JP2007109833A - Joining method of metal member and assembling jig therefor - Google Patents

Joining method of metal member and assembling jig therefor Download PDF

Info

Publication number
JP2007109833A
JP2007109833A JP2005298292A JP2005298292A JP2007109833A JP 2007109833 A JP2007109833 A JP 2007109833A JP 2005298292 A JP2005298292 A JP 2005298292A JP 2005298292 A JP2005298292 A JP 2005298292A JP 2007109833 A JP2007109833 A JP 2007109833A
Authority
JP
Japan
Prior art keywords
joining
components
plate
parts
nano metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005298292A
Other languages
Japanese (ja)
Other versions
JP4770379B2 (en
Inventor
Fumitatsu Shinno
文達 新野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2005298292A priority Critical patent/JP4770379B2/en
Publication of JP2007109833A publication Critical patent/JP2007109833A/en
Application granted granted Critical
Publication of JP4770379B2 publication Critical patent/JP4770379B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L24/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/37124Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/37147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/4005Shape
    • H01L2224/4009Loop shape
    • H01L2224/40095Kinked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/40221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/40225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]

Abstract

<P>PROBLEM TO BE SOLVED: To provide an improved joining method and assembling jig wherein, when there are joined three components superimposed into an upper, middle, and lower level using nano metal paste, they are improved without leaving any non-bonded portion among the components behind, and they are improved such that the respective components can be joined in a lump in the same joining process. <P>SOLUTION: Each component includes, as a set, an insulating substrate 2 on which nano metal paste 17 is applied, a semiconductor chip 3, and a heat spreader 4. The assembling jig 8 of a semiconductor module holds these components while separating the components from each other. Heat is added to the components in this state to vaporize organic components in the nano metal paste (preheating step), and in the successive heating/joining step, junction faces of the components are superimposed, and successively pressurizing force is applied from the outside to fuse and deposit the nano metal particles, and the particles and base materials of the components. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、パワー半導体モジュールなどを対象に、その組立工程でナノ金属ペーストを用いて部品相互間を接合する金属部材の接合方法,およびその接合方法に適用する組立治具の構成に関する。   The present invention relates to a power semiconductor module or the like, a metal member joining method for joining parts using a nano metal paste in the assembling process, and an assembly jig applied to the joining method.

まず、本発明の実施対象となる頭記のパワー半導体モジュールについて、従来例の組立構造を図5に示す。図において、1は放熱用銅ベース、2はアルミナなどのセラミック板2aの上下両面に導体パターン(銅箔)2b,2cを形成して前記銅ベース1の上に搭載して接合した絶縁基板(例えば、Direct Bonding Copper基板)、3は絶縁基板2の上面導体パターン(回路パターン)2cにマウントした半導体チップ(例えば、IGBT)、3aは半導体チップ3の下面電極面にメタライズしたNi/Auメッキ膜、3bはチップ上面にメタライズしたアルミ膜、4は半導体チップ3の上面に接合したヒートスプレッダ(銅あるいはアルミ板)、5はヒートスプレッダ4を介して半導体チップ3の上面電極とこれに対応する導体パターン2cとの間に配線したリードフレーム(銅,アルミ材の導体)、6は導体パターン2cに接合した外部導出リードであり、銅ベース1/絶縁基板2の導体パターン2b,絶縁基板2の導体パターン2c/半導体チップ3,半導体チップ3の上面/ヒートスプレッダ4,ヒートスプレッダ4/リードフレーム5,絶縁基板2の導体パターン2c/リード5,6の間をそれぞれ半田7により接合してモジュールを組立てている。   First, an assembly structure of a conventional example is shown in FIG. 5 for the power semiconductor module described above which is an object of the present invention. In the figure, 1 is a heat-dissipating copper base, 2 is an insulating substrate (2) formed with conductor patterns (copper foils) 2b, 2c on the upper and lower surfaces of a ceramic plate 2a such as alumina, and mounted and bonded on the copper base 1. For example, Direct Bonding Copper substrate), 3 is a semiconductor chip (for example, IGBT) mounted on the upper surface conductor pattern (circuit pattern) 2c of the insulating substrate 2, and 3a is a Ni / Au plating film metallized on the lower surface electrode surface of the semiconductor chip 3 3b is an aluminum film metallized on the upper surface of the chip, 4 is a heat spreader (copper or aluminum plate) bonded to the upper surface of the semiconductor chip 3, and 5 is an upper surface electrode of the semiconductor chip 3 via the heat spreader 4 and a corresponding conductor pattern 2c. A lead frame (copper, aluminum conductor) wired between and 6 is an external lead lead joined to the conductor pattern 2c. , Copper base 1 / conductor pattern 2b of insulating substrate 2, conductor pattern 2c of insulating substrate 2 / semiconductor chip 3, upper surface of semiconductor chip 3 / heat spreader 4, heat spreader 4 / lead frame 5, conductor pattern 2c / lead of insulating substrate 2 The module is assembled by joining between 5 and 6 with solder 7 respectively.

ところで、前記した半導体モジュールの各部品間を接合する半田について、昨今では環境保全の問題からSn−Pb系の共晶半田を鉛フリー半田(例えばSn−Ag系半田)に代替する転換が進められている。しかしながら、鉛フリー半田はSn−Pb半田に比べて融点が高く、また熱履歴による金属間化合物の成長に伴い半田接合部への応力集中が大きくなり、さらに過電流により半導体チップに半田の融点を超える熱が発生した場合には半田接合部に溶融,剥離,短絡などのダメージが発生するおそれがあるなど、このことが原因で半導体モジュールのパワーサイクル耐性,信頼性が低下する問題がある。
一方、昨今では金属ナノ粒子の研究が進み、半導体デバイスの製造技術分野でも金属ナノ粒子の量子サイズ効果による低温焼結現象および高い表面活性を利用した低温焼成形の導電性ペースト(以下、「ナノ金属ペースト」と称する)が開発されており(例えば、非特許文献1参照)、さらに半田の代わりにナノ金属ペーストを適用して半導体チップ/基板間の金属接合して構成した半導体装置も公知である(例えば、特許文献1,特許文献2参照)。
By the way, with regard to the solder for joining the components of the semiconductor module described above, recently, a change in which Sn—Pb eutectic solder is replaced with lead-free solder (for example, Sn—Ag solder) has been promoted due to environmental conservation problems. ing. However, lead-free solder has a higher melting point than Sn-Pb solder, and stress concentration at the solder joint increases with the growth of intermetallic compounds due to thermal history. When heat exceeding the temperature is generated, there is a possibility that damage such as melting, peeling, and short-circuiting may occur at the solder joint, and this causes a problem that power cycle resistance and reliability of the semiconductor module are lowered.
On the other hand, research on metal nanoparticles has progressed recently, and in the field of semiconductor device manufacturing technology, a low-temperature firing type conductive paste (hereinafter referred to as “nano”) utilizing the low-temperature sintering phenomenon and high surface activity due to the quantum size effect of metal nanoparticles. (Refer to Non-Patent Document 1, for example), and a semiconductor device configured by metal bonding between a semiconductor chip and a substrate by applying a nano metal paste instead of solder is also known. Yes (see, for example, Patent Document 1 and Patent Document 2).

