JP2007106853A - Transparent composite material - Google Patents

Transparent composite material Download PDF

Info

Publication number
JP2007106853A
JP2007106853A JP2005298340A JP2005298340A JP2007106853A JP 2007106853 A JP2007106853 A JP 2007106853A JP 2005298340 A JP2005298340 A JP 2005298340A JP 2005298340 A JP2005298340 A JP 2005298340A JP 2007106853 A JP2007106853 A JP 2007106853A
Authority
JP
Japan
Prior art keywords
transparent composite
transparent
composite according
resin
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005298340A
Other languages
Japanese (ja)
Other versions
JP4821252B2 (en
Inventor
Wataru Oka
渉 岡
Hideo Umeda
英雄 楳田
Daisuke Isobe
大輔 磯部
Yasuo Shimobe
安雄 下邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2005298340A priority Critical patent/JP4821252B2/en
Publication of JP2007106853A publication Critical patent/JP2007106853A/en
Application granted granted Critical
Publication of JP4821252B2 publication Critical patent/JP4821252B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Epoxy Resins (AREA)
  • Electroluminescent Light Sources (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyethers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transparent composite material having a small linear expansion coefficient, excellent in transparency/heat resistance, having small optical anisotropy and no reduction in display quality and to provide an electronic device. <P>SOLUTION: The transparent composite material comprises a transparent resin (a) and a glass filler (b) and has ≤150°C temperature expressing the minimum value of light volume when temperature dependence of the permeated light volume is measured by putting the transparent composite material in a deflection microscope in which the deflection axis intersects 90°at an angle expressing the maximum light volume in a transparent mode. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は線膨張係数が小さく、耐熱性、透明性、および光学特性に優れた透明複合体およびそれを備えた電子デバイスに関するものである。   The present invention relates to a transparent composite having a small coefficient of linear expansion, excellent heat resistance, transparency, and optical properties, and an electronic device including the same.

一般に、液晶表示素子や有機EL表示素子用基板(特にアクティブマトリックスタイプ)、カラーフィルター基板、太陽電池基板等としてはガラス板が広く用いられている。しかしながらガラス板は割れ易い、曲げられない、比重が大きく軽量化に不向きなどの理由から近年その代替としてプラスチック素材が検討されている。
表示素子用プラスチック基板に用いられている樹脂としては、例えば特許文献1には脂環式エポキシ樹脂、酸無水物系硬化剤、アルコール、硬化触媒からなる組成物、特許文献2には脂環式エポキシ樹脂、アルコールで部分エステル化した酸無水物系硬化剤、硬化触媒からなる樹脂組成物が、特許文献3には脂肪環式エポキシ樹脂、カルボン酸を有する酸無水物系硬化剤、硬化触媒からなる樹脂組成物が示されている。
しかしながら特許文献1から3に示された従来のガラス代替プラスチック材料はガラスと比較して線膨張係数が大きく、特にアクティブマトリックス表示素子基板に用いるとその製造工程において反りやアルミ配線の断線などの問題が生じ、これらの用途への展開は困難である。
In general, glass plates are widely used as liquid crystal display elements, organic EL display element substrates (particularly active matrix type), color filter substrates, solar cell substrates, and the like. However, plastic materials have recently been examined as an alternative to glass plates because they are easily broken, cannot be bent, have a large specific gravity, and are not suitable for weight reduction.
As resin used for the plastic substrate for display elements, for example, Patent Document 1 discloses a composition comprising an alicyclic epoxy resin, an acid anhydride curing agent, alcohol, and a curing catalyst, and Patent Document 2 discloses an alicyclic resin. A resin composition comprising an epoxy resin, an acid anhydride-based curing agent partially esterified with alcohol, and a curing catalyst is disclosed in Patent Document 3 from an alicyclic epoxy resin, an acid anhydride-based curing agent having a carboxylic acid, and a curing catalyst. A resin composition is shown.
However, the conventional glass substitute plastic materials disclosed in Patent Documents 1 to 3 have a larger coefficient of linear expansion than glass, and particularly when used for an active matrix display element substrate, there are problems such as warpage and disconnection of aluminum wiring in the manufacturing process. Therefore, it is difficult to develop these applications.

このような問題を解決するため特許文献4や特許文献5には無機酸化物が分散された粒子分散系樹脂シートが、特許文献6にはフィラー分散系樹脂シートが、また、特許文献7にはエステル基を有する脂環式エポキシ樹脂、ビスフェノールA型エポキシ樹脂、酸無水物系硬化剤、及び触媒とガラスクロスからなる透明複合光学シート、特許文献8にはエステル基を有する脂環式エポキシ樹脂とジシクロペンタジエン骨格を有するエポキシ樹脂、酸無水物系硬化剤とガラスクロスからなる透明複合光学シート、特許文献9にはビスフェノールA型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、酸無水物系硬化剤及びガラスクロスからなる透明基板が示されている。
特許文献7から9に示されているガラスクロス複合体においては特許文献1から6に示されたプラスチック材料よりは大幅な線膨張率の低下が見られるが耐熱性が不十分である。さらに、複合基板の光学異方性が大きいため表示性能を低下させる可能性がある。
In order to solve such problems, Patent Document 4 and Patent Document 5 disclose a particle-dispersed resin sheet in which an inorganic oxide is dispersed, Patent Document 6 discloses a filler-dispersed resin sheet, and Patent Document 7 describes An alicyclic epoxy resin having an ester group, a bisphenol A type epoxy resin, an acid anhydride curing agent, and a transparent composite optical sheet comprising a catalyst and glass cloth, Patent Document 8 discloses an alicyclic epoxy resin having an ester group and Epoxy resin having dicyclopentadiene skeleton, transparent composite optical sheet comprising acid anhydride curing agent and glass cloth, Patent Document 9 discloses bisphenol A type epoxy resin, bisphenol A novolak type epoxy resin, acid anhydride type curing agent and A transparent substrate made of glass cloth is shown.
In the glass cloth composites disclosed in Patent Documents 7 to 9, although the linear expansion coefficient is significantly lower than that of the plastic material disclosed in Patent Documents 1 to 6, the heat resistance is insufficient. Furthermore, since the optical anisotropy of the composite substrate is large, the display performance may be reduced.

液晶用表示素子のような、偏光板と液晶駆動との光シャッター機能を用いた表示素子は、透明基板を通過する透過光の偏光状態の変化から、素子の表示性能に影響を受ける。透明基板の光学異方性が大きい場合、偏光板を通過した入射直線偏光が透明基板内の光学異方性により楕円偏光になり、液晶を駆動した時の出射側偏光板を通過する透過光の透過と不透過のスイッチング性能が低下することがある。つまり、高コントラストの表示素子を得るためには、光学異方性の小さい透明基板を適用する必要がある。   A display element using an optical shutter function of a polarizing plate and liquid crystal drive, such as a liquid crystal display element, is affected by the display performance of the element due to a change in the polarization state of transmitted light passing through the transparent substrate. When the optical anisotropy of the transparent substrate is large, the incident linearly polarized light passing through the polarizing plate becomes elliptically polarized light due to the optical anisotropy in the transparent substrate, and the transmitted light passing through the output side polarizing plate when the liquid crystal is driven The transmission performance of transmission and non-transmission may be deteriorated. That is, in order to obtain a high-contrast display element, it is necessary to apply a transparent substrate having a small optical anisotropy.

