JP2007109716A - Process for producing printed board having cable portion - Google Patents

Process for producing printed board having cable portion Download PDF

Info

Publication number
JP2007109716A
JP2007109716A JP2005296546A JP2005296546A JP2007109716A JP 2007109716 A JP2007109716 A JP 2007109716A JP 2005296546 A JP2005296546 A JP 2005296546A JP 2005296546 A JP2005296546 A JP 2005296546A JP 2007109716 A JP2007109716 A JP 2007109716A
Authority
JP
Japan
Prior art keywords
circuit pattern
component mounting
connection pad
clad laminate
flexible cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005296546A
Other languages
Japanese (ja)
Other versions
JP4745014B2 (en
Inventor
Kenichi Hirahara
原 健 一 平
Masaki Takahashi
橋 正 樹 高
Satoru Goto
藤 悟 後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mektron KK
Original Assignee
Nippon Mektron KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mektron KK filed Critical Nippon Mektron KK
Priority to JP2005296546A priority Critical patent/JP4745014B2/en
Priority to TW95136753A priority patent/TWI382804B/en
Priority to CN2006101729546A priority patent/CN1976561B/en
Publication of JP2007109716A publication Critical patent/JP2007109716A/en
Application granted granted Critical
Publication of JP4745014B2 publication Critical patent/JP4745014B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)
  • Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for integrally forming a multilayer substrate having a cable portion becoming a hollow structure by leading out the cable portion from the outer layer portion of the multilayer substrate. <P>SOLUTION: (1) For the copper foil of a one side copper clad laminate which is laminated on an inner layer core substrate, a flexible cable portion circuit pattern is formed and a connection pad portion is formed at the distal end on the component mounting portion side of the flexible cable portion circuit pattern. (2) A surface protection insulating film is formed excepting a part of the circuit pattern and the connection pad portion formed in the process (1). (3) On at least one side of the inner layer core substrate, a laminate is formed by laminating the one side copper clad laminate formed in the processes (1, 2) such that the copper foil is directed toward the outer surface. (4) An outer layer circuit pattern is formed by etching on the copper foil of the one side copper clad laminate formed in the process (3). (5) A surface protection insulating film having an opening at a required position is formed on the outer layer circuit pattern including the connection pad portion. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電子機器に使用されるプリント基板、特に部品実装部から突出するケーブル部により前記複数の部品実装部間を接続してなる多層フレキシブルプリント基板に関する。   The present invention relates to a printed circuit board used in an electronic apparatus, and more particularly to a multilayer flexible printed circuit board formed by connecting a plurality of component mounting parts with a cable part protruding from the component mounting part.

プリント基板は、電子部品を実装して機器に搭載されるが、機器のコンパクト化を実現するためには、立体的な部品実装を必要とする場合が多い。このためには、プリント基板を折り曲げるような方法が必要となる。   A printed circuit board is mounted on a device by mounting electronic components, but in many cases, three-dimensional component mounting is required to realize a compact device. For this purpose, a method of bending the printed circuit board is required.

そこで、部品実装部分(厚みが必要な部分)と、部品実装部分同士を接続するための可撓性のある部分(ケーブル部)とが一体に形成される多層フレキシブルプリント基板が提供されている。このようなプリント基板を使用することにより、部品実装の後で可撓性のある部分で折り曲げて立体配置し空間を有効に活用することができ、コンパクト化が達成される。   Thus, a multilayer flexible printed circuit board is provided in which a component mounting portion (portion requiring a thickness) and a flexible portion (cable portion) for connecting the component mounting portions are integrally formed. By using such a printed circuit board, the space can be effectively utilized by bending the flexible portion after component mounting and placing it in a three-dimensional arrangement, thereby achieving compactness.

このようなプリント基板は、近年、ノートパソコン・折りたたみ式携帯電話等の、ヒンジ構造を有し頻繁に開閉を繰り返す部位に汎用されている。この場合、ケーブル部は、ヒンジ部内にらせん状に巻いて収納している(特許文献1)。また最近では、より複雑な動きに対応するヒンジ部構造も示されている(特許文献2)。このため、より屈曲性の良いケーブル部構造が求められる。そして通常、両面材よりも片面材をケーブル部とした場合の方が屈曲に必要な力が小さくて済む。   In recent years, such a printed circuit board has been widely used in a part having a hinge structure such as a notebook personal computer and a folding mobile phone, which is frequently opened and closed. In this case, the cable part is housed by being spirally wound in the hinge part (Patent Document 1). Recently, a hinge structure corresponding to more complicated movement has also been shown (Patent Document 2). For this reason, a more flexible cable part structure is required. Usually, the force required for bending is smaller when the single-sided material is the cable part than the double-sided material.

