JP2007103511A - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP2007103511A
JP2007103511A JP2005289132A JP2005289132A JP2007103511A JP 2007103511 A JP2007103511 A JP 2007103511A JP 2005289132 A JP2005289132 A JP 2005289132A JP 2005289132 A JP2005289132 A JP 2005289132A JP 2007103511 A JP2007103511 A JP 2007103511A
Authority
JP
Japan
Prior art keywords
light
light emitting
wavelength
emitting device
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005289132A
Other languages
Japanese (ja)
Inventor
Toshiaki Shigeoka
俊昭 重岡
Masato Fukutome
正人 福留
Akira Imoto
晃 井本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2005289132A priority Critical patent/JP2007103511A/en
Publication of JP2007103511A publication Critical patent/JP2007103511A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Landscapes

  • Led Devices (AREA)
  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light emitting device capable of adjusting a ratio of visible light of wavelengths of 400 to 760 nm and middle and near ultraviolet rays of wavelengths of 290 to 380 nm, and of outputting light near solar light in a light emitting device using a light emitting element such as an LED chip. <P>SOLUTION: The light emitting device comprises the light emitting element 3 for generating light including middle and near ultraviolet rays of wavelengths of 290 to 380 nm; and a wavelength converter 4 for converting at least part of light emitted from the light emitting element 3 to visible light of wavelengths of 400 to 760 nm. The wavelength converter 4 contains phosphors of the average particle diameter in a range of 0.5 to 70 nm. Besides the visible light of the wavelengths of 400 to 760 nm converted by the wavelength converter 4, there is emitted light involving the middle and near ultraviolet rays of the wavelengths of 290 to 380 nm emitted by the light emitting element 3. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えばLED発光装置などの発光装置に関する。   The present invention relates to a light emitting device such as an LED light emitting device.

室内照明装置には、従来より電力的に高効率であること、装置が安価であること、十分な演色性を持つ光を発することが要求されている。演色性が高い光とはある物体にその光を当てたときに人間が感じる色合いが、自然光(太陽光)をその物体に当てたときに人間が感じる色合いをよりよく再現できる光のことである。これらの要求に答えるため、一般の照明には、現在蛍光灯が最も多く使用されている。   The indoor lighting device is required to have higher power efficiency, lower cost, and emit light with sufficient color rendering. Light with high color rendering properties means light that can be reproduced better by the color that a person feels when the light is applied to an object and when the natural light (sunlight) is applied to the object. . In order to meet these requirements, fluorescent lamps are currently most commonly used for general lighting.

一方、現在、半導体材料からなる発光素子(以下LEDチップということがある)を利用した発光装置(LED発光装置)が、液晶などのバックライト光源として利用されている。LED発光装置には、電力的に高効率である、製品寿命が長い、オン・オフ点灯の繰り返しに強いといった優れた特徴がある。このため、将来、このLED発光装置を照明に利用できるように、装置の価格や発光する光の色合いを改良する開発が盛んにすすめられている。   On the other hand, currently, a light emitting device (LED light emitting device) using a light emitting element (hereinafter sometimes referred to as an LED chip) made of a semiconductor material is used as a backlight light source such as a liquid crystal. The LED light emitting device has excellent characteristics such as high power efficiency, long product life, and resistance to repeated on / off lighting. For this reason, the development which improves the price of an apparatus and the hue of the light to light-emit so that this LED light-emitting device can be utilized for illumination in the future is actively promoted.

例えば、青色のLEDチップと、青色の光を黄色の光に変換する蛍光体とを組み合わせれば、LEDチップが発生した青色の光の一部を蛍光体で黄色に変換して、蛍光体で変換されない青色光の残りを混合することができる。そのような混合によって得られる白色光を放出する白色LED発光装置が製品化されており、簡易照明、懐中電灯などに応用されつつある。   For example, if a blue LED chip and a phosphor that converts blue light into yellow light are combined, a part of the blue light generated by the LED chip is converted to yellow with the phosphor, The remainder of the unconverted blue light can be mixed. White LED light emitting devices that emit white light obtained by such mixing have been commercialized and are being applied to simple lighting, flashlights, and the like.

しかし、これらの白色LED発光装置が発する光の色は白色であるものの、この白色光には青色及び黄色の2色の光しか含まれていない。このため、この発光装置が発する光は演色性が低く、この光が緑色や赤色の物体で反射した光は、天然の白色光(太陽光)がこれらの物体で反射した光の色から大きくずれ、室内照明などに使用すると物体の色を正しく知覚することができないといった問題がある。   However, although the color of light emitted from these white LED light emitting devices is white, this white light includes only blue and yellow light. For this reason, the light emitted by this light-emitting device has low color rendering properties, and the light reflected by a green or red object greatly deviates from the color of the light that natural white light (sunlight) reflects from these objects. When used for indoor lighting, there is a problem that the color of an object cannot be perceived correctly.

この問題を解決するため、下記特許文献1または特許文献2に記載されているように、近年、紫外LEDチップ(400nm以下)上にこのLEDチップの発する紫外線から赤色、緑色、青色の3種類の光を発する蛍光体を配置した物体の色を正しく反映できる白色光、つまり演色性の高い白色光を発する白色LED発光装置が開発され、白色LED発光装置が室内照明などの照明用光源へ応用される下地が整いつつある。   In order to solve this problem, as described in the following Patent Document 1 or Patent Document 2, three types of red, green, and blue from ultraviolet rays emitted by this LED chip on an ultraviolet LED chip (400 nm or less) have recently been developed. A white LED light emitting device that emits white light that can correctly reflect the color of an object with a phosphor emitting light, that is, a white light emitting device that emits white light with high color rendering properties, has been developed, and the white LED light emitting device has been applied to lighting sources such as indoor lighting. The groundwork is getting ready.

ところで、近年の室内照明には、前述の電力的に高効率であること、装置が安価であること、十分な演色性を持つ光を発することの他に、中近紫外線(波長290〜380nm)を含むことが求められつつある。この理由は、次のようなものである。   By the way, in recent interior lighting, in addition to the above-mentioned high power efficiency, low cost of the apparatus, and emission of light having sufficient color rendering properties, mid-ultraviolet rays (wavelength of 290 to 380 nm) Is being sought. The reason for this is as follows.

太陽光には、波長400〜760nmの可視光と波長290〜380nmの中近紫外線とが90対10の割合という割合で含まれている。この中近紫外線には、動植物の細胞の活動を活発にし、また動物が必要なビタミンDを作り出す働きを助けるといった効果がある。このため、動植物が健康を維持するために、中近紫外線を必要量受光することは、必要不可欠である。しかし、今日の社会の高齢化に伴い、足腰が悪いなどで外出が負担となる老人が増えてきている。これらの方にとっては、外出せず室内にいながらにして中近紫外線を発する室内照明から中近紫外線を受光できることは、健康を維持する上で有効な手段となる。   The sunlight contains visible light having a wavelength of 400 to 760 nm and mid-ultraviolet light having a wavelength of 290 to 380 nm in a ratio of 90 to 10. This mid- and near-ultraviolet rays have the effect of activating the activity of animal and plant cells and helping animals produce the necessary vitamin D. For this reason, in order for animals and plants to maintain health, it is indispensable to receive a necessary amount of mid-ultraviolet rays. However, with the aging of today's society, the number of elderly people who have to go out due to poor footing is increasing. For these people, being able to receive near-ultraviolet rays from room lighting that emits near-ultraviolet rays while staying indoors without going out is an effective means for maintaining health.

