JP2007104458A - Thin-film piezo-resonator device and its manufacturing method - Google Patents

Thin-film piezo-resonator device and its manufacturing method Download PDF

Info

Publication number
JP2007104458A
JP2007104458A JP2005293232A JP2005293232A JP2007104458A JP 2007104458 A JP2007104458 A JP 2007104458A JP 2005293232 A JP2005293232 A JP 2005293232A JP 2005293232 A JP2005293232 A JP 2005293232A JP 2007104458 A JP2007104458 A JP 2007104458A
Authority
JP
Japan
Prior art keywords
thin film
piezoelectric resonator
film piezoelectric
substrate
resin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005293232A
Other languages
Japanese (ja)
Inventor
Mitsunori Takasugi
充教 高杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2005293232A priority Critical patent/JP2007104458A/en
Publication of JP2007104458A publication Critical patent/JP2007104458A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector

Landscapes

  • Wire Bonding (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin-film piezo-resonator device and its manufacturing method that acquire proper frequency characteristics and have high reliability. <P>SOLUTION: The thin film piezo-resonator device has a substrate having a prescribed wiring; the thin-film piezo-resonator mounted on the substrate via a gold bump by a flip-chip bonding method; a setting resin layer using ultraviolet rays, together with heat which is filled between the substrate and the thin-film piezo-resonator so as to expose a vibrator of the thin-film piezo-resonator, and coats at least a part of a side face of the thin-film piezo-resonator; and a mold resin layer to coat the thin-film piezo-resonator and the resin layer. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、薄膜圧電共振子(Film Bulk Acoustic Resonator、FBARと略記される)を含むFBARフィルタおよびFBARデュプレクサなどの薄膜圧電共振子デバイスおよびその製造方法に関し、フリップチップ実装法にて基板上に薄膜圧電共振子を実装する場合に、特定の樹脂を用いてFBARの機能面を被覆することなく中空状態で薄膜圧電共振子を樹脂封止することを特徴とした、薄膜圧電共振子デバイスおよびその製造方法に関するものである。   The present invention relates to a thin film piezoelectric resonator device such as an FBAR filter and an FBAR duplexer including a thin film piezoelectric resonator (abbreviated as FBAR) and a method for manufacturing the thin film piezoelectric resonator device. A thin film piezoelectric resonator device and its manufacture, characterized in that when a piezoelectric resonator is mounted, the thin film piezoelectric resonator is resin-sealed in a hollow state without covering the functional surface of the FBAR using a specific resin. It is about the method.

従来、表面弾性波(Surface Acoustic Wave、SAWと略記される)素子や、薄膜圧電共振子などのMEMS(Micro Electro Mechanical System、MEMSと略記される)素子は機能面に他の物質の接触による性能の低下を避けるため、図10に示すキャビティ形状のセラミック基板やパッケージに実装され、それらに蓋を被せ封止を行うことにより、機能面の中空状態を保つ製造方法が行われている。   Conventionally, surface acoustic wave (abbreviated as Surface Acoustic Wave, SAW) elements and MEMS (abbreviated as Micro Electro Mechanical System, MEMS) elements such as thin film piezoelectric resonators have a function performance due to contact with other substances. In order to avoid this deterioration, a manufacturing method is carried out in which a functional surface is kept hollow by being mounted on a cavity-shaped ceramic substrate or package shown in FIG.

しかしながら、この実装方法では金属キャップを使用して機密性を確保しているために、実装基板の厚さ方向の寸法と、金属キャップシール部確保のため実装基板の縦・横の寸法が大きくなり、フィルタ素子が搭載される携帯電話の小型化に伴う、素子側への小型化要求に応えることが困難になっている。さらに、金属キャップや固定するためのシール材(コバール、金−Sn等)が必要であるために、製造コストが高くなる。   However, since this mounting method uses a metal cap to ensure confidentiality, the dimensions of the mounting board in the thickness direction and the vertical and horizontal dimensions of the mounting board increase to secure the metal cap seal. With the downsizing of mobile phones on which filter elements are mounted, it is difficult to meet the demand for downsizing on the element side. Furthermore, since a metal cap and a sealing material (Kvar, gold-Sn, etc.) for fixing are necessary, the manufacturing cost increases.

また、半導体素子を小型化するための実装方法として、フリップチップ実装法の、アンダーフィルによるチップの下面封止方法が従来から用いられている。図11は、従来のアンダーフィルによる封止状態を示す基板実装された半導体素子の側面断面図である。しかしながら、この方法を用いてMEMS素子の実装を行った場合、小型化、軽量化が図れるが、MEMS素子の機能部分を樹脂が覆ってしまうため高周波特性が劣化してしまう現象が生じるという問題がある。   As a mounting method for reducing the size of a semiconductor element, a flip chip mounting method of under-chip sealing by underfill has been conventionally used. FIG. 11 is a side cross-sectional view of a semiconductor device mounted on a substrate, showing a sealing state by a conventional underfill. However, when the MEMS element is mounted using this method, it is possible to reduce the size and weight, but there is a problem in that the high frequency characteristics deteriorate due to the resin covering the functional part of the MEMS element. is there.

MEMS素子としてSAW素子を用いた場合のこの問題を解決する手段として、特許文献1に、SAW素子の機能面を除いて、光硬化性樹脂を用いてSAW素子を封止することが開示されている。   As means for solving this problem when a SAW element is used as a MEMS element, Patent Document 1 discloses that the SAW element is sealed using a photocurable resin except for the functional aspect of the SAW element. Yes.

特開2003−297982号公報JP 2003-297882 A

しかしながら、SAW素子とは異なる薄膜圧電共振子デバイスについて、記特許文献1の方法で、薄膜圧電共振子を基板上に実装し、光硬化性樹脂で封止すると、デバイスの周波数特性が劣化し、十分な特性が得られない。本発明は、このような問題を解決するために成されたものであり、本発明の目的は、良好な周波数特性が得られ、信頼性の高い薄膜圧電共振子デバイスおよびその製造方法を提供することである。   However, for a thin film piezoelectric resonator device different from a SAW element, when the thin film piezoelectric resonator is mounted on a substrate and sealed with a photocurable resin by the method of Patent Document 1, the frequency characteristics of the device deteriorate, Sufficient characteristics cannot be obtained. The present invention has been made to solve such problems, and an object of the present invention is to provide a thin film piezoelectric resonator device with good frequency characteristics and high reliability, and a method for manufacturing the same. That is.