このため、配線密度が高い場合は、より屈曲性の良い片面材料を2枚構造とし、その間を中空とすることによってケーブル部の屈曲応力を緩和させる(特許文献3)。この方法で図示されているのは、片面フレキシブル基板を2枚重ねた2層基板であるが、この構造をコアとして、さらに外層材料を重ねて多層基板を形成している例がある(特許文献4)。この特許文献4の例では、4層基板の内層(第2、第3の層)からケーブル部を引き出す構造となっている。   For this reason, when the wiring density is high, the bending stress of the cable portion is relieved by forming a double-sided single-sided material with better flexibility and making the space between them (Patent Document 3). This method shows a two-layer substrate in which two single-sided flexible substrates are stacked. However, there is an example in which a multilayer substrate is formed by stacking outer layer materials using this structure as a core (Patent Literature). 4). In the example of Patent Document 4, the cable portion is drawn from the inner layers (second and third layers) of the four-layer board.

従来はこのように、片面フレキシブル基板を2枚重ねた2層基板、あるいは多層基板の内層からケーブル部を引き出す構造で、片面材料2枚構造としてその間を中空とするケーブル部構造が用いられている。多層基板の内層からケーブル部を引き出す場合は、予め回路パターン形成がしてある内層材料を使用して積層するため、回路パターン形成には特に問題はない。   Conventionally, as described above, a cable part structure is used in which a cable part is drawn from a two-layer board in which two single-sided flexible boards are stacked, or an inner layer of a multilayer board, and a single-sided material is a two-piece structure. . When the cable portion is pulled out from the inner layer of the multilayer substrate, the inner layer material on which the circuit pattern has been previously formed is laminated, so that there is no particular problem with the circuit pattern formation.

しかし、外層からケーブル部を引き出す構造、例えば図7(a)に示すように、4層基板の第1および第4の層からケーブル部を引き出すことはできない。つまり、片面フレキシブル基板を2枚重ねた2層基板の場合は、基板材料を貼り合わせた後でパターン形成するが、中空部分とそうでない部分とで段差が生じる。この段差が大きいと、フォトリソ工程で材料と露光マスクとの間に隙間が生じ、ピントがずれる事によって生じる露光画像のボケ、所謂、露光ボケによって回路パターン幅太りやショートなどの不具合が生じる。   However, the cable portion cannot be drawn from the first and fourth layers of the four-layer board as shown in FIG. That is, in the case of a two-layer substrate in which two single-sided flexible substrates are stacked, a pattern is formed after the substrate materials are bonded together, but there is a step between a hollow portion and a portion that is not. If this level difference is large, a gap is generated between the material and the exposure mask in the photolithography process, and the exposure image is blurred by so-called out-of-focus, so-called exposure blur causes circuit pattern width widening or short-circuit.

通常、このような露光ボケは、材料と露光マスクとの間が50μm以内であれば回避可能であり、片面フレキシブル基板を2枚重ねた2層基板の場合は、積層接着剤またはプリプレグが50μmより薄いものを使用すれば、回路パターン形成可能である。   Normally, such exposure blur can be avoided if the distance between the material and the exposure mask is 50 μm or less. In the case of a two-layer substrate in which two single-sided flexible substrates are stacked, the laminating adhesive or prepreg is more than 50 μm. If a thin material is used, a circuit pattern can be formed.

しかし、例えば、図7(a)に示すような構造の基板の場合、図7(b)に示すように撓みが生じる。すなわち、図7(a)に示すように、2つの内層基板73が積層接着剤(またはプリプレグ)72を介して積層された内層コア基板のさらに外側に、外層用片面銅張積層板71を積層すると、図7(b)に示すようにケーブル部に撓みが生じてしまう。   However, for example, in the case of a substrate having a structure as shown in FIG. 7A, bending occurs as shown in FIG. 7B. That is, as shown in FIG. 7A, a single-sided copper-clad laminate 71 for outer layers is laminated on the outer side of an inner layer core substrate in which two inner layer substrates 73 are laminated via a laminating adhesive (or prepreg) 72. Then, as shown in FIG.7 (b), a bending will arise in a cable part.

このため、外層用片面銅張積層板71からケーブル部を引き出す場合は、どのように薄い材料を選択しても、中空部分とそうでない部分との段差を50μm以内とすることは不可能であり、その結果、フォトリソ工程で材料と露光マスクとの間に隙間が生じ、露光ボケによって回路パターン幅太りやショートなどの不具合を避けることができない。なお、例えば図7(c)のように片側の外層用片面銅張積層板71からケーブル部を引き出す場合でも同様に撓みが生じ、フォトリソ工程で材料と露光マスクとの間に生じた隙間によって露光ボケが発生する。   For this reason, when pulling out the cable part from the single-sided copper clad laminate 71 for the outer layer, it is impossible to set the step between the hollow part and the part that is not so within 50 μm, no matter how thin the material is selected. As a result, a gap is generated between the material and the exposure mask in the photolithography process, and it is impossible to avoid problems such as circuit pattern width widening and short circuit due to exposure blur. For example, as shown in FIG. 7C, even when the cable portion is pulled out from the single-sided copper-clad laminate 71 for the outer layer on one side, bending occurs similarly, and exposure is caused by the gap generated between the material and the exposure mask in the photolithography process. Blur occurs.