また、現代社会においては、ビル内や地下街などの太陽光の当たらない生活空間が増えてきており、これらの場所において照明装置から中近紫外線を含む光を照射させることは、人間のためのみならず観葉植物を長持ちさせるためにも有効である。今日、マンションやアパートなどの室内でペットが飼育されるケースが増えている。この場合、ペットは、本来の屋外で飼われる場合に比べて、中近紫外線の受光量が減るため不健康となりがちである。このため、これらの場所において照明装置から中近紫外線を含む光を照射させることは、人間のためのみならず、ペットの健康を維持するためにも有効である。   Also, in modern society, living spaces that are not exposed to sunlight, such as buildings and underground malls, are increasing, and it is only for human beings to irradiate light containing mid-ultraviolet rays from lighting devices in these places. It is also effective for long-lasting foliage plants. Today, there are an increasing number of cases where pets are raised indoors in apartments and apartments. In this case, pets tend to be unhealthy because the amount of received near-ultraviolet rays is reduced compared to the case where they are kept outdoors. For this reason, irradiating light including mid-ultraviolet rays from the lighting device in these places is effective not only for human beings but also for maintaining the health of pets.

そこで、例えば蛍光灯では、放出される中近紫外線および可視光線の割合が太陽光に近くなるように設計されている「トゥルーライト」と呼ばれる名前で販売されているものがある。   Thus, for example, some fluorescent lamps are sold under the name “true light”, which is designed so that the ratio of emitted mid-ultraviolet rays and visible rays is close to that of sunlight.

しかしながら、一般に中近紫外線と蛍光体とを組み合わせたLED照明装置においては、波長変換器より中近紫外線がもれ出ると、この中近紫外線によりLED照明装置に設置される樹脂製の部品、例えば保護カバーなどが劣化を起こすため、中近紫外線は抑えることが望ましいとされている。例えば、中近紫外線を発生する発光素子と蛍光体とを組み合わせたLED照明装置に関する下記特許文献1および2では、発光素子が発生する中近紫外線は波長変換器から漏れでないことが望ましいと記述されている。このうち、下記特許文献1では、波長400〜760nmの可視光の効率を上げるための手法が取られており、中近紫外線(波長290〜380nm)は完全に可視光に変換されている。また、下記特許文献2では、蛍光層の各材質及び量を最適化しまたは紫外線吸収体剤を封止体に添加することにより、半導体発光素子からの近紫外光を十分吸収するのがよいと記載されている。つまり、LED照明装置において、中近紫外線を意図的にLED照明装置より放出して、有効に利用するようなものはない。   However, in general, in an LED illumination device that combines a mid-ultraviolet ray and a phosphor, when the mid-ultraviolet ray leaks from the wavelength converter, a resin component that is installed in the LED illumination device by the mid-ultraviolet ray, for example, Since protective covers and the like are deteriorated, it is desirable to suppress mid-ultraviolet rays. For example, the following Patent Documents 1 and 2 relating to an LED lighting device that combines a light emitting element that generates mid-ultraviolet light and a phosphor describe that it is desirable that the mid-ultraviolet light generated by the light-emitting element should not leak from the wavelength converter. ing. Among these, in Patent Document 1 below, a technique for increasing the efficiency of visible light having a wavelength of 400 to 760 nm is taken, and mid-ultraviolet rays (wavelength of 290 to 380 nm) are completely converted to visible light. Moreover, in the following patent document 2, it is described that the near-ultraviolet light from the semiconductor light-emitting element should be sufficiently absorbed by optimizing each material and amount of the fluorescent layer or adding an ultraviolet absorber to the sealing body. Has been. In other words, there is no LED illumination device that effectively uses near-ultraviolet rays by intentionally releasing it from the LED illumination device.

特開2003−298116号公報JP 2003-298116 A 特開2002−76445号公報JP 2002-76445 A

本発明の課題は、LEDチップなどの発光素子を用いた発光装置において、波長400〜760nmの可視光と波長290〜380nmの中近紫外線との割合を調整でき、太陽光に近い光を出力することが可能な発光装置を提供することにある。   An object of the present invention is to adjust the ratio of visible light having a wavelength of 400 to 760 nm and near ultraviolet light having a wavelength of 290 to 380 nm in a light emitting device using a light emitting element such as an LED chip, and outputs light close to sunlight. An object of the present invention is to provide a light emitting device capable of performing the above.

本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、特定の発光素子と、発光素子が発する光を可視光に変換する波長変換器とによって、可視光および中近紫外線の割合を調整して、太陽光に近い光を出力することができることを見出して、本発明を完成させるに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the ratio of visible light and mid-ultraviolet rays is determined by a specific light-emitting element and a wavelength converter that converts light emitted from the light-emitting element into visible light. As a result, it was found that light close to sunlight could be output, and the present invention was completed.

すなわち、本発明における発光装置は、以下の構成からなる。
(1) 少なくとも波長290〜380nmの中近紫外線を含む光を発生する発光素子と、前記発光素子が発する光のうち少なくとも一部の光を、波長400〜760nmの可視光に変換する波長変換器とを備え、前記波長変換器は平均粒子径0.5〜70nmの蛍光体を含有しており、前記波長変換器が変換した波長400〜760nmの可視光に加えて、前記発光素子が発生する波長290〜380nmの中近紫外線を含む光を出力することを特徴とする発光装置。
(2) 前記発光装置から出力される光における波長400〜760nmの可視光と波長290〜380nmの中近紫外線との割合が、可視光85〜99%に対して中近紫外線1〜15%であることを特徴とする(1)に記載の発光装置。
(3) 前記波長変換器は、前記蛍光体を0.5〜20質量%含有していることを特徴とする(1)または(2)に記載の発光装置。
(4) 前記発光素子の発する励起光のピーク波長が380〜410nmであることを特徴とする(1)〜(3)のいずれかに記載の発光装置。
(5) 前記波長変換器は透明な固体マトリクス中に前記蛍光体を分散させており、前記固体マトリクスは、ポリエチレン、ポリイソプロピレンおよびシリコーン樹脂からなる群より選ばれる少なくとも1つの樹脂からなることを特徴とする(1)〜(4)のいずれかに記載の発光装置。
That is, the light emitting device according to the present invention has the following configuration.
(1) A light emitting element that generates light including at least ultraviolet light having a wavelength of 290 to 380 nm, and a wavelength converter that converts at least part of light emitted from the light emitting element into visible light having a wavelength of 400 to 760 nm. The wavelength converter contains a phosphor having an average particle diameter of 0.5 to 70 nm, and the light emitting element is generated in addition to visible light having a wavelength of 400 to 760 nm converted by the wavelength converter. A light-emitting device that outputs light including near-ultraviolet rays having a wavelength of 290 to 380 nm.
(2) The ratio of visible light having a wavelength of 400 to 760 nm and near ultraviolet light having a wavelength of 290 to 380 nm in the light output from the light emitting device is 1 to 15% of the middle ultraviolet light with respect to 85 to 99% of visible light. (1) The light-emitting device according to (1).
(3) The light emitting device according to (1) or (2), wherein the wavelength converter contains 0.5 to 20% by mass of the phosphor.
(4) The light emitting device according to any one of (1) to (3), wherein a peak wavelength of excitation light emitted from the light emitting element is 380 to 410 nm.
(5) The wavelength converter has the phosphor dispersed in a transparent solid matrix, and the solid matrix is made of at least one resin selected from the group consisting of polyethylene, polyisopropylene and silicone resin. The light emitting device according to any one of (1) to (4).