このナノ金属ペーストは、銀あるいは銅などの金属ナノ粒子,金属ナノ粒子が常温で凝集するのを抑制してナノ粒子を独立分散状態に保持する有機分散材,加熱により有機分散材と反応して金属ナノ粒子を裸にする分散材捕捉材、および加熱により前記分散材と分散材捕捉材との反応物質を捕捉して揮散(ガス化)する揮発性有機成分をペースト状に混合した組成になる。
そして、このナノ金属ペーストを用いて金属板(バルク金属)間を接合する従来の接合方法では、一方の金属板の接合面にナノ金属ペーストをスクリ−ン印刷法などにより均一厚さに塗布し、この上に相手側の金属板を重ね合わせた状態で外部から加熱,加圧力を加えて接合を行うようにしている。なお、加熱,加圧に伴う金属ナノ粒子,および金属ナノ粒子と被接合金属板との融合/溶着メカニズム,およびそのキュアー条件,接合強度,耐熱温度等の特性については、先記の特許文献1,2および非特許文献1に詳しく述べられており、ここではその説明を省略する。
This nano metal paste is a metal nanoparticle such as silver or copper, an organic dispersion that keeps the nanoparticle from agglomerating at room temperature and keeps the nanoparticle in an independent dispersion state, and reacts with the organic dispersion by heating. Dispersion capturing material for bare metal nanoparticles, and a mixture of volatile organic components that capture and volatilize (gasify) the reaction material between the dispersion and the dispersion capturing material by heating. .
In the conventional joining method for joining metal plates (bulk metal) using the nano metal paste, the nano metal paste is applied to the joining surface of one metal plate to a uniform thickness by a screen printing method or the like. In addition, in a state where the metal plate on the other side is superimposed on this, joining is performed by applying heat and pressure from the outside. Regarding the characteristics of the metal nanoparticles accompanying heating and pressurization, the fusion / welding mechanism between the metal nanoparticles and the metal plate to be joined, and the curing conditions, joining strength, heat resistance temperature, etc. , 2 and Non-Patent Document 1, detailed description thereof is omitted here.

上記のように半導体モジュールの組立部品の接合に、従来の半田接合に代えてナノ金属ペーストを用いて接合することにより、低温加熱による接合で耐熱性,伝熱性,接合強度の面で優れた高信頼性が期待でき、また接合後はナノ金属粒子(銀,銅)の溶融温度以下では接合部が溶断することもないなど、半田接合に較べて高い耐熱性を確保できる。
小田 正明,「ナノ金属粒子」,エレクトロニクス実装学会誌,2002年,vol5,No6,p523−528 特開2001−225180号公報 特開2004−2130371号公報
As described above, by using nano metal paste instead of conventional solder bonding for bonding semiconductor module assembly parts, it is excellent in heat resistance, heat transfer, and bonding strength by bonding at low temperature. Reliability can be expected, and after joining, high heat resistance can be ensured as compared with solder joining, for example, the joining portion will not be blown below the melting temperature of nano metal particles (silver, copper).
Masaaki Oda, “Nanometal Particles”, Journal of Japan Institute of Electronics Packaging, 2002, vol5, No6, p523-528 JP 2001-225180 A JP 2004-210371 A

ところで、図5に示した半導体モジュールの部品接合について、前記ナノ金属ペーストの適用,およびその接合条件などに関して様々な実験,検証を行ったところ、従来の接合方法のように、常温で部品の接合面に塗布したナノ金属ペーストに接合相手の部品を重ね合わせて仮組み立てし、この仮組立状態で外部より加熱,加圧力を加えて接合を行った場合には接合面の中央部分に未接合の欠陥が多く発生することが知見された。
そこで、発明者はこの接合欠陥の発生原因について究明した結果、その発生要因が次の点にあることが明らかになった。すなわち、金属ナノ粒子の粒子間,および金属ナノ粒子と被接合金属部材(半導体モジュールの部品)とを適正に融合/溶着(焼結)させるには、金属ナノ粒子を独立分散状態に保持している分散材と分散材捕捉材との反応促進に加えて、この反応物質を捕捉した揮発性物質を揮散させて接合面域から完全に排除し、金属ナノ粒子を裸の状態にしてその表面活性を高めるようにすることが必須条件となる。
By the way, when various experiments and verifications were made regarding the application of the nano metal paste and the bonding conditions for the semiconductor module component bonding shown in FIG. 5, the components were bonded at room temperature as in the conventional bonding method. When the parts to be joined are temporarily superposed on the nano metal paste applied to the surface, and when joining is performed by applying heat and pressure from the outside in this temporarily assembled state, unbonded parts are bonded to the center of the joint surface. It was found that many defects occur.
Therefore, as a result of investigating the cause of the occurrence of this bonding defect, the inventors have found that the cause of the occurrence is as follows. That is, in order to properly fuse / weld (sinter) the metal nanoparticles between the metal nanoparticles and between the metal nanoparticles and the metal member to be joined (semiconductor module parts), the metal nanoparticles are held in an independently dispersed state. In addition to promoting the reaction between the dispersed material and the dispersed material trapping material, the volatile material that traps the reactive material is volatilized to completely eliminate it from the joint surface area, leaving the metal nanoparticles bare and its surface activity. It is indispensable to increase the value.