本発明者らは、上記問題点を解決するために、鋭意検討した結果、薄膜圧電共振子デバイスにした場合に、良好な特性が得られない原因が、薄膜圧電共振子を埋める樹脂層の歪または応力にあることを突き止め、本発明を完成した。即ち、本発明は、所定の配線を有する基板と、前記基板上に金バンプを介して、フリップチップボンディング法によって実装された薄膜圧電共振子と、前記薄膜圧電共振子の振動部を露出させるように前記基板と前記薄膜圧電共振子との間に充填され前記薄膜圧電共振子の側面の少なくとも一部を被覆する紫外線・熱併用硬化性樹脂層と、前記薄膜圧電共振子および前記樹脂層上を覆うモールド樹脂層と、を有する薄膜圧電共振子デバイスに関する。   As a result of intensive investigations to solve the above problems, the present inventors have found that when a thin film piezoelectric resonator device is used, the reason why good characteristics cannot be obtained is the distortion of the resin layer filling the thin film piezoelectric resonator. Alternatively, the present invention has been completed by ascertaining the presence of stress. That is, the present invention exposes a substrate having predetermined wiring, a thin film piezoelectric resonator mounted on the substrate by a flip chip bonding method via a gold bump, and a vibrating portion of the thin film piezoelectric resonator. An ultraviolet / heat combination curable resin layer that is filled between the substrate and the thin film piezoelectric resonator and covers at least a part of a side surface of the thin film piezoelectric resonator; and the thin film piezoelectric resonator and the resin layer The present invention relates to a thin film piezoelectric resonator device having a covering mold resin layer.

本発明の薄膜圧電共振器子デバイスの一実施形態としては、前記紫外線・熱併用硬化性樹脂層がポリイミド樹脂、またはガラスフリットにより形成されていることを特徴とする。   As one embodiment of the thin film piezoelectric resonator device of the present invention, the ultraviolet / heat combined curable resin layer is formed of polyimide resin or glass frit.

本発明の薄膜圧電共振器子デバイスの一実施形態として、前記基板は、前記薄膜圧電共振子の振動部に対向する部分に、窪みを有することを特徴とする。また、他の一実施形態として、前記基板は、前記薄膜圧電共振子の振動部に対向しない領域でかつ導体を形成する領域に凸部が形成されていることを特徴とする。   As an embodiment of the thin film piezoelectric resonator device of the present invention, the substrate has a recess in a portion facing the vibrating portion of the thin film piezoelectric resonator. As another embodiment, the substrate is characterized in that a convex portion is formed in a region not facing the vibrating portion of the thin film piezoelectric resonator and in a region where a conductor is formed.

また、本発明は、薄膜圧電共振子の端子電極上に金バンプを形成する工程と、前記金バンプが前記基板の配線と接続されるように、フリップチップボンディング法により前記薄膜圧電共振子を前記基板上に実装する工程と、前記薄膜圧電共振子の振動部を露出させ、かつ、露出されている空間が密封空間となるように、前記薄膜圧電共振子の周辺に紫外線・熱併用硬化性樹脂を塗布する工程と、加熱するとともに紫外線を照射することにより前記紫外線・熱併用硬化性樹脂を硬化させる工程と、前記薄膜圧電共振子と硬化させた前記紫外線・熱併用硬化性樹脂を覆うモールド樹脂層を形成する工程と、を有する薄膜圧電共振子デバイスの製造方法に関する。   The present invention also includes a step of forming a gold bump on a terminal electrode of the thin film piezoelectric resonator, and the thin film piezoelectric resonator is formed by a flip chip bonding method so that the gold bump is connected to the wiring of the substrate. A step of mounting on a substrate, and exposing the vibrating portion of the thin film piezoelectric resonator, and a curable resin combined with ultraviolet and heat around the thin film piezoelectric resonator so that the exposed space becomes a sealed space A step of curing the ultraviolet / heat combination curable resin by heating and irradiating ultraviolet rays, and a mold resin covering the thin film piezoelectric resonator and the cured ultraviolet / heat combination curable resin. Forming a layer, and a method of manufacturing a thin film piezoelectric resonator device.

本発明の薄膜圧電共振子デバイスの製造方法において、前記実装する工程は、基板の電極部分と前記バンプの接合を加熱融着することが好ましい。また、前記実装する工程は、接合を促進するために前記バンプに超音波を印加することが好ましい。   In the method for manufacturing a thin film piezoelectric resonator device of the present invention, it is preferable that the mounting step is performed by heat-sealing the bonding between the electrode portion of the substrate and the bump. In the mounting step, it is preferable to apply ultrasonic waves to the bumps in order to promote bonding.

また、前記封止樹脂層は、トランスファモールド法により形成することが好ましい。   The sealing resin layer is preferably formed by a transfer mold method.

本発明は、金バンプを形成した薄膜圧電共振子の機能面を樹脂で覆うことなく密封された空間を保ったまま、フリップチップ接続された実装基板をトランスファモールド法により封止する際に、紫外線硬化・熱硬化併用型樹脂を中空封止に用いることで、樹脂硬化時の薄膜圧電共振子へのダメージを小さくすることにより、素子のフィルタ特性を向上させることが可能になる。これにより、低製造コストで信頼性の高い小型化・薄型化されたFBARフィルタ、デュプレクサなどの薄膜圧電共振子デバイスを提供することができる。   In the present invention, when a flip-chip connected mounting substrate is sealed by a transfer mold method while keeping a sealed space without covering a functional surface of a thin film piezoelectric resonator formed with gold bumps with a resin, an ultraviolet ray is applied. By using the curing / thermosetting type resin for hollow sealing, it is possible to improve the filter characteristics of the element by reducing damage to the thin film piezoelectric resonator during resin curing. Accordingly, it is possible to provide a thin film piezoelectric resonator device such as an FBAR filter or a duplexer that is highly reliable and small in size and low in manufacturing cost.

