generator of the charging / discharging device. after charging to the monitored individually charge and discharge states of the individual lithium ion battery, when the battery voltage is detected low lithium ion battery than a preset specified value, the detected voltage A charging method for a lithium ion battery, wherein the charging is performed by switching and connecting the generator of the charging / discharging device to a low individual lithium ion battery sequentially through the chopper .
複数のリチウムイオン電池を直列接続した1群のリチウムイオン電池と、この1群のリチウムイオン電池の充電を行う充放電装置と、この充放電装置を前記1群のリチウムイオン電池、または個別のリチウムイオン電池に個別に選択して接続するスイッチング手段を設け、このスイッチング手段により、前記充放電装置を前記1群のリチウムイオン電池、または個別のリチウムイオン電池に個別に接続して前記1群のリチウムイオン電池、または個別のリチウムイオン電池の充電を行うようにしたリチウムイオン電池の充電方法において、
前記充放電装置を発電機とこの発電機の出力電圧を前記個別のリチウムイオン電池の電圧に降圧するチョッパとにより構成し、前記充放電装置の発電機により、前記複数のリチウムイオン電池を直列接続した1群のリチウムイオン電池を一括して充電を行った後、前記リチウムイオン電池の充放電状態を個別に監視し、電池電圧が予め設定された規定値より低い個別のリチウムイオン電池を検出したときは、前記1群のリチウムイオン電池の個別のリチウムイオン電池の相互の直列接続を切り離して、前記検出された電圧の低い個別のリチウムイオン電池の全部に、前記充放電装置の発電機を、前記チョッパを介して並列に接続して補充電を行うことを特徴とするリチウムイオン電池の充電方法
A group of lithium ion batteries in which a plurality of lithium ion batteries are connected in series, a charging / discharging device for charging the group of lithium ion batteries, and the charging / discharging device as the group of lithium ion batteries or individual lithium batteries Switching means for individually selecting and connecting to the ion battery is provided, and by this switching means, the charging / discharging device is individually connected to the group of lithium ion batteries or the individual lithium ion batteries to connect the group of lithium ions. In a method of charging a lithium ion battery that is charged with an ion battery or an individual lithium ion battery,
The charging / discharging device comprises a generator and a chopper that steps down the output voltage of the generator to the voltage of the individual lithium ion battery, and the plurality of lithium ion batteries are connected in series by the generator of the charging / discharging device. After charging the group of lithium ion batteries collectively, the charge / discharge state of the lithium ion batteries was individually monitored, and individual lithium ion batteries having a battery voltage lower than a preset specified value were detected. When disconnecting the series connection of the individual lithium ion batteries of the first group of lithium ion batteries, the generator of the charge / discharge device is connected to all of the detected individual lithium ion batteries having a low voltage, A charging method for a lithium ion battery, wherein the charging is performed by connecting in parallel through the chopper .
充電時と放電時とで同じ電流を流したときの電池電圧から電池内部抵抗,電池起電圧を求め、リチウムイオン電池を個別接続状態または直列接続状態のいずれにおいても、各電池の特性状態の監視・管理を可能にしたことを特徴とする請求項1または2に記載のリチウムイオン電池の充電方法 The battery internal resistance and battery electromotive voltage are obtained from the battery voltage when the same current flows during charging and discharging, and the characteristic state of each battery is monitored whether the lithium ion battery is connected individually or in series. The method for charging a lithium ion battery according to claim 1 or 2, wherein management is enabled .
JP2011249803A 2011-11-15 2011-11-15 Lithium-ion battery charging method Active JP5987298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011249803A JP5987298B2 (en) 2011-11-15 2011-11-15 Lithium-ion battery charging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011249803A JP5987298B2 (en) 2011-11-15 2011-11-15 Lithium-ion battery charging method

Publications (2)

Publication Number Publication Date
JP2013106466A JP2013106466A (en) 2013-05-30
JP5987298B2 true JP5987298B2 (en) 2016-09-07

Family

ID=48625617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011249803A Active JP5987298B2 (en) 2011-11-15 2011-11-15 Lithium-ion battery charging method

Country Status (1)

Country Link
JP (1) JP5987298B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018509872A (en) * 2015-02-24 2018-04-05 ベイジン セイムヴォルト カンパニー リミテッドBeijing Samevolt Co.,Ltd. Smart battery, electric energy distribution bus system, battery charge / discharge method, and electric energy distribution method
JP7040015B2 (en) * 2017-12-28 2022-03-23 富士電機株式会社 Secondary battery control device, secondary battery device, uninterruptible power supply, power supply system, method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3389670B2 (en) * 1994-03-11 2003-03-24 日産自動車株式会社 Series connection circuit of secondary battery
JP3922655B2 (en) * 1996-07-12 2007-05-30 株式会社東京アールアンドデー Power supply control system and power supply control method
JP2000050516A (en) * 1998-07-30 2000-02-18 Sanyo Electric Co Ltd Overcharging preventing circuit, overdischarging preventing circuit, and charging discharging control circuit
JP4452399B2 (en) * 2000-01-13 2010-04-21 フジテック株式会社 AC elevator power supply
JP2003157908A (en) * 2001-09-10 2003-05-30 Ntt Power & Building Facilities Inc Charging device for lithium ion secondary cell, and charging method of the same
JP4060756B2 (en) * 2003-06-03 2008-03-12 東芝電池株式会社 Secondary battery charging method, charging device and charging control program therefor
JP5182504B2 (en) * 2008-08-28 2013-04-17 日産自動車株式会社 Power supply apparatus and control method thereof
JP5448408B2 (en) * 2008-10-15 2014-03-19 三菱重工業株式会社 Secondary battery control system
JP5525743B2 (en) * 2009-03-30 2014-06-18 株式会社日本総合研究所 Battery control device, battery control method, and vehicle

Also Published As

Publication number Publication date
JP2013106466A (en) 2013-05-30

Similar Documents

Publication Publication Date Title
US10819124B2 (en) Fast charging method and related device for series battery pack
US12074465B2 (en) Control device, electric storage device, electric storage system, and computer-readable medium
JP5274110B2 (en) Power supply for vehicle
CN106324318B (en) Method for measuring battery current
US8134338B2 (en) Battery management system and driving method thereof
US9564768B2 (en) Discharge device for electricity storage device
US10312553B2 (en) Control device, balance correction device, electric storage system and apparatus
US7626359B2 (en) Apparatus and method for charging and discharging serially-connected batteries
US8564325B2 (en) Voltage detection device and system
US20140103859A1 (en) Electric storage system
US11146094B2 (en) Electrical apparatus
EP2685592A1 (en) Balance correction device and electricity storage system
JP5092812B2 (en) Battery monitoring device and failure diagnosis method
JP6928347B2 (en) Management device, power storage device, power storage system, and electrical equipment
JPH11299122A (en) Method and device for charging state control
US20140159664A1 (en) Method of manufacturing battery pack and battery pack
JP5314626B2 (en) Power supply system, discharge control method, and discharge control program
JP2010045963A (en) Battery circuit and battery pack
JP5489779B2 (en) Lithium-ion battery charging system and charging method
JP5987298B2 (en) Lithium-ion battery charging method
JP2022045843A (en) Method, rated voltage adjustment device, and power storage device
US20230333175A1 (en) Battery management apparatus and operating method thereof
JP2003158827A (en) Charging method, charging device, and discharging controller for lithium ion battery
CN109103955A (en) Lead-acid accumulator equilibrium and monitoring method and system
KR101988027B1 (en) Blancing Apparatus for Battery and Method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160725

R150 Certificate of patent or registration of utility model

Ref document number: 5987298

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250