JP2007108002A - 光切断法を用いた三次元形状計測装置及び三次元形状計測方法 - Google Patents

光切断法を用いた三次元形状計測装置及び三次元形状計測方法 Download PDF

Info

Publication number
JP2007108002A
JP2007108002A JP2005298845A JP2005298845A JP2007108002A JP 2007108002 A JP2007108002 A JP 2007108002A JP 2005298845 A JP2005298845 A JP 2005298845A JP 2005298845 A JP2005298845 A JP 2005298845A JP 2007108002 A JP2007108002 A JP 2007108002A
Authority
JP
Japan
Prior art keywords
camera
optical axis
predetermined angle
dimensional shape
shape measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005298845A
Other languages
English (en)
Inventor
Masahiro Moriya
雅弘 守屋
Masatoshi Kawada
正敏 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moritex Corp
Original Assignee
Moritex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moritex Corp filed Critical Moritex Corp
Priority to JP2005298845A priority Critical patent/JP2007108002A/ja
Publication of JP2007108002A publication Critical patent/JP2007108002A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

【課題】 スリット光源と,このスリット光源のスリット光の照射方向に対して光軸を所定角度ずらして配置したカメラと,カメラで撮像した二次元画像における光切断線の輝度のデータにより測定対象物の位置データを求める画像処理手段とから構成される光切断法を用いた三次元形状計測装置では,計測精度は,測定対象物の反射率のむらや大きな凹凸差等の影響を受けやすく,また背景光下での計測が難しい等の問題点があった。
【解決手段】 そこで本発明では,カメラ5の光軸6を所定角度から調節可能に構成すると共に,調節された角度において撮像した二次元画像9’から求めた位置データから上記所定角度における位置データを求めるように画像処理手段8を構成した光切断法を用いた三次元形状計測装置を提案している。
【選択図】 図1