以下、本発明の薄膜圧電共振子デバイスについて図面を参照して詳細に説明する。図1は本発明の薄膜圧電共振子デバイスの一実施形態である、フリップチップ実装したFBARフィルタを側面から描いた断面図である。本発明の薄膜圧電共振子デバイスは、所定の配線を有する基板1と、前記基板上に金バンプ3を介して、フリップチップボンディング法によって実装された薄膜圧電共振子2と、前記薄膜圧電共振子2の振動部5を露出させるように前記基板1と前記薄膜圧電共振子2との間に充填され前記薄膜圧電共振子の側面の少なくとも一部を被覆する紫外線・熱併用硬化性樹脂層7と、前記薄膜圧電共振子2および前記樹脂層7上を覆うモールド樹脂層9とからなっている。即ち、前記薄膜圧電共振子2の金パッド4と基板1の電極6部分がフリップチップボンディングで接合され、その接合部分が薄膜圧電共振子2の機能部分を除き、紫外線・熱併用硬化性樹脂7で覆われた状態を示している。さらに、薄膜圧電共振子はトランスファモールド法により形成されたモールド樹脂9により、その中空封止された素子の上部を覆っている。   Hereinafter, the thin film piezoelectric resonator device of the present invention will be described in detail with reference to the drawings. FIG. 1 is a cross-sectional view of a flip-chip mounted FBAR filter as an embodiment of the thin film piezoelectric resonator device of the present invention, viewed from the side. The thin film piezoelectric resonator device of the present invention includes a substrate 1 having a predetermined wiring, a thin film piezoelectric resonator 2 mounted on the substrate by a flip chip bonding method via a gold bump 3, and the thin film piezoelectric resonator. An ultraviolet / heat combined curable resin layer 7 which is filled between the substrate 1 and the thin film piezoelectric resonator 2 so as to expose the vibration portion 5 of the two and covers at least a part of the side surface of the thin film piezoelectric resonator; The thin film piezoelectric resonator 2 and the mold resin layer 9 covering the resin layer 7 are formed. That is, the gold pad 4 of the thin film piezoelectric resonator 2 and the electrode 6 portion of the substrate 1 are bonded by flip chip bonding, and the bonded portion excludes the functional portion of the thin film piezoelectric resonator 2, and the ultraviolet / heat combined curable resin 7 is used. The state covered with is shown. Further, the thin film piezoelectric resonator covers the upper part of the hollow sealed element with a mold resin 9 formed by a transfer mold method.

薄膜圧電共振子(FBAR)は、表面弾性波素子(SAW)に用いられる圧電単結晶の表面弾性波による共振と異なり、圧電薄膜をバルク振動させ共振子として用いることに特徴があり、薄膜圧電共振子は、バルク振動する振動部5を有し、その振動のために空間が必要とされる。   A thin film piezoelectric resonator (FBAR) is characterized by using a piezoelectric thin film as a resonator by vibrating it in bulk, unlike resonance by a surface acoustic wave of a piezoelectric single crystal used in a surface acoustic wave device (SAW). The child has a vibrating portion 5 that vibrates in bulk, and a space is required for the vibration.

図2は薄膜圧電共振子の構造を示す断面図であり、前記素子の機能部は薄い絶縁層16を含むシリコンウェハー17の上に形成され、振動部5は上部電極13と下部電極15に挟まれた圧電薄膜14の部分で形成されている。更に、振動部5の下には空間部18が形成されており、空間部18の上部の振動部5がバルク振動することで、共振子として機能する。   FIG. 2 is a cross-sectional view showing the structure of a thin film piezoelectric resonator. The functional part of the element is formed on a silicon wafer 17 including a thin insulating layer 16, and the vibration part 5 is sandwiched between an upper electrode 13 and a lower electrode 15. The piezoelectric thin film 14 is formed. Further, a space portion 18 is formed under the vibration portion 5, and the vibration portion 5 above the space portion 18 functions as a resonator by performing bulk vibration.

薄膜圧電共振子の機能面、即ち、実装基板に対向する面には、金電極による素子側パッドが形成されている。前記素子の電極パッド上にワイヤーボンディング法や転写法により金バンプが形成され、基板の電極パッド部と金バンプの接合によりFBARフィルタやデュプレクサが製造される。   On the functional surface of the thin film piezoelectric resonator, that is, the surface facing the mounting substrate, an element-side pad made of a gold electrode is formed. Gold bumps are formed on the electrode pads of the element by a wire bonding method or a transfer method, and an FBAR filter or a duplexer is manufactured by joining the electrode pad portions of the substrate and the gold bumps.

実装基板には樹脂基板、セラミック基板またはガラス基板が用いられ、基板側パッドには金メッキが施されている。前記基板は、両面配線基板あるいは多層配線基板であってもよい。   As the mounting substrate, a resin substrate, a ceramic substrate or a glass substrate is used, and the substrate side pad is plated with gold. The board may be a double-sided wiring board or a multilayer wiring board.

紫外線・熱併用硬化性樹脂は、硬化時の収縮率が小さく、紫外線・熱併用硬化性樹脂で実装基板にフリップチップ接合された薄膜圧電共振子の側面および機能部以外の素子部を覆うことにより、硬化後の歪や応力が小さいため、薄膜圧電共振子の特性に及ぼす影響が小さく、良好な特性を示し、信頼性が向上する。   The UV / heat combination curable resin has a low shrinkage rate when cured, and covers the side of the thin film piezoelectric resonator flip-chip bonded to the mounting substrate with the ultraviolet / heat combination curable resin and the element part other than the functional part. Since the strain and stress after curing are small, the influence on the characteristics of the thin film piezoelectric resonator is small, and good characteristics are exhibited and the reliability is improved.