更に、ガラスクロス複合体は、熱線膨張率の異なる材料を複合化するため、基板作製時のプロセス温度や熱膨張率差に起因する熱応力が複合材料中で分布を持って発生する。ガラス繊維と樹脂マトリックス複合材料中の熱応力分布は、複合材料の軸対称性からガラス繊維径方向、周方向、軸方向の3つの主応力方向が考えられる(非特許文献1)。つまり、樹脂およびガラス繊維は、熱応力によりガラス繊維に沿った光学異方性やガラス繊維に直行した光学異方性が発現する可能性がある。例えば、ガラス繊維を縦と横に織ったガラス織布と樹脂の複合基板では、ガラス繊維軸に沿った方向および直行方向に局所的な光学異方性が発現するため、偏光子と検光子を偏向軸が90°に交差した(クロスニコル状態にした)偏光顕微鏡下で格子状に透過光のパターンが見える。また、ガラスクロス複合体の光学異方性がガラスクロス繊維軸に平行な方向と直行する方向に発現することから、格子状の透過光パターンは偏光子からガラス繊維軸が45°傾いた状態で最も明るくなる。つまり、ガラスクロス複合体を透明基板として用いた表示素子の場合、偏光板と複合体基板のガラスクロス繊維軸の配置次第では、透過光の偏光状態の乱れにより表示素子のコントラストが低下する可能性がある。   Furthermore, since the glass cloth composite is formed by combining materials having different thermal expansion coefficients, thermal stress due to a process temperature and a difference in thermal expansion coefficient at the time of manufacturing the substrate is generated with a distribution in the composite material. Regarding the thermal stress distribution in the glass fiber and the resin matrix composite material, three main stress directions of the glass fiber radial direction, the circumferential direction, and the axial direction are considered from the axial symmetry of the composite material (Non-Patent Document 1). That is, the resin and glass fiber may exhibit optical anisotropy along the glass fiber or optical anisotropy perpendicular to the glass fiber due to thermal stress. For example, in a composite substrate of glass woven fabric and resin in which glass fibers are woven vertically and horizontally, local optical anisotropy appears in the direction along the glass fiber axis and in the orthogonal direction. A transmitted light pattern can be seen in a lattice pattern under a polarizing microscope whose deflection axis intersects 90 ° (in a crossed Nicols state). In addition, since the optical anisotropy of the glass cloth composite appears in a direction parallel to the glass cloth fiber axis and a direction perpendicular to the glass cloth fiber axis, the lattice-shaped transmitted light pattern is in a state where the glass fiber axis is inclined by 45 ° from the polarizer. The brightest. In other words, in the case of a display element using a glass cloth composite as a transparent substrate, depending on the arrangement of the polarizing plate and the glass cloth fiber axis of the composite substrate, the contrast of the display element may be reduced due to the disturbance of the polarization state of transmitted light. There is.

微小かつ局所的な偏光状態の乱れは表示素子の性能に強く影響する。例えば、染料系カラーフィルターより耐熱性、耐光性を優れた顔料分散系カラーフィルターは、顔料の凝集により光散乱に起因する表示コントラストの低下があるため、顔料の分散安定性を改善する検討が成されている(特許文献10,11,12)。つまり、ガラスクロス複合体に生じる微小な光学異方性から生じる偏光状態の乱れも、高コントラストな高精細表示素子を作製する際には無視できない特性となる。   Small and local polarization state disturbance strongly affects the performance of the display element. For example, a pigment-dispersed color filter that has better heat resistance and light resistance than a dye-based color filter has a reduction in display contrast due to light scattering due to aggregation of the pigment. (Patent Documents 10, 11, and 12). That is, the polarization state disturbance caused by the minute optical anisotropy generated in the glass cloth composite is also a characteristic that cannot be ignored when a high-contrast high-definition display element is manufactured.

特開平6−337408号公報JP-A-6-337408 特開2001−59015号公報JP 2001-59015 A 特開2001−59014号公報JP 2001-59014 A 特開2002−347155号公報JP 2002-347155 A 特開2002−347161号公報JP 2002-347161 A 特開2003−260768号公報JP 2003-260768 A 特開2004−51960号公報JP 2004-51960 A 特開2005−146258号公報JP 2005-146258 A 特開2004−233851号公報JP 2004-233851 A 特開平8−94823号公報JP-A-8-94823 特開平8−259876号公報JP-A-8-259876 特開平8−295820号公報JP-A-8-295820 H.Poristsky, Physics, 5, [12] (1934) 406-411.H.Poristsky, Physics, 5, [12] (1934) 406-411.

本発明の目的は、線膨張率が小さく、透明性・耐熱性に優れ、かつ光学異方性が小さいことから表示品位を低下させることのないガラスに代替可能な透明複合体および電子デバイスを提供することにある。   An object of the present invention is to provide a transparent composite and an electronic device that can be substituted for glass that has a low linear expansion coefficient, excellent transparency and heat resistance, and has low optical anisotropy and does not deteriorate display quality. There is to do.

本発明は、
(1)透明樹脂(a)及びガラスフィラー(b)から構成される透明複合体であって、前記透明複合体を偏向軸が90°に交差した偏向顕微鏡に設置し、透過モードで透過する光量が最大値を示す角度において透過する光量の温度依存性を測定した場合に、光量の最小値を示す温度が150℃以下であることを特徴とする透明複合体、
(2)前記光量の最小値を示す温度が120℃以下である(1)記載の透明複合体、
(3)前記光量の最小値を示す温度が100℃以下である(1)記載の透明複合体。
(4)前記光量の最小値を示す温度が80℃以下である(1)記載の透明複合体。
(5)透明樹脂(a)のガラス転移温度が200℃以上である(1)〜(4)いずれか記載の透明複合体、
(6)透明樹脂(a)の30℃から250℃における平均線膨張係数が70ppm以下である(1)〜(5)いずれか記載の透明複合体、
(7)透明樹脂(a)が化学式(1)で示される脂環式エポキシ樹脂を含む樹脂組成物を硬化させて得られるものである(1)〜(6)いずれか記載の透明複合体、

Figure 2007106853
(8)透明樹脂(a)が屈折率調整可能な成分を少なくとも1種類以上含有するものである(1)〜(7)いずれか記載の透明複合体、
(9)前記屈折率調整可能な成分が化学式(2)で示されるオキセタニルシリケートを含む化合物を硬化させて得られるものである(8)記載の透明複合体、
Figure 2007106853
(式中nは1〜5の整数)
(10)前記屈折率調整可能な成分がナノ微粒子を含むものである(8)又は(9)記載の透明複合体、
(11)前記ナノ微粒子の平均分散粒子径が100nm以下である(8)〜(10)いずれか記載の透明複合体、
(12)透明樹脂(a)の屈折率とガラスフィラー(b)の屈折率との差が0.01以下である(1)〜(11)いずれか記載の透明複合体、
(13)ガラスフィラー(b)の屈折率が1.45〜1.55である(1)〜(12)いずれか記載の透明複合体。
(14)ガラスフィラー(b)がガラス繊維布である(1)〜(13)いずれか記載の透明複合体、
(15)(1)〜(14)いずれか記載の透明複合体から構成され、厚さが50〜2000μmである光学シート、
(16)30〜150℃の平均線膨張係数が40ppm以下である(15)記載の光学シート、
(17)波長400nmでの光線透過率が80%以上である(15)又は(16)記載の光学シート、
(18)(15)〜(17)いずれか記載の光学シートを用いた表示素子用プラスチック基板、
(19)(15)〜(17)いずれか記載の光学シートを用いた太陽電池基板、
である。 The present invention
(1) A transparent composite composed of a transparent resin (a) and a glass filler (b), wherein the transparent composite is installed in a deflection microscope whose deflection axis intersects at 90 °, and the amount of light transmitted in the transmission mode. When the temperature dependence of the amount of light transmitted at an angle at which the maximum value is measured, the transparent composite is characterized in that the temperature indicating the minimum value of the light amount is 150 ° C. or less,
(2) The transparent composite according to (1), wherein the temperature indicating the minimum value of the light amount is 120 ° C. or less,
(3) The transparent composite according to (1), wherein a temperature indicating the minimum value of the light quantity is 100 ° C. or less.
(4) The transparent composite according to (1), wherein a temperature indicating the minimum value of the light amount is 80 ° C. or less.
(5) The transparent composite according to any one of (1) to (4), wherein the glass transition temperature of the transparent resin (a) is 200 ° C. or higher.
(6) The transparent composite according to any one of (1) to (5), wherein the transparent resin (a) has an average linear expansion coefficient at 30 to 250 ° C. of 70 ppm or less,
(7) The transparent composite according to any one of (1) to (6), wherein the transparent resin (a) is obtained by curing a resin composition containing an alicyclic epoxy resin represented by the chemical formula (1),
Figure 2007106853
(8) The transparent composite according to any one of (1) to (7), wherein the transparent resin (a) contains at least one component capable of adjusting the refractive index.
(9) The transparent composite according to (8), wherein the component capable of adjusting the refractive index is obtained by curing a compound containing oxetanyl silicate represented by chemical formula (2),
Figure 2007106853
(Where n is an integer from 1 to 5)
(10) The transparent composite according to (8) or (9), wherein the component capable of adjusting the refractive index contains nanoparticles.
(11) The transparent composite according to any one of (8) to (10), wherein an average dispersed particle size of the nano fine particles is 100 nm or less,
(12) The transparent composite according to any one of (1) to (11), wherein the difference between the refractive index of the transparent resin (a) and the refractive index of the glass filler (b) is 0.01 or less.
(13) The transparent composite according to any one of (1) to (12), wherein the glass filler (b) has a refractive index of 1.45 to 1.55.
(14) The transparent composite according to any one of (1) to (13), wherein the glass filler (b) is a glass fiber cloth,
(15) An optical sheet composed of the transparent composite according to any one of (1) to (14) and having a thickness of 50 to 2000 μm,
(16) The optical sheet according to (15), wherein an average linear expansion coefficient at 30 to 150 ° C. is 40 ppm or less,
(17) The optical sheet according to (15) or (16), wherein the light transmittance at a wavelength of 400 nm is 80% or more,
(18) A plastic substrate for a display element using the optical sheet according to any one of (15) to (17),
(19) A solar cell substrate using the optical sheet according to any one of (15) to (17),
It is.