しかしながら、接合の開始当初からナノ金属ペーストの塗布面を挟んで両側から被接合金属部材を重ね合わせた状態で加熱,加圧力を加えると、特に接合面の中央面域ではナノ金属ペーストが被接合金属部材の間に封じ込められているために、前記有機成分の周囲への自由な揮散(ガス化)が阻害されることになる。また、加熱による有機成分の揮散には周囲雰囲気中の酸素との反応も関与していることが確認されているが、被接合金属板の間に封じ込められた有機成分は酸素との接触反応が進まないために、結果として金属板間の接合面中央部では金属ナノ粒子の融合/溶着が十分に進行せずに未接合部分が残るようになると推測される。
本発明は上記の点に鑑みなされたものであり、図5に示した半導体モジュールのように絶縁基板,半導体チップ,ヒートスプレッダからなる三つの組立部品を上下に積み重ねてその相互間を接合する組立構造体への適用を対象として、その組立部品の間をナノ金属ペーストにより接合させる際に三つの部品を同じ接合工程で同時に接合でき、しかもナノ金属ペーストの未接合部分を残すことなく接合面全域を適正に接合てきるように改良した金属部材の接合方法、およびその接合方法の実施に適用する組立治具を提供することにある。
However, when heating and pressure are applied from the beginning of the joining with the nano metal paste application surface sandwiched from both sides, the nano metal paste will be joined, especially in the center area of the joining surface. Since it is contained between the metal members, free volatilization (gasification) around the organic component is hindered. In addition, it has been confirmed that the reaction with oxygen in the ambient atmosphere is also involved in the volatilization of organic components due to heating, but the organic component contained between the metal plates to be joined does not proceed with the contact reaction with oxygen. For this reason, it is presumed that, as a result, the fusion / welding of the metal nanoparticles does not proceed sufficiently at the center of the joint surface between the metal plates, and an unjoined portion remains.
The present invention has been made in view of the above points, and as in the semiconductor module shown in FIG. 5, an assembly structure in which three assembly parts including an insulating substrate, a semiconductor chip, and a heat spreader are stacked one above the other and joined together. For application to the body, when joining the assembled parts with nano metal paste, three parts can be joined at the same time in the same joining process, and the whole joint surface can be covered without leaving unjoined parts of nano metal paste. An object of the present invention is to provide a metal member joining method improved so as to be properly joined, and an assembly jig applied to the implementation of the joining method.

上記目的を達成するために、本発明によれば、金属ナノ粒子,金属ナノ粒子の常温での凝集を抑制する有機分散材,加熱により有機分散材と反応する分散材捕捉材,および加熱により前記分散材と分散材捕捉材との反応物質を捕捉して揮散させる揮発性有機成分との混合組成になるナノ金属ペーストを用いて組立部品の相互間を接合する接合方法であって、前記組立部品はその接合面の母材が金属である上位,中位,下位の三つの板状部品からなり、各部品を上下に重ねてその相互間を面接合するようにしたものにおいて、
常温で前記ナノ金属ペーストを接合面に塗布した部品と接合相手の部品を組立治具にセットして各部品の相互を離間させて保持した状態で、熱を加えてナノ金属ペーストの有機成分を揮散させるプレ加熱工程と、プレ加熱工程に続き各部品の接合面を重ね合わせた上で、加圧力を加えてナノ金属粒子同士,およびナノ金属粒子と部品の接合母材とを融合/溶着させる加圧接合工程を経て部品相互間を接合するようにし(請求項1)、ここで前記下位部品を半導体装置の絶縁基板,中位部品を半導体チップ,上位部品をヒートスプレッダとして、その部品相互間をナノ金属ペーストにより接合して半導体装置を組み立てる(請求項2)。
In order to achieve the above object, according to the present invention, metal nanoparticles, an organic dispersion that suppresses aggregation of metal nanoparticles at room temperature, a dispersion capturing material that reacts with an organic dispersion upon heating, and A joining method for joining together assembly parts using a nano metal paste having a mixed composition of a volatile organic component that traps and volatilizes the reaction material of the dispersion material and the dispersion material capturing material, Is composed of upper, middle, and lower three plate-shaped parts whose base material is metal, and the parts are stacked one on top of the other and are joined to each other.
In a state in which the part coated with the nano metal paste at a normal temperature and the part to be joined are set on an assembly jig and the parts are held apart from each other, heat is applied to remove the organic components of the nano metal paste. After the preheating process to be volatilized and the preheating process, the joining surfaces of the components are overlapped, and pressure is applied so that the nanometal particles and the nanometal particles and the joining base material of the parts are fused / welded. The parts are joined together through a pressure joining process (Claim 1), wherein the lower part is an insulating substrate of a semiconductor device, the middle part is a semiconductor chip, and the upper part is a heat spreader. The semiconductor device is assembled by bonding with a nano metal paste (claim 2).

一方、前記接合方法の実施に適用する本発明の組立治具は次記のように構成する。
すなわち、組立治具を、下位部品を載置保持するベース板と、該ベース板上に植設したガイドピンに案内支持した中位部品の把持板,上位部品の把持板,および加圧板と、ベース板/把持板/加圧板の相互間に介挿して各部材を離間させるよう付勢する圧縮ばねとから構成し、プレ加熱工程では組立治具にセットした各部品の間を上下に離間させた状態に保持し、加圧接合工程で前記加圧板に外部から加圧力を加え、各部品相互を重ね合わせて押圧保持するようにする(請求項3)。
また、前記の組立治具については、その中位,および上位の把持板を、二分割してガイドピンに遊嵌した分割把持板と、分割把持板を互いに引き寄せるように付勢するばねとで構成し、板状の組立部品を二枚の分割把持板の間に挟持して所定位置に保持させるようにする(請求項4)。
On the other hand, the assembly jig of the present invention applied to the implementation of the joining method is configured as follows.
In other words, the assembly jig includes a base plate for placing and holding the lower parts, a holding plate for the intermediate parts guided and supported by the guide pins installed on the base board, a holding plate for the upper parts, and a pressure plate; It is composed of a compression spring that is inserted between the base plate / grip plate / pressure plate and biases each member apart, and in the preheating process, the parts set on the assembly jig are separated vertically. In the pressure joining step, external pressure is applied to the pressure plate in the pressure joining step, and the components are stacked and pressed together (claim 3).
In addition, the assembly jig is divided into a middle gripping plate and a middle gripping plate that are divided into two and loosely fitted to the guide pins, and a spring that urges the split gripping plates to draw each other. The plate-shaped assembly component is sandwiched between two divided grip plates and held at a predetermined position (claim 4).