上記(1)および(2)によれば、少なくとも波長290〜380nmの中近紫外線を含む光を発生する発光素子と、前記発光素子が発する光のうち少なくとも一部の光を可視光(波長400〜760nm)に変換する波長変換器とを備え、出力光として、波長290〜380nmの中近紫外線と波長400〜760nmの可視光との両者を含む光を出力する。さらに、波長変換器は、平均粒子径0.5〜70nmの蛍光体を含有している。蛍光体の平均粒子径を0.5〜70nmとすると、蛍光体のサイズが中近紫外線波長の4分の1以下となるため、中近紫外線が蛍光体によって散乱されることがない。その結果、発光素子が発生する中近紫外線のうち、蛍光体によって可視光に変換される量と、蛍光体により変換されずに放出される中近紫外線の量とが安定した発光装置を製造することができ、上記可視光と上記中近紫外線との割合を調整して、太陽光に近い光を出力することができる。   According to the above (1) and (2), at least a part of the light emitted from the light emitting element that generates light including at least ultraviolet light having a wavelength of 290 to 380 nm and visible light (wavelength 400) is generated. And a wavelength converter for converting to 760 nm), and outputs, as output light, light including both near-ultraviolet rays having a wavelength of 290 to 380 nm and visible light having a wavelength of 400 to 760 nm. Furthermore, the wavelength converter contains a phosphor having an average particle diameter of 0.5 to 70 nm. When the average particle diameter of the phosphor is 0.5 to 70 nm, the size of the phosphor is not more than a quarter of the mid-ultraviolet wavelength, so that the mid-ultraviolet is not scattered by the phosphor. As a result, a light-emitting device in which the amount of near-ultraviolet rays generated by the light-emitting element is converted into visible light by the phosphor and the amount of mid-ultraviolet rays emitted without being converted by the phosphor is manufactured. It is possible to output light close to sunlight by adjusting the ratio between the visible light and the mid-ultraviolet light.

このように発光素子で中近紫外線を含む光を発生し、この発光素子から得られる光の一部を波長変換器により変換して白色の可視光にする方法をとることによって、小型で安価の白色の可視光と中近紫外線の混合した光を発生する発光装置を作ることができる。その結果、太陽光を浴びなくとも、室内にいながらにして人間、観葉植物、ペットに必要な中近紫外線を受光することができる。なお、発光素子が発する光は波長290〜380nmの中近紫外線を含めば良く、波長290〜380nmに必ずしもその光の強度のピークを持つ必要は無い。   In this way, the light emitting element generates light including mid-ultraviolet rays, and a part of the light obtained from the light emitting element is converted by a wavelength converter to form white visible light. A light emitting device that generates light in which white visible light and mid-ultraviolet light are mixed can be manufactured. As a result, it is possible to receive near-ultraviolet rays necessary for humans, foliage plants, and pets while staying indoors without being exposed to sunlight. Note that light emitted from the light emitting element may include mid-ultraviolet rays having a wavelength of 290 to 380 nm, and the light intensity does not necessarily have a peak at the wavelength of 290 to 380 nm.

上記(3)によれば、蛍光体の濃度を0.5質量%以上とすることによって、波長変換器の厚みを薄くすることができる。また、蛍光体の濃度を20質量%以下とすることで波長変換器の機械的強度が低下するのを防ぐことができる。   According to said (3), the thickness of a wavelength converter can be made thin by making the density | concentration of a fluorescent substance 0.5 mass% or more. Moreover, it can prevent that the mechanical strength of a wavelength converter falls by the density | concentration of a fluorescent substance being 20 mass% or less.

上記(4)によれば、励起光のピーク波長を380〜410nmとすることによって、半導体材料からなる発光層を備えた出力の高い発光素子を使用することができる。その結果、高出力の可視光および中近紫外線を発生する発光装置が得られる。   According to (4) above, by setting the peak wavelength of the excitation light to 380 to 410 nm, it is possible to use a light emitting element having a high output provided with a light emitting layer made of a semiconductor material. As a result, a light emitting device that generates high-output visible light and mid-ultraviolet rays can be obtained.

上記(5)によれば、固体マトリクスが、ポリエチレン、ポリイソプロピレンおよびシリコーン樹脂からなる群より選ばれる少なくとも1つの樹脂からなるため、固体マトリクスが中近紫外線を吸収することがなく、蛍光体で変換されない中近紫外線を有効に発光装置より出力することができる。   According to the above (5), since the solid matrix is made of at least one resin selected from the group consisting of polyethylene, polyisopropylene and silicone resin, the solid matrix does not absorb near-ultraviolet rays, and is a phosphor. Unconverted mid-ultraviolet rays can be effectively output from the light emitting device.

本発明の発光装置について、図を用いて以下説明する。図1は、本発明の発光装置の一実施態様を示す概略断面図である。図1によれば、発光装置は、電極1が形成された基板2上に、少なくとも波長290〜380nmの中近紫外線を含む光を発生する発光素子3と、発光素子3を覆うように設けられた樹脂42および蛍光体41のコンポジットからなる波長変換器4とを備えている。また、発光装置では、必要に応じて、図1に示す保護層5を備えてもよい。図1の保護層5はガラスからなるが、ガラス以外の他の素材で構成してもよい。   The light-emitting device of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing an embodiment of the light emitting device of the present invention. According to FIG. 1, the light emitting device is provided on the substrate 2 on which the electrode 1 is formed so as to cover the light emitting element 3 that generates light including at least ultraviolet light having a wavelength of 290 to 380 nm, and the light emitting element 3. And a wavelength converter 4 made of a composite of the resin 42 and the phosphor 41. Moreover, in the light-emitting device, you may provide the protective layer 5 shown in FIG. 1 as needed. The protective layer 5 in FIG. 1 is made of glass, but may be made of a material other than glass.

本発明の発光装置は、波長変換器4により変換された可視光に加えて、発光素子3が発生した波長290〜380nmの中近紫外線を含む光を出力する。このとき、出力される可視光と中近紫外線との割合は、可視光85〜99%に対して中近紫外線1〜15%とする。なお、中近紫外線の割合の下限値は5%以上、好ましくは8%以上とするのがよく、中近紫外線の割合の上限値は11%以下、好ましくは13%以下とするのがよい。このような割合がよいのは、まず、中近紫外線の量が1%以下では、中近紫外線を照射することにより得られる動植物が活性化させるという効果が小さくなるためである。次に、中近紫外線の量が15%以上になると、中近紫外線が可視光に変換されずに必要以上出力されるため、出力される可視光線が減り、部屋を明るく保つために多くの発光装置を設置する必要があり、かつ多くの電力を使用することとなるためである。   In addition to the visible light converted by the wavelength converter 4, the light emitting device of the present invention outputs light including near-ultraviolet rays having a wavelength of 290 to 380 nm generated by the light emitting element 3. At this time, the ratio of the output visible light and the near-ultraviolet ray is 1 to 15% for the near-ultraviolet ray with respect to 85 to 99% for the visible light. Note that the lower limit value of the ratio of mid-ultraviolet rays is 5% or more, preferably 8% or more, and the upper limit value of the ratio of mid-ultraviolet rays is 11% or less, preferably 13% or less. The reason why such a ratio is good is that, when the amount of mid- and near-ultraviolet rays is 1% or less, the effect of activating the animals and plants obtained by irradiating the mid- and near-ultraviolet rays is reduced. Next, when the amount of mid-ultraviolet rays exceeds 15%, the mid-ultraviolet rays are output more than necessary without being converted into visible light, so that the amount of visible light that is output is reduced and a large amount of light is emitted to keep the room bright. This is because it is necessary to install a device and use a lot of electric power.