Description

本発明は,光切断法を用いた三次元形状計測装置及び三次元形状計測方法に関するものである。
光を用いた三次元形状計測技術として,光切断法を用いた三次元形状計測技術がある。この技術は,スリット光源から測定対象物に対して扇状に拡がるスリット光を照射し,それにより測定対象物の表面に,その断面形状に対応して形成される光切断線,即ち,乱反射光の輝線を,スリット光源のスリット光の照射方向に対して光軸を所定角度ずらして配置したカメラにより撮像して,断面形状に対応する位置データを求め,スリット光が照射される測定対象物の位置を走査することにより,測定対象物の三次元形状を計測するものであり,その簡便性,非接触性及び定量性のために従来から広く用いられている。
この光切断法を用いた三次元計測技術では,測定対象物に照射されたスリット光の乱反射光を観測するものであるため,測定対象物の表面の反射率が一様でないと,乱反射光の輝線の輝度も一様にならないため,光切断線自体を背景から抽出することが必ずしも容易ではなかった。例えば,反射率の低い部分における光切断線を検出するためにスリット光の強度を強くすると,反射率の高い部分では飽和してしまい,光切断線の分解能が落ちてしまうという問題があった。このように光切断法における計測精度は,測定対象物の反射率のむらや大きな凹凸差等の影響を受けやすく,また背景光下での計測が難しい等の問題点があった。
このような問題点を有する光切断法に対して,例えば特許文献1では,表面光沢が強いために形状測定が難しい測定対象物に対して,鏡面反射抑制剤を塗布して,測定精度を向上させる提案がなされている。
また特許文献2では,測定対象物の表面に酸素を過剰に含む空気を吹き付けることにより表面の酸化を促進し,表面からの乱反射強度を測定に適した状態にした後に乱反射光を検出するという提案がなされている。
特開平3−218404号公報 特開平8−94334号公報
しかしながら特許文献1の方法では,測定対象物の表面に光の反射が抑制される程度に厚く異物を付着させることになるため,製品品質に影響が生じる恐れがある上に,鏡面反射抑制剤は,予め測定不可能領域のマップを作成し,そのマップに従って塗布していることから,塗布作業が繁雑であり,また鏡面反射抑制剤を別途用意しなければならないことから,コストアップの原因となるという問題点があった。
また特許文献2の方法では,特許文献1に対しては,鏡面反射抑制剤が必要でないという利点はあるが,測定対象物の表面を酸化させなくてはならないことから,時間も手間もかかるという問題点があった。
本発明は以上の課題を解決することを目的とするものである。
以上の課題を解決するために,本発明では,まず,スリット光源と,このスリット光源のスリット光の照射方向に対して光軸を所定角度ずらして配置したカメラと,カメラで撮像した二次元画像における光切断線の輝度のデータにより測定対象物の位置データを求める画像処理手段とから構成される光切断法を用いた三次元形状計測装置において,カメラの光軸を上記所定角度から調節可能に構成すると共に,画像処理手段は,調節された角度において撮像した二次元画像から求めた位置データから上記所定角度における位置データを求めるように構成した光切断法を用いた三次元形状計測装置を提案する。
また本発明では,以上の3次元形状計測装置において,測定対象物を載置する支持台を回転可能に構成することを提案する。
また本発明では,スリット光源と,このスリット光源のスリット光の照射方向に対して光軸を所定角度ずらして配置したカメラと,カメラで撮像した二次元画像における光切断線の輝度のデータにより測定対象物の位置データを求める画像処理手段とから構成される光切断法を用いた三次元形状計測装置において,カメラの光軸を上記所定角度から調節可能に構成し,画像処理手段は,所定角度に維持されたカメラで撮像した二次元画像における輝度のデータに画素抜けを検出した場合には,カメラの光軸を調節しながら画素抜けに対応する個所の輝度を監視し,輝度を検出した時点においてカメラの光軸を固定して位置データを求め,次いでカメラの光軸の,上記所定角度からの調節角度を用いて,上記所定角度における位置データを求めることとした光切断法を用いた三次元形状計測方法を提案する。
更に本発明では,スリット光源と,このスリット光源のスリット光の照射方向に対して光軸を所定角度ずらして配置したカメラと,カメラで撮像した二次元画像における光切断線の輝度のデータにより測定対象物の位置データを求める画像処理手段とから構成される光切断法を用いた三次元形状計測装置において,カメラの光軸を上記所定角度から調節可能に構成し,画像処理手段は,所定角度に維持されたカメラで撮像した二次元画像における輝度のデータに画素抜けを検出した場合には,カメラの光軸を調節しながら画素抜けに対応する個所の輝度を監視し,輝度を検出した時点においてカメラの光軸を固定して位置データを求め,次いでカメラの光軸の,上記所定角度からの調節角度を用いて,上記所定角度における位置データを求めると共に,カメラの光軸の調節範囲内で輝度を検出しない場合には,測定対象物を適宜角度回転させ,その状態で上記手順の計測を行うこととした光切断法を用いた三次元形状計測方法を提案する。
以上の構成において,本発明では,スリット光源から照射されたスリット光が測定対象物の表面において乱反射して形成される光切断線の少なくとも一部がカメラにより検出されない場合,即ち,所定角度に維持されたカメラで撮像した二次元画像における輝度のデータに画素抜けを検出した場合には,カメラの光軸を調節しながら画素抜けに対応する個所の輝度を監視し,輝度を検出した時点においてカメラの光軸を固定して位置データを求める。次いで,輝度を検出した時点におけるカメラの,上記所定角度からの調節角度を用いることにより,この所定角度における位置データを求めることができ,測定対象物に対応する光切断線の全ての輝度のデータを求めることができる。