さらに、前記加圧板の頂部中央の加圧端部には球面座を設けておき、部品間を加圧接合する際に、上方から前記球面座に加えた加圧力が加圧板を介して各部品の接合面に均一加圧されるようにする(請求項5)。   Further, a spherical seat is provided at the center of the pressure plate at the center of the top, and when pressure bonding is performed between the components, the pressure applied to the spherical seat from above is applied to each component via the pressure plate. The joint surface is uniformly pressurized (Claim 5).

上記の接合方法,組立治具を採用することにより次記の効果を奏する。すなわち、接合面にナノ金属ペーストを塗布した部品を組立治具にセットした状態では、接合相手の部品がナノ金属ペーストの塗布面から離間して両者間に隙間を確保した状態に保持される。したがって、プレ加熱工程では接合面の中央面域に塗布したナノ金属ペーストが組立部品の間に封じ込められることなしに、プレ加熱による分散材と分散材捕捉材との反応促進,およびその反応物質を捕捉した揮発性有機成分が部品との間の隙間を通じて周囲に揮散する。したがって、分散材との反応物質,および該反応物質を捕捉した揮発性有機成分は、従来方法のように組立部品の間に封じ込められることがなく、また周囲雰囲気の酸素成分との反応により揮発性有機成分の揮散を促進させて金属ナノ粒子の表面活性を高めることができる。   By adopting the above-mentioned joining method and assembly jig, the following effects can be obtained. That is, in a state in which a part with the nanometal paste applied to the joint surface is set on the assembly jig, the part to be joined is separated from the nanometal paste application surface and a gap is maintained between them. Therefore, in the preheating process, the nanometal paste applied to the central area of the joint surface is not confined between the assembly parts, and the reaction between the dispersion material and the dispersion material trapping material by preheating is promoted and the reactants are added. The trapped volatile organic components volatilize around through the gap between the parts. Accordingly, the reactant with the dispersing agent and the volatile organic component that has captured the reactant are not contained between the assembly parts as in the conventional method, and are volatile by reaction with the oxygen component in the ambient atmosphere. Volatilization of organic components can be promoted to increase the surface activity of the metal nanoparticles.

これにより、続く加圧接合工程で被接合金属板間に加圧力を加えることより、各部品の接合面全域で金属ナノ粒子の融合/溶着が未反応の有機成分に阻害されることなく進行し、接合面域に未接合部分を残すことなく被接合金属板の間を適正に接合される。
また、前記構成の組立治具を採用して部品間の接合を行うことにより、同じ工程で上,中,下に重ね合わせる三つの板状部品の相互間を一括してナノ金属ペーストで同時接合することができて接合工程のスループット性が向上する。
そして、上記の接合方法を図5に示した半導体装置の部品(絶縁基板,半導体チップ,ヒートスプレッダ)の接合に適用することで、200℃〜300℃程度の低い接合温度でパワーサイクル耐性の高い接合部を確保して半導体装置の信頼性向上が図れる。
Thereby, by applying pressure between the metal plates to be joined in the subsequent pressure joining process, the fusion / welding of the metal nanoparticles proceeds without being hindered by unreacted organic components over the entire joining surface of each component. The joined metal plates are appropriately joined without leaving an unjoined portion in the joining surface area.
In addition, by using the assembly jig of the above configuration and joining the parts, it is possible to join the three plate-like parts that are superimposed on the top, middle, and bottom in the same process at the same time with nano metal paste. This improves the throughput of the bonding process.
Then, by applying the above bonding method to the bonding of the components (insulating substrate, semiconductor chip, heat spreader) of the semiconductor device shown in FIG. 5, bonding with high power cycle resistance at a bonding temperature as low as about 200 ° C. to 300 ° C. The reliability of the semiconductor device can be improved by securing the portion.

以下、本発明の実施の形態として、図5に示した半導体モジュールの組立工程に適用する組立治具の構造を図1〜図3に、またその接合方法を図4により説明する。なお、実施例の図中で図5に示した半導体モジュールに対応する部材には同じ符号を付してその説明は省略する。
まず、本発明の接合方法に適用する組立治具の構造を図1〜図3に示す。すなわち、図示の組立治具8は、半導体モジュールの絶縁基板2(下位部品)を載置保持するベース板9と、ベース板9の周域上に植設した4本のガイドピン10と、半導体チップ3(中位部品)を保持する把持板11と、ヒートスプレッダ4(上位部品)を保持する把持板12と、その上方に配した加圧板13と、前記ガイドピン10に嵌挿してベース板10と把持板11,および把持板11と加圧板13の間に介装した圧縮ばね(コイルばね)14と、加圧板13に固定して上位部品の把持板12を吊り下げ支持する4本の支持ピン15と、ベース板9の上に載置した下位部品の位置決めガイド16との組立体で構成されている。
Hereinafter, as an embodiment of the present invention, the structure of an assembly jig applied to the assembly process of the semiconductor module shown in FIG. 5 will be described with reference to FIGS. In the drawing of the embodiment, members corresponding to those of the semiconductor module shown in FIG.
First, the structure of the assembly jig applied to the joining method of the present invention is shown in FIGS. That is, the illustrated assembling jig 8 includes a base plate 9 on which the insulating substrate 2 (lower part) of the semiconductor module is placed and held, four guide pins 10 implanted on the periphery of the base plate 9, and a semiconductor. A base plate 10 that is fitted into the guide pin 10 and a holding plate 11 that holds the chip 3 (middle part), a holding plate 12 that holds the heat spreader 4 (upper part), a pressure plate 13 disposed above the base plate 10. , The holding plate 11, and the compression spring (coil spring) 14 interposed between the holding plate 11 and the pressure plate 13, and four supports fixed to the pressure plate 13 and supporting the holding plate 12 of the upper part by hanging. The assembly includes a pin 15 and a positioning guide 16 of a lower part placed on the base plate 9.