ここで、可視光および中近紫外線の量の割合は、次のようにして求めることができる。まず、波長290から760nmまでの各波長について、発光装置から出力される光の強度を測定する。次に、測定結果について、波長290〜380nmと波長400〜760nmとでそれぞれ積分して、それぞれを波長290〜380nmの中近紫外線の量、および波長400〜760nmの可視光の量とすることによって、可視光および中近紫外線の量の割合を求めることができる。このような測定および積分は、例えばlabsphere社製の全光束測定システムSLMS-1011を用いて行うことができる。   Here, the ratio of the amount of visible light and near-infrared rays can be determined as follows. First, the intensity of light output from the light emitting device is measured for each wavelength from 290 to 760 nm. Next, by integrating each of the measurement results at a wavelength of 290 to 380 nm and a wavelength of 400 to 760 nm, respectively, and setting each of them as an amount of near-ultraviolet rays of a wavelength of 290 to 380 nm and an amount of visible light of a wavelength of 400 to 760 nm. The ratio of the amount of visible light and mid-ultraviolet rays can be determined. Such measurement and integration can be performed using, for example, a total luminous flux measurement system SLMS-1011 manufactured by labsphere.

(電極)
電極1は、発光素子3を電気的に接続するための導電路としての機能を有し、導電性接合材で発光素子3と接続されている。電極1としては、例えば金属粉末を含むメタライズ層などを用いることができる。具体的には、W,Mo,Cu,Ag等の金属粉末のメタライズ層を用いることが好ましい。
(electrode)
The electrode 1 has a function as a conductive path for electrically connecting the light emitting element 3 and is connected to the light emitting element 3 with a conductive bonding material. As the electrode 1, for example, a metallized layer containing metal powder can be used. Specifically, it is preferable to use a metallized layer of a metal powder such as W, Mo, Cu, or Ag.

(基板)
図1の発光装置では、セラミック製の基板2を用いている。基板2としては、例えばアルミナ、窒素アルミニウム等のセラミック材料の他に、金属酸化物微粒子を分散させた高分子樹脂などを用いてもよい。図1に示すように、基板2には凹部が設けられており、その凹部に発光素子3が設けられている。
(substrate)
In the light emitting device of FIG. 1, a ceramic substrate 2 is used. As the substrate 2, for example, a polymer resin in which metal oxide fine particles are dispersed may be used in addition to a ceramic material such as alumina or aluminum nitride. As shown in FIG. 1, the substrate 2 is provided with a recess, and the light emitting element 3 is provided in the recess.

(発光素子)
発光素子3は、高い外部量子効率の点で、半導体材料からなる発光層を備えることが好ましい。このような半導体材料としては、少なくとも波長290〜380nmの中近紫外線を含む光を発する発光素子3を構成することができる半導体材料であれば、種類は特に限定されないが、例えばZnSeや窒化物半導体などの種々の半導体が挙げられる。
(Light emitting element)
The light emitting element 3 preferably includes a light emitting layer made of a semiconductor material in terms of high external quantum efficiency. The semiconductor material is not particularly limited as long as it is a semiconductor material that can form the light-emitting element 3 that emits light including mid-ultraviolet rays having a wavelength of 290 to 380 nm. For example, ZnSe or nitride semiconductor And various semiconductors.

本発明の発光装置では、発光素子3が発する励起光のピーク波長が380〜410nmであることが望ましい。この範囲の光を発生する発光素子3の材料としては、例えばGaNが挙げられる。GaNからなる発光層を使用する場合、発光層を設置する発光素子基板は、サファイア、スピネル、SiC、Si、ZnO、ZrB2、GaNおよび石英等の材料が好適に用いられる。GaN発光層の形成法は例えば、有機金属気相成長法(MOCVD法)や分子線エピタシャル成長法などの結晶成長法により、サファイアなどの発光素子基板上に発光層として形成することができる。 In the light emitting device of the present invention, it is desirable that the peak wavelength of the excitation light emitted from the light emitting element 3 is 380 to 410 nm. An example of the material of the light emitting element 3 that generates light in this range is GaN. When a light emitting layer made of GaN is used, materials such as sapphire, spinel, SiC, Si, ZnO, ZrB 2 , GaN, and quartz are preferably used for the light emitting element substrate on which the light emitting layer is installed. The GaN light emitting layer can be formed as a light emitting layer on a light emitting element substrate such as sapphire by a crystal growth method such as metal organic chemical vapor deposition (MOCVD method) or molecular beam epitaxial growth.

(蛍光体)
蛍光体としては、化合物半導体からなる蛍光体を用いることが好ましい。ここでいう化合物半導体は、特に限定されないが、例えば、周期律表第I−b族、第II族(ただし、Be、Hg、Raを除く)、第III族(ただし、Tl、Ac系列元素を除く)、第IV族(ただし、Pb、Hfを除く)、第V族(ただし、AsとPa系列を除く)、第VI族(ただし、Uを除く)に属する少なくとも2種類以上の元素からなる化合物が挙げられる。具体的には、BN、BP、BAs、AlN、AlP、AlSb、GaN、GaP、GaSb、InN、InP、InSb等のIII−V族化合物半導体、ZnO、ZnS等のII−VI族化合物半導体、CuInS2、CuGaS2、CuAlS2、Cu(In1-xAlx)S2(xは0≦x≦1で示される値)、CuInS2、Cu(In1-xGax)S2(xは0≦x≦1で示される値)などが好適に用いられる。
(Phosphor)
As the phosphor, it is preferable to use a phosphor made of a compound semiconductor. Although the compound semiconductor here is not particularly limited, for example, Group Ib of the periodic table, Group II (excluding Be, Hg, Ra), Group III (however, Tl, Ac series elements are used) Excluding), Group IV (excluding Pb and Hf), Group V (excluding As and Pa series), and Group VI (excluding U) Compounds. Specifically, III-V group compound semiconductors such as BN, BP, BAs, AlN, AlP, AlSb, GaN, GaP, GaSb, InN, InP, and InSb, II-VI group compound semiconductors such as ZnO and ZnS, CuInS 2 , CuGaS 2 , CuAlS 2 , Cu (In 1-x Al x ) S 2 (x is a value represented by 0 ≦ x ≦ 1), CuInS 2 , Cu (In 1-x Ga x ) S 2 (x is The value represented by 0 ≦ x ≦ 1) is preferably used.