本発明の透明複合体は低線膨張で透明性や耐熱性に優れ、かつ複屈折性に優れるため表示品位を低下させることなく、アクティブマトリックスタイプを含む液晶表示素子用基板、有機EL表示素子基板、カラーフィルター用基板、タッチパネル用基板、電子ペーパー用基板、太陽電池基板などの光学シート、透明板、光学レンズ、光学素子、光導波路、LED封止材料等に好適に用いられる。   The transparent composite of the present invention has a low linear expansion, excellent transparency and heat resistance, and is excellent in birefringence, so that the display quality is not deteriorated and the liquid crystal display element substrate including the active matrix type, the organic EL display element substrate It is suitably used for optical sheets such as color filter substrates, touch panel substrates, electronic paper substrates, solar cell substrates, transparent plates, optical lenses, optical elements, optical waveguides, and LED sealing materials.

以下、本発明を詳細に説明する。
本発明の透明複合体は偏向軸が90°に交差した(クロスニコル状態にした)偏向顕微鏡に設置し、透過モードで透過する光量の温度依存性を測定した場合に、光量の極小値を示す温度が150℃以下、好ましくは120℃以下、より好ましくは100℃以下、更に好ましくは80℃以下であることを特徴とするものである。
Hereinafter, the present invention will be described in detail.
The transparent composite of the present invention shows a minimum value of light quantity when installed on a deflection microscope whose deflection axis intersects 90 ° (in a crossed Nicol state) and the temperature dependence of the quantity of light transmitted in the transmission mode is measured. The temperature is 150 ° C. or lower, preferably 120 ° C. or lower, more preferably 100 ° C. or lower, and still more preferably 80 ° C. or lower.

ガラスクロス複合体は、熱線膨張率の異なる材料を複合化するため、基板作製時のプロセス温度や熱膨張率差に起因する熱応力が複合材料中で分布を持って発生する。
例えばガラス繊維と樹脂マトリックス複合材料中の熱応力分布は、複合材料の軸対称性からガラス繊維径方向、周方向、軸方向の3つの主応力方向が考えられる。つまり、樹脂およびガラス繊維は、熱応力によりガラス繊維に沿った光学異方性やガラス繊維に直行した光学異方性が発現する可能性がある。例えば、ガラス繊維を縦と横に織ったガラス織布と樹脂の複合基板では、ガラス繊維軸に沿った方向および直行方向に局所的な光学異方性が発現するため、偏光子と検光子を偏向軸が90°に交差した(クロスニコル状態にした)偏光顕微鏡下で格子状に透過光のパターンが見える。また、ガラスクロス複合体の光学異方性がガラスクロス繊維軸に平行な方向と直行する方向に発現することから、格子状の透過光パターンは偏光子からガラス繊維軸が45°傾いた状態で最も明るくなる。つまり、ガラスクロス複合体を透明基板として用いた表示素子の場合、偏光板と複合体基板のガラスクロス繊維軸の配置次第では、透過光の偏光状態の乱れにより表示素子のコントラストが低下する可能性がある。
Since the glass cloth composite is formed by combining materials having different thermal expansion coefficients, thermal stress due to a process temperature and a difference in thermal expansion at the time of manufacturing a substrate is generated with a distribution in the composite material.
For example, regarding the thermal stress distribution in the glass fiber and resin matrix composite material, three main stress directions of the glass fiber radial direction, circumferential direction, and axial direction are conceivable from the axial symmetry of the composite material. That is, the resin and glass fiber may exhibit optical anisotropy along the glass fiber or optical anisotropy perpendicular to the glass fiber due to thermal stress. For example, in a composite substrate of glass woven fabric and resin in which glass fibers are woven vertically and horizontally, local optical anisotropy appears in the direction along the glass fiber axis and in the orthogonal direction. A transmitted light pattern can be seen in a lattice pattern under a polarizing microscope whose deflection axis intersects 90 ° (in a crossed Nicols state). In addition, since the optical anisotropy of the glass cloth composite appears in a direction parallel to the glass cloth fiber axis and a direction perpendicular to the glass cloth fiber axis, the lattice-shaped transmitted light pattern is in a state where the glass fiber axis is inclined by 45 ° from the polarizer. The brightest. In other words, in the case of a display element using a glass cloth composite as a transparent substrate, depending on the arrangement of the polarizing plate and the glass cloth fiber axis of the composite substrate, the contrast of the display element may be reduced due to the disturbance of the polarization state of transmitted light. There is.

ガラスクロス及びマトリックス樹脂複合材料において生じる偏光状態の乱れ、つまり
光学異方性は応力複屈折が主要因として考えられ、応力複屈折は、下式(1)で表すことができる。

Figure 2007106853
ここでEは樹脂の弾性率、Tminは歪み最小温度、αは樹脂の線膨張係数、αはガラスクロスの線膨張係数、Cは樹脂の光弾性定数を意味する。 The disorder of the polarization state occurring in the glass cloth and the matrix resin composite material, that is, the optical anisotropy is considered to be mainly caused by stress birefringence, and the stress birefringence can be expressed by the following equation (1).
Figure 2007106853
Where E is the elastic modulus of the resin, T min is minimum distortion temperature, the alpha m linear expansion coefficient of the resin, the alpha f linear expansion coefficient of the glass cloth, the C R means a photoelastic constant of the resin.

このような応力複屈折を抑制する方法としては式(1)から明らかなように樹脂の線膨張係数αを低くし界面に生じる歪み量を小さくする方法、マトリックス樹脂の光弾性定数Cを小さくする方法が考えられる。
また、Tminと室温との温度差をできるだけ低くする方法が考えられる。なぜならば、90°に交差したクロスニコル偏向顕微鏡に透明複合体基板を設置し、透過モードで透過する光量の温度依存性を測定し、光量をY、測定温度をXとすると、光量Yは光学異方性(応力複屈折)と相関性があり、光量Yは、Y=aX+bX+c(a、b、cは定数、a>0)で示される2次曲線で近似できるため、光学的異方性(応力複屈折性)を小さくする、つまりX=室温でのY値を小さくするには、Y極小値を示す歪み最小温度(Tmin)と室温との差の絶対値ができるだけ小さいことが望ましいからである。
Such stress method as a method of suppressing the birefringence to reduce the amount of distortion generated at the interface to lower the linear expansion coefficient alpha m of the resin as is apparent from equation (1), the photoelastic constant C R of the matrix resin A method of reducing the size is conceivable.
Further, a method of reducing the temperature difference between T min and room temperature as much as possible can be considered. This is because when a transparent composite substrate is installed on a crossed Nicols deflection microscope that intersects at 90 °, the temperature dependence of the amount of light transmitted in the transmission mode is measured, the amount of light is Y, and the measurement temperature is X, the amount of light Y is optical. Since there is a correlation with anisotropy (stress birefringence), the amount of light Y can be approximated by a quadratic curve represented by Y = aX 2 + bX + c (a, b, c are constants, a> 0). In order to reduce the directionality (stress birefringence), that is, to reduce the Y value at X = room temperature, the absolute value of the difference between the minimum strain temperature (T min ) indicating the minimum Y value and the room temperature should be as small as possible. This is because it is desirable.

