JP2007110691A - 相関復調器および相関復調方法 - Google Patents

相関復調器および相関復調方法 Download PDF

Info

Publication number
JP2007110691A
JP2007110691A JP2006243705A JP2006243705A JP2007110691A JP 2007110691 A JP2007110691 A JP 2007110691A JP 2006243705 A JP2006243705 A JP 2006243705A JP 2006243705 A JP2006243705 A JP 2006243705A JP 2007110691 A JP2007110691 A JP 2007110691A
Authority
JP
Japan
Prior art keywords
signal sequence
data
despreading
timing
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006243705A
Other languages
English (en)
Inventor
Masakazu Hoashi
正和 帆足
Naoya Imahashi
直也 今橋
Mitsuyasu Baba
潤寧 馬場
Kenji Yamamoto
堅士 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006243705A priority Critical patent/JP2007110691A/ja
Publication of JP2007110691A publication Critical patent/JP2007110691A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】本発明は、スペクトラム拡散通信などに使用される相関復調器において、ノイズによる影響を低減し、受信感度の向上を可能とする相関復調器および相関復調方法を提供する。
【解決手段】スペクトラム拡散通信方式の受信部に適用可能な相関復調器であって、逆拡散部100、200は、入力された拡散信号系列を所定の拡散符号に基づいて逆拡散して出力し、ピーク検出部106は、逆拡散部100、200から出力される逆拡散信号系列の総和にピーク値を生じさせるタイミングを検出し、復調部107は、逆拡散部100、200からの出力データをピーク検出手段106からのタイミング信号で捕捉して復調する。なお、これらの処理に先立って、逆拡散部100、200は、入力された拡散信号系列を逆拡散する際に、拡散信号系列の1チップあたり複数個のサンプルを用いた演算処理を行う。
【選択図】図1