ここで、前記中位部品の把持板11は、図2で示すように前後に二分割してガイドピン10に遊嵌した分割把持板11a,11bと、分割把持板11aと分割把持板11bとの間に跨がりその左右両端に架設して双方の分割把持板を互いに中央に引き寄せるように付勢するばね(引張コイルばね)11cからなる。また、上位部品の把持板12も前記把持板11と同様に、分割把持板12a,12bと引張ばね12cからなり、各分割把持板を前記支持ピン15に遊嵌して加圧板13の下側に吊り下げ支持されている。また、加圧板13にはその中央部位に球面座13aを形成し、この球面座13aを加圧端部として外部から下向きの加圧力を加えるようにしている。一方、ベース板10の上面に配した下位部品位置決めガイド16は額縁状の板で、ベース板10に対して側方からスライド式に着脱し、その中央の開口部に絶縁基板2を嵌入して所定位置に保持するようにしている。   Here, as shown in FIG. 2, the middle component gripping plate 11 is divided into front and rear divided split grip plates 11a and 11b loosely fitted on the guide pins 10, and the split grip plates 11a and 11b. It is composed of a spring (tensile coil spring) 11c that spans between the left and right ends and urges both of the divided gripping plates toward the center. Similarly to the gripping plate 11, the upper component gripping plate 12 is composed of split gripping plates 12 a and 12 b and a tension spring 12 c, and each split gripping plate is loosely fitted to the support pin 15 to be below the pressure plate 13. Suspended and supported. In addition, a spherical seat 13a is formed in the central portion of the pressure plate 13, and downward pressure is applied from the outside using the spherical seat 13a as a pressure end. On the other hand, the lower part positioning guide 16 disposed on the upper surface of the base plate 10 is a frame-like plate that is slidably attached to the base plate 10 from the side, and the insulating substrate 2 is inserted into the central opening. It is held at a predetermined position.

次に、前記構成の組立治具8に、図5に示した半導体モジュールの組立部品をセットする手順について詳記する。まず、上位部品の把持板12を保持した加圧板13をガイドピン10から上方に抜き取り、裏返しにしてテーブルに置く。この状態で分割把持板12aと12bとの間を広げた上で、ナノ金属ペースト17を塗布したヒートスプレッダ4を図3に示すように分割把持板12aと12bとの間に挟み込んで接合位置に保持した上で、把持板12を図1の位置に戻す。
次いで、ベース板10から下部部品の位置決めガイド16を抜き取って、その位置に半導体チップ2を載せる仮置き台(図示せず)を載置した上で、この仮置き台の上にセットした半導体チップ2を中位把持板12の分割把持板12aと12bの間に挟み込んで定位置に保持する。次に、前記の仮置き台を外し、前もってナノ金属ペースト17を塗布した絶縁基板2を位置決めガイド16の開口部に挿入した上で、この位置決めガイド16aをベース板9の上にセットする。図1はこの部品セット状態を表しており、ナノ金属ペースト17を塗布した絶縁基板2の上面と半導体チップ3の下面との間、および半導体チップ3の上面とナノ金属ペースト17を塗布したヒートスプレッダ4の下面との間には、圧縮ばね14のばね力介在により若干の隙間を確保した状態で各部品が保持される。
Next, the procedure for setting the assembly parts of the semiconductor module shown in FIG. First, the pressure plate 13 holding the upper component gripping plate 12 is extracted upward from the guide pin 10 and turned over and placed on the table. In this state, the space between the split gripping plates 12a and 12b is expanded, and the heat spreader 4 coated with the nano metal paste 17 is sandwiched between the split gripping plates 12a and 12b as shown in FIG. After that, the gripping plate 12 is returned to the position shown in FIG.
Next, the positioning guide 16 of the lower part is extracted from the base plate 10, and a temporary placement table (not shown) on which the semiconductor chip 2 is placed is placed at that position, and then the semiconductor chip set on the temporary placement table. 2 is sandwiched between the divided gripping plates 12a and 12b of the middle gripping plate 12, and held in place. Next, the temporary mounting table is removed, the insulating substrate 2 coated with the nano metal paste 17 in advance is inserted into the opening of the positioning guide 16, and the positioning guide 16 a is set on the base plate 9. FIG. 1 shows this component set state, between the upper surface of the insulating substrate 2 coated with the nano metal paste 17 and the lower surface of the semiconductor chip 3 and between the upper surface of the semiconductor chip 3 and the heat spreader 4 coated with the nano metal paste 17. Each component is held in a state where a slight gap is ensured by the spring force of the compression spring 14.