また、サブトラクティブ法で製造する場合には、屈曲性を求められるケーブル部の回路パターンにもスルーホール等の層間導通部形成時のメッキ層が載ることになり、メッキ層がないときよりも屈曲性が劣る結果をもたらすことになる。
特開平6−311216号公報 特開2003−133764号公報 特開平7−312469号公報 特開2003−133733号公報 実開平2−65377号公報 特開昭61−58294号公報
In addition, when manufacturing by the subtractive method, the plating layer at the time of forming the interlayer conductive part such as the through hole is also placed on the circuit pattern of the cable part that is required to be flexible, and it is bent more than when there is no plating layer. Results in inferiority.
JP-A-6-31216 JP 2003-133664 A Japanese Patent Laid-Open No. 7-312469 JP 2003-133733 A Japanese Utility Model Publication No. 2-65377 JP-A-61-58294

従来、このような外層からケーブル部を引き出す構造とする場合、例えば特許文献5のようにリジッド基材にフレキシブル基板を貼り合せる構造や、特許文献6の従来例に示されるリジッド基材をフレキシブル基板で接続する方法しか存在せず、一体形成することはできない。   Conventionally, in the case of a structure in which the cable portion is pulled out from such an outer layer, for example, a structure in which a flexible substrate is bonded to a rigid base material as in Patent Document 5 or a rigid base material shown in a conventional example in Patent Document 6 is a flexible substrate. There is only a method of connecting with, and cannot be integrally formed.

本発明は、上述の点を考慮してなされたもので、多層基板の少なくとも片面の外層部からケーブル部を引き出して部品実装部を接続する多層基板を一体的に形成する方法を提供することを目的とする。   The present invention has been made in consideration of the above-described points, and provides a method for integrally forming a multilayer board that pulls out a cable part from an outer layer part on at least one side of the multilayer board and connects a component mounting part. Objective.

上記目的達成のため、本発明では、多層基板形成後では回路形成が困難である外層ケーブル部回路パターンを、積層前に形成しておくものである。すなわち、
(1)内層コア基板に積層される前記片面銅張積層板の銅箔に対し、エッチング手法により、前記可撓性ケーブル部回路パターン、および該可撓性ケーブル部回路パターンの部品実装部側基端部に接続パッド部を形成する。
(2)前記工程(1)で形成された前記可撓性ケーブル部回路パターンおよび当該回路パターンの部品実装部側基端部に形成された前記接続パッド部に、該接続パッド部の部品実装部側先端の一部を除き表面保護絶縁膜を形成する。
(3)前記内層コア基板の少なくとも片面に、前記工程(1)、(2)で作製された片面銅張積層板を、前記可撓性ケーブル部に対応する箇所を除いた接着部材によって、銅箔が外面を向く様に積層した積層体を形成し、前記部品実装部の所要位置に層間導通部を形成する。
(4)前記工程(3)で積層形成された片面銅張積層板の銅箔の、前記可撓性ケーブル部回路パターンおよび前記可撓性ケーブル部回路パターンの部品実装部側基端部に形成された前記接続パッド部以外の部位に対するエッチング手法により、外層回路パターンを形成する。
(5)前記接続パッド部を含む前記外層回路パターンに、所要の位置に開口を有する表面保護絶縁膜を形成する。
In order to achieve the above object, according to the present invention, an outer layer cable portion circuit pattern, which is difficult to form after forming a multilayer substrate, is formed before lamination. That is,
(1) The flexible cable portion circuit pattern and the component mounting portion side base of the flexible cable portion circuit pattern are etched by etching on the copper foil of the single-sided copper clad laminate laminated on the inner core substrate. A connection pad portion is formed at the end.
(2) The flexible cable portion circuit pattern formed in the step (1) and the connection pad portion formed on the component mounting portion side base end portion of the circuit pattern, the component mounting portion of the connection pad portion A surface protective insulating film is formed except for a part of the side tip.
(3) The single-sided copper-clad laminate produced in the steps (1) and (2) is attached to at least one side of the inner-layer core substrate by an adhesive member excluding a portion corresponding to the flexible cable portion. A laminated body is formed so that the foil faces the outer surface, and an interlayer conductive portion is formed at a required position of the component mounting portion.
(4) Forming on the flexible cable part circuit pattern and the component mounting part side base end part of the flexible cable part circuit pattern of the copper foil of the single-sided copper clad laminate formed and laminated in the step (3) An outer layer circuit pattern is formed by an etching method for the portions other than the connection pad portion thus formed.
(5) A surface protective insulating film having an opening at a required position is formed on the outer layer circuit pattern including the connection pad portion.

上記工程(1)ないし(5)を経る事を特徴とする、内層コア基板の少なくとも片面に積層される片面銅張積層板により複数の部品実装部間を接続する可撓性ケーブル部が形成された、多層フレキシブルプリント基板の製造方法である。   A flexible cable portion for connecting a plurality of component mounting portions is formed by a single-sided copper-clad laminate laminated on at least one side of the inner-layer core substrate, which is characterized by undergoing the steps (1) to (5). Further, it is a method for manufacturing a multilayer flexible printed circuit board.

本発明では、内層コア基板の少なくとも片面に、部品実装部のみならず可撓性ケーブル部をも形成する為の片面銅張積層板が積層されて形成された多層フレキシブルプリント基板の製造方法において、従来は困難であった外層ケーブル部の回路パターン形成を積層前に形成しておく手法が確立できる。   In the present invention, in the method for producing a multilayer flexible printed board formed by laminating a single-sided copper-clad laminate for forming not only a component mounting part but also a flexible cable part on at least one side of the inner layer core board, A technique can be established in which circuit pattern formation of the outer cable portion, which has been difficult in the past, is formed before lamination.

また、スルーホール等の層間導通部の形成をパネルメッキで行う場合は困難であった可撓性ケーブル部回路パターンの微細化が、本発明の方法では、先に微細回路パターンを形成するため、銅張積層板材料の銅箔厚み分だけをエッチングでき、微細化には有効な手段となる。   In addition, since the miniaturization of the flexible cable portion circuit pattern, which was difficult when forming the interlayer conductive portion such as a through hole by panel plating, the fine circuit pattern is formed first in the method of the present invention, Only the copper foil thickness of the copper clad laminate material can be etched, which is an effective means for miniaturization.

以下、図1ないし図6を参照して本発明の実施の形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

実施形態1Embodiment 1

図1は、本発明方法の工程全体の流れを示し、図2ないし図6は工程途中での外層回路パターンの形成過程を示す。   FIG. 1 shows the flow of the entire process of the method of the present invention, and FIGS. 2 to 6 show the process of forming an outer layer circuit pattern during the process.

本発明の方法では、図1に示すような各工程を経てプリント基板を製造する。すなわち、ステップS1ないしS3により外層基板を形成し、またステップS4により内層基板を形成してステップS5により両基板を積層して、多層基板を形成する。そして、多層化された基板をステップS6ないしS10により処理して、外層フレキシブルプリント基板を形成する。   In the method of the present invention, a printed circuit board is manufactured through each process as shown in FIG. That is, an outer layer substrate is formed in steps S1 to S3, an inner layer substrate is formed in step S4, and both substrates are stacked in step S5 to form a multilayer substrate. Then, the multilayered substrate is processed in steps S6 to S10 to form an outer flexible printed circuit board.

まず、片面銅張積層板を用意し(ステップS1)、そのケーブル部周辺のみに回路パターンを形成する(ステップS2)。その後、ケーブル部周辺のみに表面保護絶縁膜を形成する(ステップS3)。一方、別個に内層コア基板を形成し(ステップS4)、ステップS5で外層基板と内層基板とをケーブル部に相当する箇所を除いた接着部材によって積層して多層基板を形成する。   First, a single-sided copper clad laminate is prepared (Step S1), and a circuit pattern is formed only around the cable portion (Step S2). Thereafter, a surface protective insulating film is formed only around the cable portion (step S3). On the other hand, an inner layer core substrate is formed separately (step S4), and in step S5, the outer layer substrate and the inner layer substrate are laminated by an adhesive member excluding a portion corresponding to the cable portion to form a multilayer substrate.

次いで、多層基板に層間接続のための層間導通部を形成し(ステップS6)、外層回路パターンを形成した上で(ステップS7)、表面保護絶縁膜を形成する(ステップS8)。その後、外形加工を施し(ステップS9)、多層フレキシブルプリント基板として完成する(ステップS10)。   Next, an interlayer conductive portion for interlayer connection is formed on the multilayer substrate (step S6), an outer layer circuit pattern is formed (step S7), and a surface protective insulating film is formed (step S8). Thereafter, external processing is performed (step S9), and a multilayer flexible printed board is completed (step S10).

次に各工程につき、図2ないし図6にしたがって説明する。   Next, each step will be described with reference to FIGS.

まず、図2に示すように、部品実装部100およびケーブル部200を有する片面銅張積層板に、ケーブル部回路パターン1と、後で部品実装部の外層回路パターンを、前記片面銅張積層板の銅箔に対するエッチングによって形成する。このときに、ケーブル部回路パターン1と部品実装部の外層回路パターンとを接続するための接続パッド部2を形成しておく。図2の破線部分が、接続パッド2になる。   First, as shown in FIG. 2, a single-sided copper-clad laminate having a component mounting part 100 and a cable part 200 is provided with a cable part circuit pattern 1 and an outer layer circuit pattern of the component-mounting part later. It forms by etching with respect to copper foil. At this time, the connection pad part 2 for connecting the cable part circuit pattern 1 and the outer layer circuit pattern of the component mounting part is formed. A broken line portion in FIG.

接続パッド2の幅2aは、後工程での部品実装部の外層回路パターンを形成するときの露光ズレ量を考慮して、ケーブル部回路パターン幅1aよりも0.05mm以上広く設定することが好ましい。また、接続パッド2の長さ2bは、やはり部品実装部の外層回路パターンを形成するときの露光ズレ量と、より接続信頼性を得るために、後述のように部品実装部の外層回路パターンをオーバーラップさせて露光させるのが好ましく、また後述の表面保護絶縁膜を形成するときのずれなども考慮すると、0.5mm以上であることが好ましい。   The width 2a of the connection pad 2 is preferably set to be 0.05 mm or more wider than the cable portion circuit pattern width 1a in consideration of the amount of exposure deviation when forming the outer layer circuit pattern of the component mounting portion in a subsequent process. . In addition, the length 2b of the connection pad 2 is determined so that the outer layer circuit pattern of the component mounting portion is obtained as described later in order to obtain an exposure shift amount when forming the outer layer circuit pattern of the component mounting portion and more connection reliability. It is preferable that the exposure is performed in an overlapping manner, and it is preferably 0.5 mm or more in consideration of a shift in forming a surface protective insulating film described later.

この段階では、メッキ層のない片面銅張積層板の銅箔層に回路パターン形成するため、メッキ層が形成された銅箔層よりも薄い銅箔層に対するエッチングとなり、ケーブル部には微細な回路パターンを形成することができる。回路パターン形成は、通常のエッチング処理でよい。   At this stage, a circuit pattern is formed on the copper foil layer of a single-sided copper-clad laminate without a plating layer, so the copper foil layer that is thinner than the copper foil layer on which the plating layer is formed is etched. A pattern can be formed. The circuit pattern may be formed by a normal etching process.

次に、図3(a)に示すように、図2で回路パターン形成した部分に表面保護絶縁膜3をポリイミドフィルム等の可撓性絶縁樹脂フィルムを接着剤により接着ラミネートする。このとき、表面保護絶縁膜3がずれて接続パッド部2の部品実装部100側の銅箔を残しておいた部分に乗り上げてしまうと、後工程で部品実装部100の外層回路パターンを形成した後で短絡する虞があるため、エッチングした部分よりも手前までで可撓性絶縁樹脂フィルムの接着ラミネートを留めるようにする。   Next, as shown in FIG. 3A, the surface protective insulating film 3 and a flexible insulating resin film such as a polyimide film are adhesively laminated to the portion where the circuit pattern is formed in FIG. At this time, if the surface protective insulating film 3 is displaced and rides on the portion where the copper foil on the component mounting portion 100 side of the connection pad portion 2 is left, an outer layer circuit pattern of the component mounting portion 100 is formed in a subsequent process. Since there is a possibility of short-circuiting later, the adhesive laminate of the flexible insulating resin film is fastened to the front of the etched portion.

したがって、このときの接続パッド2を含む部分のA1−A1断面の形状は、図3(b)に示すようになり、接続パッド2の部分を含まないA2−A2断面の形状は、図3(c)に示すようなものになる。ここで、11は外層銅張積層板の材料銅箔、4は絶縁ベース材料である。   Accordingly, the A1-A1 cross-sectional shape of the portion including the connection pad 2 at this time is as shown in FIG. 3B, and the A2-A2 cross-sectional shape not including the connection pad 2 portion is FIG. As shown in c). Here, 11 is a copper foil material for the outer layer copper clad laminate, and 4 is an insulating base material.

エッチング部分とカバーレイ3をラミネートする部分との間の距離gは、ラミネート時のずれを考慮して0.1〜0.3mmとすることが好ましい。   The distance g between the etched portion and the portion where the coverlay 3 is laminated is preferably set to 0.1 to 0.3 mm in consideration of a shift during lamination.

次に、予め形成しておいた内層コア基板に、以上述べた回路パターンと接続パッドを形成し、前記表面保護絶縁膜3をラミネートして得られた片面銅張積層板を積層して多層基板を形成し、その後、スルーホールやビアホール等の層間導通部を形成する。ここまでの工程は、従来からの手法で行われる。ここでは、サブトラクティブ法とパネルメッキによる層間導通部の形成手法を想定している。   Next, a single-sided copper-clad laminate obtained by forming the above-described circuit pattern and connection pads on the previously formed inner layer core substrate and laminating the surface protective insulating film 3 is laminated to form a multilayer substrate After that, interlayer conductive parts such as through holes and via holes are formed. The process so far is performed by a conventional method. Here, the formation method of the interlayer conduction | electrical_connection part by subtractive method and panel plating is assumed.

図4(a)は、パネルメッキ後に、ドライフィルム5を用いてイメージ露光、現像を行った状態である。なお、先工程で表面保護絶縁膜3をラミネートした部分は、領域31である。また、ケーブル部回路パターン1もパネルメッキ銅箔12に隠れて見えない状態であるが、便宜的に示してある。このときの接続パッド2部分を含むA3−A3断面の形状は、図4(b)に示すようになる。   FIG. 4A shows a state in which image exposure and development are performed using the dry film 5 after panel plating. A portion where the surface protective insulating film 3 is laminated in the previous step is a region 31. The cable part circuit pattern 1 is also hidden from the panel-plated copper foil 12 and cannot be seen, but is shown for convenience. The shape of the A3-A3 cross section including the connection pad 2 portion at this time is as shown in FIG.

図4(b)において、ドライフィルム5は、接続パッド2の部分で、長さpの分だけカバーレイ3で被覆された部分とオーバーラップしており、このオーバーラップによって、後にエッチングを行なう際に、接続パッド2が断線しないようにしている。このオーバーラップ長さpは、エッチング時のサイドエッチングを考慮して、0.07mm以上であることが好ましい。   In FIG. 4B, the dry film 5 is overlapped with the portion covered with the cover lay 3 by the length p at the portion of the connection pad 2, and this overlap causes the subsequent etching. Further, the connection pad 2 is prevented from being disconnected. The overlap length p is preferably 0.07 mm or more in consideration of side etching during etching.

図5(a)は、その後に、エッチングによってケーブル部回路パターン1およびケーブル部回路パターン1の実装部側基端部に形成された接続パッド部2以外の外層回路パターンを形成した状態を示している。このときの接続パッド2の部分を含むA4−A4線に沿う断面の形状は、図5(b)に示すようになる。オーバーラップ長さpによって、積層前に形成した回路パターン1とその後に形成した回路パターン13とが確実に接続される。   FIG. 5A shows a state in which an outer layer circuit pattern other than the connection pad portion 2 formed at the mounting portion side base end portion of the cable portion circuit pattern 1 and the cable portion circuit pattern 1 is formed by etching thereafter. Yes. The cross-sectional shape along the line A4-A4 including the connection pad 2 at this time is as shown in FIG. By the overlap length p, the circuit pattern 1 formed before lamination and the circuit pattern 13 formed thereafter are reliably connected.

この接続パッド部2は、図5(b)に示すように回路パターンが突起となっている状態であり、外部からの衝撃を受け易い。このため、図6(a)およびそのA5−A5線に沿う切断面を示す図6(b)に示すように、可撓性絶縁フィルムの接着やソルダーレジストの印刷形成などにより表面保護絶縁膜6で接続パッド部2を被覆することが好ましい。図6(a)の領域61は、これらの表面保護絶縁膜6で被覆する領域である。   The connection pad portion 2 is in a state in which the circuit pattern is a protrusion as shown in FIG. 5B, and is easily subjected to external impact. For this reason, as shown in FIG. 6 (a) and FIG. 6 (b) showing a cut surface along the line A5-A5, the surface protective insulating film 6 is formed by adhesion of a flexible insulating film or printing formation of a solder resist. It is preferable to cover the connection pad portion 2 with. A region 61 in FIG. 6A is a region covered with these surface protective insulating films 6.

応用例Application examples

実施例における工程(5)で、表面保護絶縁膜の代りに外層形成用材料をビルドアップ積層することも可能である。この場合、実施例における工程(1)〜(4)で得られた基板が、新たな内層コア基板となる。   In the step (5) in the embodiment, it is possible to build up and laminate an outer layer forming material instead of the surface protective insulating film. In this case, the substrate obtained in steps (1) to (4) in the example becomes a new inner layer core substrate.

本発明方法の一連の工程を示す説明図。Explanatory drawing which shows a series of processes of this invention method. 本発明を適用するプリント基板の部品実装部とケーブル部との接続部分を示す平面図。The top view which shows the connection part of the component mounting part and cable part of a printed circuit board to which this invention is applied. 図3(a)は本発明で用いる接続パッドを示す説明図、図3(b)は図3(a)におけるA1−A1線に沿って切断した断面図、図3(c)は図3(a)におけるA2−A2線に沿う位置で切断した断面図。3A is an explanatory view showing a connection pad used in the present invention, FIG. 3B is a cross-sectional view taken along line A1-A1 in FIG. 3A, and FIG. 3C is FIG. Sectional drawing cut | disconnected in the position which follows the A2-A2 line | wire in a). 図4(a)は本発明により構成した接続パッドにより接続される部品実装部およびケーブル部の回路パターンを示す説明図、図4(b)は図4(a)におけるA3−A3線に沿う断面図。FIG. 4A is an explanatory diagram showing circuit patterns of a component mounting portion and a cable portion connected by a connection pad constructed according to the present invention, and FIG. 4B is a cross section taken along line A3-A3 in FIG. Figure. 図5(a)は本発明により構成した接続パッドにより接続される部品実装部およびケーブル部の回路パターンを示す説明図、図5(b)は図5(a)におけるA4−A4線に沿う断面図。FIG. 5A is an explanatory view showing circuit patterns of a component mounting portion and a cable portion connected by a connection pad constructed according to the present invention, and FIG. 5B is a cross section taken along line A4-A4 in FIG. Figure. 図6(a)は本発明により構成した接続パッドにより接続される部品実装部およびケーブル部の回路パターンを示す説明図、図6(b)は図6(a)におけるA5−A5線に沿う断面図。FIG. 6A is an explanatory diagram showing circuit patterns of a component mounting portion and a cable portion connected by a connection pad constructed according to the present invention, and FIG. 6B is a cross section taken along line A5-A5 in FIG. 6A. Figure. 図7(a),(b),(c)は、従来例の構成とそれにより生じる撓みを示す説明図。FIGS. 7A, 7B, and 7C are explanatory views showing the configuration of the conventional example and the bending caused thereby.

符号の説明Explanation of symbols

1 ケーブル部回路パターン
11 外層銅張積層板の材料銅箔
12 パネルメッキ銅箔
2 接続パッド
3 表面保護絶縁膜
31 表面保護絶縁膜をラミネートした領域
4 外層銅張積層板の絶縁ベース材
5 イメージ露光後のドライフィルム
6 表面保護絶縁膜
61 表面保護絶縁膜を被覆した領域
71 片面銅張積層板
72 接着部材
73 内層基板
a ケーブル部
b 部品実装部
g 距離
p 重なり長さ
DESCRIPTION OF SYMBOLS 1 Cable part circuit pattern 11 Material of outer layer copper clad laminate Copper foil 12 Panel plating copper foil 2 Connection pad 3 Surface protection insulating film 31 Area where surface protection insulation film was laminated 4 Insulation base material 5 of outer layer copper clad laminate Rear dry film 6 Surface protective insulating film 61 Area 71 covered with surface protective insulating film Single-sided copper-clad laminate 72 Adhesive member 73 Inner layer board a Cable part b Component mounting part g Distance p Overlap length

Claims (2)

内層コア基板の少なくとも片面に片面銅張積層板を積層してなる多層フレキシブルプリント基板であって、複数の部品実装部間を、該部品実装部より伸長する可撓性ケーブル部で電気的に接続してなる多層フレキシブルプリント基板の製造方法において、以下の工程を順に経て形成されることを特徴とする多層フレキシブルプリント基板の製造方法。
(1)内層コア基板に積層される前記片面銅張積層板の銅箔に対し、エッチング手法により、前記可撓性ケーブル部回路パターン、および該可撓性ケーブル部回路パターンの部品実装部側基端部に接続パッド部を形成する。
(2)前記工程(1)で形成された前記可撓性ケーブル部回路パターンおよび当該回路パターンの部品実装部側基端部に形成された前記接続パッド部に、該接続パッド部の部品実装部側先端の一部を除き表面保護絶縁膜を形成する。
(3)前記内層コア基板の少なくとも片面に、前記工程(1)、(2)で作製された片面銅張積層板を、前記可撓性ケーブル部に対応する箇所を除いた接着部材によって、銅箔が外面を向く様に積層した積層体を形成し、前記部品実装部の所要位置に層間導通部を形成する。
(4)前記工程(3)で積層形成された片面銅張積層板の銅箔の、前記可撓性ケーブル部回路パターンおよび前記可撓性ケーブル部回路パターンの部品実装部側基端部に形成された前記接続パッド部以外の部位に対するエッチング手法により、外層回路パターンを形成する。
(5)前記接続パッド部を含む前記外層回路パターンに、所要の位置に開口を有する表面保護絶縁膜を形成する。
A multilayer flexible printed circuit board in which a single-sided copper-clad laminate is laminated on at least one side of the inner layer core board, and a plurality of component mounting parts are electrically connected by a flexible cable part extending from the component mounting part In the manufacturing method of the multilayer flexible printed circuit board formed, it forms through the following processes in order, The manufacturing method of the multilayer flexible printed circuit board characterized by the above-mentioned.
(1) The flexible cable portion circuit pattern and the component mounting portion side base of the flexible cable portion circuit pattern are etched by etching on the copper foil of the single-sided copper clad laminate laminated on the inner core substrate. A connection pad portion is formed at the end.
(2) The flexible cable portion circuit pattern formed in the step (1) and the connection pad portion formed on the component mounting portion side base end portion of the circuit pattern, the component mounting portion of the connection pad portion A surface protective insulating film is formed except for a part of the side tip.
(3) The single-sided copper-clad laminate produced in the steps (1) and (2) is attached to at least one side of the inner-layer core substrate by an adhesive member excluding a portion corresponding to the flexible cable portion. A laminated body is formed so that the foil faces the outer surface, and an interlayer conductive portion is formed at a required position of the component mounting portion.
(4) Forming on the flexible cable part circuit pattern and the component mounting part side base end part of the flexible cable part circuit pattern of the copper foil of the single-sided copper clad laminate formed and laminated in the step (3) An outer layer circuit pattern is formed by an etching method for the portions other than the connection pad portion thus formed.
(5) A surface protective insulating film having an opening at a required position is formed on the outer layer circuit pattern including the connection pad portion.
請求項1記載のプリント基板の製造方法において、
前記工程(5)で、表面保護絶縁膜の代りに外層形成用材料をビルドアップ積層することを特徴とする多層フレキシブルプリント基板の製造方法。
In the manufacturing method of the printed circuit board of Claim 1,
In the step (5), a multilayer flexible printed circuit board manufacturing method, wherein an outer layer forming material is built up and laminated instead of the surface protective insulating film.
JP2005296546A 2005-10-11 2005-10-11 Method for manufacturing printed circuit board having cable portion Active JP4745014B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005296546A JP4745014B2 (en) 2005-10-11 2005-10-11 Method for manufacturing printed circuit board having cable portion
TW95136753A TWI382804B (en) 2005-10-11 2006-10-03 And a method of manufacturing a printed circuit board having a cable portion
CN2006101729546A CN1976561B (en) 2005-10-11 2006-10-11 Process for producing printed board having cable portion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005296546A JP4745014B2 (en) 2005-10-11 2005-10-11 Method for manufacturing printed circuit board having cable portion