また本発明では,カメラの光軸の調節だけでは光切断線の輝度を検出できない場合には,測定対象物を適宜角度回転させ,その状態で上記手順の計測を行うことにより,測定対象物に対応する光切断線の全ての輝度のデータを求めることができる。
次に本発明の実施の形態を添付図面を参照して説明する。
図1は本発明に係る装置と方法を概念的に示す模式図,また図2,図6及び図8は本発明装置における計測動作を示す模式図であり,これらの図において,符号1は測定対象物2を載置する支持台であり,その面が基準面となり,図2と図6においてはX軸方向として示している。
支持台1の上方には,基準面に対して所定角度θを成す方向に,扇状に拡がるスリット光3を照射するようにスリット光源4を配置している。そして,このスリット光源4からのスリット光3の照射方向に対して光軸を所定角度ずらしてカメラ5を配置している。カメラ5は,その光軸6を,鉛直方向を基準として,そこから角度調節可能に構成している。そして,カメラ5で撮像した二次元画像における光切断線7の輝度のデータにより測定対象物2の位置データを求める画像処理手段8を構成しており,この画像処理手段8を構成するコンピュータ等には,カメラ5の光軸6の角度を調節するための駆動機構(図示省略)を制御するための制御手段(図示省略)を構成している。尚,カメラ5は,CCDやCMOS等の二次元撮像素子を使用したカメラを使用することができる。尚,図3〜図5において,実線が輝度を検出している部分を示しており,破線は,輝度を検出していないが測定対象物2の断面形状を示すために便宜的に示したものである。
以上の構成において,スリット光源4から測定対象物2に対して扇状に拡がるスリット光3を照射し,それにより測定対象物2の表面に,その断面形状に対応して形成される光切断線7,即ち,乱反射光の輝線を,カメラ5で撮像した二次元画像9を画像処理手段8により画像処理して,上記断面形状に対応する光切断線7の輝度のデータから,その位置データを求め,スリット光3が照射される測定対象物2の位置を走査することにより,測定対象物2の三次元形状を計測することができる。尚,走査は,測定対象物2側を図2のX方向に移動させて行う他,スリット光源4とカメラ5側を同方向に移動させて行うこともできる。
ここで光切断線7の輝度のデータにより測定対象物2の位置のデータ,この場合,光切断線7の各所の基準面からの高さhと,カメラ5の鉛直下方からの距離xは,図2から次式の関係がある。
h=x・tanθ (1)
即ち,測定対象物2の表面に対応する光切断線7の高さhは,θが既知であることから,xの値が決まれば,一義的に決まることが分かる。そしてxの値は,カメラ5の光軸6が鉛直方向であることから,二次元画像9における縦方向の距離に相当することが分かる。即ち,xの値は,二次元画像9により容易に計測可能である。
従って,画像処理手段8は,図3中に2点鎖線で示すように,二次元画像9の左右方向に順次,光切断線7の輝度を読み込んで行き,夫々の点において,上記関係式から位置のデータを求めて記憶して行き,この動作を各走査において行うことにより,上述したとおり,測定対象物2の表面の夫々の個所の高さhを計測することができる。
ここで,測定対象物2の,ある個所が鏡面等に形成されているような場合,カメラ5の配置によっては,例えば図4に示すように,その個所において反射するスリット光3がカメラ5によって撮像されず,輝度の画素抜け10が生じる場合がある。
そこで本発明では,二次元画像9中の光切断線7の輝度のデータ中から,このような輝度の抜け10を検出した場合には,画像処理手段8は,図6に示すように,カメラ5の光軸6を調節しながら,輝度の画素抜け10に対応する二次元画像9の個所を監視し,輝度10’を検出した時点においてカメラ5の光軸6を固定して,上述したように位置データを求め,次いでカメラ5の光軸6を調節した角度,即ち調節角度θ1を用いて,基準位置のカメラ5に対応する位置を求める。
図6に示すように,求めるべき位置データは,基準位置のカメラ5の鉛直下方からの距離x1と,基準面からの高さh1であり,これらの位置データは,図2により求めるx,hに相当する。
上述したとおり,カメラ5の光軸6は,基準位置から角度θ1だけ回転しているので,この状態で撮像した二次元画像9による基準面も,図6のX軸方向に相当する面から,X’軸方向に相当する面に変化している。従って,この状態の二次元画像9’から上記(1)式により位置データを求めても,その位置データは,図中のx2,h2であり,これらの求められた位置データから,上記x1,h1を求める必要がある。
ここで,変化した基準面に対応するX’軸方向に対してスリット光源4によるスリット光3の照射方向が成す角度をθ2とすると,高さh2と距離x2とは図から次式の関係がある。
2=x2・tanθ2 (2)
上述と同様に,x2の値は,二次元画像9’における縦方向の距離として容易に計測することができ,またθ2=θ−θ1であるから,これらにより,h2を求めることができる。
一方,図6から,下記の関係式が導出される。
cosθ2=x2/b (3)
b=x2/cosθ2 (4)
1=b・cosθ (5)
上記(4)式と(5)式とから,下式が導出される。
1=x2・cosθ/cosθ2 (6)
一方,図6から,下式が導出され,
1=x1・tanθ (7)
これらの(6)式と(7)式から次式が導出される。
1=x2・cosθ・tanθ/cosθ2 (8)