次に、前記の組立治具8を用いて半導体モジュール(図5参照)の各部品(絶縁基板2,半導体チップ3,ヒートスプレッダ4)をナノ金属ペーストにより接合する組立,接合工程を図4のフローチャートにより説明する。すなわち、工程#1で絶縁基板2の銅回路パターン(上面),およびヒートスプレッダ4の下面にナノ金属ペースト17(例えば、非特許文献1に記載の商品名:ナノペースト,ハリマ化成(株))を例えば厚さ10〜500μm程度で均一に塗布する。次に、工程#2で前記の各部品を先述の手順にしたがって組立治具8にセットし、部品相互間に隙間を残した離間状態に保持する。
続く工程#3(プレ加熱工程)では、前記工程#2で部品をセットした組立治具8を加熱炉に搬入し、ここで炉内雰囲気を低酸素濃度(銅が酸化しない程度)に維持しつつ、炉内温度を所定のプレ加熱温度(100℃前後)に上昇して数分〜数十分間加熱する。これにより、常温状態で金属ナノ粒子を独立分散状態に保持していたナノ金属ペーストの分散材が分散材捕捉材との反応により捕捉され、さらに分散材と分散材捕捉材との反応物質を捕捉した揮発性有機成分が加熱により熱分解し、前記した部品間の隙間を通じて周囲に揮散するようになる。その結果、金属ナノ粒子が裸の状態になって表面活性が高まり、金属ナノ粒子の粒子間が結合して単体膜を形成すると同時に、絶縁基板2の銅回路パターンとの間でも金属ナノ粒子の融合/溶着が進むようになる。
Next, an assembly and joining process for joining each component (insulating substrate 2, semiconductor chip 3, and heat spreader 4) of the semiconductor module (see FIG. 5) with the nano metal paste using the assembly jig 8 is shown in the flowchart of FIG. Will be described. That is, the nano metal paste 17 (for example, trade name: nano paste, Harima Kasei Co., Ltd. described in Non-Patent Document 1) is applied to the copper circuit pattern (upper surface) of the insulating substrate 2 and the lower surface of the heat spreader 4 in Step # 1. For example, it is uniformly applied with a thickness of about 10 to 500 μm. Next, in step # 2, each of the parts is set on the assembly jig 8 according to the above-described procedure, and kept in a separated state with a gap left between the parts.
In the subsequent step # 3 (preheating step), the assembly jig 8 in which the parts are set in the step # 2 is carried into a heating furnace, where the furnace atmosphere is maintained at a low oxygen concentration (so that copper is not oxidized). Meanwhile, the furnace temperature is raised to a predetermined preheating temperature (around 100 ° C.) and heated for several minutes to several tens of minutes. As a result, the dispersion material of the nano metal paste that kept the metal nanoparticles in an independent dispersion state at room temperature is captured by the reaction with the dispersion material capturing material, and further, the reaction material between the dispersion material and the dispersion material capturing material is captured. The volatile organic component is thermally decomposed by heating and volatilizes around through the gaps between the components. As a result, the metal nanoparticles become bare and the surface activity is increased, and the metal nanoparticles are bonded to each other to form a single film, and at the same time, between the metal circuit and the copper circuit pattern of the insulating substrate 2. Fusion / welding will proceed.

そして、前記のプレ加熱工程#3に続く加圧接合工程#4では、炉内温度を所定の接合温度(200〜300℃)まで高めるとともにと、図1に示した加圧板13に上方から加圧力を加え、この加圧状態を所定時間保持する。これにより、加圧板13が下降して絶縁基板2の上に半導体チップ3,ヒートスプレッダ4を重ね合わせて押圧し、部品相互間の接合面全域で金属ナノ粒子との融合/溶着が進行し、その結果として未接合部分を残すことなく接合面全域で高融点化した金属接合部が得られることになる。
なお、前記の加圧接合工程#4では、外部からの加圧力を加圧板13の球面座13aに加えることにより、仮にセット状態で部品相互間に多少の傾きがあっても、球面座13aの働きにより傾きを修正して部品間の接合面に均一な加圧力を加わえることができる。
In the pressure bonding step # 4 following the preheating step # 3, the furnace temperature is increased to a predetermined bonding temperature (200 to 300 ° C.), and the pressure plate 13 shown in FIG. Pressure is applied and this pressure state is maintained for a predetermined time. As a result, the pressure plate 13 descends and the semiconductor chip 3 and the heat spreader 4 are superimposed and pressed on the insulating substrate 2, and fusion / welding with the metal nanoparticles proceeds across the entire joint surface between the components. As a result, a metal joint having a high melting point can be obtained in the entire joining surface without leaving an unjoined part.
In the pressure bonding step # 4, by applying external pressure to the spherical seat 13a of the pressing plate 13, even if there is a slight inclination between components in the set state, the spherical seat 13a The tilt can be corrected by the action, and a uniform pressure can be applied to the joint surface between the parts.

本発明の実施例による組立治具に半導体モジュールの部品をセットした状態を表す側面図、The side view showing the state which set the part of the semiconductor module to the assembly jig by the example of the present invention, 図1の矢視A−Aから見た部品セット状態の平面図Plan view of the component set state seen from the arrow AA in FIG. 図1のB−Bから見た部品セット状態の平面図The top view of the component set state seen from BB in FIG. 本発明による接合方法の工程を表すフローチャート図The flowchart figure showing the process of the joining method by this invention 本発明の接合方法を適用する半導体モジュールの従来における組立構造図Conventional assembly structure of a semiconductor module to which the joining method of the present invention is applied

符号の説明Explanation of symbols

2 絶縁基板
3 半導体チップ
4 ヒートスプレッダ
8 組立治具
9 ベース板
10 ガイドピン
11 中位部品の把持板
12 上位部品の把持板
13 加圧板
13a 球面座
14 圧縮ばね
15 支持ピン
16 下位部品位置決めガイド
17 ナノ金属ペースト
2 Insulating substrate 3 Semiconductor chip 4 Heat spreader 8 Assembly jig 9 Base plate 10 Guide pin 11 Gripping plate for middle part 12 Gripping plate for upper part 13 Pressure plate 13a Spherical seat 14 Compression spring 15 Support pin 16 Lower part positioning guide 17 Nano Metal paste

Claims (5)