(波長変換器)
波長変換器4は、発光素子3から発せられる光の一部を吸収して、可視光(波長400〜760nm)に変換して出力する。本発明の発光装置は、図1に示す波長変換器4を図2のごとく発光素子を覆うように蛍光体ペーストを塗布して蛍光体層を設置した後、この上部に樹脂などの充填剤を充填し、さらにこの上に保護層を形成すること、あるいは図3に示すように蛍光体をインキ状にして基板2の凹部および発光素子部3に拭き付け塗布し、その上に樹脂コートすることも考えられるが、図1に示すように、透明な固体マトリクス42中に蛍光体41が分散されてなるコンポジットを波長変換器4とすることが好ましい。また、蛍光体の平均粒子径は0.5〜70nmであることが好ましい。以下、波長変換器4の例であるコンポジットについて、図1を用いて説明する。
(Wavelength converter)
The wavelength converter 4 absorbs part of the light emitted from the light emitting element 3, converts it into visible light (wavelength 400 to 760 nm), and outputs it. In the light emitting device of the present invention, the wavelength converter 4 shown in FIG. 1 is coated with a phosphor paste so as to cover the light emitting element as shown in FIG. Filling and further forming a protective layer thereon, or forming a phosphor in ink form as shown in FIG. 3, wiping and applying to the recesses of the substrate 2 and the light emitting element part 3, and coating with resin However, as shown in FIG. 1, it is preferable that the wavelength converter 4 is a composite in which a phosphor 41 is dispersed in a transparent solid matrix 42. Moreover, it is preferable that the average particle diameter of fluorescent substance is 0.5-70 nm. Hereinafter, a composite which is an example of the wavelength converter 4 will be described with reference to FIG.

図1に示すコンポジットは、蛍光体41と固体マトリクス42とを備えている。蛍光体41の平均粒子径は0.5〜70nmとすれば、蛍光体41のサイズは中近紫外線波長の4分の1以下となるため、中近紫外線は蛍光体41によって散乱されることがない。このため、波長変換器4から外部に出力される中近紫外線の量について、安定した量の出力が可能な発光装置を製造することができる。   The composite shown in FIG. 1 includes a phosphor 41 and a solid matrix 42. If the average particle diameter of the phosphor 41 is 0.5 to 70 nm, the size of the phosphor 41 is not more than a quarter of the mid-ultraviolet wavelength, so that mid-ultraviolet light may be scattered by the phosphor 41. Absent. For this reason, it is possible to manufacture a light emitting device capable of outputting a stable amount with respect to the amount of mid-ultraviolet rays output from the wavelength converter 4 to the outside.

このとき、発光装置からより演色性の高い白色の光が得られるよう、複数種類の蛍光体41、例えば3種類以上の蛍光体41を混合してコンポジットを作製することが好ましく、具体例としては上記化合物半導体からなる蛍光体を用いる。また、蛍光体41のサイズは、平均粒子径20nm以下とすることが好ましい。この場合、蛍光体41のサイズ(平均粒子径)を変えることによって、赤(長波長)から青(短波長)まで様々な発光を示すことができ、蛍光体41から発せられる光の波長を幅広く設定することができる。このため、平均粒子径が20nm以下の蛍光体41であって、平均粒子径の異なるものを数種類組み合わせることによって、発光装置の演色性を大幅に向上させることができる。   At this time, it is preferable to prepare a composite by mixing a plurality of types of phosphors 41, for example, three or more types of phosphors 41, so that white light with higher color rendering properties can be obtained from the light emitting device. A phosphor made of the above compound semiconductor is used. The size of the phosphor 41 is preferably set to an average particle size of 20 nm or less. In this case, by changing the size (average particle diameter) of the phosphor 41, it is possible to show various light emission from red (long wavelength) to blue (short wavelength), and the wavelength of light emitted from the phosphor 41 is wide. Can be set. For this reason, the color rendering properties of the light-emitting device can be greatly improved by combining several phosphors 41 having an average particle diameter of 20 nm or less and having different average particle diameters.

固体マトリクス42としては、例えばシリコーン樹脂、アクリル樹脂、エポキシ樹脂などの硬化性樹脂、ポリエチレン、ポリイソプロピレンなどを用いることができる。ポリエチレン、ポリイソプロピレン、シリコーン樹脂の固体マトリクス42は、中近紫外線をよく透過する。このため、固体マトリクスが中近紫外線を吸収することが無く、蛍光体で変換されない中近紫外線を有効に発光装置より出力することができる。特に、シリコーン樹脂は、光に対する安定性および耐熱性が高い。そのため、シリコーン樹脂を固体マトリクス42に使用することによって、波長変換器4が茶褐色に変色することなく、発光装置を長期間安定して使用することができる。これは、シリコーン樹脂の主構造である珪素−酸素の結合が炭素−炭素の結合の約1.5倍と強いため、光や熱による分解が起こりにくいことに起因している。   As the solid matrix 42, for example, a curable resin such as a silicone resin, an acrylic resin, or an epoxy resin, polyethylene, polyisopropylene, or the like can be used. The solid matrix 42 made of polyethylene, polyisopropylene, or silicone resin can transmit mid-ultraviolet rays well. For this reason, the solid matrix does not absorb mid-ultraviolet rays, and mid-ultraviolet rays that are not converted by the phosphor can be effectively output from the light emitting device. In particular, the silicone resin has high light stability and heat resistance. Therefore, by using a silicone resin for the solid matrix 42, the light emitting device can be used stably for a long period of time without the wavelength converter 4 turning brown. This is because the silicon-oxygen bond, which is the main structure of the silicone resin, is about 1.5 times as strong as the carbon-carbon bond, so that decomposition by light or heat hardly occurs.

また、コンポジットは、固体マトリクス42中に、波長変換器4総量に対して0.1〜50質量%の蛍光体41を含むことが好ましい。より好ましくは、0.5〜20質量%である。蛍光体41を固体マトリクス42に濃度0.1〜50質量%の割合で混合する手法としては、例えば次のような手法が挙げられる。まず、未硬化のシリコーン樹脂、アクリル樹脂、またはエポキシ樹脂などの樹脂に、蛍光体41を添加して攪拌機で混錬する。混錬後、これを所定形状に硬化させることによって、波長変換器4に使用できるコンポジットとすることができる。このとき、蛍光体41を分散剤で処理すれば、樹脂中に蛍光体41を均一に分散させることができる。このようにして得られたコンポジットからなる波長変換器4は、発光素子3の発する中近紫外線のうち85〜99%を吸収して可視光に変換し、残りの1〜15%の中近紫外線をそのまま透過するため、発光装置から出力される光の可視光と中近紫外線の量比を可視光85〜99%に対して中近紫外線1〜15%とすることができる。また、波長変換器4のコンポジットは、固体マトリクス42中に濃度3〜6質量%の蛍光体41を含むことが好ましい。   The composite preferably includes 0.1 to 50% by mass of the phosphor 41 in the solid matrix 42 with respect to the total amount of the wavelength converter 4. More preferably, it is 0.5-20 mass%. Examples of the method of mixing the phosphor 41 with the solid matrix 42 at a concentration of 0.1 to 50% by mass include the following methods. First, the phosphor 41 is added to a resin such as an uncured silicone resin, acrylic resin, or epoxy resin, and kneaded with a stirrer. After kneading, the composite can be used for the wavelength converter 4 by curing it into a predetermined shape. At this time, if the phosphor 41 is treated with a dispersant, the phosphor 41 can be uniformly dispersed in the resin. The thus obtained composite wavelength converter 4 absorbs 85 to 99% of the mid-ultraviolet rays emitted from the light-emitting element 3 and converts them into visible light, and the remaining 1 to 15% of mid-ultraviolet rays. Therefore, the amount ratio of the visible light and the mid-ultraviolet ray output from the light emitting device can be set to 1-15% of the mid-ultraviolet ray to 85-99% of the visible light. The composite of the wavelength converter 4 preferably includes a phosphor 41 having a concentration of 3 to 6% by mass in the solid matrix 42.