以上のような理由から90°に交差したクロスニコル偏向顕微鏡に設置し、透過モードで透過する光量の温度依存性を測定した場合に、光量の最小値を示す温度が150℃以下であり、好ましくは120℃以下、より好ましくは100℃以下、更に好ましくは80℃以下であることが望ましい。   For the reasons as described above, when the temperature dependence of the amount of light transmitted in the transmission mode is measured by installing in a crossed Nicol deflection microscope crossing 90 °, the temperature indicating the minimum value of the light amount is 150 ° C. or less, preferably Is desirably 120 ° C. or lower, more preferably 100 ° C. or lower, and still more preferably 80 ° C. or lower.

本発明に用いられる透明樹脂(a)としては、各種の樹脂を使用できるが、エポキシ樹脂を含む樹脂組成物を硬化させた樹脂であること好ましい。エポキシ樹脂としては、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、またはこれらの水添化物、ジシクロペンタジエン骨格を有するエポキシ樹脂、トリグリシジルイソシアヌレート骨格を有するエポキシ樹脂、カルド骨格を有するエポキシ樹脂、脂環式多官能エポキシ樹脂、水添ビフェニル骨格を有する脂環式エポキシ樹脂、水添ビスフェノールA骨格を有する脂環式エポキシ樹脂等が挙げられる。また1,4−ビス[(3-エチル−3オキセタニルメトキシ)メチル]ベンゼン、2−エチル−3−ヒドロキシメチルオキセタン、オキセタニルシルセスキオキサン、オキセタニルシリケート等のオキセタン化合物、ビニルエーテル化合物も用いることができる。   Various resins can be used as the transparent resin (a) used in the present invention, but it is preferably a resin obtained by curing a resin composition containing an epoxy resin. Examples of the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, or hydrogenated products thereof, epoxy resin having a dicyclopentadiene skeleton, epoxy resin having a triglycidyl isocyanurate skeleton, Examples thereof include an epoxy resin having a cardo skeleton, an alicyclic polyfunctional epoxy resin, an alicyclic epoxy resin having a hydrogenated biphenyl skeleton, and an alicyclic epoxy resin having a hydrogenated bisphenol A skeleton. Further, oxetane compounds such as 1,4-bis [(3-ethyl-3-oxetanylmethoxy) methyl] benzene, 2-ethyl-3-hydroxymethyloxetane, oxetanylsilsesquioxane, oxetanyl silicate, and vinyl ether compounds can also be used. .

中でも水添ビフェニル構造を有する脂環式エポキシ樹脂が好ましい。なぜならば硬化性が優れているため光量の極小値を示す温度と室温との温度差が小さく、さらに分子の光学的異方性が小さく、かつ硬化物の線膨張係数が低いため、クロスと樹脂界面のひずみを小さくでき、複合材料の光学異方性を抑制できるからである。
特に化学式(1)で示される脂環式エポキシ樹脂を含むことが好ましい。
Of these, alicyclic epoxy resins having a hydrogenated biphenyl structure are preferred. Because of its excellent curability, the temperature difference between the temperature at which the light intensity reaches a minimum and room temperature is small, the optical anisotropy of the molecule is small, and the linear expansion coefficient of the cured product is low. This is because the strain at the interface can be reduced and the optical anisotropy of the composite material can be suppressed.
In particular, it is preferable to include an alicyclic epoxy resin represented by the chemical formula (1).

Figure 2007106853
Figure 2007106853

また、これらの樹脂及び化合物を硬化させるには、単独で硬化させる場合においてはカチオン触媒、またはアニオン触媒を用いて硬化させることができる。一方、種々の硬化剤を用いて硬化させることも可能である。例えばエポキシ樹脂の場合、酸無水物や脂肪族アミンを用いて硬化させることができる。   Moreover, in order to harden these resin and compound, when making it harden | cure alone, it can be hardened using a cation catalyst or an anion catalyst. On the other hand, it can be cured using various curing agents. For example, in the case of an epoxy resin, it can be cured using an acid anhydride or an aliphatic amine.

しかしながらガラスクロスとマトリックス樹脂界面の歪みをできるだけ小さくするにはカチオン系硬化触媒を用いて硬化できる樹脂が好ましい。なぜならば前記エポキシ樹脂をカチオン系硬化触媒とを用いると、得られる樹脂材料を低温で硬化させることができるからであり、低温で硬化できると光量の最小値を示す温度と室温との温度差が小さく、かつ複合材料の光学異方性を抑制できるからである。   However, in order to minimize the distortion at the glass cloth / matrix resin interface, a resin that can be cured using a cationic curing catalyst is preferred. This is because when the epoxy resin is used with a cationic curing catalyst, the resulting resin material can be cured at a low temperature. If the epoxy resin can be cured at a low temperature, there is a temperature difference between the temperature at which the light intensity is minimum and the room temperature. This is because the optical anisotropy of the composite material can be suppressed.

前記エポキシ樹脂を酸無水物等の硬化剤を用いて硬化させた場合は、カチオン重合系と異なり、低温での硬化は困難であり、光量の極小値を示す温度と室温との温度差が大きくなり、さらに線膨張係数がカチオン重合系と比較し大きくなるため、ひずみが大きくなり、その結果光学異方性が悪化する。 When the epoxy resin is cured using a curing agent such as an acid anhydride, unlike the cationic polymerization system, it is difficult to cure at a low temperature, and the temperature difference between the temperature at which the light intensity is minimal and the room temperature is large. Furthermore, since the linear expansion coefficient is larger than that of the cationic polymerization system, the strain is increased, and as a result, the optical anisotropy is deteriorated.

また前記カチオン系硬化触媒を用いて前記エポキシ樹脂を硬化した硬化物の耐熱性(例えばガラス転移温度)が、他の硬化剤(例えば酸無水物)を用いて硬化した硬化物のそれよりも高くなるからである。カチオン系硬化触媒を用いた硬化物の耐熱性が、他の触媒を用いたものよりも高くなり理由は、前記カチオン系硬化触媒を用いて前記エポキシ樹脂を硬化した硬化物の架橋密度が、他の硬化剤(例えば酸無水物)を用いて硬化した硬化物の架橋密度と比較して高くなるためと考えられる。   Further, the heat resistance (eg, glass transition temperature) of the cured product obtained by curing the epoxy resin using the cationic curing catalyst is higher than that of the cured product cured using another curing agent (eg, acid anhydride). Because it becomes. The reason why the heat resistance of the cured product using the cationic curing catalyst is higher than that using the other catalyst is that the crosslinking density of the cured product obtained by curing the epoxy resin using the cationic curing catalyst is different from the others. This is considered to be because it becomes higher than the cross-linking density of the cured product cured using the above curing agent (for example, acid anhydride).

前記カチオン系硬化触媒としては、例えば加熱によりカチオン重合を開始させる物質を放出するもの(例えばオニウム塩系カチオン硬化触媒、またはアルミニウムキレート系カチオン硬化触媒)や、活性エネルギー線によってカチオン重合を開始させる物質を放出させるもの(例えばオニウム塩系カチオン系硬化触媒等)が挙げられる。これらの中でも、熱カチオン系硬化触媒が好ましい。これにより、より耐熱性に優れる硬化物を得ることができる。   Examples of the cationic curing catalyst include those that release a substance that initiates cationic polymerization by heating (for example, an onium salt cationic curing catalyst or an aluminum chelate cationic curing catalyst), and substances that initiate cationic polymerization by active energy rays. (For example, an onium salt-based cationic curing catalyst). Among these, a thermal cationic curing catalyst is preferable. Thereby, the hardened | cured material which is more excellent in heat resistance can be obtained.