本発明の紫外線・熱併用硬化性樹脂層の樹脂としては、ポリイミド樹脂やガラスフリットが挙げられる。ポリイミド樹脂は、低誘電率・高周波での低損失が特徴であり、薄膜圧電共振子への電気特性に対する影響が小さいことから好ましい。また、ガラスフリットは、熱膨張係数がシリコンとほぼ等しい物質であり、加熱・軟化・硬化のプロセスを経ても薄膜圧電共振子への影響が小さいことから好ましい。   Examples of the resin of the ultraviolet / heat combination curable resin layer of the present invention include polyimide resin and glass frit. Polyimide resin is preferable because it has a low dielectric constant and low loss at high frequencies, and has little influence on the electrical characteristics of the thin film piezoelectric resonator. Glass frit is preferable because it is a substance having a thermal expansion coefficient substantially equal to that of silicon and has little influence on the thin film piezoelectric resonator even after the process of heating, softening, and curing.

本発明の薄膜圧電共振子デバイスの一実施形態として、基板は、薄膜圧電共振子の振動部に対向する部分に窪みを有することが好ましい。図3は、薄膜圧電共振子の振動部に対向する部分に窪みを有する基板を用いた薄膜圧電共振子デバイスの断面図である。基板の窪みの深さは、20〜100μm程度であり、基板に窪みを有することにより、薄膜圧電共振子とLTCC基板との空間の高さが他の部分より高くなり、樹脂の薄膜圧電共振子の振動部下部への流入を防止することが可能になる。   As one embodiment of the thin film piezoelectric resonator device of the present invention, the substrate preferably has a depression in a portion facing the vibrating portion of the thin film piezoelectric resonator. FIG. 3 is a cross-sectional view of a thin film piezoelectric resonator device using a substrate having a depression in a portion facing the vibrating portion of the thin film piezoelectric resonator. The depth of the recess of the substrate is about 20 to 100 μm, and by having the recess in the substrate, the height of the space between the thin film piezoelectric resonator and the LTCC substrate becomes higher than other portions, and the resin thin film piezoelectric resonator Can be prevented from flowing into the lower part of the vibrating part.

また、本発明の他の薄膜圧電共振子デバイスの一実施形態として、基板は、前記薄膜圧電共振子の振動部に対向しない領域でかつ導体を形成する領域に凸部が形成されていることが好ましい。図4は、前記薄膜圧電共振子の振動部に対向しない領域で、かつ導体を形成する領域に凸部が形成されている基板を用いた薄膜圧電共振子デバイスの断面図である。基板の凸部の高さは、5〜50μm程度であり、基板に凸部を有することにより、フリップチップ接合部より薄膜圧電共振子とLTCC基板との空間の高さが低くなり、樹脂の薄膜圧電共振子の振動部下部への流入を防止することが可能になる。   As another embodiment of the thin film piezoelectric resonator device of the present invention, the substrate has a convex portion formed in a region not facing the vibrating portion of the thin film piezoelectric resonator and forming a conductor. preferable. FIG. 4 is a cross-sectional view of a thin film piezoelectric resonator device using a substrate in which a convex portion is formed in a region not facing the vibrating portion of the thin film piezoelectric resonator and in a region where a conductor is formed. The height of the convex portion of the substrate is about 5 to 50 μm, and by having the convex portion on the substrate, the height of the space between the thin film piezoelectric resonator and the LTCC substrate is lower than the flip chip bonding portion, and the resin thin film It becomes possible to prevent the piezoelectric resonator from flowing into the lower part of the vibration part.

図5は薄膜圧電共振子の機能面側の電極パターンの例を示す概略図である。薄膜圧電共振子の中心にある振動部5の周辺に、金電極のパッド4が設けられており、一部、ダミーパッド11が設けられている。   FIG. 5 is a schematic view showing an example of an electrode pattern on the functional surface side of the thin film piezoelectric resonator. A gold electrode pad 4 is provided around the vibrating portion 5 at the center of the thin film piezoelectric resonator, and a dummy pad 11 is partially provided.

図6は、薄膜圧電共振子に対向する、実装基板の素子実装面側の電極パターン例を示す概略図である。薄膜圧電共振子の機能面側の電極パターンに対向する位置にそれぞれ、金電極ハッド6およびダミーパッド12が設けられている。ダミーパッド12を設けることにより、前記素子と実装基板の間の空間部分が狭くなり、封止樹脂の薄膜圧電共振子の機能面5下部への流入を防止することが可能になる。   FIG. 6 is a schematic diagram showing an example of an electrode pattern on the element mounting surface side of the mounting substrate facing the thin film piezoelectric resonator. A gold electrode pad 6 and a dummy pad 12 are provided at positions facing the electrode pattern on the functional surface side of the thin film piezoelectric resonator, respectively. By providing the dummy pad 12, the space between the element and the mounting substrate is narrowed, and it becomes possible to prevent the sealing resin from flowing into the lower portion of the functional surface 5 of the thin film piezoelectric resonator.

次に、本発明の薄膜圧電共振子デバイスの製造方法について図面を参照し詳細に説明する。   Next, the manufacturing method of the thin film piezoelectric resonator device of the present invention will be described in detail with reference to the drawings.

薄膜圧電共振子デバイスの製造方法は、薄膜圧電共振子の端子電極上に金バンプを形成する工程と、前記金バンプが前記基板の配線と接続されるように、フリップチップボンディング法により前記薄膜圧電共振子を前記基板上に実装する工程と、前記薄膜圧電共振子の振動部を露出させ、かつ、露出されている空間が密封空間となるように、前記薄膜圧電共振子の周辺に紫外線・熱併用硬化性樹脂を塗布する工程と、加熱するとともに紫外線を照射することにより前記紫外線・熱併用硬化性樹脂を硬化させる工程と、前記薄膜圧電共振子と硬化させた前記紫外線・熱併用硬化性樹脂を覆うモールド樹脂層を形成する工程と、を有する。   A method of manufacturing a thin film piezoelectric resonator device includes a step of forming a gold bump on a terminal electrode of a thin film piezoelectric resonator, and a flip chip bonding method so that the gold bump is connected to a wiring of the substrate. The step of mounting the resonator on the substrate, and exposing the vibrating portion of the thin film piezoelectric resonator, and the ultraviolet light and heat around the thin film piezoelectric resonator so that the exposed space becomes a sealed space A step of applying a combination curable resin, a step of curing the ultraviolet / heat combination curable resin by heating and irradiating ultraviolet rays, and the ultraviolet / heat combination curable resin cured with the thin film piezoelectric resonator. Forming a mold resin layer covering the substrate.