コンポジットとしては、未硬化の樹脂に蛍光体41を混錬して、これをドクターブレードなどのシート成形法で成形した後硬化させて、これを所定の大きさに裁断または打ち抜いてフィルム状としたものを用いてもよい。このほか、コンポジットは、基板2上に設置した発光素子3を覆うようにポッティングして形成してもよい。このとき、安定した発光装置を作製するという点では、コンポジットの厚みは0.1〜5mmの範囲であることが好ましい。   As a composite, phosphor 41 is kneaded with uncured resin, and this is molded by a sheet molding method such as a doctor blade and then cured, and this is cut or punched into a predetermined size to form a film. A thing may be used. In addition, the composite may be formed by potting so as to cover the light emitting element 3 installed on the substrate 2. At this time, the thickness of the composite is preferably in the range of 0.1 to 5 mm from the viewpoint of producing a stable light emitting device.

図2に、本発明の発光装置における他の実施態様を示す。図2の発光装置では、発光素子3と波長変換器4との間に内部層45が設けられており、発光素子3は内部層45で被覆されている。このような内部層45は、例えばシリコーン樹脂などの樹脂を充填・硬化することによって形成することができる。その他は前述の図1と同じであるので、同一符号を付し、その説明を省略する。前記内部層45を設けることによって、波長変換器4を予めフィルム上に形成したものを使用することができる。これにより、波長変換器4の厚みをコントロールすることが容易となる他、硬化のタイミングをコントロールしやすいため、蛍光体の沈殿等を抑制することが容易となる。   FIG. 2 shows another embodiment of the light emitting device of the present invention. In the light emitting device of FIG. 2, an inner layer 45 is provided between the light emitting element 3 and the wavelength converter 4, and the light emitting element 3 is covered with the inner layer 45. Such an inner layer 45 can be formed by filling and curing a resin such as a silicone resin. The other parts are the same as those in FIG. 1 described above, and thus the same reference numerals are given and description thereof is omitted. By providing the inner layer 45, the wavelength converter 4 previously formed on the film can be used. Thereby, it becomes easy to control the thickness of the wavelength converter 4, and it is easy to control the timing of curing, so that it is easy to suppress precipitation of the phosphor.

以下、実施例および比較例を挙げて本発明を詳細に説明するが、本発明は以下の実施例のみに限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated in detail, this invention is not limited only to a following example.

[実施例]
図2の発光装置を以下に示す通りに作製した。
(蛍光体の作製)
ホットソープ法にて、セレン化カドミウム(CdSe)ナノ粒子を合成した。このとき、それぞれのCdSeナノ粒子の表面には、1〜2nmの硫化亜鉛膜をコートした。CdSeナノ粒子は、平均粒子径を変えて、下記に示す蛍光波長の異なるAからCの3種類の粒子を準備した。
CdSeナノ粒子A:平均粒子径、2.1nm;蛍光波長、520nm
CdSeナノ粒子B:平均粒子径、4.5nm;蛍光波長、630nm
CdSeナノ粒子C:平均粒子径、5.5nm;蛍光波長、700nm
CdSeナノ粒子の平均粒子径の測定は次のように行った。溶液に分散したCdSeナノ粒子の、粒子濃度が0.002〜0.02モル/リットルの範囲の粒子分散液を調整した。溶媒はIPAやトルエンを用いる。
次に、TEM観察用マイクログリッドをこの粒子分散液に浸して粒子を付着させ、常温でデシケーター中に静置して粒子分散液を乾燥させ、CdSeナノ粒子が表面に付着したTEM観察用マイクログリッドを作成して測定に供する。
倍率は500000倍から1000000倍で、粒子の格子縞が見えるように焦点を合わせ、得られたTEM像の拡大写真上で200個以上の粒子を試料として、粒子径を測定した。粒子径が大きくて粒子全体が視野に入らない場合は、格子縞が見える高倍率で1次粒子であることを確認ののち、粒子全体が視野に入る倍率でTEM像を観察し、格子像の直径を測定した。CdSeナノ粒子の粒子径は、JEOL製透過型電子顕微鏡(TEM)JEM2010Fにより、加速電圧200kVで観察した。
この際、写真撮影するCdSeナノ粒子は格子縞が見えている部分のみを対象としており、粒子表面に吸着している有機配位子などの有機物は格子像の直径に含めない。
測定した格子像の直径は、ヒストグラムを書いて統計的に計算することで、長さ平均直径を算出した。長さ平均直径の算出方法は、直径区に属する個数をカウントし、直径区の中心値と個数のそれぞれの積の和を、測定した粒子の個数の総数で割るという方法を用いた(平均粒子径の形状とその計算式、「セラミックの製造プロセス」p.11〜12、窯業協会編集委員会講座小委員会編)。このようにして計算した長さ平均直径をCdSeナノ粒子の平均粒子径として扱った。
なお、TEM観察で得られた像を透明な樹脂フィルムシートに写し取り、画像解析処理装置によって、粒子の平均粒子径を求める方法でも測定は可能であることを確認した。
[Example]
The light emitting device of FIG. 2 was produced as shown below.
(Production of phosphor)
Cadmium selenide (CdSe) nanoparticles were synthesized by a hot soap method. At this time, the surface of each CdSe nanoparticle was coated with a 1 to 2 nm zinc sulfide film. For the CdSe nanoparticles, three types of particles A to C having different fluorescence wavelengths as shown below were prepared by changing the average particle diameter.
CdSe nanoparticles A: average particle diameter, 2.1 nm; fluorescence wavelength, 520 nm
CdSe nanoparticle B: average particle diameter, 4.5 nm; fluorescence wavelength, 630 nm
CdSe nanoparticles C: average particle diameter, 5.5 nm; fluorescence wavelength, 700 nm
The average particle diameter of CdSe nanoparticles was measured as follows. A particle dispersion having a particle concentration of 0.002 to 0.02 mol / liter of CdSe nanoparticles dispersed in the solution was prepared. As the solvent, IPA or toluene is used.
Next, the microgrid for TEM observation is immersed in this particle dispersion to attach particles, and is left in a desiccator at room temperature to dry the particle dispersion, and the microgrid for TEM observation in which CdSe nanoparticles are attached to the surface. To prepare for measurement.
The magnification was 500,000 to 1,000,000 times, and focusing was performed so that the lattice fringes of the particles could be seen, and the particle diameter was measured using 200 or more particles as a sample on the enlarged photograph of the obtained TEM image. If the particle size is large and the entire particle does not enter the field of view, check the TEM image at a magnification that allows the entire particle to enter the field of view after confirming that it is a primary particle at a high magnification at which lattice fringes can be seen. Was measured. The particle diameter of the CdSe nanoparticles was observed with a transmission electron microscope (TEM) JEM2010F manufactured by JEOL at an acceleration voltage of 200 kV.
At this time, the CdSe nanoparticles to be photographed are intended only for the portion where the lattice stripes are visible, and organic substances such as organic ligands adsorbed on the particle surface are not included in the diameter of the lattice image.
The diameter of the measured lattice image was calculated statistically by writing a histogram to calculate the length average diameter. The length average diameter was calculated by counting the number of particles belonging to the diameter group and dividing the sum of the product of the center value and the number of the diameter group by the total number of particles measured (average particle size). Diameter shape and its calculation formula, “Ceramic Manufacturing Process” p.11-12, edited by Ceramic Industry Association Editorial Committee Lecture Subcommittee). The length average diameter thus calculated was treated as the average particle diameter of CdSe nanoparticles.
The image obtained by TEM observation was copied on a transparent resin film sheet, and it was confirmed that the measurement was possible by a method of obtaining the average particle diameter of the particles with an image analysis processor.