Description

本発明は、スペクトラム拡散通信等に用いられる相関復調器および相関復調方法に関するものである。
スペクトラム拡散通信方式は、自身が有する耐ノイズ性や秘匿性などの優位性を活かして、軍用無線をはじめ、携帯電話や無線LAN、カーナビゲーションシステムなど、多くの無線通信に採用されている。当該通信方式における送信側では、1次変調されたデータに拡散符号が乗算され、送信周波数の帯域すなわちスペクトルが拡散された拡散信号が生成される。一方、受信側では、送信側にて用いられた同一の拡散符号が受信信号に乗算されて同期捕捉された後、元の狭帯域の情報信号に戻す復号処理が行われる。なお、このような構成は、例えば(特許文献1)などに明示されている。
ところで、上述のような同期捕捉方法としては、例えばマッチドフィルタ法またはスライディング相関法などが知られている。これらのうち、マッチドフィルタ法は、例えば無線LANなどに用いられており、その構成として、受信側に遅延素子などのシフトレジスタ、乗算器、加算器などからなる相関器が具備され、送信側で乗算された拡散符号と同一の拡散符号を1周期分すなわち拡散符号のチップ数分用意して、拡散符号と受信した情報信号とを乗算し、その総和が最大値となる時点をシンボルタイミングとする処理が行われる。
つぎに、その具体例として、図12の従来の技術における相関復調器の構成図に示すようなIEEE802.11b規格の無線LAN(以下「802.11b無線LAN」という)に用いられる相関復調器について説明する。
図12において、10および20は、直交検波された受信信号の同相成分および直交成分が入力され、それぞれの成分を逆拡散して出力する逆拡散部である。逆拡散部10の内部は、データをシフトするシフトレジスタ11、シフトレジスタ11から出力されるデータに拡散符号を乗算する乗算器12、乗算器12からの出力の総和を計算する加算器13を備え、逆拡散部20の内部も同様である。
また、図中のR0〜R40は、シフトレジスタ11における個々のレジスタを示している。14および24は、それぞれ逆拡散部10および20から出力される信号を2乗する乗算器である。15は、乗算器14,24から出力される各信号の和を計算して出力する加算器である。16は、加算器15からの出力を1シンボル期間観測し、その値が最大となるタイミングを検出するピーク検出部である。17は、逆拡散部10および20からのデータを、ピーク検出部16によるタイミングで捕捉し、データの復調を行う復調部である。
次に、図12に示した相関復調器の動作について説明する。なお、同図に示すように、相関復調器には、受信信号の同相成分および直交成分の各データが入力されるが、いま、その同相成分について着目する。
まず、同相成分データは、シフトレジスタ11のレジスタR40に入力され、1クロックごとに番号の小さいレジスタに渡されていく。なお、従来の技術にかかる無線LANでは、通常2倍または4倍のオーバーサンプリングを行うのが一般的であり、この場合、このオーバーサンプリングによって得られる1チップあたり2個または4個のサンプル値の中から最もS/Nが高いと予想される1つのサンプル値を選択出力とした相関計算が行われる。
図12は、1チップあたり4サンプル、つまり、4倍のオーバーサンプリングを行っている例であり、チップレートが11MHzである802.11b無線LANにおけるサンプルレートは44MHzということになる。また、802.11b無線LANでは、11チップの拡散符号が用いられるため、シフトレジスタ11からの出力データの個数は11個であり、それぞれのデータの間隔は1チップ周期毎、つまり、同図に示す例では4サンプル毎となる。
動作の説明に戻って、乗算器12では、シフトレジスタ11から出力された11個のデータに拡散符号が乗算された後、加算器13にて全てのデータが加算される。以上の処理は、直交成分に対しても同様に施され、同相成分および直交成分の各データが乗算器14および24でそれぞれ2乗演算が施された後、加算器15で加算される。ピーク検出部16では、加算器15からの出力が1シンボル周期分観測され、その値が最大となるタイミングが検出される。なお、このとき検出されるタイミングがシンボルタイミングと呼ばれるものであり、復調部17は、当該シンボルタイミングでのデータを捕捉して復調に使用することで、最も確からしい復調を行うようにしている。
なお、周波数オフセット雑音が混在する環境下でも安定した同期捕捉を行うようにしたスペクトラム拡散通信同期捕捉回路を開示した文献として、例えば、下記に示す(特許文献1)が存在する。
特開2001−230702号公報
しかしながら、上述したような従来の手法では、1チップごとの1サンプルを相関計算に用いるようにしているので、サンプルごとにバラツキが生じているノイズを平均化することができずに相関出力にノイズの影響が残ってしまうといった問題点があった。
本発明は、上記に鑑みてなされたものであって、ノイズによる影響を低減し、受信感度を向上できる相関復調器および相関復調方法を提供することを目的とする。
上記課題を解決するために、本発明の相関復調器は、スペクトラム拡散通信方式の受信部に適用可能な相関復調器であって、入力された拡散信号系列を所定の拡散符号に基づいて逆拡散して出力する逆拡散部と、逆拡散部から出力される逆拡散信号系列の総和にピーク値を生じさせるタイミングを検出するピーク検出手段と、逆拡散部からの出力データをピーク検出手段からのタイミング信号で捕捉して復調する復調部とを備え、逆拡散部は、入力された拡散信号系列を逆拡散する際に、拡散信号系列の1チップあたり複数個のサンプルを用いた演算処理を行う構成とした。
本発明では、1チップあたり複数個のサンプルを用いた相関出力を演算して復調処理に用いるようにしているので、S/N比を改善でき、受信感度を高めることができるという効果が得られる。
第1の発明は、スペクトラム拡散通信方式の受信部に適用可能な相関復調器であって、入力された拡散信号系列を所定の拡散符号に基づいて逆拡散して出力する逆拡散部と、逆拡散部から出力される逆拡散信号系列の総和にピーク値を生じさせるタイミングを検出するピーク検出手段と、逆拡散部からの出力データをピーク検出手段からのタイミング信号で捕捉して復調する復調部とを備えるものであり、入力された
拡散信号系列を逆拡散する際に、拡散信号系列の1チップあたり複数個のサンプルを用いた演算処理が逆拡散部にて行われることにより、ノイズによる影響が低減され、受信感度が向上する。
第2の発明は、スペクトラム拡散通信方式の受信部に適用可能な相関復調器であって、入力された拡散信号系列を所定の拡散符号に基づいて逆拡散して出力する逆拡散部と、入力された拡散信号系列を該拡散信号系列のチップ毎に積分して出力するデータ積分部と、逆拡散部から出力される逆拡散信号系列の総和にピーク値を生じさせる該拡散信号系列の入力タイミングをシンボルタイミングとして検出するタイミング制御手段と、逆拡散部からの出力データまたはデータ積分部の出力データのいずれかをタイミング制御手段からのタイミング信号で捕捉して復調する復調部と、を備えるものである。この構成により、1パケットの中で複数の変調方式が採用されるような場合、例えば入力されたデータ個数をカウントするような簡易な手段にて変調方式が変化した際のタイミングを継承させることができ、シンボルタイミングを検出するための構成が簡易に実現される。
第3の発明は、第2の発明において、逆拡散部は、入力された拡散信号系列を逆拡散する際に拡散信号系列の1チップあたり複数個のサンプルを用いた演算処理を行うとともに、データ積分部は、入力された拡散信号系列を積分する際に拡散信号系列の1チップあたり複数個のサンプルを用いた積分処理を行うものである。この構成および処理により、ノイズによる影響を低減し、受信感度を向上するための構成が簡易に実現される。
第4の発明は、第3の発明において、複数の拡散信号系列からなる1パケット内の信号系列が複数の変調方式で変調されている場合に、逆拡散部が逆拡散処理を行う際の拡散信号系列の1チップあたりのサンプル数およびデータ積分部が積分処理を行う際の拡散信号系列の1チップあたりのサンプル数のそれぞれが複数の変調方式が切り替わる前後においてそれぞれ一定値に保持されるものである。この構成および処理により、変調方式が切り替わる前後における各部の処理が変化しないので安定した処理が継続される。
第5の発明は、第3の発明において、複数の拡散信号系列からなる1パケット内の信号系列が複数の変調方式で変調されている場合であり、逆拡散部が逆拡散処理を行う際の拡散信号系列の1チップあたりのサンプル数およびデータ積分部が積分処理を行う際の拡散信号系列の1チップあたりのサンプル数のそれぞれを複数の変調方式が切り替わる前後においてそれぞれ可変する場合に、タイミング制御手段によって検出された先の変調方式にかかるシンボルタイミングを後の変調方式にかかるシンボルタイミングとして継承しつつ、逆拡散部にかかる1チップあたりのサンプル数およびデータ積分部にかかる1チップあたりのサンプル数の増減がそれぞれの各部で行われるものである。この構成および処理により、伝送レートの異なる変調方式に柔軟に対応させた処理を選択することができる。