金属ナノ粒子,金属ナノ粒子の常温での凝集を抑制する有機分散材,加熱により有機分散材と反応する分散材捕捉材,および加熱により前記分散材と分散材捕捉材との反応物質を捕捉して揮散させる揮発性有機成分との混合組成になるナノ金属ペーストを用いて組立部品の相互間を接合する接合方法であって、前記組立部品はその接合面の母材が金属である上位,中位,下位の三つの板状部品からなり、各部品を上下に重ねてその相互間を面接合するようにしたものにおいて、
常温で前記ナノ金属ペーストを接合面に塗布した部品と接合相手の部品を組立治具にセットして各部品の相互を離間させて保持した状態でナノ金属ペーストの有機成分を揮散させるプレ加熱工程と、プレ加熱工程に続き各部品の接合面を重ね合わせた上で、加圧力を加えてナノ金属粒子同士,およびナノ金属粒子と部品の接合母材とを融合/溶着させる加圧接合工程からなることを特徴とする金属部材の接合方法。
Metal nanoparticles, organic dispersion that suppresses aggregation of metal nanoparticles at room temperature, dispersion trapping material that reacts with organic dispersion by heating, and reactants of the dispersion and dispersion trapping material captured by heating A joining method in which assembly parts are joined together using a nano metal paste having a mixed composition with a volatile organic component to be volatilized, wherein the assembly parts are made of a metal whose base material of the joining surface is metal. It consists of three plate-like parts at the lower and lower levels, and each part is stacked on top and bottom so that they are surface-bonded.
A pre-heating process in which the component in which the nano metal paste is applied to the bonding surface at normal temperature and the component to be bonded are set on an assembly jig and the organic components of the nano metal paste are volatilized while the components are held apart from each other. Then, after the preheating process, after joining the joint surfaces of each part, pressurizing and joining the nano metal particles, and the nano metal particles and the joining base material of the parts are joined. A metal member joining method characterized by comprising:
請求項1記載の接合方法において、下位部品を半導体装置の絶縁基板,中位部品を上下主面にメタライズを施した半導体チップ,上位部品をヒートスプレッダとして、半導体装置の部品相互間をナノ金属ペーストにて接合することを特徴とする金属の接合方法。 2. The bonding method according to claim 1, wherein the lower part is an insulating substrate of a semiconductor device, the middle part is a semiconductor chip having metallized upper and lower main surfaces, the upper part is a heat spreader, and the parts of the semiconductor device are made of nano metal paste. A method of joining metals, characterized in that the joining is performed. 請求項1記載の接合方法に用いる部品組立用の組立治具が、下位部品を載置保持するベース板と、該ベース板上に植設したガイドピンに案内支持した中位部品の把持板,上位部品の把持板,および加圧板と、ベース板/把持板/加圧板の相互間に介挿して各部材を離間させるよう付勢する圧縮ばねとから構成し、プレ加熱工程では組立治具にセットした各部品の間を上下に離間させた状態に保持し、加圧接合工程で前記加圧板に外部から加圧力を加え、各部品相互を重ね合わせて押圧保持するようにしたことを特徴とする組立治具。 An assembly jig for assembling components used in the joining method according to claim 1, a base plate for placing and holding lower components, and a grip plate for intermediate components guided and supported by guide pins implanted on the base plate, It consists of a gripping plate and pressure plate of the upper part, and a compression spring that urges each member to be spaced apart by interposing between the base plate / grip plate / pressure plate. The set parts are held in a state where they are separated from each other in the vertical direction, and a pressure is applied from the outside to the pressure plate in the pressure joining process, and the parts are stacked and pressed to hold each other. Assembly jig to do. 請求項2記載の組立治具において、中位,上位の把持板が、二分割してガイドピンに遊嵌した分割把持板と、各分割把持板を互いに引き寄せるように付勢するばねからなり、板状の部品を二枚の分割把持板の間に挟持して所定位置に保持するようにしたことを特徴とする組立治具。 The assembly jig according to claim 2, wherein the middle and upper gripping plates are divided into two split gripping plates loosely fitted to the guide pins and springs that bias the respective split gripping plates so as to pull each other. An assembly jig characterized in that a plate-like component is sandwiched between two divided gripping plates and held at a predetermined position. 請求項2記載の組立治具において、加圧板の加圧端部に球面座を設け、該球面座を介して上方から加圧力を加えることを特徴とする組立治具。 3. The assembly jig according to claim 2, wherein a spherical seat is provided at a pressure end portion of the pressure plate, and pressure is applied from above through the spherical seat.
JP2005298292A 2005-10-13 2005-10-13 Metal member joining method and assembly jig thereof Active JP4770379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005298292A JP4770379B2 (en) 2005-10-13 2005-10-13 Metal member joining method and assembly jig thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005298292A JP4770379B2 (en) 2005-10-13 2005-10-13 Metal member joining method and assembly jig thereof

Publications (2)

Publication Number Publication Date
JP2007109833A true JP2007109833A (en) 2007-04-26
JP4770379B2 JP4770379B2 (en) 2011-09-14

Family

ID=38035468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005298292A Active JP4770379B2 (en) 2005-10-13 2005-10-13 Metal member joining method and assembly jig thereof

Country Status (1)

Country Link
JP (1) JP4770379B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007184408A (en) * 2006-01-06 2007-07-19 Nec Corp Electrode bonding method
JP2008078212A (en) * 2006-09-19 2008-04-03 Sanwa System Engineering Kk Positioning device of precision component
JP2009088008A (en) * 2007-09-27 2009-04-23 Mitsubishi Electric Corp Tool and method for manufacturing semiconductor device
WO2009157160A1 (en) * 2008-06-25 2009-12-30 パナソニック株式会社 Packaging structure and method for manufacturing packaging structure
JP2010533984A (en) * 2007-07-19 2010-10-28 フライズ・メタルズ・インコーポレイテッド Mounting method and apparatus manufactured using the method
JP2011249802A (en) * 2010-05-27 2011-12-08 Semikron Elektronik Gmbh & Co Kg Constitution body of two junction devices including low temperature compression sinter junction and manufacturing method thereof
JP2012142640A (en) * 2012-05-01 2012-07-26 Mitsubishi Electric Corp Manufacturing method of semiconductor device
JP2014045156A (en) * 2012-08-29 2014-03-13 Hitachi Automotive Systems Ltd Electronic control device
US20150028085A1 (en) * 2012-01-20 2015-01-29 Dowa Electronics Materials Co., Ltd. Bonding material and bonding method in which said bonding material is used
WO2015137109A1 (en) * 2014-03-11 2015-09-17 富士電機株式会社 Method for producing semiconductor device and semiconductor device
JP2021025106A (en) * 2019-08-07 2021-02-22 Jx金属株式会社 Joint method using copper powder paste
JP2021025107A (en) * 2019-08-07 2021-02-22 Jx金属株式会社 Joint method using copper powder paste

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2031383B1 (en) * 2022-03-23 2023-10-06 Boschman Tech Bv Pressure Sintering Apparatus, and corresponding Pressure Sintering Method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03257899A (en) * 1990-03-07 1991-11-18 Mitsubishi Electric Corp Positioning of semiconductor device
JPH09326416A (en) * 1996-06-05 1997-12-16 Kokusai Electric Co Ltd Packaging of semiconductor device and product thereof
JPH10308120A (en) * 1997-05-02 1998-11-17 Ulvac Japan Ltd Baking method for metal paste
JPH1154534A (en) * 1997-08-04 1999-02-26 Hitachi Ltd Potting method and mechanism, and die bonder using method and mechanism thereof
JP2003129017A (en) * 2001-10-25 2003-05-08 Sumitomo Bakelite Co Ltd Conductive adhesive film and semiconductor device using the same
JP2005056932A (en) * 2003-08-06 2005-03-03 Toshiba Corp Manufacturing method of semiconductor device
WO2005079353A2 (en) * 2004-02-18 2005-09-01 Virginia Tech Intellectual Properties, Inc. Nanoscale metal paste for interconnect and method of use