前記熱カチオン系硬化触媒としては、例えば芳香族スルホニウム塩、芳香族ヨードニウム塩、アンモニウム塩、アルミニウムキレート、三フッ化ホウ素アミン錯体等が挙げられる。具体的には、芳香族スルホニウム塩として三新化学工業製のSI-60L、SI-80L、SI-100L、旭電化工業製のSP-66やSP-77等のヘキサフルオロアンチモネート塩挙げられ、アルミニウムキレートとしてはエチルアセトアセテートアルミニウムジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)等が挙げられ、三フッ化ホウ素アミン錯体としては、三フッ化ホウ素モノエチルアミン錯体、三フッ化ホウ素イミダゾール錯体、三フッ化ホウ素ピペリジン錯体等が挙げられる。   Examples of the thermal cationic curing catalyst include aromatic sulfonium salts, aromatic iodonium salts, ammonium salts, aluminum chelates, and boron trifluoride amine complexes. Specifically, examples of aromatic sulfonium salts include hexafluoroantimonate salts such as SI-60L, SI-80L, SI-100L manufactured by Sanshin Chemical Industries, and SP-66 and SP-77 manufactured by Asahi Denka Kogyo. Examples of the aluminum chelate include ethyl acetoacetate aluminum diisopropylate and aluminum tris (ethyl acetoacetate). Examples of the boron trifluoride amine complex include boron trifluoride monoethylamine complex, boron trifluoride imidazole complex, and trifluoride. Examples thereof include boron bromide piperidine complexes.

前記カチオン系触媒の含有量は、特に限定されないが、例えば前記式(1)で示されるエポキシ樹脂を使用する場合は、該エポキシ樹脂100重量部に対して0.1〜3重量部が好ましく、特に0.5〜1.5重量部が好ましい。含有量が前記下限値未満であると硬化性が低下する場合があり、前記上限値を超えると透明複合体が脆くなる場合がある。必要に応じて硬化反応を促進させるため増感剤、および酸増殖剤等もあわせて用いることが可能である。   The content of the cationic catalyst is not particularly limited. For example, when the epoxy resin represented by the formula (1) is used, the content is preferably 0.1 to 3 parts by weight with respect to 100 parts by weight of the epoxy resin. 0.5 to 1.5 parts by weight is particularly preferable. If the content is less than the lower limit, the curability may be reduced, and if the content exceeds the upper limit, the transparent composite may become brittle. If necessary, a sensitizer and an acid proliferating agent can be used together to accelerate the curing reaction.

透明樹脂(a)中にガラスクロスと屈折率をあわせて透明性を向上させるため、屈折率調整成分を添加することができる。屈折率調整成分は、主成分の樹脂の屈折率が使用するガラスクロスの屈折率よりも高い場合は、ガラスクロスの屈折率よりも低い成分を添加することができ、逆に主成分の屈折率が使用するガラスクロスよりも低い場合は、ガラスクロスの屈折率よりも高い成分を添加することができる。   In order to improve the transparency by combining the glass cloth and the refractive index in the transparent resin (a), a refractive index adjusting component can be added. If the refractive index adjustment component is higher than the refractive index of the glass cloth used, a component lower than the refractive index of the glass cloth can be added. If the glass cloth is lower than the glass cloth used, a component higher than the refractive index of the glass cloth can be added.

樹脂の屈折率がガラスクロスの屈折率よりも高い場合、屈折率調整成分として添加が可能な低屈折率成分としては特に限定されるものではないが、例えば低屈折率樹脂、低屈折率の無機又は有機微粒子などが挙げられる。
低屈折樹脂成分を添加する場合にはマトリックス樹脂と架橋反応する官能基を有することが望ましい。なぜなら、硬化物の線膨張係数が大きくなりガラスクロスと樹脂マトリックスとの線膨張率差が大きくなり歪みが増大し複合体の光学異方性が悪化するからである。
When the refractive index of the resin is higher than the refractive index of the glass cloth, the low refractive index component that can be added as a refractive index adjusting component is not particularly limited, but for example, a low refractive index resin, a low refractive index inorganic Or organic fine particles etc. are mentioned.
When a low refractive resin component is added, it is desirable to have a functional group that undergoes a crosslinking reaction with the matrix resin. This is because the linear expansion coefficient of the cured product increases, the difference between the linear expansion coefficients of the glass cloth and the resin matrix increases, distortion increases, and the optical anisotropy of the composite deteriorates.

具体的にはシルセスキ骨格を有する脂環式エポキシモノマー、シルセスキ骨格を有するオキセタンモノマー、シリケート構造を有するオリゴマー(小西化学製:PSQレジン、東亜合成製:オキセタニルシルセスキオキサン、オキセタニルシリケート)、β−(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、γ−グリシドキシプロピルトリエトキシシラン等のカップリング剤が挙げられる。特に化学式(2)で示されるオキセタニルシリケートが好ましい。   Specifically, an alicyclic epoxy monomer having a silsesqui skeleton, an oxetane monomer having a silsesqui skeleton, an oligomer having a silicate structure (manufactured by Konishi Chemical: PSQ resin, manufactured by Toa Gosei: oxetanyl silsesquioxane, oxetanyl silicate), β- Examples of the coupling agent include (3,4 epoxy cyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, and γ-glycidoxypropyltriethoxysilane. Oxetanyl silicate represented by the chemical formula (2) is particularly preferable.

Figure 2007106853
(式中nは1〜5の整数)
Figure 2007106853
(Where n is an integer from 1 to 5)

無機微粒子としてはたとえばナノ粒子、ガラスビーズ等が挙げられ、平均分散粒子径が100nm以下となるような粒子が好ましい。何故ならば粒子径が上限値を超えると透明複合体の散乱が大きくなるからである。
具体的にはシリケート構造を有するシリカ微粒子、または酸化チタン微粒子、酸化ジルコニア微粒子、アルミナ微粒子等が挙げられる。これらの粒子は屈折率の調整のために適宜用いることができる。
Examples of the inorganic fine particles include nanoparticles and glass beads, and particles having an average dispersed particle diameter of 100 nm or less are preferable. This is because the scattering of the transparent composite increases when the particle diameter exceeds the upper limit.
Specific examples include silica fine particles having a silicate structure, titanium oxide fine particles, zirconia oxide fine particles, and alumina fine particles. These particles can be appropriately used for adjusting the refractive index.

例えば主成分である樹脂の屈折率がガラスクロスの屈折率よりも高い場合には、ガラスクロスより屈折率の低いシリカ微粒子が好ましい。これにより耐熱性、線膨張係数等の硬化物の物性を低下させずに高い透明性を得ることができる。
また同じシリカ微粒子の中でも表面処理が施されているシリカ微粒子がより好ましい。なぜなら微粒子表面にはカチオン重合を促進する活性水素(シラノール基)が存在し、表面処理がない場合、硬化反応が進行し保存安定性が低いからである。
For example, when the refractive index of the resin as the main component is higher than the refractive index of the glass cloth, silica fine particles having a refractive index lower than that of the glass cloth are preferable. Thereby, high transparency can be obtained without deteriorating the physical properties of the cured product such as heat resistance and linear expansion coefficient.
Of the same silica fine particles, silica fine particles that have been surface-treated are more preferred. This is because active hydrogen (silanol group) that promotes cationic polymerization exists on the surface of the fine particles, and when there is no surface treatment, the curing reaction proceeds and the storage stability is low.

本発明に用いるガラスフィラー(b)の屈折率は、特に限定されないが、1.4〜1.6が好ましく、特に1.5〜1.55が好ましい。屈折率が前記範囲内であると、ガラスのアッベ数に近い透明樹脂を選択することができるので特に好ましい。透明樹脂のアッベ数とガラスのアッベ数が近いほど広い波長領域で屈折率が一致し、広範囲で高い光線透過率が得られるからである。   Although the refractive index of the glass filler (b) used for this invention is not specifically limited, 1.4-1.6 are preferable and 1.5-1.55 are especially preferable. It is particularly preferable that the refractive index is within the above range because a transparent resin close to the glass Abbe number can be selected. This is because, as the Abbe number of the transparent resin and the Abbe number of the glass are closer, the refractive indexes are matched in a wider wavelength region, and a high light transmittance is obtained in a wide range.

本発明に用いるガラスフィラー(b)としては、ガラス繊維、ガラスクロスやガラス不織布などのガラス繊維布、ガラスビーズ、ガラスフレーク、ガラスパウダー、ミルドガラスなどがあげられ、中でも線膨張係数の低減効果が高いことからガラス繊維、ガラスクロス、ガラス不織布が好ましく、さらにガラスクロスが最も好ましい。   Examples of the glass filler (b) used in the present invention include glass fiber cloth such as glass fiber, glass cloth and glass nonwoven fabric, glass beads, glass flakes, glass powder, and milled glass. Glass fiber, glass cloth, and glass non-woven fabric are preferred because of their highness, and glass cloth is most preferred.