まず、薄膜圧電共振子の機能面には、金電極による素子側パッドが形成されており、前記素子の電極パッド上にワイヤーボンディング法や転写法により金バンプが形成される。   First, an element side pad made of a gold electrode is formed on the functional surface of the thin film piezoelectric resonator, and a gold bump is formed on the electrode pad of the element by a wire bonding method or a transfer method.

一方、実装基板には樹脂基板、セラミック基板またはガラス基板が用いられ、基板側パッドには金メッキが施されている。実装工程においては、前記基板と金バンプが形成された薄膜圧電共振子の機能面を、加熱融着または超音波による接合方法の何れかにより、実装基板との適切な空間を保ち対向させ実装する。   On the other hand, a resin substrate, a ceramic substrate, or a glass substrate is used as the mounting substrate, and the substrate-side pad is plated with gold. In the mounting process, the functional surface of the thin film piezoelectric resonator on which the substrate and the gold bump are formed is mounted by facing the mounting substrate while maintaining an appropriate space by either heat fusion or ultrasonic bonding. .

次に、基板に実装された前記素子の周囲に、紫外線硬化・熱硬化併用型の流動性の低い樹脂を塗布する。   Next, an ultraviolet curing / thermosetting combined low-fluidity resin is applied around the element mounted on the substrate.

次に、紫外線照射・加熱硬化を行う。薄膜圧電共振子のサイズが小さく、周囲から紫外線硬化・熱硬化併用型樹脂の塗布が困難な場合においては、薄膜圧電共振子の上部から塗布を行い紫外線照射・加熱硬化を行う。この際に、前記素子の金バンプが形成されていない外周部は、紫外線硬化・熱硬化併用型の樹脂が機能面に入ることを防止するため、前記素子側には図5に示すダミーパッド11を形成し、実装基板側にも同様に図6に示すダミーパッド12を形成することで、ダミーパッドより内側の機能面への紫外線硬化・熱硬化併用型の樹脂の進入を防止する。   Next, ultraviolet irradiation and heat curing are performed. When the size of the thin film piezoelectric resonator is small and it is difficult to apply the ultraviolet curing / thermosetting resin from the surroundings, the coating is performed from the upper part of the thin film piezoelectric resonator, and the ultraviolet irradiation and heat curing are performed. At this time, the outer peripheral portion where the gold bumps of the element are not formed has a dummy pad 11 shown in FIG. 5 on the element side in order to prevent the ultraviolet curing / thermosetting resin from entering the functional surface. 6 and the dummy pad 12 shown in FIG. 6 is similarly formed on the mounting substrate side, thereby preventing the ultraviolet curing / thermosetting resin from entering the functional surface inside the dummy pad.

さらにエポキシ系樹脂あるいはフェノール系樹脂を用いて、トランスファモールド法により前記薄膜圧電共振子と硬化させた前記紫外線・熱併用硬化性樹脂を含む基板上全面に封止樹脂を形成する。   Furthermore, an epoxy resin or a phenol resin is used to form a sealing resin on the entire surface of the substrate including the ultraviolet / heat combination curable resin cured with the thin film piezoelectric resonator by a transfer mold method.

本発明における実装基板は、図3に示すように、薄膜圧電共振子の機能面に対抗する基板側を凹形状に加工し、前記素子の機能面に紫外線硬化・熱硬化併用型樹脂の進入を防止する基板構造であってもよい。   As shown in FIG. 3, the mounting substrate according to the present invention has a concave shape on the side of the substrate that opposes the functional surface of the thin film piezoelectric resonator, and the ultraviolet curing / thermosetting combined resin enters the functional surface of the element. The substrate structure to prevent may be sufficient.

(実施例1)
紫外線硬化・熱硬化併用型樹脂の収縮率は1〜2%であり、従来の紫外線硬化型樹脂の収縮率4〜8%、熱硬化併用型樹脂の収縮率3〜6%と比較すると収縮率が小さく、薄膜圧電共振子への硬化収縮時の影響が小さい。本実施例では、LTCC基板上に超音波フリップチップ接合した薄膜圧電共振子に、高圧水銀ランプを用いた照度:150mW/cm2、主波長:365nmの光源を用い、紫外線を積算光量:1800mJ/cm2照射した後に120℃で1時間硬化処理を行った。この紫外線硬化・熱硬化併用型樹脂を用いて作製した、薄膜圧電共振子で形成した帯域通過フィルタの特性例を図7に示す。帯域通過フィルタ透過特性(S21)19、反射特性(S11)20、反射特性(S33)21の良好な状態が確認できる。
Example 1
The shrinkage ratio of the UV curable / thermosetting resin is 1 to 2%, compared with the shrinkage ratio of 4 to 8% of the conventional UV curable resin and 3 to 6% of the shrinkage ratio of the thermosetting resin. Is small, and the influence upon curing shrinkage on the thin film piezoelectric resonator is small. In this example, a thin film piezoelectric resonator ultrasonically flip-chip bonded to an LTCC substrate was used with a light source using a high-pressure mercury lamp having an illuminance of 150 mW / cm 2 and a dominant wavelength of 365 nm, and an integrated amount of ultraviolet light: 1800 mJ / 1 hour hardening treatment at 120 ° C. after cm 2 irradiation. FIG. 7 shows an example of characteristics of a band-pass filter made of a thin film piezoelectric resonator manufactured using this ultraviolet curing / thermosetting resin. It can be confirmed that the bandpass filter transmission characteristics (S 21 ) 19, reflection characteristics (S 11 ) 20, and reflection characteristics (S 33 ) 21 are in good condition.

(比較例1)
(紫外硬化型の例)
紫外線硬化型樹脂を用いて封止を行った薄膜圧電共振子で形成した帯域通過フィルタの特性例を図8に示す。紫外線硬化の条件は、前記と同様に実装した薄膜圧電共振子に紫外線硬化型樹脂を塗布し、照度:150mW/cm2、主波長:365nm、積算光量:3000mJ/cm2の紫外線を照射し硬化させた。樹脂の硬化収縮時の影響により、帯域通過フィルタの透過特性(S21)19が劣化している。
(Comparative Example 1)
(Example of UV curable type)
FIG. 8 shows a characteristic example of a band-pass filter formed of a thin film piezoelectric resonator that is sealed with an ultraviolet curable resin. The ultraviolet curing conditions were as follows: an ultraviolet curable resin was applied to the thin film piezoelectric resonator mounted in the same manner as described above, and cured by irradiating with ultraviolet rays having an illuminance of 150 mW / cm 2 , a dominant wavelength of 365 nm, and an integrated light amount of 3000 mJ / cm 2. I let you. The transmission characteristic (S 21 ) 19 of the band-pass filter is deteriorated due to the influence of the resin during curing shrinkage.

(比較例2)
(熱硬化型の例)
熱硬化型樹脂を用いて封止を行った薄膜圧電共振子で形成した帯域通過フィルタの特性例を図9に示す。熱硬化の条件は、前記と同様に実装した薄膜圧電共振子に熱硬化型樹脂を塗布し、150℃で30分硬化処理を行った。熱硬化樹脂の硬化収縮時の影響により、帯域通過フィルタの透過特性(S21)19が劣化している。
(Comparative Example 2)
(Example of thermosetting type)
FIG. 9 shows an example of characteristics of a band-pass filter formed of a thin film piezoelectric resonator that is sealed using a thermosetting resin. The thermosetting condition was that a thin film piezoelectric resonator mounted in the same manner as described above was coated with a thermosetting resin and cured at 150 ° C. for 30 minutes. The transmission characteristic (S 21 ) 19 of the band-pass filter is deteriorated due to the influence of the thermosetting resin upon curing shrinkage.

本発明における薄膜圧電共振子の封止構造を示す模式的断面図である。It is typical sectional drawing which shows the sealing structure of the thin film piezoelectric resonator in this invention. 薄膜圧電共振子の構造を示す模式的断面図である。It is typical sectional drawing which shows the structure of a thin film piezoelectric resonator. 本発明における他の基板構造による薄膜圧電共振子の封止構造を示す模式的断面図である。It is typical sectional drawing which shows the sealing structure of the thin film piezoelectric resonator by the other board | substrate structure in this invention. ダミーパッドを設けた実装基板のダミーパッド部模式的断面図である。It is typical dummy sectional drawing of the dummy pad part of the mounting board | substrate which provided the dummy pad. ダミーパッドを設けた薄膜圧電共振子の機能面側概略図である。It is the functional surface side schematic of the thin film piezoelectric resonator which provided the dummy pad. ダミーパッドを設けた実装基板の素子実装面側概略図である。It is the element mounting surface side schematic diagram of the mounting board | substrate which provided the dummy pad. 紫外線硬化・熱硬化併用型樹脂を用いた本発明の薄膜圧電共振子の特性図である。It is a characteristic view of the thin film piezoelectric resonator of the present invention using an ultraviolet curing / thermosetting combined resin. 従来の紫外線硬化型樹脂を用いた薄膜圧電共振子の特性図である。It is a characteristic view of the thin film piezoelectric resonator using the conventional ultraviolet curable resin. 従来の熱硬化型樹脂を用いた薄膜圧電共振子の特性図である。It is a characteristic view of the thin film piezoelectric resonator using the conventional thermosetting resin. 従来のSAWフィルタの封止構造を示す模式的断面図である。It is typical sectional drawing which shows the sealing structure of the conventional SAW filter. フリップチップ実装法におけるアンダーフィルによる素子下面封止構造を示す模式的断面図である。It is typical sectional drawing which shows the element lower surface sealing structure by the underfill in a flip chip mounting method.

符号の説明Explanation of symbols

1 実装基板
2 薄膜圧電共振子
3 金バンプ
4 素子側パッド
5 機能部
6 基板側パッド
7 紫外線硬化・熱硬化併用型樹脂
8 接地導体
9 モールド樹脂
10 基板段差部
11 素子側ダミーパッド
12 基板側ダミーパッド
13 上部電極
14 圧電薄膜
15 下部電極
16 絶縁層
17 シリコンウェハー
18 空間部
19 帯域通過フィルタ透過特性(S21
20 帯域通過フィルタ反射特性(S11
21 帯域通過フィルタ反射特性(S33
DESCRIPTION OF SYMBOLS 1 Mounting substrate 2 Thin film piezoelectric resonator 3 Gold bump 4 Element side pad 5 Functional part 6 Substrate side pad 7 Ultraviolet curing / thermosetting type resin 8 Grounding conductor 9 Mold resin 10 Substrate step part 11 Element side dummy pad 12 Substrate side dummy Pad 13 Upper electrode 14 Piezoelectric thin film 15 Lower electrode 16 Insulating layer 17 Silicon wafer 18 Space portion 19 Band pass filter transmission characteristic (S 21 )
20 Bandpass filter reflection characteristics (S 11 )
21 Bandpass filter reflection characteristics (S 33 )

Claims (11)

所定の配線を有する基板と、前記基板上に金バンプを介して、フリップチップボンディング法によって実装された薄膜圧電共振子と、前記薄膜圧電共振子の振動部を露出させるように前記基板と前記薄膜圧電共振子との間に充填され前記薄膜圧電共振子の側面の少なくとも一部を被覆する紫外線・熱併用硬化性樹脂層と、前記薄膜圧電共振子および前記樹脂層上を覆うモールド樹脂層と、を有する薄膜圧電共振子デバイス。   A substrate having predetermined wiring, a thin film piezoelectric resonator mounted on the substrate by a flip chip bonding method via a gold bump, and the substrate and the thin film so as to expose a vibrating portion of the thin film piezoelectric resonator An ultraviolet and heat combined curable resin layer that is filled between the piezoelectric resonators and covers at least a part of the side surface of the thin film piezoelectric resonator; a mold resin layer that covers the thin film piezoelectric resonator and the resin layer; A thin film piezoelectric resonator device comprising: 前記紫外線・熱併用硬化性樹脂層がポリイミド樹脂により形成されていることを特徴とする請求項1記載の薄膜圧電共振器子デバイス。   2. The thin film piezoelectric resonator device according to claim 1, wherein the ultraviolet / heat combined curable resin layer is formed of a polyimide resin. 前記紫外線・熱併用硬化性樹脂層がガラスフリットにより形成されていることを特徴とする請求項1記載の薄膜圧電共振器子デバイス。   2. The thin film piezoelectric resonator device according to claim 1, wherein the ultraviolet / heat combined curable resin layer is formed of glass frit. 前記基板は、前記薄膜圧電共振子の振動部に対向する部分に、窪みを有することを特徴とする請求項1記載の薄膜圧電共振器子デバイス。   The thin film piezoelectric resonator device according to claim 1, wherein the substrate has a depression in a portion facing the vibrating portion of the thin film piezoelectric resonator. 前記基板は、前記薄膜圧電共振子の振動部に対向しない領域でかつ導体を形成する領域に凸部が形成されていることを特徴とする請求項1記載の薄膜圧電共振器子デバイス。   2. The thin-film piezoelectric resonator device according to claim 1, wherein the substrate has a convex portion formed in a region that does not face the vibrating portion of the thin-film piezoelectric resonator and that forms a conductor. 薄膜圧電共振子の端子電極上に金バンプを形成する工程と、前記金バンプが前記基板の配線と接続されるように、フリップチップボンディング法により前記薄膜圧電共振子を前記基板上に実装する工程と、前記薄膜圧電共振子の振動部を露出させ、かつ、露出されている空間が密封空間となるように、前記薄膜圧電共振子の周辺に紫外線・熱併用硬化性樹脂を塗布する工程と、加熱するとともに紫外線を照射することにより前記紫外線・熱併用硬化性樹脂を硬化させる工程と、前記薄膜圧電共振子と硬化させた前記紫外線・熱併用硬化性樹脂を覆うモールド樹脂層を形成する工程と、を有する薄膜圧電共振子デバイスの製造方法。   Forming a gold bump on a terminal electrode of the thin film piezoelectric resonator, and mounting the thin film piezoelectric resonator on the substrate by a flip chip bonding method so that the gold bump is connected to the wiring of the substrate. And applying a UV / heat combination curable resin to the periphery of the thin film piezoelectric resonator so that the vibrating portion of the thin film piezoelectric resonator is exposed and the exposed space becomes a sealed space; A step of curing the ultraviolet / heat combination curable resin by heating and irradiating ultraviolet rays; and a step of forming a mold resin layer covering the thin film piezoelectric resonator and the cured ultraviolet / heat combination curable resin. A method for manufacturing a thin film piezoelectric resonator device. 前記実装する工程は、基板の電極部分と前記バンプの接合を加熱融着することを特徴とする請求項6記載の薄膜圧電共振子デバイスの製造方法。   7. The method of manufacturing a thin film piezoelectric resonator device according to claim 6, wherein in the mounting step, the bonding between the electrode portion of the substrate and the bump is heated and fused. 前記実装する工程は、接合を促進するために前記バンプに超音波を印加することを特徴とする請求項6記載の薄膜圧電共振子デバイスの製造方法。   The method of manufacturing a thin film piezoelectric resonator device according to claim 6, wherein in the mounting step, ultrasonic waves are applied to the bumps to promote bonding. 前記封止樹脂層を形成する工程は、トランスファモールド法により封止樹脂層を形成することを特徴とする請求項6記載の薄膜圧電共振子デバイスの製造方法。   7. The method of manufacturing a thin film piezoelectric resonator device according to claim 6, wherein the step of forming the sealing resin layer forms the sealing resin layer by a transfer mold method. 前記紫外線・熱併用硬化性樹脂層は、ポリイミド樹脂により形成されることを特徴とする請求項6記載の薄膜圧電共振子デバイスの製造方法。   7. The method of manufacturing a thin film piezoelectric resonator device according to claim 6, wherein the ultraviolet / heat combined curable resin layer is formed of a polyimide resin. 前記紫外線・熱併用硬化性樹脂層は、ガラスフリットにより形成されることを特徴とする請求項6記載の薄膜圧電共振子デバイスの製造方法。   7. The method of manufacturing a thin film piezoelectric resonator device according to claim 6, wherein the ultraviolet / heat combined curable resin layer is formed of glass frit.
JP2005293232A 2005-10-06 2005-10-06 Thin-film piezo-resonator device and its manufacturing method Pending JP2007104458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005293232A JP2007104458A (en) 2005-10-06 2005-10-06 Thin-film piezo-resonator device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005293232A JP2007104458A (en) 2005-10-06 2005-10-06 Thin-film piezo-resonator device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007104458A true JP2007104458A (en) 2007-04-19

Family

ID=38030930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005293232A Pending JP2007104458A (en) 2005-10-06 2005-10-06 Thin-film piezo-resonator device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007104458A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8081049B2 (en) 2008-03-18 2011-12-20 Sony Corporation Band-pass filter device, method of manufacturing same, television tuner, and television receiver
JP2012182361A (en) * 2011-03-02 2012-09-20 Dainippon Printing Co Ltd Electronic component and manufacturing method of the same
CN112697262A (en) * 2020-12-08 2021-04-23 联合微电子中心有限责任公司 Hydrophone and method for manufacturing same
WO2021172588A1 (en) * 2020-02-28 2021-09-02 太陽誘電株式会社 Sensor device and method for manufacturing same
CN116722838A (en) * 2023-06-29 2023-09-08 北京超材信息科技有限公司 Surface acoustic wave filter, surface acoustic wave filter set, multiplexer and radio frequency module

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09260426A (en) * 1996-03-19 1997-10-03 Sony Corp Mounting board, mounting method and semiconductor device
JPH11150440A (en) * 1997-11-14 1999-06-02 Nec Corp Resin encapsulated structure for flip chip mount type surface acoustic wave element
JPH11147285A (en) * 1997-09-11 1999-06-02 Sumitomo Bakelite Co Ltd Production of copper-clad laminated sheet
JP2002290193A (en) * 2001-03-26 2002-10-04 Seiko Epson Corp Surface acoustic wave device and manufacturing method therefor
JP2003037474A (en) * 2001-07-24 2003-02-07 Toshiba Corp Surface acoustic wave device and manufacturing method therefor
JP2003297982A (en) * 2002-04-01 2003-10-17 Nec Compound Semiconductor Devices Ltd High frequency electronic device and its producing method
JP2004064732A (en) * 2002-06-03 2004-02-26 Murata Mfg Co Ltd Surface acoustic wave device
JP2004080221A (en) * 2002-08-13 2004-03-11 Fujitsu Media Device Kk Elastic wave device and its manufacturing method
JP2004104087A (en) * 2002-07-18 2004-04-02 Murata Mfg Co Ltd Method for manufacturing electronic device
JP2005014321A (en) * 2003-06-24 2005-01-20 Kyocera Corp Optical printer head
JP2005110017A (en) * 2003-09-30 2005-04-21 Toshiba Corp High frequency filter module and its manufacturing method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09260426A (en) * 1996-03-19 1997-10-03 Sony Corp Mounting board, mounting method and semiconductor device
JPH11147285A (en) * 1997-09-11 1999-06-02 Sumitomo Bakelite Co Ltd Production of copper-clad laminated sheet
JPH11150440A (en) * 1997-11-14 1999-06-02 Nec Corp Resin encapsulated structure for flip chip mount type surface acoustic wave element
JP2002290193A (en) * 2001-03-26 2002-10-04 Seiko Epson Corp Surface acoustic wave device and manufacturing method therefor
JP2003037474A (en) * 2001-07-24 2003-02-07 Toshiba Corp Surface acoustic wave device and manufacturing method therefor
JP2003297982A (en) * 2002-04-01 2003-10-17 Nec Compound Semiconductor Devices Ltd High frequency electronic device and its producing method
JP2004064732A (en) * 2002-06-03 2004-02-26 Murata Mfg Co Ltd Surface acoustic wave device
JP2004104087A (en) * 2002-07-18 2004-04-02 Murata Mfg Co Ltd Method for manufacturing electronic device
JP2004080221A (en) * 2002-08-13 2004-03-11 Fujitsu Media Device Kk Elastic wave device and its manufacturing method
JP2005014321A (en) * 2003-06-24 2005-01-20 Kyocera Corp Optical printer head
JP2005110017A (en) * 2003-09-30 2005-04-21 Toshiba Corp High frequency filter module and its manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8081049B2 (en) 2008-03-18 2011-12-20 Sony Corporation Band-pass filter device, method of manufacturing same, television tuner, and television receiver
JP2012182361A (en) * 2011-03-02 2012-09-20 Dainippon Printing Co Ltd Electronic component and manufacturing method of the same
WO2021172588A1 (en) * 2020-02-28 2021-09-02 太陽誘電株式会社 Sensor device and method for manufacturing same
CN112697262A (en) * 2020-12-08 2021-04-23 联合微电子中心有限责任公司 Hydrophone and method for manufacturing same
CN116722838A (en) * 2023-06-29 2023-09-08 北京超材信息科技有限公司 Surface acoustic wave filter, surface acoustic wave filter set, multiplexer and radio frequency module

Similar Documents

Publication Publication Date Title
US7486160B2 (en) Electronic component and manufacturing method thereof
JP3123477B2 (en) Mounting structure and mounting method of surface acoustic wave device
JP3825475B2 (en) Manufacturing method of electronic parts
US6710682B2 (en) Surface acoustic wave device, method for producing the same, and circuit module using the same
JP2007059470A (en) Semiconductor device and its manufacturing method
CN107342747B (en) Surface acoustic wave device wafer-level thin packaging structure and manufacturing method thereof
JP2002261582A (en) Surface acoustic wave device, its manufacturing method, and circuit module using the same
KR101016531B1 (en) Printed circuit board and fabrication method thereof
JPH1155066A (en) Surface elastic wave device and its producing method
JP2003298389A (en) Mounting method of surface acoustic wave element and surface acoustic wave device having surface acoustic wave element which is sealed with resin
JPH10270975A (en) Electronic part and its manufacture
JP2010136143A (en) Electronic component module
JP2007104458A (en) Thin-film piezo-resonator device and its manufacturing method
JP2014099781A (en) Piezoelectric component
JP4657914B2 (en) Semiconductor device and manufacturing method thereof
JP2003297982A (en) High frequency electronic device and its producing method
JP2004147220A (en) Structure of saw (surface acoustic wave) chip, its manufacturing method, surface-mounted saw device and its manufacturing method
JP2004153412A (en) Surface acoustic wave device and manufacturing method thereof
JP7426196B2 (en) Acoustic wave devices and their manufacturing methods, filters and multiplexers
JP2004253937A (en) Surface acoustic wave filter and its manufacturing method
JP2007027211A (en) Electronic component and its manufacturing method
KR100843419B1 (en) Semiconductor chip package and manufacturing the same
JP2004207674A (en) Method for producing electronic component
KR101392748B1 (en) Surface acoustic wave device and method of manufacturing the same
JP2002184884A (en) Electronic device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110322