以上の(6)式及び(8)式により,カメラ5の光軸6が基準位置から調節角度θ1だけ回転させた状態で撮像した二次元画像9’により容易に,即ち図5中の縦方向の距離として容易に計測することができる距離x2と,調節角度θ1及び既知の角度θとから,求めるべき距離x1と高さh1とを導出できることが分かる。
図7は,以上の計測,処理手順を示す流れ図である。尚,この流れ図は,ある時点の走査において照射したスリット光3に対しての計測,処理手順を示すもので,実際には,この流れ図に示す手順を,各走査毎に行って三次元形状を計測するものである。
まずステップS1においては,基準位置のカメラ5により二次元画像9を撮像する。
次いでステップS2においては,二次元画像9中の光切断線7の輝度のデータに画素抜け10が有るか,否かを判断する。
ステップS2において画素抜け10がないと判断した場合には,ステップS3に移行し,二次元画像9から基準面方向の距離xを求める。この距離xは,図3に示すように縦方向の距離として直接的に計測することができる。
次いでステップS4では,ステップS3において計測により求められたxから,(1)式を用いて高さhを求める。
一方,ステップS2において画素抜け10が有ると判断した場合には,ステップS5に移行し,カメラ5の角度調節機構を駆動して,カメラ5の光軸6の角度を調節する。
ステップS5においてカメラ5の角度調節を行うと共に,ステップS6においてカメラ5により二次元画像9’を撮像し,監視して,上記画素抜け10があった位置に輝度を検出したか否かを判断する。
ステップS6において,検出していないと判断した場合には,ステップS5に移行し,更に角度調節を行う。
ステップS6において,輝度を検出したと判断した場合には,ステップS7に移行し,カメラ5の角度調節を停止して,その時点までの調節角度θ1を求め,これを記憶する。
次いでステップS8ではカメラ5の角度調節により変化した基準面に対してのスリット光3の照射角度θ2(=θ−θ1)を求める。
次いでステップS9では,変化した基準面方向の距離x2を二次元画像9’から求める。
次いでステップS10では,(2)式により高さh2を導出する。
次いでステップS11では,(6)式により,基準面方向の距離x1を求め,次いでステップS12において,(8)式により基準面に対しての高さh1を導出して処理を終了する。
以上の流れ図は,画素抜け10の原因としての測定対象物2の表面状態が同様な場合の処理の流れに対応するもので,測定対象物2の反射状態が異なり,従って同一の調節角度では,同時に輝度検出ができない複数の画素抜けがある場合には,全ての画素抜け10個所の処理が完了したか否かの判定をして条件分岐を行うステップを,ステップS12の次に配置し,このステップにおいて完了していないと判定した場合にはステップS5に移行し,完了したと判定した場合には終了するようにすれば良い。
以上の計測,処理により,本発明では,スリット光源4から照射されたスリット光3が測定対象物2の表面において乱反射して形成される光切断線7の少なくとも一部がカメラ5により検出されない場合,即ち,所定角度に維持されたカメラ5で撮像した二次元画像9における輝度のデータに画素抜けを検出した場合には,カメラ5の光軸6を調節しながら画素抜け10に対応する個所の輝度を監視し,輝度を検出した時点においてカメラ5の光軸6を固定して位置データを求め,次いで,輝度を検出した時点におけるカメラ5の,上記所定角度からの調節角度θ1を用いることにより,この所定角度における位置データを求めることができ,こうして測定対象物2に対応する光切断線7の全ての輝度のデータを求めることができる。
尚,画素抜け10に対応する個所の輝度を監視においては,その他の個所の輝度データをノイズと見なし,ノイズフィルタで除去することにより,上記対応個所の輝度の検出を良好に行うことができる。
ここで,画素抜け10の原因としての測定対象物2の表面状態により,カメラ5の光軸6を上述したように調節したとしても,調節範囲内で輝度を検出することができなかった場合には,本発明では,次の構成として,例えば測定対象物2を載置する支持台1を,図中鉛直方向の回転軸の回りに回転可能に構成し,カメラ5の光軸6の調節範囲内で輝度を検出しない場合には,支持台1等により測定対象物2を適宜角度回転させ,その状態で上記手順の計測を行うようにすることができる。
このような構成とすることにより,上述したカメラ5の光軸6の角度調節では輝度が検出できない測定対象物2の表面状態であっても,上記対応個所の輝度の検出を良好に行うことができる。
従って,このような構成とすることにより,本発明において三次元形状計測可能な測定対象物2の表面状態の範囲を,飛躍的に拡大することができる。
本発明は以上のとおりであるので,従来のように,測定対象物の表面に光の反射が抑制される程度に厚く異物,即ち鏡面反射抑制剤を塗布したり,測定対象物の表面を酸化させたりという面倒で煩雑な作業が不要となり,時間と手間を低減することができると共に,コストアップを生じないという利点が生じ,産業上の利用可能性が極めて大である。
本発明に係る装置と方法を概念的に示す模式図である。 本発明装置における計測動作を示す模式図である。 カメラで撮像した二次元画像の一例を示すものである。 カメラで撮像した二次元画像の他の一例を示すものである。 光軸を調節したカメラで撮像した二次元画像の一例を示すものである。 本発明装置における計測動作を示す模式図である。 本発明における計測,処理手順を示す流れ図である。 本発明に係る装置と方法の他の構成を概念的に示す模式図である。
符号の説明
1 支持台
2 測定対象物
3 スリット光
4 スリット光源
5 カメラ
6 光軸
7 光切断線
8 画像処理手段
9,9’ 二次元画像
10 画素抜け
10’ 輝度