(実施例1:波長変換器および発光装置の作製)
CdSeナノ粒子A〜Cは、得られる波長変換器4総量に対してそれぞれ2.7質量%、2.2質量%、1.1質量%となるように縮合型のシリコーン樹脂に混合し、ドクターブレード法で成形した後、80℃で硬化させて、厚み2mmのコンポジットフィルムを形成した。
この時、コンポジット内部のCdSeナノ粒子の分散状態および粒子径はTEMにより確認した。
コンポジットを超薄切片法で100nm以下に薄片化した後、目安として30nm程度の部分を、TEM観察に供する。このとき、樹脂が柔らかすぎて薄片化が難しい場合は、液体窒素で凍結させて加工した後、TEM観察に供する。
CdSeナノ粒子の粒子径は、JEOL製透過型電子顕微鏡(TEM)JEM2010Fにより、加速電圧200kVで観察した。
CdSeナノ粒子の凝集の有無を再度500,000倍で確認した後、倍率を4,000,000倍としてCdSeナノ粒子の格子像の観察を行なった。
また、格子像の確認できたナノ蛍光体粒子200個を選び、各々のナノ蛍光体粒子の格子像の直径を測長した。測定した格子像の直径を、前記と同様にしてヒストグラムを書いて統計的に計算することで、長さ平均直径を算出し、これをCdSeナノ粒子の粒子径とみなした。
次に、これを直径2mmに打ち抜き、波長変換器4とした。その後、先に準備したセラミック(アルミナ)基板上に実装された発光素子3上に、この波長変換器4を配置して発光装置を作製した。発光素子3は、InGaN−GaNからなる発光波長395nm、サイズ0.35mm×0.35mmのチップとした。この発光装置が発する光の強度を、波長290〜760nmの範囲で測定したところ、波長290〜380nmの中近紫外線が7.8%、波長400〜760nmの可視光が92.2%の光を得ることができた。
(Example 1: Production of wavelength converter and light-emitting device)
CdSe nanoparticles A to C were mixed with a condensation type silicone resin so as to be 2.7% by mass, 2.2% by mass, and 1.1% by mass, respectively, with respect to the total amount of the wavelength converter 4 to be obtained. After being molded by the blade method, it was cured at 80 ° C. to form a composite film having a thickness of 2 mm.
At this time, the dispersion state and particle diameter of the CdSe nanoparticles inside the composite were confirmed by TEM.
After the composite is sliced to 100 nm or less by the ultrathin section method, a portion of about 30 nm is subjected to TEM observation as a guide. At this time, if the resin is too soft and thinning is difficult, the resin is frozen with liquid nitrogen and processed, and then subjected to TEM observation.
The particle diameter of the CdSe nanoparticles was observed with a transmission electron microscope (TEM) JEM2010F manufactured by JEOL at an acceleration voltage of 200 kV.
After confirming the presence / absence of aggregation of CdSe nanoparticles at 500,000 times again, the lattice image of CdSe nanoparticles was observed at a magnification of 4,000,000 times.
In addition, 200 nanophosphor particles having a confirmed lattice image were selected, and the diameter of the lattice image of each nanophosphor particle was measured. The diameter of the measured lattice image was statistically calculated by writing a histogram in the same manner as described above to calculate the length average diameter, and this was regarded as the particle diameter of the CdSe nanoparticles.
Next, this was punched out to a diameter of 2 mm to obtain a wavelength converter 4. Thereafter, the wavelength converter 4 was arranged on the light emitting element 3 mounted on the previously prepared ceramic (alumina) substrate to produce a light emitting device. The light emitting element 3 was a chip made of InGaN-GaN having a light emission wavelength of 395 nm and a size of 0.35 mm × 0.35 mm. When the intensity of light emitted from this light emitting device was measured in the wavelength range of 290 to 760 nm, light with a wavelength of 290 to 380 nm was 7.8%, and visible light with a wavelength of 400 to 760 nm was 92.2%. I was able to get it.

(実施例2〜14)
蛍光体(CdSeナノ粒子A〜C)の混合比率を表1に示す比率とした以外は、上記実施例1と同様の方法にて発光装置を作製した。
(Examples 2 to 14)
A light emitting device was produced in the same manner as in Example 1 except that the mixing ratio of the phosphors (CdSe nanoparticles A to C) was changed to the ratio shown in Table 1.

Figure 2007103511
Figure 2007103511

上記実施例によれば、表1に示す割合の可視光と中近紫外線とを発光する発光装置が製造できたことが分かる。また、表1に示すように、蛍光体の添加量によって、可視光と中近紫外線との割合を調整することができる。   According to the said Example, it turns out that the light-emitting device which light-emits the visible light of the ratio shown in Table 1, and a mid-ultraviolet ray was able to be manufactured. Moreover, as shown in Table 1, the ratio of visible light and mid-ultraviolet rays can be adjusted by the amount of phosphor added.

本発明の発光装置の実施形態を示す概略説明図である。It is a schematic explanatory drawing which shows embodiment of the light-emitting device of this invention. 内部層が設けられた本発明の発光装置の実施形態を示す概略説明図である。It is a schematic explanatory drawing which shows embodiment of the light-emitting device of this invention provided with the inner layer. 本発明の発光装置における他の実施形態を示す概略説明図である。It is a schematic explanatory drawing which shows other embodiment in the light-emitting device of this invention.

符号の説明Explanation of symbols

1 電極
2 基板
3 発光素子
4 波長変換器
5 保護層
41 蛍光体
42 固体マトリクス
45 内部層

DESCRIPTION OF SYMBOLS 1 Electrode 2 Board | substrate 3 Light emitting element 4 Wavelength converter 5 Protective layer 41 Phosphor 42 Solid matrix 45 Inner layer

Claims (5)

少なくとも波長290〜380nmの中近紫外線を含む光を発生する発光素子と、前記発光素子が発する光のうち少なくとも一部の光を波長400〜760nmの可視光に変換する波長変換器とを備え、
前記波長変換器は平均粒子径0.5〜70nmの蛍光体を含有しており、
前記波長変換器が変換した波長400〜760nmの可視光に加えて、前記発光素子が発生する波長290〜380nmの中近紫外線を含む光を出力することを特徴とする発光装置。
A light emitting element that generates light including at least ultraviolet light having a wavelength of 290 to 380 nm, and a wavelength converter that converts at least part of the light emitted from the light emitting element into visible light having a wavelength of 400 to 760 nm,
The wavelength converter contains a phosphor having an average particle size of 0.5 to 70 nm,
In addition to visible light having a wavelength of 400 to 760 nm converted by the wavelength converter, the light emitting device outputs light including near-ultraviolet rays having a wavelength of 290 to 380 nm generated by the light emitting element.
前記発光装置から出力される光における波長400〜760nmの可視光と波長290〜380nmの中近紫外線との割合が、可視光85〜99%に対して中近紫外線1〜15%であることを特徴とする請求項1に記載の発光装置。   The ratio of visible light having a wavelength of 400 to 760 nm and mid-ultraviolet light having a wavelength of 290 to 380 nm in the light output from the light emitting device is 1 to 15% of mid-ultraviolet light with respect to 85 to 99% of visible light. The light-emitting device according to claim 1. 前記波長変換器は、前記蛍光体を0.5〜20質量%含有していることを特徴とする請求項1または2に記載の発光装置。   The light emitting device according to claim 1, wherein the wavelength converter contains 0.5 to 20% by mass of the phosphor. 前記発光素子の発する励起光のピーク波長が380〜410nmであることを特徴とする請求項1〜3のいずれかに記載の発光装置。   The light emitting device according to claim 1, wherein a peak wavelength of excitation light emitted from the light emitting element is 380 to 410 nm. 前記波長変換器は透明な固体マトリクス中に前記蛍光体を分散させており、
前記固体マトリクスは、ポリエチレン、ポリイソプロピレンおよびシリコーン樹脂からなる群より選ばれる少なくとも1つの樹脂からなることを特徴とする請求項1〜4のいずれかに記載の発光装置。

The wavelength converter disperses the phosphor in a transparent solid matrix,
The light-emitting device according to claim 1, wherein the solid matrix is made of at least one resin selected from the group consisting of polyethylene, polyisopropylene, and silicone resin.