第6の発明は、第5の発明において、先の変調方式を処理する際のサンプル数および後の変調方式を処理する際のサンプル数が共に偶数個であることを特徴とするものである。この構成および処理により、例えば先の変調方式を処理する際のサンプル数が偶数個であった場合に、後の変調方式を処理する際のサンプル数を偶数個とすることにより、後の変調方式を処理する際のサンプル値選択の容易性が確保される。
第7の発明は、第5の発明において、先の変調方式を処理する際のサンプル数および後の変調方式を処理する際のサンプル数が共に奇数個であることを特徴とするものである。この構成および処理により、例えば先の変調方式を処理する際のサンプル数が奇数個であった場合に、後の変調方式を処理する際のサンプル数を奇数個とすることにより、後の変調方式を処理する際のサンプル値選択の容易性が確保される。
第8の発明は、第5の発明において、先の変調方式を処理する際のサンプル数が奇数個である場合には後の変調方式を処理する際のサンプル数を変調方式の変化時点以前に奇数個に変化させ、先の変調方式を処理する際のサンプル数が偶数個である場合には後の変調方式を処理する際のサンプル数を変調方式の変化時点以前に偶数個に変化させることを特徴とするものである。この構成および処理により、例えば先の変調方式を処理する際のサンプル数が奇数個であり、後の変調方式を処理する際のサンプル数が偶数個である場合に、後の変調方式を処理する際のサンプル数を変調方式の変化時点以前に奇数個に変化させることにより、後の変調方式を処理する際のサンプル値選択の容易性が確保される。また、例えば先の変調方式を処理する際のサンプル数が偶数個であり、後の変調方式を処理する際のサンプル数が奇数個である場合に、後の変調方式を処理する際のサンプル数を変調方式の変化時点以前に偶数個に変化させることにより、後の変調方式を処理する際のサンプル値選択の容易性が確保される。
第9の発明は、第2〜8の発明において、拡散信号を一時記憶させるために逆拡散部およびデータ積分部に具備すべきデータレジスタが該逆拡散部および該データ積分部の双方で共有されることを特徴とするものである。この構成および処理により、逆拡散部とデータ積分部に必要とされるデータレジスタを共有することにより回路規模の増加が抑制される。
第10の発明は、スペクトラム拡散通信方式の受信部に適用可能な相関復調方法であって、入力された拡散信号系列を所定の拡散符号に基づいて逆拡散し、出力データとして出力し、出力される逆拡散信号系列の総和にピーク値を生じさせるタイミングを検出し、出力データを、検出されたタイミングで捕捉して復調し、入力された拡散信号系列を逆拡散する際に、該拡散信号系列の1チップあたり複数個のサンプルを用いた演算処理を行うものであり、入力された拡散信号系列を逆拡散する際に、拡散信号系列の1チップあたり複数個のサンプルを用いた演算処理が逆拡散部にて行われることにより、ノイズによる影響が低減され、受信感度が向上する。
第11の発明は、スペクトラム拡散通信方式の受信部に適用可能な相関復調器であって、入力された拡散信号系列を所定の拡散符号に基づいて逆拡散して出力する逆拡散部と、逆拡散部から出力される逆拡散信号系列の総和にピーク値を生じさせるタイミングを検出するピーク検出手段と、逆拡散部からの出力データをピーク検出手段からのタイミング信号で捕捉して復調する復調部とを備えるものであり、入力された拡散信号系列を逆拡散する際に、拡散信号系列の1チップあたり複数個のサンプルを用いた重み付け演算処理が逆拡散部にて行われることにより、ノイズによる影響が低減され、受信感度が向上する。
第12の発明は、第11の発明において、チップタイミングからのずれに応じた値を重み付け係数とする重み付け演算処理を行うものであり、重み付け演算処理後のS/N比を向上できる。
第13の発明は、第12の発明において、チップタイミングからのずれに応じた重み付け係数を2のべき乗とすることにより、乗算器をビットシフタに置き換えることができ、回路規模を削減できる。
第14の発明は、第11の発明において、フィルタの係数を重み付け係数とする重み付け演算処理を行うものであり、重み付け演算処理後のS/N比を向上できる。
第15の発明は、第11の発明において、フィルタの係数に最も近い2のべき乗の値を重み付け係数とする重み付け演算処理を行うものであり、重み付け演算処理後のS/N比を向上、および回路規模を削減できる。
以下、本発明の実施の形態について、図1〜図11を参照しながら説明する。
(実施の形態1)
図1は、本発明の実施の形態1における相関復調器の構成図である。図1において、100および200は直交検波された受信信号の同相成分および直交成分が入力され、それぞれの成分を逆拡散して出力する逆拡散部である。逆拡散部100の内部は、データをシフトするシフトレジスタ101、シフトレジスタ101から出力されるデータに拡散符号を乗算する乗算器102、乗算器102からの出力の総和を計算する加算器103を備え、逆拡散部200の内部も同様である。
また、図中のR0〜R43はシフトレジスタ101における個々のレジスタを示している。104および204は、それぞれ逆拡散部100および200から出力される信号を2乗する乗算器である。105は、乗算器104および204から出力される信号の和を計算して出力する加算器である。106は、加算器105からの出力を1シンボル期間観測し、その値が最大となるタイミングを検出するピーク検出部である。107は、逆拡散部100および200からのデータをピーク検出部106によるタイミングで捕捉し、データの復調を行う復調部である。
次に、図1に示した相関復調器の動作について説明する。なお、同図に示すように、相関復調器に受信信号の同相成分および直交成分の各データが入力されるが、いま、その同相成分について着目する。
まず、同相成分のデータは、シフトレジスタ101のレジスタR43に入力され、1クロックごとに番号の小さいレジスタに渡されていく。なお、図1では、1シンボルのチップ数が11の相関復調器を示しており、1チップあたり4サンプル、つまり、4倍のオーバーサンプリングとしているため、シフトレジスタ101には、44個のデータが蓄積される。乗算器102では、これら44個のデータに所定の拡散符号が乗算される。いま、各チップ毎の拡散符号を昇順に[(チップ1)、(チップ2)、・・・、(チップ11)]のように表現すると、例えば、IEEE802.11b規格の拡散符号は、[1、−1、1、1、−1、1、1、1、−1、−1、−1]で表せる。なお、拡散符号が、このような“1”と“−1”のみで表せる場合には、2の補数表現などを利用することで乗算器102をビット反転器で実現することができ、回路規模を削減することができる。
加算器103では、乗算器102から出力されるデータの総和が計算されて出力される。例えば、前述したIEEE802.11b規格の拡散符号を用いた場合の逆拡散部100の出力は、(d0+d1+d2+d3)−(d4+d5+d6+d7)+(d8+d9+d10+d11)+(d12+d13+d14+d15)−(d16+d17+d18+d19)+・・・−(d36+d37+d38+d39)−(d40+d41+d42+d43)となる。この加算出力を別な観点で見れば、受信データを1シンボル期間ベクトル合成した合成ベクトルの同相成分ということになる。同様に、逆拡散部200からは受信データを1シンボル期間ベクトル合成した合成ベクトルの直交成分が得られる。その後、逆拡散部100および200から出力された同相成分および直交成分の各出力データが乗算器104、204でそれぞれ二乗演算された後に加算器105で加算され、その結果、合成ベクトル振幅の二乗値が得られる。
このような構成において、逆拡散部100および200内のシフトレジスタを1シンボル期間動作させ、加算器105からの出力が最も大きくなる時点(タイミング)をピーク検出部106で検出する。なお、この時点が、シンボルタイミングとなる。また、このようにして検出されたシンボルタイミングで逆拡散部100および200からの出力を捕捉して復調を行えば、最も確からしい復調を行うことができる。このように、1チップあたり複数のデータを用いて逆拡散を行えば、データのS/N比を向上でき、受信感度を高めることができる。
なお、図1に示す例では、1チップ毎に存在する4サンプルデータの全てを逆拡散に用いるようにしているが、チップ毎に等間隔に3つの連続するデータを逆拡散に用いても良い。この場合の逆拡散部100からの出力の一例は、(d0+d1+d2)−(d4+d5+d6)+(d8+d9+d10)+(d12+d13+d14)−(d16+d17+d18)+・・・−(d36+d37+d38)−(d40+d41+d42)となる。
さらに、チップ毎に等間隔に2つの連続するデータを逆拡散に用いても良い。この場合の逆拡散部100からの出力の一例は、(d1+d2)−(d5+d6)+(d9+d10)+(d13+d14)−(d17+d18)+・・・−(d37+d38)−(d41+d42)となる。
さらに、上記内容を一般化すると、1チップあたりNサンプル(Nは2以上の整数)のデータがあり、チップ毎に等間隔にM個(Mは2以上かつN以下の整数)の連続するデータを逆拡散に用いれば、ノイズによる影響を軽減でき、ひいては受信感度を向上させることができる。
なお、図1では、1チップあたり複数のデータを逆拡散に用いる逆拡散部100の構成の一例を示したが、例えば、図2に示す逆拡散部100のように、まずチップ毎の和を加算器103(a)、103(b)、・・・、103(k)で求め、それらの出力に対して拡散符号を乗算するような構成としてもよい。