ガラスの種類としてはEガラス、Cガラス、Aガラス、Sガラス、Tガラス、Dガラス、NEガラス、クオーツ、低誘電率ガラス、高誘電率ガラスなどが上げられ、中でもアルカリ金属などのイオン性不純物が少なく入手の容易なEガラス、Sガラス、TガラスNEガラスが好ましい。   The types of glass include E glass, C glass, A glass, S glass, T glass, D glass, NE glass, quartz, low dielectric constant glass, and high dielectric constant glass, among which ionic impurities such as alkali metals E glass, S glass, and T glass NE glass, which are easy to obtain with little, are preferable.

ガラスフィラー(b)の配合量は透明複合体に対して1〜90重量%が好ましく、より好ましくは10〜80重量%、さらに好ましくは30〜70重量%である。ガラスフィラーの配合量がこの範囲であれば成形が容易で、複合化による線膨張の低下の効果が認められる。   The blending amount of the glass filler (b) is preferably 1 to 90% by weight, more preferably 10 to 80% by weight, and still more preferably 30 to 70% by weight with respect to the transparent composite. If the blending amount of the glass filler is within this range, molding is easy and the effect of lowering linear expansion due to compounding is recognized.

本発明の透明複合体には必要に応じて、透明性、耐溶剤性、耐熱性、複屈折性などの特性を損なわない範囲で、熱可塑性樹脂又は熱硬化性樹脂のオリゴマーやモノマーを併用してもよい。これらのオリゴマーやモノマーを使用する場合は全体の屈折率がガラスフィラーの屈折率に合うように組成比を調整する必要がある。また、本発明の透明複合体には必要に応じて、透明性、耐溶剤性、耐熱性、複屈折性などの特性を損なわない範囲で、少量の酸化防止剤、紫外線吸収剤、染顔料、他の無機フィラなどの充填材を含んでいてもよい。   In the transparent composite of the present invention, an oligomer or a monomer of a thermoplastic resin or a thermosetting resin is used in combination as necessary, as long as the properties such as transparency, solvent resistance, heat resistance and birefringence are not impaired. May be. When these oligomers and monomers are used, it is necessary to adjust the composition ratio so that the overall refractive index matches the refractive index of the glass filler. In addition, the transparent composite of the present invention, if necessary, in a range that does not impair the properties such as transparency, solvent resistance, heat resistance, birefringence, a small amount of antioxidant, ultraviolet absorber, dye / pigment, Other fillers such as inorganic fillers may be included.

本発明の透明複合体の成形方法には制限はなく、例えば未硬化の樹脂組成物とガラスフィラーとを直接混合し、必要な方に注型した後に架橋させてシートなどとする方法、未硬化の樹脂組成物を溶剤に溶解しガラスフィラーを分散させてキャストした後、架橋させてシートなどとする方法、未硬化の樹脂組成物または樹脂組成物を溶剤に溶解させたワニスをガラスクロスやガラス不織布に含浸させた後架橋させてシートなどとする方法等が挙げられる。   There is no limitation on the molding method of the transparent composite of the present invention, for example, a method in which an uncured resin composition and a glass filler are directly mixed, cast into a desired one, and then cross-linked into a sheet, etc., uncured A resin composition is dissolved in a solvent and a glass filler is dispersed and cast, and then crosslinked to form a sheet, etc., an uncured resin composition or a varnish obtained by dissolving a resin composition in a solvent is used as a glass cloth or glass. Examples thereof include a method of impregnating a nonwoven fabric and then crosslinking to form a sheet.

本発明の透明複合体を、液晶表示素子用プラスチック基板、カラーフィルター用基板、有機EL表示素子用プラスチック基板、電子ペーパー用基板、太陽電池用基板、タッチパネル等の光学用途として用いる場合、シート状の基板形状であることが好ましい。基板の厚さは、好ましくは50〜2000μmであり、より好ましくは50〜1000μm、最も好ましくは50〜200μmである。基板の厚さがこの範囲にあると平坦性に優れ、ガラス基板と比較して基板の軽量化を図ることができる。   When the transparent composite of the present invention is used for optical applications such as a liquid crystal display element plastic substrate, a color filter substrate, an organic EL display element plastic substrate, an electronic paper substrate, a solar cell substrate, a touch panel, etc. A substrate shape is preferred. The thickness of the substrate is preferably 50 to 2000 μm, more preferably 50 to 1000 μm, and most preferably 50 to 200 μm. When the thickness of the substrate is within this range, the flatness is excellent, and the weight of the substrate can be reduced as compared with the glass substrate.

本発明の透明複合体を前記光学用途として用いる場合、30℃〜150℃における平均線膨張係数が40ppm以下であることが好ましく、より好ましくは30ppm以下、最も好ましくは20ppm以下である。例えば、この複合体組成物をアクティブマトリックス表示素子用基板に用いた場合、この上限を超えると、その製造工程において反りやアルミ配線の断線などの問題が生じる恐れがある。   When the transparent composite of the present invention is used as the optical application, the average linear expansion coefficient at 30 ° C. to 150 ° C. is preferably 40 ppm or less, more preferably 30 ppm or less, and most preferably 20 ppm or less. For example, when this composite composition is used for a substrate for an active matrix display element, if this upper limit is exceeded, problems such as warping and disconnection of aluminum wiring may occur in the manufacturing process.

本発明の透明複合体を表示素子用プラスチック基板として用いる場合、波長400nmにおける光線透過率は80%以上が必要であり、より好ましくは85%以上であり、さらに好ましくは88%以上である。波長400nmにおける光線透過率が80%未満であると表示性能が十分でない。   When the transparent composite of the present invention is used as a plastic substrate for a display element, the light transmittance at a wavelength of 400 nm needs to be 80% or more, more preferably 85% or more, and still more preferably 88% or more. If the light transmittance at a wavelength of 400 nm is less than 80%, the display performance is not sufficient.

更に本発明の透明複合体を表示素子用プラスチック基板として用いる場合、ガラス転移温度は200℃以上が好ましく、より好ましくは250℃以上である。ガラス転移温度が200℃未満であると高温プロセスにおいて、高温での基板の強度や弾性率が不十分で基板が変形するおそれがある。   Further, when the transparent composite of the present invention is used as a plastic substrate for a display element, the glass transition temperature is preferably 200 ° C. or higher, more preferably 250 ° C. or higher. If the glass transition temperature is less than 200 ° C., the substrate may be deformed due to insufficient strength and elastic modulus of the substrate at a high temperature in a high temperature process.

本発明の透明複合体を表示素子用プラスチック基板として用いる場合、表面平滑性を向上させるため基板の両面に樹脂のコート層を設けてもよい。用いる樹脂としては優れた耐熱性、透明性、耐薬品性を有していることが好ましく、具体的には多官能アクリレート樹脂や、エポキシ樹脂などが好ましい。コート層の厚みは0.1μm〜30μmが好ましく、より好ましくは0.5〜30μmである。   When the transparent composite of the present invention is used as a plastic substrate for a display element, a resin coat layer may be provided on both sides of the substrate in order to improve surface smoothness. The resin to be used preferably has excellent heat resistance, transparency, and chemical resistance, and specifically, a polyfunctional acrylate resin or an epoxy resin is preferable. The thickness of the coat layer is preferably 0.1 μm to 30 μm, more preferably 0.5 to 30 μm.

以下、本発明の内容を実施例により詳細に説明するが、本発明はその要旨を超えない限り以下の例に限定されるものではない。   EXAMPLES Hereinafter, although the content of this invention is demonstrated in detail by an Example, this invention is not limited to the following examples, unless the summary is exceeded.

(実施例1)NEガラス系ガラスクロス(厚さ90μm、屈折率1.510、日東紡製)に水添ビフェニル型脂環式エポキシ樹脂(ダイセル化学工業性、E−BP)70重量部、オキセタニルシリケート(東亜合成製、OXT−191)30重量部、芳香族スルホニウム系熱カチオン触媒(三新化学製、SI−100L)1重量部を混合した樹脂を含浸させ脱泡した。このガラスクロスを銅箔に挟み込んで80℃で2時間加熱後、250℃で更に2時間加熱し厚さ0,1mmの透明シートを得た。 (Example 1) NE glass-based glass cloth (thickness 90 μm, refractive index 1.510, manufactured by Nittobo Co., Ltd.) Hydrogenated biphenyl type alicyclic epoxy resin (Daicel Chemical Industrial, E-BP) 70 parts by weight, oxetanyl Defoaming was performed by impregnating a resin in which 30 parts by weight of silicate (manufactured by Toagosei Co., Ltd., OXT-191) and 1 part by weight of an aromatic sulfonium-based thermal cation catalyst (manufactured by Sanshin Chemical Co., Ltd., SI-100L) were mixed. The glass cloth was sandwiched between copper foils and heated at 80 ° C. for 2 hours, and further heated at 250 ° C. for 2 hours to obtain a transparent sheet having a thickness of 0.1 mm.