Claims (4)

  1. スリット光源と,このスリット光源のスリット光の照射方向に対して光軸を所定角度ずらして配置したカメラと,カメラで撮像した二次元画像における光切断線の輝度のデータにより測定対象物の位置データを求める画像処理手段とから構成される光切断法を用いた三次元形状計測装置において,カメラの光軸を上記所定角度から調節可能に構成すると共に,画像処理手段は,調節された角度において撮像した二次元画像から求めた位置データから上記所定角度における位置データを求めるように構成したことを特徴とする光切断法を用いた三次元形状計測装置。
  2. 測定対象物を載置する支持台を回転可能に構成したことを特徴とする請求項1に記載の光切断法を用いた三次元形状計測装置。
  3. スリット光源と,このスリット光源のスリット光の照射方向に対して光軸を所定角度ずらして配置したカメラと,カメラで撮像した二次元画像における光切断線の輝度のデータにより測定対象物の位置データを求める画像処理手段とから構成される光切断法を用いた三次元形状計測装置において,カメラの光軸を上記所定角度から調節可能に構成し,画像処理手段は,所定角度に維持されたカメラで撮像した二次元画像における輝度のデータに画素抜けを検出した場合には,カメラの光軸を調節しながら画素抜けに対応する個所の輝度を監視し,輝度を検出した時点においてカメラの光軸を固定して位置データを求め,次いでカメラの光軸の,上記所定角度からの調節角度を用いて,上記所定角度における位置データを求めることを特徴とする光切断法を用いた三次元形状計測方法。
  4. スリット光源と,このスリット光源のスリット光の照射方向に対して光軸を所定角度ずらして配置したカメラと,カメラで撮像した二次元画像における光切断線の輝度のデータにより測定対象物の位置データを求める画像処理手段とから構成される光切断法を用いた三次元形状計測装置において,カメラの光軸を上記所定角度から調節可能に構成し,画像処理手段は,所定角度に維持されたカメラで撮像した二次元画像における輝度のデータに画素抜けを検出した場合には,カメラの光軸を調節しながら画素抜けに対応する個所の輝度を監視し,輝度を検出した時点においてカメラの光軸を固定して位置データを求め,次いでカメラの光軸の,上記所定角度からの調節角度を用いて,上記所定角度における位置データを求めると共に,カメラの光軸の調節範囲内で輝度を検出しない場合には,測定対象物を適宜角度回転させ,その状態で上記手順の計測を行うことを特徴とする光切断法を用いた三次元形状計測方法。
JP2005298845A 2005-10-13 2005-10-13 光切断法を用いた三次元形状計測装置及び三次元形状計測方法 Pending JP2007108002A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005298845A JP2007108002A (ja) 2005-10-13 2005-10-13 光切断法を用いた三次元形状計測装置及び三次元形状計測方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005298845A JP2007108002A (ja) 2005-10-13 2005-10-13 光切断法を用いた三次元形状計測装置及び三次元形状計測方法