JP2005289132A 2005-09-30 2005-09-30 Light emitting device Pending JP2007103511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005289132A JP2007103511A (en) 2005-09-30 2005-09-30 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005289132A JP2007103511A (en) 2005-09-30 2005-09-30 Light emitting device

Publications (1)

Publication Number Publication Date
JP2007103511A true JP2007103511A (en) 2007-04-19

Family

ID=38030184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005289132A Pending JP2007103511A (en) 2005-09-30 2005-09-30 Light emitting device

Country Status (1)

Country Link
JP (1) JP2007103511A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010027580A2 (en) * 2008-09-04 2010-03-11 3M Innovative Properties Company Light source having light blocking components
CN102197500A (en) * 2008-09-04 2011-09-21 3M创新有限公司 Monochromatic light source with high aspect ratio
JP2012191144A (en) * 2011-03-14 2012-10-04 Ns Materials Kk Led element, manufacturing method of the led element, color tone correction method of the led element
US8385380B2 (en) 2008-09-04 2013-02-26 3M Innovative Properties Company Monochromatic light source
JP2013110258A (en) * 2011-11-21 2013-06-06 Sharp Corp Light source device and optical measuring device
US8488641B2 (en) 2008-09-04 2013-07-16 3M Innovative Properties Company II-VI MQW VSEL on a heat sink optically pumped by a GaN LD
WO2016202736A1 (en) * 2015-06-16 2016-12-22 Philips Lighting Holding B.V. A lighting assembly emitting a portion of uv light
KR101878270B1 (en) * 2011-09-15 2018-07-13 엘지이노텍 주식회사 Lighting device comprising photoluminescent plate and photoluminescent tape
KR20180124738A (en) * 2017-05-12 2018-11-21 니치아 카가쿠 고교 가부시키가이샤 Light emitting device and method for manufacturing the same
JP2018534751A (en) * 2015-11-10 2018-11-22 フィリップス ライティング ホールディング ビー ヴィ Adjustable white light source with variable UV component
US10431724B2 (en) 2017-05-12 2019-10-01 Nichia Corporation Light emitting device and method of manufacturing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071908A (en) * 2002-08-07 2004-03-04 Matsushita Electric Works Ltd Light emitting device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071908A (en) * 2002-08-07 2004-03-04 Matsushita Electric Works Ltd Light emitting device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8488641B2 (en) 2008-09-04 2013-07-16 3M Innovative Properties Company II-VI MQW VSEL on a heat sink optically pumped by a GaN LD
WO2010027580A3 (en) * 2008-09-04 2010-05-06 3M Innovative Properties Company Light source having light blocking components
CN102197500A (en) * 2008-09-04 2011-09-21 3M创新有限公司 Monochromatic light source with high aspect ratio
US8193543B2 (en) 2008-09-04 2012-06-05 3M Innovative Properties Company Monochromatic light source with high aspect ratio
US8385380B2 (en) 2008-09-04 2013-02-26 3M Innovative Properties Company Monochromatic light source
WO2010027580A2 (en) * 2008-09-04 2010-03-11 3M Innovative Properties Company Light source having light blocking components
JP2012191144A (en) * 2011-03-14 2012-10-04 Ns Materials Kk Led element, manufacturing method of the led element, color tone correction method of the led element
KR101878270B1 (en) * 2011-09-15 2018-07-13 엘지이노텍 주식회사 Lighting device comprising photoluminescent plate and photoluminescent tape
JP2013110258A (en) * 2011-11-21 2013-06-06 Sharp Corp Light source device and optical measuring device
WO2016202736A1 (en) * 2015-06-16 2016-12-22 Philips Lighting Holding B.V. A lighting assembly emitting a portion of uv light
JP2018518815A (en) * 2015-06-16 2018-07-12 フィリップス ライティング ホールディング ビー ヴィ Lighting assembly that emits part of UV light
US10113698B2 (en) 2015-06-16 2018-10-30 Philips Lighting Holding B.V. Lighting assembly emitting a portion of UV light
RU2712928C2 (en) * 2015-06-16 2020-02-03 Филипс Лайтинг Холдинг Б.В. Illumination module emitting part of uv-light
JP2018534751A (en) * 2015-11-10 2018-11-22 フィリップス ライティング ホールディング ビー ヴィ Adjustable white light source with variable UV component
US10441809B2 (en) 2015-11-10 2019-10-15 Signify Holding B.V. Tunable white light source with variable UV component
KR20180124738A (en) * 2017-05-12 2018-11-21 니치아 카가쿠 고교 가부시키가이샤 Light emitting device and method for manufacturing the same
JP2018195800A (en) * 2017-05-12 2018-12-06 日亜化学工業株式会社 Light-emitting device and method for manufacturing the same
US10431724B2 (en) 2017-05-12 2019-10-01 Nichia Corporation Light emitting device and method of manufacturing same
US10700248B2 (en) 2017-05-12 2020-06-30 Nichia Corporation Method of manufacturing light emitting device
KR102512356B1 (en) * 2017-05-12 2023-03-20 니치아 카가쿠 고교 가부시키가이샤 Light emitting device and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP2007103511A (en) Light emitting device
US9142732B2 (en) LED lamp with quantum dots layer
CN103597568B (en) White light emitting device
CN112135643A (en) Multiple light emitters for inactivating microorganisms
JP4838005B2 (en) Light emitting device
WO2005124877A2 (en) Led with improve light emittance profile
JP2007103512A (en) Light emitting device
JP2007157798A (en) Light emitting device
TW200832763A (en) Lighting device and lighting method
JP2007103513A (en) Light emitting device
TWI712187B (en) Light-emitting device and manufacturing method thereof
JP2007146154A (en) Wavelength converter, lighting system, and lighting system assembly
JP4960644B2 (en) Phosphor particles, wavelength converter and light emitting device
JP7321340B2 (en) Light emitting device and lighting device
JP5123475B2 (en) Fluorescent structure, composite, light emitting device, and light emitting device assembly
CN104037310A (en) Three-primary-color matching white-light LED based on carbon quantum dots and ZnCuInS quantum dots and preparation method thereof
TW201403878A (en) Illuminating assembly
JP2022103159A (en) Light-emitting device, lighting device, and lighting device for raising creature
TW201349593A (en) Light emitting diode (LED) dice having wavelength conversion layers and methods of fabrication
JP2010225960A (en) Light emitting device and illumination apparatus
US20180301601A1 (en) Material for an electronic device
TW201418414A (en) Wavelength converting substance, wavelength converting gel and light emitting device
JP2006054313A (en) Semiconductor light-emitting device
US11495716B2 (en) Light-emitting device and illumination apparatus
JP6632665B2 (en) Method of manufacturing a plurality of conversion elements and optoelectronic components

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110614