(実施例2)NEガラス系ガラスクロス(厚さ90μm、屈折率1.510、日東紡製)に水添ビフェニル型脂環式エポキシ樹脂(ダイセル化学工業性、E−BP)100重量部、ナノ粒子としてSiOを主成分とする表面処理したナノシリカ(平均粒子径20nm)の溶剤分散液(固形分量20wt%)60重量部を混合し、溶剤を揮発させた後に芳香族スルホニウム系熱カチオン触媒(三新化学製SI−100L)1重量部を混合した樹脂を含浸させ脱泡した。このガラスクロスを銅箔に挟み込んで80℃で2時間加熱後、250℃で更に2時間加熱し厚さ0,1mmの透明シートを得た。 (Example 2) NE glass-based glass cloth (thickness 90 μm, refractive index 1.510, manufactured by Nittobo Co., Ltd.) Hydrogenated biphenyl type alicyclic epoxy resin (Daicel Chemical Industrial, E-BP) 100 parts by weight, nano 60 parts by weight of a solvent dispersion (solid content 20 wt%) of surface-treated nano silica (average particle diameter 20 nm) mainly composed of SiO 2 as particles is mixed and the solvent is volatilized, and then an aromatic sulfonium-based thermal cation catalyst ( Sanshin Chemical's SI-100L) impregnated with 1 part by weight of resin and degassed. The glass cloth was sandwiched between copper foils and heated at 80 ° C. for 2 hours, and further heated at 250 ° C. for 2 hours to obtain a transparent sheet having a thickness of 0.1 mm.

(比較例1)NEガラス系ガラスクロス(厚さ90μm、屈折率1.510、日東紡製)に多官能脂環式エポキシ樹脂(ダイセル化学工業性、EHPE−3150)80重量部、ビスフェノールS型エポキシ樹脂(大日本インキ化学社製、EXA−1514)20重量部、メチルヘキサヒドロ無水フタル酸(新日本理化社製、MH−700G)77重量部、1−ベンジル−2−フェニルイミダゾール(四国化成製)1重量部を混合した樹脂を含浸させ脱泡した。このガラスクロスを銅箔に挟み込んで80℃で2時間加熱後、200℃で更に2時間加熱し厚さ0,1mmの透明シートを得た。 (Comparative Example 1) NE glass-based glass cloth (thickness 90 μm, refractive index 1.510, manufactured by Nittobo), polyfunctional alicyclic epoxy resin (Daicel Chemical Industrial, EHPE-3150) 80 parts by weight, bisphenol S type 20 parts by weight of an epoxy resin (Dainippon Ink Chemical Co., Ltd., EXA-1514), 77 parts by weight of methylhexahydrophthalic anhydride (manufactured by Shin Nippon Chemical Co., Ltd., MH-700G), 1-benzyl-2-phenylimidazole (Shikoku Chemicals) (Made) impregnated with 1 part by weight of resin and degassed. The glass cloth was sandwiched between copper foils and heated at 80 ° C. for 2 hours, and further heated at 200 ° C. for 2 hours to obtain a transparent sheet having a thickness of 0.1 mm.

実施例、比較例の配合及び評価結果を表1に示す。評価方法は以下の通りである。
(a)光量の温度依存性
偏光顕微鏡をクロスニコル状態にした後、透明基板をステージ上で回転させながら、透過モードで最も光漏れが強くなる位置でサンプルを固定し、透過する光量の温度依存性を測定した。
(b)平均線膨張係数
SEIKO電子(株)製TMA/SS6000型熱応力歪み測定装置を用いて、窒素雰囲気下、1分間に5℃の割合で昇温させ、求めた。荷重を5gにし引っ張りモードで測定を行い、所定温度範囲における平均線膨張係数を算出した。
(c)耐熱性
SEIKO電子(株)製DNS210型動的粘弾性測定装置を用いて、1Hzでのtanδの最大値をガラス転移温度(Tg)とした。
(d)光線透過率
分光光度計U3200(島津製作所製)で400nmにおける全光線透過率を測定した。
(e)光学異方性
(a)と同様に得られた透明基板の光漏れの有無を評価した。評価方法は、偏光顕微鏡を用いクロスニコル状態にした後、透明基板をステージ上で回転させながら、最も光漏れが強くなる位置で評価を行った。各符号は、以下の通りである。
○:良好(光漏れが若干観測されるが、実用上問題ない)
×:不良(光漏れが多く観測され、実用上問題あり)
Table 1 shows the compositions and evaluation results of Examples and Comparative Examples. The evaluation method is as follows.
(A) Temperature dependence of the amount of light After the polarizing microscope is placed in a crossed Nicol state, the sample is fixed at the position where the light leakage is strongest in the transmission mode while rotating the transparent substrate on the stage, and the temperature dependence of the amount of light transmitted. Sex was measured.
(B) Average linear expansion coefficient The average linear expansion coefficient was determined by increasing the temperature at a rate of 5 ° C. per minute in a nitrogen atmosphere using a TMA / SS6000 type thermal stress strain measuring device manufactured by SEIKO ELECTRONICS CO., LTD. The load was set to 5 g, the measurement was performed in the tension mode, and the average linear expansion coefficient in a predetermined temperature range was calculated.
(C) Heat resistance Using a DNS210 type dynamic viscoelasticity measuring device manufactured by SEIKO Electronics Co., Ltd., the maximum value of tan δ at 1 Hz was defined as the glass transition temperature (Tg).
(D) Light transmittance The total light transmittance at 400 nm was measured with a spectrophotometer U3200 (manufactured by Shimadzu Corporation).
(E) Optical anisotropy The presence or absence of light leakage of the transparent substrate obtained in the same manner as in (a) was evaluated. The evaluation method was carried out in a crossed Nicol state using a polarizing microscope, and then evaluated at a position where light leakage was strongest while rotating the transparent substrate on the stage. Each code is as follows.
○: Good (Slight leakage is observed, but there is no practical problem)
×: Defect (a lot of light leakage is observed and there are practical problems)

Figure 2007106853
Figure 2007106853

本発明の透明複合体は、例えば透明板、光学レンズ、液晶表示素子用プラスチック基板、カラーフィルター用基板、有機EL表示素子用プラスチック基板、太陽電池基板、タッチパネル、導光板、光学素子、光導波路、LED封止材等に好適に利用できる。
The transparent composite of the present invention includes, for example, a transparent plate, an optical lens, a liquid crystal display element plastic substrate, a color filter substrate, an organic EL display element plastic substrate, a solar cell substrate, a touch panel, a light guide plate, an optical element, an optical waveguide, It can utilize suitably for LED sealing material etc.