図2は、本発明の実施の形態1における図1とは異なる逆拡散部の構成図である。
(実施の形態2)
次に、本発明の実施の形態2における相関復調器について説明する。
図3は、本発明の実施の形態2における相関復調器の構成図であり、1パケット内で異なる変調方式を用いるような通信方式をとる場合の相関復調器の一例を示している。このような方式は、「パケットの先頭の部分はデータレートが低くても同期捕捉が容易な変調方式を用い、同期を確立させた後に、その同期タイミングを引き継いで次なるより伝送レートの高い変調方式へと移行する」、というように、同期捕捉性能を向上させつつ、高い伝送レートを得ることを目的とする通信に好適である。
図3において、301および302は、それぞれ同相成分データ、直交成分データが入力され、それぞれの成分を逆拡散して出力する逆拡散部であり、図1または図2に示した逆拡散部と同様の処理を行う。303および304は、それぞれ同相成分データ、直交成分データをチップごとに積分して出力するデータ積分部である。305は、逆拡散部301、302からの逆拡散データに基づいて同期タイミングを検出し、必要に応じて平均化処理を施してタイミング信号を出力するタイミング制御部である。306は、逆拡散部301および302、またはデータ積分部303および304から出力される信号に基づいてデータの復調を行う復調部である。
図4は、本発明の実施の形態2におけるデータ積分部の構成図である。図4において、401は、1クロックごとにデータをシフトするシフトレジスタである。402(a)〜402(h)は、シフトレジスタ401に蓄えられているデータを1チップごとに足し合わせて出力する加算器である。なお、データ積分部304についても図4と同等の構成となる。
次に、実施の形態2の相関復調器の動作について図2から図5を用いて説明する。
図5は、本発明の実施の形態2における図4とは異なるデータ積分部の構成図である。
まず、図3に示すように、逆拡散部301、302には、それぞれ受信信号の同相成分および直交成分のデータが入力され、逆拡散されたデータを出力するが、その動作は実施の形態1に示した内容と同様であり、当該説明を省略する。
いま、同相成分のデータに着目する一方で、図3における逆拡散部301の内部が図2のように構成されているとする。また、d43以前のデータを第1の変調方式を用いて変調されたデータとし、d44以降のデータを第2の変調方式(第1の変調方式よりも伝送レートの高い変調方式を想定する)を用いて変調されたデータとする。なお、変調方式の識別は、例えば無線LANであれば、ヘッダ部とデータ部とを有するパケットフレームのヘッダ部に埋め込まれた識別子に基づいて行うことができる。
また、図4に示すように、第1の変調方式では11チップで1シンボル(以下「11チップ/1シンボル」のように表記)とし、第2の変調方式では8チップ/1シンボルとする。このとき、図2のようにシフトレジスタ101にd0〜d43のデータが格納されている状態が第1の変調方式を用いて変調された最後のシンボルを復調するシンボルタイミングである。
ここで、「シンボルタイミング」という用語について若干の補足説明を行う。シンボルタイミングとは、上記において、拡散符号と情報信号との乗算信号の総和が最大となる時点を指すものとして説明した。一方、このシンボルタイミングを、逆拡散部のシフトレジスタに入力された1シンボルデータの格納状態によって表すことができる。例えば、11チップ/1シンボルの場合、各シンボルは、それぞれ任意の11チップで表されることになる。一方、相関器の出力は、この任意の11チップの中で、ある特定の11チップのセットがちょうど入力されたときにピーク値を出力する。また、相関器の出力は、この特定の11チップのセットが入力された後の11チップ毎にピーク値を出力することになる。したがって、以後、ピーク値を検出するタイミングとして、このような、特定のチップセットが入力された時点(あるいは格納されている状態)を指してシンボルタイミングという用語を使用する。
その後、d44以降のデータはデータ積分部303に入力され、タイミング制御部305においてd44以降のデータの個数がカウントされる。いま、1チップあたりのサンプル数が4であり、1シンボルが8チップであるため、32個のサンプルが1シンボルを形成する。したがって、d44〜d75の32個のデータがシフトレジスタ401に格納されている図4の状態が、第2の変調方式における最初のシンボルタイミングであり、この時点がタイミング制御部305から復調部306に通知される。この時点において、データ積分部303から1シンボル分の同相成分のデータが出力されているが、直交成分についても同様にこの時点においてデータ積分部304から同一シンボルの直交成分のデータが出力されている。
その後、復調部306において、データ積分部303、304から出力されているデータに基づいて復調を行えば、シンボル同期がとれた状態で復調を行うことができる。以降、32サンプルごとにタイミング制御部305から復調部306にタイミングが通知され、復調処理が逐次行われる。この際、第1の変調方式の復調においては図2に示すように、また、第2の変調方式の復調については図4に示すように、1チップにつき複数のサンプルを加算する処理を行っているため、データのS/N比を向上させることができ、受信感度を高めることができる。
なお、データ積分部を示した図4においてシフトレジスタ401として1シンボルのサンプル数分のレジスタを記載したが、図5のように、1チップのサンプル数分のレジスタでも実現することができる。図5において、501は、1クロックごとにデータをシフトするシフトレジスタであり、502は、1チップ分のサンプルを加算して出力する加算器である。このような構成をとる場合には、タイミング制御部305からのタイミング信号は1チップごと、つまり4サンプルごとに出力され、復調部306においては、各チップのデータを保持しておき、1シンボル分、つまり8チップ分のデータが蓄積されると、1シンボルの復調を行うものとする。このような構成にすれば、レジスタ数と加算器の数を減らすことができ、回路規模を削減することができる。
また、図4のシフトレジスタ401および加算器402(a)〜(h)は、図1および図2に示したシフトレジスタ101および加算器103(a)〜103(k)と共用させることができ、この構成により、回路規模を削減することができる。
さらに、図5のシフトレジスタ501および加算器502は、図1および図2に示したシフトレジスタ101および加算器103と共用させることができ、この構成によっても回路規模を削減することができる。
また、上述の説明では、1チップ当たりのサンプル数が4である場合を想定して説明したが、1チップ当たりのサンプル数が複数個であればいずれであっても良い。
さらに、図2の加算器103(a)〜(k)、図4の加算器402(a)〜(h)、および図5の加算器502は、1チップのサンプル値の全てを加算するようにしているが、このような全ての加算処理に限定されるものではなく、1チップのサンプルのうちの幾つかを取り出して加算するようにしても良い。
(実施の形態3)
本発明の実施の形態2では、第1の変調方式を用いて変調されたデータの復調に用いる1チップ当たりのサンプル数と第2の変調方式を用いて変調されたデータの復調に用いる1チップ当たりのサンプル数とが等しい場合の相関復調器の構成および動作を説明したが、本発明の実施の形態3では、1チップ当たりのサンプル数が変調方式によって異なる場合の相関復調器の構成および動作について説明する。なお、この場合の相関復調器の構成は、図3と同一となる。
まず、11チップで1シンボルとする第1の変調方式を用いて変調されたデータの復調に用いる1チップ当たりのサンプル数を4とし、8チップで1シンボルとする第2の変調方式を用いて変調されたデータの復調に用いる1チップ当たりのサンプル数を2とする場合について説明する。このとき、逆拡散部301、302は、図1または図2で示される逆拡散部と同一となるが、データ積分部303および304は、例えば図6または図7のように構成することができる。
図6は、本発明の実施の形態3におけるデータ積分部の構成図である。図6において、601は、1クロックごとにデータをシフトするシフトレジスタである。602(a)〜602(h)は、シフトレジスタ601に蓄えられているデータから1チップあたり2サンプルを取り出し、加算して出力する加算器である。
次に、実施の形態3の相関復調器の動作について、図2〜図4、図6および図7を用いて説明する。
図7は、本発明の実施の形態3における図6とは異なるデータ積分部の構成図である。
図3に示すように、逆拡散部301および302には、それぞれ受信信号の同相成分および直交成分のデータが入力され、逆拡散されたデータを出力するが、その動作は実施の形態1に示した内容と同様であり、当該説明を省略する。
いま、同相成分のデータに着目する一方で、図3における逆拡散部301の内部が図2のように構成されているとする。また、d43以前のデータを第1の変調方式を用いて変調されたデータとし、d44以降のデータを第2の変調方式を用いて変調されたデータとする。なお、変調方式の識別は、実施の形態2と同様に、例えば無線LANであれば、ケットフレームのヘッダ部に埋め込まれた識別子に基づいて行うことができる。
また、図6に示すように、1シンボル当たりのチップ数を、第1の変調方式では11チップ/1シンボルとし、第2の変調方式では8チップ/1シンボルとする。このとき、図2のようにシフトレジスタ101にd0〜d43のデータが格納されている状態が第1の変調方式を用いて変調された最後のシンボルを復調するシンボルタイミングであり、加算器103(a)〜(k)において1チップあたり4サンプルのデータが加算されるものとし、d44以降のデータはデータ積分部303に入力されていき、タイミング制御部305においてd44以降のデータの個数がカウントされるものとする。
さて、1チップあたりのサンプル数が4であり、1シンボルが8チップであるため、32個のサンプルが1シンボルを形成する。したがって、d44〜d75の32個のデータがシフトレジスタ601に格納されているような図6に示す状態が、第2の変調方式における最初のシンボルタイミングであり、タイミング制御部305は、このタイミングを復調部306に通知する。この時点において、加算器602(a)〜(h)の各加算器では、1チップあたり2サンプルのデータが加算されているが、このときのサンプル値の選び方として、例えば第1の変調方式の復調において得られたチップタイミングの中心に近い方から2サンプルを選ぶことができる。
図6の例でより詳細に説明すると、データd44は第2の変調方式で変調された最初のデータであり、このデータd44と同一のチップに属するデータd45、d46、d47の4つのデータのうち、よりチップの中心に近い2サンプルであるd45およびd46が選択される。加算器602(a)では、これら2サンプルが取り出されて加算されるとともに復調部306に出力される。
この様なサンプルを選択する理由は、チップの中心付近のデータの方が、よりS/N比が高いからである。同様に、加算器602(b)〜(h)においても、チップごとに2サンプルずつが加算され、復調部306に出力される。この時点において、データ積分部303から1シンボル分の同相成分のデータが出力されているが、直交成分についても同様に、この時点において、データ積分部304から同一シンボルの直交成分のデータが出力されている。
その後、復調部306において、データ積分部303、304から出力されているデータに基づいて復調を行えば、シンボル同期がとれた状態で復調を行うことができる。以降、32サンプルごとにタイミング制御部305から復調部306にタイミングが通知され、復調処理が逐次行われる。この際、第1の変調方式の復調については図2に示すように、また、第2の変調方式の復調については図6に示すように、1チップにつき複数のサンプルを加算する処理を行っているため、データのS/N比を向上させることができる。また、実施の形態2の加算処理が、一つの加算器の内部で4サンプルの加算処理が行われるのに対して、この実施の形態の加算処理は、一つの加算器の内部で2サンプルの加算処理を行えばよいので、実施の形態2と比較して、用いられる加算器の回路規模を削減することができる。
なお、データ積分部を示した図6において、シフトレジスタ601として1シンボルのサンプル数分のレジスタを記載したが、図7のように、1チップのサンプル数分のレジスタでも実現することができる。図7において、701は、1クロックごとにデータをシフトするシフトレジスタ、702は、1チップの4サンプルのうち2サンプルを加算して出力する加算器である。このような構成をとる場合には、タイミング制御部305からのタイミング信号は1チップごと、つまり4サンプルごとに出力され、復調部306においては、各チップのデータを保持しておき、1シンボル分、つまり8チップ分のデータが蓄積されると、シンボルの復調を行うものとする。このような構成にすれば、レジスタ数と加算器の数を減らすことができ、回路規模をさらに削減することができる。
また、図6のシフトレジスタ601および加算器602(a)〜(h)は、図1および図2に示したシフトレジスタ101および加算器103(a)〜103(k)と共用させることができ、この構成により、回路規模を削減することができる。
さらに、図7のシフトレジスタ701および加算器702は、図1および図2に示したシフトレジスタ101および加算器103と共用させることができ、この構成によっても回路規模を削減することができる。
また、上述の説明では、第1の変調方式の復調には1チップ当たり4サンプルを使用し、第2の変調方式の復調には1チップ当たり2サンプルを使用するものとしたが、この処理を一般化して、復調に用いるサンプル数を偶数個から偶数個に変化させる場合、先の変調方式の復調において得られたチップタイミングの中心に近い方から偶数個を抽出して後の変調方式の復調を行うようにすれば、同期タイミングを継承して同期ずれを起こさない復調を行うことができる。
一方、復調に用いるサンプル数を奇数個から偶数個に変化させる場合には、先の変調方式の復調を行っている間、第2の変調方式の復調の時点が近づいたときに復調に用いるサンプル数を奇数個から偶数個に変化させておくようにすれば、前述の処理によって同期タイミングを継承した同期ずれを生じさせない復調を行うことができる。
(実施の形態4)
本発明の実施の形態3では、異なる変調方式を用いて変調されたデータを復調する際に、復調の前後で1チップ当たりのサンプル数が共に偶数の場合、あるいは復調の前後で偶数個から奇数個に変化させる場合の構成および動作について説明したが、本発明の実施の形態4では、復調の前後で1チップ当たりのサンプル数が共に奇数の場合、あるいは復調の前後で奇数個から偶数個に変化させる場合の構成および動作について説明する。なお、この場合の相関復調器の構成は、図3と同一となる。
まず、1チップにつき4サンプルのサンプリングデータがあり、11チップで1シンボルとする第1の変調方式を用いて変調されたデータの復調に用いる1チップ当たりのサンプル数を3とし、8チップで1シンボルとする第2の変調方式を用いて変調されたデータの復調に用いる1チップ当たりのサンプル数を1とする場合について説明する。このとき、逆拡散部301、302は、例えば図8のような構成で実現することができ、データ積分部303および304は、例えば図9のような構成で実現することができる。
図8は、本発明の実施の形態4における逆拡散部の構成図、図9は、本発明の実施の形態4におけるデータ積分部の構成図である。
図8において、801は、1クロックごとにデータをシフトするシフトレジスタである。802(a)〜(k)は、シフトレジスタ801に蓄えられているデータから1チップあたり3サンプルを取り出し、加算して出力する加算器である。また、803は、加算器802(a)〜(k)からの出力に拡散符号を乗算して出力する乗算器である。なお、乗算する拡散符号が“1”か“−1”ならば、乗算器803は、ビット反転と加算器を用いることにより回路規模を削減することができる。804は、乗算器803からの出力の総和を求めて出力する加算器である。
次に、実施の形態4の相関復調器の動作について、図3ならびに図8および図9を用いて説明する。なお、図3に示すように、逆拡散部301、302には、それぞれ受信信号の同相成分および直交成分のデータが入力されるが、いま、その同相成分について着目する。
まず、同相成分のデータは、シフトレジスタ801に入力され、1クロックごとにシフトされていく。また、シフトレジスタ801に格納されている値に対し、チップごとに配置された加算器802(a)〜(k)では、1チップあたりの4サンプルデータのうち、3サンプルが取り出されて加算される。その後、逆拡散され、1シンボル期間の相関値が観測され、その最大値が得られるタイミングをシンボルタイミングとする動作は、実施の形態1に示した内容と同様であり、その説明を省略する。
また、図8に示すデータ配置の時点を、第1の変調方式を用いて変調されたデータの復調から第2の変調方式を用いて変調されたデータの復調に切り替わる時点とする。つまり、d43以前のデータを第1の変調方式を用いて変調されたデータとし、d44以降のデータを第2の変調方式を用いて変調されたデータとする。その後、d44以降のデータはデータ積分部303に入力されていき、図3に示したタイミング制御部305において、d44以降のデータ個数がカウントされる。いま、1チップあたりのサンプル数が4であり、1シンボルが8チップであるため、32個のサンプルが1シンボルを形成する。したがって、d44〜d75の32個のデータがシフトレジスタ901に格納されているような図9に示す状態が、第2の変調方式における最初のシンボルタイミングであり、タイミング制御部305は、このタイミングを復調部306に通知する。この時点において、データ積分部303から、1チップあたり1サンプルが選択されて出力されるが、このときのサンプル値の選び方としては、第1の変調方式の復調において得られたチップタイミングの中心に最も近い1サンプルを選ぶことができる。
図8および図9の例で示すならば、図8において、第1の変調方式で変調されたデータの最後のチップの成分の組が[d40、d41、d42、d43]なのか、[d41、d42、d43、d44]なのかは解らない。しかしながら、これらの4つのデータのうち乗算器803に出力された[d41、d42、d43]のデータの中心であるd42がチップのタイミングであることは自明である。したがって、次のチップタイミング、すなわち、第2の変調方式で変調された最初のチップの中心となるデータはd46であるため、データ積分部303は、d46を出力し、残り7チップ分の出力に関しても、図9に示すように、4サンプルおきにデータを選択して出力することが好ましい。この様なサンプルを選択する理由は、チップの中心付近のデータの方が、よりS/N比が高いからである。
なお、図9に示すデータ配置の時点において、データ積分部303から1シンボル分の同相成分のデータが出力されているが、直交成分についても同様に、この時点において、データ積分部304から同一シンボルの直交成分のデータが出力されている。
その後、復調部306において、データ積分部303、304から出力されているデータに基づいて復調を行えば、シンボル同期がとれた状態で復調を行うことができる。以降、32サンプルごとにタイミング制御部305から復調部306にタイミングが知らされ、復調処理が逐次行われる。この際、第1の変調方式の復調については、図8に示すように、1チップにつき複数のサンプルを加算しているため、データのS/N比を向上させることができる。
なお、図9のシフトレジスタ901は図8に示したシフトレジスタ801と共用させることができ、このことにより、回路規模を削減できる。
また、上述の説明では、第1の変調方式の復調には1チップ当たり3サンプルを使用し、第2の変調方式の復調には1チップ当たり1サンプルを使用するものとしたが、この処理を一般化して、復調に用いるサンプル数を奇数個から奇数個に変化させる場合、先の変調方式の復調において得られたチップタイミングの中心に近い方から奇数個のデータを抽出して後の変調方式の復調を行うようにすれば、同期タイミングを継承して同期ずれを起こさない復調を行うことができる。
一方、復調に用いるサンプル数を偶数個から奇数個に変化させる場合には、先の変調方式の復調を行っている間、第2の変調方式の復調の時点が近づいたときに復調に用いるサンプル数を偶数個から奇数個に変化させておくようにすれば、前述の処理によって同期タイミングを継承した同期ずれを生じさせない復調を行うことができる。
また、第2の変調方式で変調されたデータを復調する際に1チップ当たり複数のサンプルを用いるならば、図9に示した構成において、図7に示すようにシフトレジスタ901の出力に加算器を設けるようにすればよい。
(実施の形態5)
図10は、本発明の実施の形態5における相関復調器の構成図である。
図10において、1000および2000は直交検波された受信信号の同相成分および直交成分が入力され、それぞれの成分を逆拡散して出力する逆拡散部である。逆拡散部1000の内部は、データをシフトするシフトレジスタ1001、シフトレジスタ1001から出力されるデータに重み付け演算を行う重み付け演算部1010、重み付け演算部1010から出力されるデータに拡散符号を乗算する乗算器1002、乗算器1002からの出力の総和を計算する加算器1003を備え、逆拡散部2000の内部も同様である。
また、図中のR0〜R43はシフトレジスタ1001における個々のレジスタを示している。1004および2004は、それぞれ逆拡散部1000および2000から出力される信号を2乗する乗算器である。1005は、乗算器1004および2004から出力される信号の和を計算して出力する加算器である。1006は、加算器1005からの出力を1シンボル期間観測し、その値が最大となるタイミングを検出するピーク検出部である。1007は逆拡散部1000および2000からのデータをピーク検出部1006によるタイミングで捕捉し、データの復調を行う復調部である。
次に、図10に示した相関復調器の動作について説明する。なお、同図に示すように、相関復調器に受信信号の同相成分および直交成分の各データが入力されるが、いま、その同相成分について着目する。
まず、同相成分のデータは、シフトレジスタ1001のレジスタR43に入力され、1クロックごとに番号の小さいレジスタに渡されていく。なお、図11では、1シンボルのチップ数が11の相関復調器を示しており、1チップあたり4サンプル、つまり、4倍のオーバーサンプリングとしているため、シフトレジスタ1001には、44個のデータが蓄積される。重み付け演算部1010では、これら44個のデータに対してSN比が向上するような重み付け演算が施され、その結果が出力される。乗算器1002では、重み付け演算部1010から出力されるデータに所定の拡散符号が乗算される。
いま、各チップの拡散符号を昇順に[(チップ1)、(チップ2)、・・・、(チップ11)]のように表現すると、例えばIEEE802.11b規格の拡散符号は、[1、−1、1、1、−1、1、1、1、−1、−1、−1]で表せる。なお、拡散符号が、このような“1”と“−1”のみで表せる場合には、2の補数表現などを利用することで乗算器1002をビット反転器で実現でき、回路規模を削減することができる。加算器1003では乗算器1002から出力されるデータの総和が計算されて出力される。
同様に、逆拡散部2000からは受信データを1シンボル期間合成した直交成分データが得られる。その後、逆拡散部1000および2000から出力された同相成分および直交成分の各出力データが乗算器1004、2004でそれぞれ二乗演算された後に加算器1005で加算され、その結果、同相成分および直交成分の合成ベクトルの振幅の二乗値が得られる。
このような構成において、逆拡散部1000および2000内のシフトレジスタを1シンボル期間動作させ、加算器1005からの出力が最も大きくなる時点(タイミング)をピーク検出部1006で検出する。なお、この時点がシンボルタイミングとなる。また、このようにして検出されたシンボルタイミングで逆拡散部1000および2000からの出力を捕捉して復調を行えば、最も確からしい復調を行うことができる。このように、1チップあたり複数のデータを用いて逆拡散を行えば、データのS/N比を向上でき、受信感度を高めることができる。
次に、重み付け演算部1010で行われる演算について説明する。
図10において、シフトレジスタ1001に格納されているデータは、もともと同相成分のアナログ信号がサンプリングされ、デジタル値に変換された値である。図11にその様子を図示する。
図11において、波形1020は、同相成分のアナログ波形である。いま、図10に示すd0〜d4が図11に示すd0〜d4に相当するとし、d2のサンプルタイミングはチップタイミングの中心となっているとする。このとき、d1およびd3はd2と比較して振幅が小さくなっており、波形1020が正弦近似されるなら、その比率はおよそ0.7となる。つまり、d1やd3はd2と比較して、その信頼度が0.7倍ということになる。
同様に、d0とd4の信頼度は0である。従って、重み付け演算部1010において、d2はそのままで、d1とd3が0.7倍、d0とd4が0倍(もしくは廃棄)されるならば、信頼度に応じた重み付けがなされたことになり、加算器1003から出力される加算されたデータのSN比を向上することができる。このとき、重み係数を最も近い2のべき乗に近似すれば、重み付け演算はビットシフトで実現できることになり、回路規模を削減することができる。上記した例では、d1とd3への重み係数を0.5とすれば、重み付け演算をビットシフトで実現可能となる。
また、同相成分および直交成分データがデジタルフィルタを通ったものであれば、その波形はそのデジタルフィルタの係数の形をしているため、重み付け演算部1010の重み係数としてそのデジタルフィルタの係数を採用すれば、加算器1003から出力される加算されたデータのSN比を向上することができる。このときも、重み係数を2のべき乗に近似すれば、重み付け演算がビットシフトで実現できることになり、回路規模を削減することができる。
本発明にかかる相関復調器および相関復調方法は、スペクトラム拡散通信に有用であり、特に、受信データのS/N比を改善する場合や、受信感度を高める場合に適している。
本発明の実施の形態1における相関復調器の構成図 本発明の実施の形態1における図1とは異なる逆拡散部の構成図 本発明の実施の形態2における相関復調器の構成図 本発明の実施の形態2におけるデータ積分部の構成図 本発明の実施の形態2における図4とは異なるデータ積分部の構成図 本発明の実施の形態3におけるデータ積分部の構成図 本発明の実施の形態3における図6とは異なるデータ積分部の構成図 本発明の実施の形態4における逆拡散部の構成図 本発明の実施の形態4におけるデータ積分部の構成図 本発明の実施の形態5における相関復調器の構成図 本発明の実施の形態5におけるデータサンプリングの説明図 従来の技術における相関復調器の構成図
符号の説明
10、20、100、200、301、302 逆拡散部
11、101、401、501、601、701、801、901 シフトレジスタ
12、14、24、102、104、204、803 乗算器
13、15、103、103(a)〜(k)、105、402(a)〜(h)、502、602(a)〜(h)、702、802(a)〜(k)、804 加算器
16、106 ピーク検出部
17、107、306 復調部
303、304 データ積分部
305 タイミング制御部
1000、2000 逆拡散部
1001 シフトレジスタ
1002、1004、2004 乗算器
1003、1005 加算器
1006 ピーク検出部
1007 復調部
1010 重み付け演算部
1020 同相成分アナログ波形

Claims (15)

  1. スペクトラム拡散通信方式の受信部に適用可能な相関復調器であって、
    入力された拡散信号系列を所定の拡散符号に基づいて逆拡散して出力する逆拡散部と、
    前記逆拡散部から出力される逆拡散信号系列の総和にピーク値を生じさせるタイミングを検出するピーク検出手段と、
    前記逆拡散部からの出力データを前記ピーク検出手段からのタイミング信号で捕捉して復調する復調部と、を備え、
    前記逆拡散部は、入力された拡散信号系列を逆拡散する際に、該拡散信号系列の1チップあたり複数個のサンプルを用いた演算処理を行うことを特徴とする相関復調器。
  2. スペクトラム拡散通信方式の受信部に適用可能な相関復調器であって、
    入力された拡散信号系列を所定の拡散符号に基づいて逆拡散して出力する逆拡散部と、
    入力された拡散信号系列を該拡散信号系列のチップ毎に積分して出力するデータ積分部と、
    前記逆拡散部から出力される逆拡散信号系列の総和にピーク値を生じさせる該拡散信号系列の入力タイミングをシンボルタイミングとして検出するタイミング制御手段と、
    前記逆拡散部からの出力データまたは前記データ積分部の出力データのいずれかを前記タイミング制御手段からのタイミング信号で捕捉して復調する復調部と、を備えたことを特徴とする相関復調器。
  3. 前記逆拡散部は、入力された拡散信号系列を逆拡散する際に、該拡散信号系列の1チップあたり複数個のサンプルを用いた演算処理を行うとともに、前記データ積分部は、入力された拡散信号系列を積分する際に、該拡散信号系列の1チップあたり複数個のサンプルを用いた積分処理を行う、ことを特徴とする請求項2に記載の相関復調器。
  4. 複数の拡散信号系列からなる1パケット内の信号系列が複数の変調方式で変調されている場合に、前記逆拡散部が逆拡散処理を行う際の拡散信号系列の1チップあたりのサンプル数および前記データ積分部が積分処理を行う際の拡散信号系列の1チップあたりのサンプル数のそれぞれが該複数の変調方式が切り替わる前後においてそれぞれ一定値に保持されることを特徴とする請求項3に記載の相関復調器。
  5. 複数の拡散信号系列からなる1パケット内の信号系列が複数の変調方式で変調されている場合であり、前記逆拡散部が逆拡散処理を行う際の拡散信号系列の1チップあたりのサンプル数および前記データ積分部が積分処理を行う際の拡散信号系列の1チップあたりのサンプル数のそれぞれを該複数の変調方式が切り替わる前後においてそれぞれ可変する場合に、前記タイミング制御手段によって検出された先の変調方式にかかるシンボルタイミングを後の変調方式にかかるシンボルタイミングとして継承しつつ、前記逆拡散部にかかる1チップあたりのサンプル数および前記データ積分部にかかる1チップあたりのサンプル数の増減がそれぞれの各部で行われることを特徴とする請求項3に記載の相関復調器。
  6. 前記先の変調方式を処理する際のサンプル数および前記後の変調方式を処理する際のサンプル数が共に偶数個であることを特徴とする請求項5に記載の相関復調器。
  7. 前記先の変調方式を処理する際のサンプル数および前記後の変調方式を処理する際のサンプル数が共に奇数個であることを特徴とする請求項5に記載の相関復調器。
  8. 前記先の変調方式を処理する際のサンプル数が奇数個である場合には前記後の変調方式を処理する際のサンプル数を変調方式の変化時点以前に奇数個に変化させ、前記先の変調方式を処理する際のサンプル数が偶数個である場合には前記後の変調方式を処理する際のサンプル数を変調方式の変化時点以前に偶数個に変化させる、ことを特徴とする請求項5に記載の相関復調器。
  9. 前記拡散信号を一時記憶させるために前記逆拡散部および前記データ積分部に具備すべきデータレジスタが該逆拡散部および該データ積分部の双方で共有されることを特徴とする請求項2〜8に記載の相関復調器。
  10. スペクトラム拡散通信方式の受信部に適用可能な相関復調方法であって、
    入力された拡散信号系列を所定の拡散符号に基づいて逆拡散し、出力データとして出力し、
    出力される逆拡散信号系列の総和にピーク値を生じさせるタイミングを検出し、
    前記出力データを、検出されたタイミングで捕捉して復調し、
    入力された拡散信号系列を逆拡散する際に、該拡散信号系列の1チップあたり複数個のサンプルを用いた演算処理を行うことを特徴とする相関復調方法。
  11. スペクトラム拡散通信方式の受信部に適用可能な相関復調器であって、
    入力された拡散信号系列を所定の拡散符号に基づいて逆拡散して出力する逆拡散部と、
    前記逆拡散部から出力される逆拡散信号系列の総和にピーク値を生じさせるタイミングを検出するピーク検出手段と、
    前記逆拡散部からの出力データを前記ピーク検出手段からのタイミング信号で捕捉して復調する復調部と、を備え、
    前記逆拡散部は、入力された拡散信号系列を逆拡散する際に、該拡散信号系列の1チップあたり複数個のサンプルを用いた重み付け演算処理を行うことを特徴とする相関復調器。
  12. 前記重み付け演算は、チップタイミングからのずれに応じた値を重み付け係数とする請求項11に記載の相関復調器。
  13. 前記チップタイミングからのずれに応じた重み付け係数の係数値を2のべき乗とする請求項12に記載の相関復調器。
  14. 前記重み付け演算は、フィルタの係数を重み付け係数とする請求項11に記載の相関復調器。
  15. 前記重み付け演算は、前記フィルタの係数に最も近い2のべき乗の値を重み付け係数とする請求項11に記載の相関復調器。
JP2006243705A 2005-09-13 2006-09-08 相関復調器および相関復調方法 Pending JP2007110691A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006243705A JP2007110691A (ja) 2005-09-13 2006-09-08 相関復調器および相関復調方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005264965 2005-09-13
JP2006243705A JP2007110691A (ja) 2005-09-13 2006-09-08 相関復調器および相関復調方法