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03257899A (en) * 1990-03-07 1991-11-18 Mitsubishi Electric Corp Positioning of semiconductor device
JPH09326416A (en) * 1996-06-05 1997-12-16 Kokusai Electric Co Ltd Packaging of semiconductor device and product thereof
JPH10308120A (en) * 1997-05-02 1998-11-17 Ulvac Japan Ltd Baking method for metal paste
JPH1154534A (en) * 1997-08-04 1999-02-26 Hitachi Ltd Potting method and mechanism, and die bonder using method and mechanism thereof
JP2003129017A (en) * 2001-10-25 2003-05-08 Sumitomo Bakelite Co Ltd Conductive adhesive film and semiconductor device using the same
JP2005056932A (en) * 2003-08-06 2005-03-03 Toshiba Corp Manufacturing method of semiconductor device
WO2005079353A2 (en) * 2004-02-18 2005-09-01 Virginia Tech Intellectual Properties, Inc. Nanoscale metal paste for interconnect and method of use

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007184408A (en) * 2006-01-06 2007-07-19 Nec Corp Electrode bonding method
JP2008078212A (en) * 2006-09-19 2008-04-03 Sanwa System Engineering Kk Positioning device of precision component
JP2010533984A (en) * 2007-07-19 2010-10-28 フライズ・メタルズ・インコーポレイテッド Mounting method and apparatus manufactured using the method
US11699632B2 (en) 2007-07-19 2023-07-11 Alpha Assembly Solutions Inc. Methods for attachment and devices produced using the methods
US10905041B2 (en) 2007-07-19 2021-01-26 Alpha Assembly Solutions Inc. Methods for attachment and devices produced using the methods
JP2009088008A (en) * 2007-09-27 2009-04-23 Mitsubishi Electric Corp Tool and method for manufacturing semiconductor device
WO2009157160A1 (en) * 2008-06-25 2009-12-30 パナソニック株式会社 Packaging structure and method for manufacturing packaging structure
JP5331113B2 (en) * 2008-06-25 2013-10-30 パナソニック株式会社 Mounting structure
US9246073B2 (en) 2008-06-25 2016-01-26 Panasonic Intellectual Property Management Co., Ltd. Mounting structure, and method of manufacturing mounting structure
JP2011249802A (en) * 2010-05-27 2011-12-08 Semikron Elektronik Gmbh & Co Kg Constitution body of two junction devices including low temperature compression sinter junction and manufacturing method thereof
US20150028085A1 (en) * 2012-01-20 2015-01-29 Dowa Electronics Materials Co., Ltd. Bonding material and bonding method in which said bonding material is used
US9533380B2 (en) * 2012-01-20 2017-01-03 Dowa Electronics Materials Co., Ltd. Bonding material and bonding method in which said bonding material is used
JP2012142640A (en) * 2012-05-01 2012-07-26 Mitsubishi Electric Corp Manufacturing method of semiconductor device
JP2014045156A (en) * 2012-08-29 2014-03-13 Hitachi Automotive Systems Ltd Electronic control device
WO2015137109A1 (en) * 2014-03-11 2015-09-17 富士電機株式会社 Method for producing semiconductor device and semiconductor device
US9960097B2 (en) 2014-03-11 2018-05-01 Fuji Electric Co., Ltd. Semiconductor device
JPWO2015137109A1 (en) * 2014-03-11 2017-04-06 富士電機株式会社 Semiconductor device manufacturing method and semiconductor device
CN105531818A (en) * 2014-03-11 2016-04-27 富士电机株式会社 Method for producing semiconductor device and semiconductor device
JP2021025106A (en) * 2019-08-07 2021-02-22 Jx金属株式会社 Joint method using copper powder paste
JP2021025107A (en) * 2019-08-07 2021-02-22 Jx金属株式会社 Joint method using copper powder paste

Also Published As

Publication number Publication date
JP4770379B2 (en) 2011-09-14

Similar Documents

Publication Publication Date Title
JP4770379B2 (en) Metal member joining method and assembly jig thereof
JP2008010703A (en) Method for bonding between components of semiconductor device
TW592871B (en) Solder foil and semiconductor device and electronic device
JP2664878B2 (en) Semiconductor chip package and method of manufacturing the same
KR101233282B1 (en) Bonding method and bonding apparatus
JP2007110001A (en) Semiconductor device
JP2007044754A (en) Metal plate joining method
US20170033024A1 (en) Method For Mounting An Electrical Component In Which A Hood Is Used, And A Hood That Is Suitable For Use In This Method
TW201212135A (en) Bonding methods
JP2006352080A (en) Semiconductor device and its manufacturing method
US20150123263A1 (en) Two-step method for joining a semiconductor to a substrate with connecting material based on silver
JP2007019360A (en) Mounting method of electric component
JP2006202944A (en) Joining method and joining structure
JP2007335538A (en) Method of manufacturing semiconductor device
JP2013209720A (en) Method for jointing metal body
JP2005288458A (en) Joined body, semiconductor device, joining method and method for producing semiconductor device
JPS641060B2 (en)
JP4696110B2 (en) Electronic component mounting method and electronic component mounting apparatus
JP7215206B2 (en) Semiconductor device manufacturing method
JP4136844B2 (en) Electronic component mounting method
JP2022068307A (en) Leadless stack consisting of multiple components
JP5018250B2 (en) Semiconductor device and manufacturing method thereof
JP4877046B2 (en) Semiconductor device and manufacturing method thereof
US20110147438A1 (en) Clad solder thermal interface material
JP5526336B2 (en) Solder layer, device bonding substrate using the same, and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080916

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110411

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110606

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4770379

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250