Publications (1)

Publication Number Publication Date
JP2007108002A true JP2007108002A (ja) 2007-04-26

Family

ID=38033975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005298845A Pending JP2007108002A (ja) 2005-10-13 2005-10-13 光切断法を用いた三次元形状計測装置及び三次元形状計測方法

Country Status (1)

Country Link
JP (1) JP2007108002A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012176262A1 (ja) * 2011-06-20 2012-12-27 株式会社安川電機 3次元形状計測装置およびロボットシステム
US10068350B2 (en) 2015-12-15 2018-09-04 Canon Kabushiki Kaisha Measurement apparatus, system, measurement method, determination method, and non-transitory computer-readable storage medium
CN112703363A (zh) * 2018-09-13 2021-04-23 斯考拉股份公司 用于探测物体的设备和方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05149727A (ja) * 1991-11-28 1993-06-15 Mitsubishi Heavy Ind Ltd 三次元形状認識装置
JPH09145336A (ja) * 1995-11-28 1997-06-06 Agency Of Ind Science & Technol 形状測定装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05149727A (ja) * 1991-11-28 1993-06-15 Mitsubishi Heavy Ind Ltd 三次元形状認識装置
JPH09145336A (ja) * 1995-11-28 1997-06-06 Agency Of Ind Science & Technol 形状測定装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012176262A1 (ja) * 2011-06-20 2012-12-27 株式会社安川電機 3次元形状計測装置およびロボットシステム
US10068350B2 (en) 2015-12-15 2018-09-04 Canon Kabushiki Kaisha Measurement apparatus, system, measurement method, determination method, and non-transitory computer-readable storage medium
CN112703363A (zh) * 2018-09-13 2021-04-23 斯考拉股份公司 用于探测物体的设备和方法

Similar Documents

Publication Publication Date Title
JP3837431B2 (ja) 管内面形状測定装置
WO2012144430A1 (ja) タイヤ表面形状測定装置及びタイヤ表面形状測定方法
TW201341756A (zh) 形狀測定裝置、形狀測定方法、及記錄有其程式之記錄媒體
JP4924286B2 (ja) 外観検査装置及び外観検査方法
JP2010071722A (ja) 凹凸疵検査方法及び装置
JP2010190886A (ja) パンタグラフ高さ測定装置及びそのキャリブレーション方法
JP6451839B2 (ja) 形状検査方法、形状検査装置及びプログラム
JP2006010392A (ja) 貫通穴計測システム及び方法並びに貫通穴計測用プログラム
JP2013213733A (ja) 検査対象物の検査装置およびその検査方法
JP2007108002A (ja) 光切断法を用いた三次元形状計測装置及び三次元形状計測方法
CN104777175B (zh) 热态圆柱形长材表面质量视觉检测的成像方法和装置
JP5992315B2 (ja) 表面欠陥検出装置および表面欠陥検出方法
JP2019056671A (ja) 壁面損傷検査装置
JP5702634B2 (ja) カメラ解像度自動測定方法及び自動調節方法並びに画像検査方法及び装置
JPH07260444A (ja) 光切断法による対象物の三次元計測方法およびその装置
JP2011058893A (ja) コンベヤベルトの損傷探知方法
KR101553152B1 (ko) 압연 코일의 찌그러짐 측정 장치 및 방법
JP7159624B2 (ja) 表面性状検査方法及び表面性状検査装置
JP2009300137A (ja) 画像処理によるラインセンサ仰角測定装置
JP2011212213A5 (ja)
JP2009243920A (ja) 基準板、表面検査装置の光軸調整方法、及び表面検査装置
JP2015094707A (ja) 外観検査装置
JP2015068713A (ja) 形状測定装置、構造物製造システム、形状測定方法、構造物製造方法、形状測定プログラム、及び記録媒体
JP6252178B2 (ja) 形状測定装置、姿勢制御装置、構造物製造システム、及び、形状測定方法
JP3759584B2 (ja) 物体の三次元高さ計測方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080829

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110627