Publications (1)

Publication Number Publication Date
JP2007110691A true JP2007110691A (ja) 2007-04-26

Family

ID=38036148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006243705A Pending JP2007110691A (ja) 2005-09-13 2006-09-08 相関復調器および相関復調方法

Country Status (1)

Country Link
JP (1) JP2007110691A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013016710A1 (en) * 2011-07-27 2013-01-31 Qualcomm Incorporated Chip x2 correlation hypotheses using chip x1 samples
CN116938657A (zh) * 2023-09-15 2023-10-24 武汉船舶通信研究所(中国船舶集团有限公司第七二二研究所) 一种dsss-oqpsk信号解调方法及装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013016710A1 (en) * 2011-07-27 2013-01-31 Qualcomm Incorporated Chip x2 correlation hypotheses using chip x1 samples
CN116938657A (zh) * 2023-09-15 2023-10-24 武汉船舶通信研究所(中国船舶集团有限公司第七二二研究所) 一种dsss-oqpsk信号解调方法及装置
CN116938657B (zh) * 2023-09-15 2023-12-29 武汉船舶通信研究所(中国船舶集团有限公司第七二二研究所) 一种dsss-oqpsk信号解调方法及装置

Similar Documents

Publication Publication Date Title
US7889782B2 (en) Joint de-spreading and frequency correction using a correlator
KR100298565B1 (ko) 스펙트럼확산신호수신방법및스펙트럼확산신호수신장치
US7966360B2 (en) Finite impulse response filter and digital signal receiving apparatus
US8531981B2 (en) Arrangement for determining a characteristic form of an input signal
JP3204925B2 (ja) Cdma通信システムにおける信号受信装置
EP0994573A2 (en) Method and apparatus for generating multiple matched-filter PN vectors in a CDMA demodulator
JPH06296171A (ja) 広帯域伝送システム
US8218605B2 (en) Preamble for synchronization
US9015220B2 (en) Correlation device
WO2009023220A1 (en) Spread carrier self correcting codes
KR100393647B1 (ko) 주파수 편차를 사용하여 스펙트럼 확산 통신 동기를 확립하는 방법 및 장치와 그 장치를 갖는 수신기
KR100759514B1 (ko) 무선 사설망 복조기 및 복조방법
US7313173B2 (en) Correlation detection method and apparatus, transmission diversity detection method and apparatus, each method and apparatus for detection within a small time unit
JP2001094468A (ja) 相関器
JP2007110691A (ja) 相関復調器および相関復調方法
JP4493830B2 (ja) Rach受信装置
JP3816684B2 (ja) スペクトル拡散受信装置
JP2006211211A (ja) データ受信装置
JP5094469B2 (ja) タイミング再生装置および受信装置
JP5035728B2 (ja) ワイヤレス通信システムで整合フィルタを実施するための方法および装置
US20180219575A1 (en) Signal detection circuit and signal detection method
US9143190B2 (en) System and method for demodulating an incoming signal
JPH1117652A (ja) フレーム同期検出回路
JP2000269855A (ja) マッチドフィルタ
JP3817248B2 (ja) 逆拡散復調器