Publications (2)

Publication Number Publication Date
JP2007109716A true JP2007109716A (en) 2007-04-26
JP4745014B2 JP4745014B2 (en) 2011-08-10

Family

ID=38035375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005296546A Active JP4745014B2 (en) 2005-10-11 2005-10-11 Method for manufacturing printed circuit board having cable portion

Country Status (3)

Country Link
JP (1) JP4745014B2 (en)
CN (1) CN1976561B (en)
TW (1) TWI382804B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5654607Y2 (en) * 1974-11-11 1981-12-19
JPS63149561A (en) * 1986-12-12 1988-06-22 Hitachi Ltd Analysis of prostaglandin
JPH06268339A (en) * 1993-01-12 1994-09-22 Ibiden Co Ltd Flex-rigid multilayer printed wiring board and production thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0412702Y2 (en) * 1987-03-23 1992-03-26
FR2632797B1 (en) * 1988-06-10 1990-10-05 Radiotechnique Ind & Comm DEVICE FOR CORRECTING A VIDEO SIGNAL
JPH07312469A (en) * 1994-05-16 1995-11-28 Nippon Mektron Ltd Structure of bent part of multilayer flexible circuit board

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5654607Y2 (en) * 1974-11-11 1981-12-19
JPS63149561A (en) * 1986-12-12 1988-06-22 Hitachi Ltd Analysis of prostaglandin
JPH06268339A (en) * 1993-01-12 1994-09-22 Ibiden Co Ltd Flex-rigid multilayer printed wiring board and production thereof

Also Published As

Publication number Publication date
TWI382804B (en) 2013-01-11
TW200746970A (en) 2007-12-16
CN1976561A (en) 2007-06-06
JP4745014B2 (en) 2011-08-10
CN1976561B (en) 2010-06-09

Similar Documents

Publication Publication Date Title
US9338899B2 (en) Method of manufacturing a rigid-flexible printed circuit board
JP5198105B2 (en) Manufacturing method of multilayer flexible printed wiring board
US20050284657A1 (en) Double-sided printed circuit board without via holes and method of fabricating the same
JP4808468B2 (en) Hybrid multilayer circuit board and manufacturing method thereof
JP4768059B2 (en) Multilayer flexible printed wiring board
JP4147298B2 (en) Flex-rigid printed wiring board and method for manufacturing flex-rigid printed wiring board
US8604346B2 (en) Flex-rigid wiring board and method for manufacturing the same
US20110056732A1 (en) Flex-rigid wiring board and method for manufacturing the same
JP5524315B2 (en) Display element module using multilayer flexible printed wiring board
JPH08139454A (en) Manufacturing method of printed-wiring board
JP2004186235A (en) Wiring board and method for manufacturing the same
JP2011091312A (en) Rigid flex circuit board, method of manufacturing the same, and electronic device
KR101946989B1 (en) The printed circuit board and the method for manufacturing the same
JP4745014B2 (en) Method for manufacturing printed circuit board having cable portion
JP4481184B2 (en) Method for manufacturing multilayer flexible circuit board
JP2003086943A (en) Flexible printed substrate having cable and its manufacturing method
JP5204871B2 (en) Partial multilayer flexible printed wiring board
KR101283164B1 (en) The printed circuit board and the method for manufacturing the same
JP2001111216A (en) Flexible printed wiring board and manufacturing method thereof
CN115623675A (en) Semi-flexible circuit board and preparation method thereof
KR101262534B1 (en) The printed circuit board and the method for manufacturing the same
JP2009170654A (en) Printed circuit board and method of manufacturing printed circuit board
JP2006261523A (en) Rigid flex circuit board and its manufacturing method
JP2006203053A (en) Thin module board by combination of different type of material
JP2005109298A (en) Multilayer wiring board and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110511

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4745014

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250