Claims (19)

透明樹脂(a)及びガラスフィラー(b)から構成される透明複合体であって、前記透明複合体を偏向軸が90°に交差した偏向顕微鏡に設置し、透過モードで透過する光量が最大値を示す角度において透過する光量の温度依存性を測定した場合に、光量の最小値を示す温度が150℃以下であることを特徴とする透明複合体。 A transparent composite composed of a transparent resin (a) and a glass filler (b), wherein the transparent composite is installed in a deflection microscope whose deflection axis intersects at 90 °, and the amount of light transmitted in the transmission mode is the maximum value. When the temperature dependence of the light quantity which permeate | transmits in the angle which shows is measured, the temperature which shows the minimum value of a light quantity is 150 degrees C or less, The transparent composite body characterized by the above-mentioned. 前記光量の最小値を示す温度が120℃以下である請求項1記載の透明複合体。 The transparent composite according to claim 1, wherein a temperature indicating a minimum value of the light quantity is 120 ° C. or less. 前記光量の最小値を示す温度が100℃以下である請求項1記載の透明複合体。 The transparent composite according to claim 1, wherein a temperature indicating the minimum value of the light amount is 100 ° C. or less. 前記光量の最小値を示す温度が80℃以下である請求項1記載の透明複合体。 The transparent composite according to claim 1, wherein a temperature indicating the minimum value of the light amount is 80 ° C. or less. 透明樹脂(a)のガラス転移温度が200℃以上である請求項1〜4いずれか記載の透明複合体。 The transparent composite according to any one of claims 1 to 4, wherein the glass transition temperature of the transparent resin (a) is 200 ° C or higher. 透明樹脂(a)の30℃から250℃における平均線膨張係数が70ppm以下である請求項1〜5いずれか記載の透明複合体。 The transparent composite according to any one of claims 1 to 5, wherein the transparent resin (a) has an average coefficient of linear expansion of 30 ppm or less at 30 ° C to 250 ° C. 透明樹脂(a)が化学式(1)で示される脂環式エポキシ樹脂を含む樹脂組成物を硬化させて得られるものである請求項1〜6いずれか記載の透明複合体。
Figure 2007106853
The transparent composite according to any one of claims 1 to 6, wherein the transparent resin (a) is obtained by curing a resin composition containing an alicyclic epoxy resin represented by the chemical formula (1).
Figure 2007106853
透明樹脂(a)が屈折率調整可能な成分を少なくとも1種類以上含有するものである請求項1〜7いずれか記載の透明複合体。 The transparent composite according to any one of claims 1 to 7, wherein the transparent resin (a) contains at least one component capable of adjusting the refractive index. 前記屈折率調整可能な成分が化学式(2)で示されるオキセタニルシリケートを含む化合物を硬化させて得られるものである請求項8記載の透明複合体。
Figure 2007106853
(式中nは1〜5の整数)
The transparent composite according to claim 8, wherein the component capable of adjusting the refractive index is obtained by curing a compound containing oxetanyl silicate represented by the chemical formula (2).
Figure 2007106853
(Where n is an integer from 1 to 5)
前記屈折率調整可能な成分がナノ微粒子を含むものである請求項8又は9記載の透明複合体。 The transparent composite according to claim 8 or 9, wherein the component capable of adjusting the refractive index contains nanoparticles. 前記ナノ微粒子の平均分散粒子径が100nm以下である請求項8〜10いずれか記載の透明複合体。 The transparent composite according to any one of claims 8 to 10, wherein the nano-particles have an average dispersed particle size of 100 nm or less. 透明樹脂(a)の屈折率とガラスフィラー(b)の屈折率との差が0.01以下である請求項1〜11いずれか記載の透明複合体。 The transparent composite according to any one of claims 1 to 11, wherein the difference between the refractive index of the transparent resin (a) and the refractive index of the glass filler (b) is 0.01 or less. ガラスフィラー(b)の屈折率が1.45〜1.55である請求項1〜12いずれか記載の透明複合体。 The transparent composite according to any one of claims 1 to 12, wherein the glass filler (b) has a refractive index of 1.45 to 1.55. ガラスフィラー(b)がガラス繊維布である請求項1〜13いずれか記載の透明複合体。 The transparent composite according to any one of claims 1 to 13, wherein the glass filler (b) is a glass fiber cloth. 請求項1〜14いずれか記載の透明複合体から構成され、厚さが50〜2000μmである光学シート。 An optical sheet comprising the transparent composite according to any one of claims 1 to 14, and having a thickness of 50 to 2000 µm. 30〜150℃の平均線膨張係数が40ppm以下である請求項15記載の光学シート。 The optical sheet according to claim 15, wherein an average linear expansion coefficient at 30 to 150 ° C is 40 ppm or less. 波長400nmでの光線透過率が80%以上である請求項15又は16記載の光学シート。 The optical sheet according to claim 15 or 16, which has a light transmittance of 80% or more at a wavelength of 400 nm. 請求項15〜17いずれか記載の光学シートを用いた表示素子用プラスチック基板。 The plastic substrate for display elements using the optical sheet in any one of Claims 15-17. 請求項15〜17いずれか記載の光学シートを用いた太陽電池基板。 A solar cell substrate using the optical sheet according to claim 15.
JP2005298340A 2005-10-13 2005-10-13 Transparent composite Expired - Fee Related JP4821252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005298340A JP4821252B2 (en) 2005-10-13 2005-10-13 Transparent composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005298340A JP4821252B2 (en) 2005-10-13 2005-10-13 Transparent composite

Publications (2)

Publication Number Publication Date
JP2007106853A true JP2007106853A (en) 2007-04-26
JP4821252B2 JP4821252B2 (en) 2011-11-24

Family

ID=38032976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005298340A Expired - Fee Related JP4821252B2 (en) 2005-10-13 2005-10-13 Transparent composite

Country Status (1)

Country Link
JP (1) JP4821252B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009012288A (en) * 2007-07-04 2009-01-22 Sumitomo Bakelite Co Ltd Transparent composite resin sheet, its manufacturing method and substrate for display element
WO2014061506A1 (en) * 2012-10-15 2014-04-24 コニカミノルタ株式会社 Organic electroluminescent element, and light extraction sheet for organic electroluminescent element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003192765A (en) * 2001-08-23 2003-07-09 General Electric Co <Ge> Epoxy resin composition, solid state device encapsulated with the composition and encapsulation method
JP2004277462A (en) * 2003-03-12 2004-10-07 Sumitomo Bakelite Co Ltd Transparent composite composition
JP2005206787A (en) * 2003-07-07 2005-08-04 Sumitomo Bakelite Co Ltd Transparent complex composition
JP2005240028A (en) * 2004-01-28 2005-09-08 Sumitomo Bakelite Co Ltd Transparent composite sheet and display element substrate using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003192765A (en) * 2001-08-23 2003-07-09 General Electric Co <Ge> Epoxy resin composition, solid state device encapsulated with the composition and encapsulation method
JP2004277462A (en) * 2003-03-12 2004-10-07 Sumitomo Bakelite Co Ltd Transparent composite composition
JP2005206787A (en) * 2003-07-07 2005-08-04 Sumitomo Bakelite Co Ltd Transparent complex composition
JP2005240028A (en) * 2004-01-28 2005-09-08 Sumitomo Bakelite Co Ltd Transparent composite sheet and display element substrate using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009012288A (en) * 2007-07-04 2009-01-22 Sumitomo Bakelite Co Ltd Transparent composite resin sheet, its manufacturing method and substrate for display element
WO2014061506A1 (en) * 2012-10-15 2014-04-24 コニカミノルタ株式会社 Organic electroluminescent element, and light extraction sheet for organic electroluminescent element
JPWO2014061506A1 (en) * 2012-10-15 2016-09-05 コニカミノルタ株式会社 Organic electroluminescence device and light extraction sheet for organic electroluminescence device

Also Published As

Publication number Publication date
JP4821252B2 (en) 2011-11-24

Similar Documents

Publication Publication Date Title
JP5360470B2 (en) Transparent composite sheet
JP4650003B2 (en) Transparent composite sheet and display element substrate using the same
JP4622348B2 (en) Transparent composite composition
WO2004000945A1 (en) Transparent composite composition
JP2008224804A (en) Polarizing sheet
JP4784390B2 (en) Transparent composite sheet
JP2004231934A (en) Transparent composite material composition
JP2004269727A (en) Transparent compounded composition
JP2006176586A (en) Transparent composite composition and optical sheet and plastic substrate for display device
JP2004307845A (en) Transparent composite composition
JP4821252B2 (en) Transparent composite
JP2005133028A (en) Plastic composite transparent sheet and display element using it
JP4930140B2 (en) Transparent laminate
JP2004168945A (en) Transparent composite composition
JP2007168150A (en) Transparent composite sheet
JP4356395B2 (en) Plastic composite transparent sheet and display element using the same
JP5119846B2 (en) Epoxy resin composition and transparent composite sheet
JP2008221507A (en) Optical resin sheet
JP4539113B2 (en) Plastic composite transparent sheet and display element using the same
JP5601627B2 (en) Transparent composite sheet and transparent composite substrate using the same
JP4701613B2 (en) Optical sheet
JP2012051379A (en) Transparent composite sheet
JP5387421B2 (en) Resin composition and transparent composite substrate
JP2005029668A (en) Transparent composite composition and display device using the same
JP2008225020A (en) Optical resin sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110822

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees