JP2007098383A - Method for extracting oil from vegetable biomass using microwave, and apparatus therefor - Google Patents

Method for extracting oil from vegetable biomass using microwave, and apparatus therefor Download PDF

Info

Publication number
JP2007098383A
JP2007098383A JP2006146354A JP2006146354A JP2007098383A JP 2007098383 A JP2007098383 A JP 2007098383A JP 2006146354 A JP2006146354 A JP 2006146354A JP 2006146354 A JP2006146354 A JP 2006146354A JP 2007098383 A JP2007098383 A JP 2007098383A
Authority
JP
Japan
Prior art keywords
solvent
extraction
oil
biomass
solvent vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006146354A
Other languages
Japanese (ja)
Other versions
JP4923733B2 (en
Inventor
Koichi Ito
鉱一 伊藤
Yoko Umeda
陽子 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2006146354A priority Critical patent/JP4923733B2/en
Publication of JP2007098383A publication Critical patent/JP2007098383A/en
Application granted granted Critical
Publication of JP4923733B2 publication Critical patent/JP4923733B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for extracting oil from vegetable biomass using a microwave that easily extracts at low cost and energy the oil that is easily handled and suited for transportation, and an apparatus to be used therefor. <P>SOLUTION: The method for extracting oil from vegetable biomass using a microwave comprises a step for generating or introducing vapor of an extracting solvent in a device for generating the microwave, a step for extracting oil by heating the above solvent and biomass by the microwave, a step for discharging the solvent vapor containing the oil out of the above device followed by cooling and a step for recovering the extracted oil and the solvent. The apparatus for extracting oil from vegetable biomass is equipped with a means of generating the microwave, a means of generating the solvent vapor, a means of extracting the oil from the vegetable biomass using the solvent vapor, a means of condensing the solvent vapor and a means of recovering the solvent. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、マイクロ波を用いて植物バイオマス(以下、「バイオマス」と省略することがある。)から油を抽出する方法、およびそれに用いる装置に関する。詳細には、マイクロ波を用いて植物バイオマスから精油、油脂などの有用物質を抽出する方法および装置に関する。   The present invention relates to a method of extracting oil from plant biomass (hereinafter sometimes abbreviated as “biomass”) using microwaves, and an apparatus used therefor. In detail, it is related with the method and apparatus which extract useful substances, such as essential oil and fats and oils, from plant biomass using a microwave.

地球温暖化対策の一環として、バイオマスを燃料に用いた発電技術がある。バイオマスとしては、都市ごみ、食品残渣、下水汚泥などの産業系バイオマスに加え、家畜糞尿などの動物系バイオマス、栽培植物、伐採木や農作物残渣などの植物系バイオマスがある。植物系バイオマスは、粉砕物もしくは加工物(炭化物、液化物、ガス化物など)を燃料として発電されている。   As part of global warming countermeasures, there is power generation technology that uses biomass as fuel. Biomass includes industrial biomass such as municipal waste, food residues, and sewage sludge, as well as animal biomass such as livestock manure, plant biomass such as cultivated plants, felled trees, and crop residues. Plant-based biomass is generated by using a pulverized product or processed product (carbonized product, liquefied product, gasified product, etc.) as fuel.

ところが、固体バイオマスは、嵩高く収集・運搬エネルギーが多く必要となり、大量に調達する必要がある場合や、遠方にて実施する場合には、不向きである。これを解消するためにバイオマスの液化やガス化(エタノール化、DME化、水素化)の技術があるが、現状ではいずれも大規模な装置を必要としたり(エタノール化では培養装置など)、高コスト(DME化、水素化など)である。   However, solid biomass is bulky and requires a large amount of energy for collection and transportation, and is not suitable when it is necessary to procure a large amount or when it is carried out far away. In order to solve this problem, there are technologies for biomass liquefaction and gasification (ethanolification, DME, hydrogenation), but currently all of them require large-scale equipment (such as culture equipment for ethanolization), Cost (DME, hydrogenation, etc.).

また、各種バイオマスは様々な成分を含んでおり、その中には付加価値の高い精油成分も含まれているが、現状のバイオマスの利用方法では、それらの付加価値の高い成分も燃料として消費してしまっている。   In addition, various biomass contains various components, including high-value-added essential oil components, but the current method of using biomass consumes these high-value-added components as fuel. It has been.

植物バイオマスから油分を抽出する方法としては、従来より、圧搾、水蒸気、熱水、有機溶媒やラードなどによる抽出が行われているが、圧搾では抽出効率が低くなり、水蒸気蒸留では抽出時間が長くかつエネルギー消費量が多くなり、熱水や有機溶媒による抽出では抽出時間が長くあるいは繁雑でかつエネルギー消費量も多いという課題がある。   As a method for extracting oil from plant biomass, extraction by pressing, steam, hot water, organic solvent, lard, etc. has been conventionally performed. However, extraction efficiency is reduced by pressing, and extraction time is longer by steam distillation. In addition, the energy consumption is increased, and extraction with hot water or an organic solvent has a problem that the extraction time is long or complicated and the energy consumption is also large.

特許文献1には、植物材料を含む加圧した密閉装置内に水蒸気を注入し、電磁波によって植物材料のコアまで加熱し、植物材料から天然液を抽出した後、抽出液を装置外に排出させ、重力により回収する方法が開示されている。しかし、この方法は、装置内を加圧状態にして抽出する方法であり、エアコンプレッサーと飽和水蒸気発生装置が不可欠であるため、簡易に抽出する方法とは言い難い。   In Patent Document 1, water vapor is injected into a pressurized sealed device containing plant material, heated to the core of the plant material by electromagnetic waves, natural fluid is extracted from the plant material, and then the extract is discharged outside the device. A method of collecting by gravity is disclosed. However, this method is an extraction method in which the inside of the apparatus is pressurized, and since an air compressor and a saturated water vapor generation apparatus are indispensable, it is difficult to say that the extraction method is simple.

特許文献2には、原料植物と抽出溶媒の混合液をガラスチューブに入れ、マイクロ波を照射した後、濾過することにより、経時的安定性が良く着色の少ない植物抽出物を得る方法が開示されている。特許文献3には、植物などの天然資材から油性成分等を蒸留分離する際に溶媒となる水分子に電磁波を作用させることにより、水分子の電子移動状態を作り出し、熱劣化しやすく且つ酸化されやすい芳香性有機質成分を安定に分離する方法が開示されている。しかし、これらの方法はバイオマスを燃焼する前に省エネルギー、低コストで高付加価値物質を得ることを目的としたものではなく、どちらかと言えば高品質の植物抽出物を得るために考案された方法である。
特表2002−542941号公報 特開2004−89786号公報 特開平9−85001号公報
Patent Document 2 discloses a method of obtaining a plant extract having good temporal stability and little coloration by putting a mixed solution of a raw material plant and an extraction solvent into a glass tube, irradiating with microwaves, and filtering. ing. In Patent Document 3, an electromagnetic wave is caused to act on water molecules as a solvent when oily components and the like are distilled and separated from natural materials such as plants, thereby creating an electron transfer state of the water molecules, which is easily deteriorated by heat and oxidized. A method for stably separating easily fragrant organic components is disclosed. However, these methods are not intended to obtain energy-saving, low-cost, high-value-added substances before burning biomass, but rather are methods devised to obtain high-quality plant extracts. It is.
Special Table 2002-54294 JP 2004-89786 A Japanese Patent Laid-Open No. 9-85001

本発明は、上記のような課題を解決するためになされたものであり、マイクロ波を用いた植物バイオマスからの油の抽出方法であって、ハンドリングが容易で、輸送に適した油を、省エネ、低コストで簡易に抽出する方法、およびそれに用いる装置を提供することを課題とする。   The present invention has been made to solve the above-described problems, and is a method for extracting oil from plant biomass using microwaves, which is easy to handle and suitable for transportation. It is an object of the present invention to provide a method for easily extracting at low cost and an apparatus used therefor.

前記課題を解決するため、本発明者らは鋭意検討した結果、マイクロ波は、抽出溶媒とバイオマス抽出物そのものを加熱することが可能であるため、容器の昇温などの不要な加熱や過反応を回避することができ、マイクロ波を用いて水蒸気蒸留の原理を応用することにより、省エネルギー、低コストで植物バイオマスから高付加価値の精油や油脂などの油を取得できるとの知見を得て、本発明に到達した。   In order to solve the above-mentioned problems, the present inventors have intensively studied. As a result, the microwave can heat the extraction solvent and the biomass extract itself. By applying the principle of steam distillation using microwaves, we obtained the knowledge that oil such as high-value-added essential oils and fats and oils can be obtained from plant biomass with energy saving and low cost, The present invention has been reached.

すなわち、本発明は以下のとおりである。
1)マイクロ波を用いて植物バイオマスから油を抽出する方法であって、
植物バイオマスを含むマイクロ波発生装置内において、抽出溶媒蒸気を生成または導入し、マイクロ波によって前記抽出溶媒および植物バイオマスを加熱して油を抽出し、
該油を含む溶媒蒸気を前記装置外に排出して凝縮し、抽出油および溶媒を回収することを特徴とする方法、
2)マイクロ波を用いて植物バイオマスから油を抽出する方法であって、
マイクロ波発生装置内において、抽出容器に収容された植物バイオマスにマイクロ波を照射し、該装置内に導入された抽出溶媒蒸気と前記植物バイオマスとを接触させて油を抽出し、
該油を含む溶媒蒸気を前記装置外に排出して凝縮し、抽出油および溶媒を回収することを特徴とする方法、
3)マイクロ波を用いて植物バイオマスから油を抽出する方法であって、
マイクロ波発生装置内において、抽出溶媒と抽出容器に収容された植物バイオマスにマイクロ波を照射し、マイクロ波によって加熱された前記溶媒蒸気と植物バイオマスとを接触させて油を抽出し、
該油を含む溶媒蒸気を前記装置外に排出して凝縮し、抽出油および溶媒を回収することを特徴とする方法、
4)前記抽出溶媒は、マイクロ波吸収性である前記1)〜3)のいずれかに記載の方法、
5)前記抽出溶媒は水である前記1)〜4)のいずれかに記載の方法、
6)前記植物バイオマスは、栽培系バイオマスまたは廃棄物系バイオマスである前記1)〜5)のいずれかに記載の方法、
7)前記マイクロ波の周波数が、0.5GHz〜10GHzである前記1)〜6)のいずれかに記載の方法、
8)植物バイオマスから油を抽出するための抽出装置であって、
マイクロ波発生手段と、溶媒蒸気発生手段と、溶媒蒸気によって植物バイオマスから油を抽出する抽出手段とを備え、
抽出溶媒を蒸気状態にするために該溶媒を加熱する加熱手段を有していることを特徴とする抽出装置、
9)前記抽出手段は、植物バイオマスを収容し、抽出溶媒蒸気によって該植物バイオマスから油を抽出するための抽出容器である前記8)に記載の抽出装置、
10)前記溶媒蒸気発生手段として前記抽出溶媒を貯留する貯留槽を有する前記8)または9)に記載の抽出装置、
11)さらに、溶媒蒸気凝縮手段と、溶媒回収手段とを備えた前記8)〜10)のいずれかに記載の抽出装置、
12)前記抽出溶媒は水である前記8)〜11)のいずれかに記載の抽出装置、
13)前記加熱手段によって発生させた溶媒蒸気が、溶媒蒸気供給路を介して前記抽出手段に供給されるように構成されている前記8)〜12)のいずれかに記載の抽出装置、
14)前記加熱手段によって発生させた溶媒蒸気が、上方に配置された前記抽出手段に供給されるように構成されている前記8)〜13)のいずれかに記載の抽出装置、
15)前記加熱手段は、マイクロ波発生装置または電気ヒータである前記8)〜14)のいずれかに記載の抽出装置。
That is, the present invention is as follows.
1) A method of extracting oil from plant biomass using microwaves,
In a microwave generator containing plant biomass, an extraction solvent vapor is generated or introduced, and the extraction solvent and plant biomass are heated by microwave to extract oil,
Exhausting the solvent vapor containing the oil out of the apparatus and condensing it to recover the extracted oil and solvent,
2) A method of extracting oil from plant biomass using microwaves,
In the microwave generator, the plant biomass contained in the extraction container is irradiated with microwaves, and the extraction solvent vapor introduced into the device is brought into contact with the plant biomass to extract oil,
Exhausting the solvent vapor containing the oil out of the apparatus and condensing it to recover the extracted oil and solvent,
3) A method of extracting oil from plant biomass using microwaves,
In the microwave generator, the plant biomass contained in the extraction solvent and the extraction container is irradiated with microwaves, the solvent vapor heated by the microwave and the plant biomass are contacted, and oil is extracted,
Exhausting the solvent vapor containing the oil out of the apparatus and condensing it to recover the extracted oil and solvent,
4) The method according to any one of 1) to 3), wherein the extraction solvent is microwave absorbing.
5) The method according to any one of 1) to 4), wherein the extraction solvent is water,
6) The method according to any one of 1) to 5), wherein the plant biomass is cultivation biomass or waste biomass.
7) The method according to any one of 1) to 6), wherein the microwave frequency is 0.5 GHz to 10 GHz.
8) An extraction device for extracting oil from plant biomass,
Microwave generation means, solvent vapor generation means, and extraction means for extracting oil from plant biomass by solvent vapor,
An extraction apparatus comprising heating means for heating the extraction solvent to make it vapor;
9) The extraction device according to 8), wherein the extraction means is an extraction container that contains plant biomass and extracts oil from the plant biomass by extraction solvent vapor,
10) The extraction device according to 8) or 9), which has a storage tank for storing the extraction solvent as the solvent vapor generation means,
11) The extraction device according to any one of 8) to 10), further comprising a solvent vapor condensing unit and a solvent recovery unit,
12) The extraction device according to any one of 8) to 11), wherein the extraction solvent is water,
13) The extraction device according to any one of 8) to 12), wherein the solvent vapor generated by the heating unit is supplied to the extraction unit via a solvent vapor supply path.
14) The extraction device according to any one of 8) to 13), wherein the solvent vapor generated by the heating unit is supplied to the extraction unit disposed above.
15) The extraction device according to any one of 8) to 14), wherein the heating means is a microwave generator or an electric heater.

本発明によれば、常圧条件下で、マイクロ波照射によりバイオマスを加熱することで、短時間かつ省エネルギー、低コストにて、精油や油脂などの油を抽出することが可能となる。抽出後の残渣は、発熱量が高くハンドリング容易なバイオマス燃料となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to extract oils, such as essential oil and fats and oils, in a short time, energy saving, and low cost by heating biomass by microwave irradiation on normal-pressure conditions. The residue after extraction becomes a biomass fuel that has a high calorific value and is easy to handle.

以下、本発明に係るマイクロ波を用いて植物バイオマスから油を抽出する方法、およびそれに用いる装置の好ましい実施形態を挙げ、図面を参照しながら詳細に説明する。   Hereinafter, preferred embodiments of a method for extracting oil from plant biomass using a microwave according to the present invention and an apparatus used therefor will be described in detail with reference to the drawings.

(実施形態1)
図1は、本発明に係る一実施形態であって、抽出溶媒蒸気発生手段がマイクロ波発生手段(マイクロ波発生装置)の外にあるときの、抽出方法および装置の概略を説明する図である。
(Embodiment 1)
FIG. 1 is a diagram for explaining an outline of an extraction method and apparatus when an extraction solvent vapor generating means is outside a microwave generating means (microwave generator) according to an embodiment of the present invention. .

図1において、10はマイクロ波発生手段(マイクロ波発生装置)、20は溶媒蒸気発生手段(溶媒を貯留する貯留槽)、30は抽出手段(密閉可能な容器、管などの抽出容器)であり、40は溶媒蒸気凝縮手段、50は溶媒回収手段である。溶媒蒸気発生手段20では、加熱手段21によって装置20を加熱し、密閉された装置20内にある溶媒を加熱して溶媒蒸気を生成させ、生成させた溶媒蒸気を、溶媒蒸気供給路25を介して、マイクロ波発生装置内に設置された抽出手段(抽出容器)の下部に導入する。   In FIG. 1, 10 is a microwave generation means (microwave generation apparatus), 20 is a solvent vapor generation means (a storage tank for storing a solvent), and 30 is an extraction means (an extraction container such as a sealable container or tube). , 40 is a solvent vapor condensing means, and 50 is a solvent recovery means. In the solvent vapor generation means 20, the apparatus 20 is heated by the heating means 21, the solvent in the sealed apparatus 20 is heated to generate solvent vapor, and the generated solvent vapor is passed through the solvent vapor supply path 25. Then, it is introduced below the extraction means (extraction container) installed in the microwave generator.

前記の抽出手段30では、例えば、溶媒蒸気が通過できる程度の大きさの多数の孔を設けた多孔板2の上に、生もしくは乾燥バイオマス1を載置し、バイオマス中の油分を抽出する。バイオマスは必ずしも多孔板上に載置する必要はないが、こうすることにより、より均等にバイオマスに蒸気を接触させることができる。   In the extraction means 30, for example, the raw or dried biomass 1 is placed on the perforated plate 2 provided with a large number of holes that are large enough to allow solvent vapor to pass through, and the oil content in the biomass is extracted. The biomass is not necessarily placed on the perforated plate, but by doing so, the steam can be brought into contact with the biomass more evenly.

導入された抽出溶媒蒸気は、マイクロ波発生装置内において照射されるマイクロ波によって加熱され、加熱された溶媒分子はバイオマスと接触し、多孔板2上に載置されたバイオマス1の間を通過しながら上昇する。載置された生バイオマス1は、平衡水分量に近い水分を保有しているので、保有水分はマイクロ波によって活性化され、活性化された水によってバイオマスに含まれる油分が、通常の水蒸気蒸留より抽出されやすくなる。抽出された油分は、上昇してくる溶媒蒸気とともに、溶媒排出路35を介して、装置外に排出される。この際、装置内は35℃〜150℃に保持されていることが好ましく、より好ましくは90℃〜140℃である。反応温度をこの範囲に保持することにより、抽出される精油成分の分解を防止し、抽出効率を高めることができる。また、必要に応じて、溶媒蒸気供給路25および溶媒排出路35を加熱することにより、蒸気の凝結を防ぐこともできる。   The introduced extraction solvent vapor is heated by the microwave irradiated in the microwave generator, and the heated solvent molecules come into contact with the biomass and pass between the biomasses 1 placed on the perforated plate 2. While rising. Since the placed raw biomass 1 has moisture close to the equilibrium moisture content, the retained moisture is activated by microwaves, and the oil contained in the biomass by the activated water is less than that of normal steam distillation. It becomes easy to be extracted. The extracted oil is discharged out of the apparatus through the solvent discharge path 35 together with the rising solvent vapor. Under the present circumstances, it is preferable that the inside of an apparatus is hold | maintained at 35 to 150 degreeC, More preferably, it is 90 to 140 degreeC. By maintaining the reaction temperature within this range, it is possible to prevent the extracted essential oil component from being decomposed and increase the extraction efficiency. Further, if necessary, the condensation of vapor can be prevented by heating the solvent vapor supply path 25 and the solvent discharge path 35.

排出された、油を含む溶媒蒸気は、マイクロ波発生装置外に設置した溶媒蒸気凝縮手段によって冷却され、冷却された溶媒蒸気は溶媒回収手段によって回収される。溶媒蒸気には抽出油も含まれてくるので、排出された溶媒蒸気を冷却することにより、溶媒および、ともに蒸発してきた油分を液化させることができる。溶媒蒸気凝縮手段40における冷却部の温度は、通常−20〜10℃、溶媒が水の場合は−10〜5℃の範囲が好ましい。   The discharged solvent vapor containing oil is cooled by the solvent vapor condensing means installed outside the microwave generator, and the cooled solvent vapor is recovered by the solvent recovery means. Extracted oil is also contained in the solvent vapor, so that the solvent and the oil component evaporated together can be liquefied by cooling the discharged solvent vapor. The temperature of the cooling section in the solvent vapor condensing means 40 is preferably in the range of −20 to 10 ° C., and preferably in the range of −10 to 5 ° C. when the solvent is water.

溶媒回収手段50では、溶媒蒸気凝縮手段40において凝結した蒸留液を回収するとともに、溶媒凝縮手段40の冷却部で冷却された反応物をさらに、−86℃〜5℃で冷却することで、液化しなかったガス状物質を回収することもできる。溶媒が水の場合は、油分が上層に分離するのでそのまま分取することにより、油分を回収することができる。溶媒が有機溶媒の場合は、減圧蒸留などにより油分のみを回収することができる。   The solvent recovery means 50 recovers the distillate condensed in the solvent vapor condensing means 40 and further liquefies the reaction product cooled in the cooling part of the solvent condensing means 40 at −86 ° C. to 5 ° C. It is also possible to recover the gaseous substances that were not. When the solvent is water, the oil component is separated into the upper layer, so that the oil component can be recovered by collecting it as it is. When the solvent is an organic solvent, only the oil can be recovered by vacuum distillation or the like.

また、抽出用の溶媒蒸気が不足する場合は、例えば、溶媒蒸気発生手段20や溶媒蒸気供給路25に切替弁や調整弁などを設置し、溶媒蒸気発生手段を一旦開放系にするなどの操作を行うことにより、反応途中の溶媒の補充を容易に行うことができる。   Further, when the solvent vapor for extraction is insufficient, for example, an operation such as installing a switching valve, a regulating valve or the like in the solvent vapor generating means 20 or the solvent vapor supply path 25 to temporarily open the solvent vapor generating means. By performing the above, it is possible to easily replenish the solvent during the reaction.

前記の抽出溶媒(以下の実施形態においても同じ)としては、水の他、エーテル類、メタノール、エタノールなどのアルコール類、酢酸エチル、ピリジン、テトラヒドロフラン、クロロホルム、アセトンなどの有機溶媒を挙げることができる。これらの抽出溶媒はいずれもマイクロ波吸収性であり、その中でもコスト、安全性等を考慮すると水が好ましい。   Examples of the extraction solvent (same in the following embodiments) include water, alcohols such as ethers, methanol, and ethanol, and organic solvents such as ethyl acetate, pyridine, tetrahydrofuran, chloroform, and acetone. . All of these extraction solvents are microwave-absorbing, and water is preferable in consideration of cost, safety, and the like.

本実施形態では、バイオマスに元々含まれる水分を十分に加熱できるため、マイクロ波のエネルギーがほぼすべてバイオマスの加熱に(溶媒の加熱ではなく)用いられるので、通常の水蒸気蒸留に比較して油の抽出が容易になる。   In this embodiment, since the moisture originally contained in the biomass can be sufficiently heated, almost all of the microwave energy is used for heating the biomass (not for heating the solvent). Extraction becomes easy.

また、本実施形態に係る装置および方法によれば、溶媒蒸気を大量に供給することができ、しかも、マイクロ波発生装置内スペースに可能な限りバイオマスを入れ、バイオマスを大量に仕込むことができるため、バイオマスと溶媒蒸気にマイクロ波を十分に暴露することが可能となり、抽出の効率化が望める。また、マイクロ波照射装置内スペースに可能な限りバイオマスを入れることができるので、バイオマスを一度に多量に処理できる。大量のバイオマスの処理に適した方法であるが、特に葉など水分が多く、柔らかいバイオマスの処理に適している。また、マイクロ波による加熱の効果が低い有機溶媒を用いる場合にも好適である。   In addition, according to the apparatus and method according to the present embodiment, it is possible to supply a large amount of solvent vapor, and to put biomass as much as possible into the space in the microwave generator so that a large amount of biomass can be charged. It is possible to sufficiently expose microwaves to biomass and solvent vapor, and to improve the efficiency of extraction. Moreover, since biomass can be put in the space in a microwave irradiation apparatus as much as possible, biomass can be processed in large quantities at a time. Although this method is suitable for the treatment of a large amount of biomass, it is particularly suitable for the treatment of soft biomass with a lot of moisture such as leaves. Moreover, it is suitable also when using the organic solvent with the low effect of the heating by a microwave.

(実施形態2)
図2は、本発明に係る一実施形態であって、抽出溶媒蒸気発生手段がマイクロ波発生手段(マイクロ波発生装置)の中にあるときの、抽出方法および装置の概略を説明する図である。本実施形態では、溶媒蒸気発生手段はマイクロ波加熱によって蒸気を発生させるように構成されており、発生させた蒸気は、溶媒蒸気供給路25を介して抽出手段に供給されるように構成されている。
(Embodiment 2)
FIG. 2 is a diagram for explaining an outline of the extraction method and apparatus when the extraction solvent vapor generation means is in the microwave generation means (microwave generation apparatus) according to an embodiment of the present invention. . In the present embodiment, the solvent vapor generation means is configured to generate vapor by microwave heating, and the generated vapor is configured to be supplied to the extraction means via the solvent vapor supply path 25. Yes.

図2において、10はマイクロ波発生手段であり、溶媒蒸気発生手段20および抽出手段30が、マイクロ波発生手段であるマイクロ波発生装置の中に配置されている。また、40は溶媒蒸気凝縮手段、50は溶媒回収手段である。溶媒蒸気発生手段20では、マイクロ波によって溶媒を加熱して溶媒蒸気を生成させ、生成させた溶媒蒸気25を、溶媒蒸気供給路25を介して、抽出手段(抽出容器)の下部に導入する。   In FIG. 2, 10 is a microwave generation means, and the solvent vapor generation means 20 and the extraction means 30 are arranged in a microwave generation apparatus that is a microwave generation means. Reference numeral 40 denotes solvent vapor condensing means, and 50 denotes solvent recovery means. In the solvent vapor generation means 20, the solvent is heated by microwaves to generate solvent vapor, and the generated solvent vapor 25 is introduced into the lower part of the extraction means (extraction vessel) via the solvent vapor supply path 25.

前記の抽出手段30では、溶媒蒸気が通過できる程度の大きさの多数の孔を設けた多孔板2の上に、生のバイオマス1を載置し、バイオマス中の油分を抽出する。   In the extraction means 30, the raw biomass 1 is placed on the perforated plate 2 provided with a large number of holes large enough to allow solvent vapor to pass through, and the oil content in the biomass is extracted.

導入された抽出溶媒蒸気は、マイクロ波発生装置内において照射されるマイクロ波によって加熱されながら、多孔板2上に載置されたバイオマスと接触し、バイオマス1の間を通過しながら上昇する。載置されたバイオマス1は、平衡水分量に近い水分を保有しているので、保有水分はマイクロ波によって活性化され、活性化された水によってバイオマスに含まれる油分が抽出される。抽出された油分は、上昇してくる溶媒蒸気とともに、溶媒排出路35を介して、装置外に排出される。この際、装置内は35℃〜150℃に保持されていることが好ましく、より好ましくは90℃〜140℃である。反応温度をこの範囲に保持することにより、抽出される精油成分の分解を防止し、抽出効率を高めることができる。また、必要に応じて、溶媒蒸気供給路25および溶媒排出路35を加熱することにより、蒸気の凝結を防ぐこともできる。   The introduced extraction solvent vapor comes into contact with the biomass placed on the perforated plate 2 while being heated by the microwave irradiated in the microwave generator, and rises while passing between the biomasses 1. Since the placed biomass 1 has moisture close to the equilibrium moisture content, the retained moisture is activated by microwaves, and the oil contained in the biomass is extracted by the activated water. The extracted oil is discharged out of the apparatus through the solvent discharge path 35 together with the rising solvent vapor. Under the present circumstances, it is preferable that the inside of an apparatus is hold | maintained at 35 to 150 degreeC, More preferably, it is 90 to 140 degreeC. By maintaining the reaction temperature within this range, it is possible to prevent the extracted essential oil component from being decomposed and increase the extraction efficiency. Further, if necessary, the condensation of vapor can be prevented by heating the solvent vapor supply path 25 and the solvent discharge path 35.

排出された、油を含む溶媒蒸気は、マイクロ波発生装置外に設置した溶媒蒸気凝縮手段によって冷却され、冷却された溶媒蒸気は溶媒回収手段によって回収される。溶媒蒸気には抽出油も含まれてくるので、排出された溶媒蒸気を冷却することにより、溶媒および、ともに蒸発してきた油分を液化させることができる。溶媒蒸気凝縮手段40における冷却部の温度は、通常−20〜10℃、溶媒が水の場合は−10〜5℃の範囲が好ましい。   The discharged solvent vapor containing oil is cooled by the solvent vapor condensing means installed outside the microwave generator, and the cooled solvent vapor is recovered by the solvent recovery means. Extracted oil is also contained in the solvent vapor, so that the solvent and the oil component evaporated together can be liquefied by cooling the discharged solvent vapor. The temperature of the cooling section in the solvent vapor condensing means 40 is preferably in the range of −20 to 10 ° C., and preferably in the range of −10 to 5 ° C. when the solvent is water.

溶媒回収手段50では、溶媒蒸気凝縮手段40において凝結した蒸留液を回収するとともに、溶媒凝縮手段40の冷却部で冷却された反応物をさらに、−86℃〜5℃で冷却することで、液化しなかったガス状物質を回収することもできる。溶媒が水の場合は、油分が上層に分離するのでそのまま分取することにより、油分を回収することができる。溶媒が有機溶媒の場合は、減圧蒸留などにより油分のみを回収することができる。   The solvent recovery means 50 recovers the distillate condensed in the solvent vapor condensing means 40 and further liquefies the reaction product cooled in the cooling part of the solvent condensing means 40 at −86 ° C. to 5 ° C. It is also possible to recover the gaseous substances that were not. When the solvent is water, the oil component is separated into the upper layer, so that the oil component can be recovered by collecting it as it is. When the solvent is an organic solvent, only the oil can be recovered by vacuum distillation or the like.

本実施形態に係る装置および方法によれば、蒸気の発生もマイクロ波により行うため、加熱手段が1つで済み、省エネルギー型の装置となる。また、図2では溶媒蒸気発生手段20をマイクロ波発生装置10内にのみ設置した例を示したが、溶媒蒸気発生手段20にマイクロ波発生装置10の外に通じる溶媒供給路を設け、該装置外部から溶媒の補充ができるようにしてもよく、これにより蒸気の大量供給も可能となる。   According to the apparatus and method according to the present embodiment, since steam is also generated by microwaves, only one heating means is required, resulting in an energy saving apparatus. 2 shows an example in which the solvent vapor generating means 20 is installed only in the microwave generator 10, the solvent vapor generating means 20 is provided with a solvent supply path leading to the outside of the microwave generator 10, and the apparatus The solvent may be replenished from the outside, which makes it possible to supply a large amount of steam.

また、マイクロ波発生装置の外に蒸気発生手段を有する場合と比べて、蒸気が結露する心配がなく(結露防止エネルギーが不要)、かつ、バイオマス抽出用の反応器とは別体になっているため、溶媒とバイオマスの双方にマイクロ波を照射することができる。溶媒にもマイクロ波を照射することで、溶媒を単分子化しやすく、また、外部加熱に比較して溶媒蒸気の性状が一定する。   Compared to the case where the steam generating means is provided outside the microwave generator, there is no concern that the steam will be condensed (condensation prevention energy is not required), and it is separate from the biomass extraction reactor. Therefore, both the solvent and the biomass can be irradiated with microwaves. By irradiating the solvent with microwaves, the solvent is easily made into a single molecule, and the property of the solvent vapor is constant as compared with external heating.

また、本実施形態では、溶媒蒸気発生手段と抽出手段とが別体になっているため、溶媒(蒸気発生部)へバイオマス成分が混入するおそれがなく、残った溶媒は再度利用することができ、反応途中における溶媒の補充が容易である。バイオマス量に比較して少量の蒸気で油の抽出が可能と考えられるもの(例えば、水分含量の多いバイオマスなど)に適している。また、少量での油抽出テストにも好適である。   In the present embodiment, since the solvent vapor generation means and the extraction means are separate, there is no possibility that biomass components are mixed into the solvent (vapor generation section), and the remaining solvent can be reused. It is easy to replenish the solvent during the reaction. It is suitable for oils that can be extracted with a small amount of steam compared to the amount of biomass (for example, biomass having a high water content). It is also suitable for oil extraction tests with small amounts.

(実施形態3)
図3は、本発明に係る一実施形態であって、抽出溶媒蒸気発生手段がマイクロ波発生手段(マイクロ波発生装置)の中にあるときの、抽出方法および装置の概略を説明する図である。本実施形態では、溶媒蒸気発生手段はマイクロ波加熱によって蒸気を発生させるように構成されており、発生させた蒸気は、溶媒蒸気供給路25を介することなく、直上の抽出手段に供給されるように構成されている。
(Embodiment 3)
FIG. 3 is a diagram for explaining an outline of the extraction method and apparatus when the extraction solvent vapor generation means is in the microwave generation means (microwave generation apparatus) according to an embodiment of the present invention. . In the present embodiment, the solvent vapor generation means is configured to generate vapor by microwave heating, and the generated vapor is supplied to the extraction means directly above without passing through the solvent vapor supply path 25. It is configured.

図3において、10はマイクロ波発生手段であり、溶媒蒸気発生手段20および抽出手段30が一体となった装置が、マイクロ波発生手段であるマイクロ波発生装置の中に配置されている。また、40は溶媒蒸気凝縮手段、50は溶媒回収手段である。溶媒蒸気発生手段20では、マイクロ波によって溶媒を加熱して溶媒蒸気を生成させ、生成させた溶媒蒸気25を、直上に配置されたバイオマスに供給する。   In FIG. 3, 10 is a microwave generating means, and an apparatus in which the solvent vapor generating means 20 and the extracting means 30 are integrated is arranged in a microwave generating apparatus that is a microwave generating means. Reference numeral 40 denotes solvent vapor condensing means, and 50 denotes solvent recovery means. In the solvent vapor generating means 20, the solvent is heated by microwaves to generate solvent vapor, and the generated solvent vapor 25 is supplied to the biomass disposed immediately above.

前記の抽出手段30では、溶媒蒸気が通過できる程度の大きさの多数の孔を設けた多孔板2の上に、生のバイオマス1を載置し、バイオマス中の油分を抽出する。   In the extraction means 30, the raw biomass 1 is placed on the perforated plate 2 provided with a large number of holes large enough to allow solvent vapor to pass through, and the oil content in the biomass is extracted.

供給された蒸気は、マイクロ波発生装置内において照射されるマイクロ波によって加熱されながら、多孔板2上に載置されたバイオマスと接触し、バイオマス1の間を通過しながら上昇する。載置されたバイオマス1は、平衡水分量に近い水分を保有しているので、保有水分はマイクロ波によって活性化され、活性化された水によってバイオマスに含まれる油分が抽出される。抽出された油分は、上昇してくる溶媒蒸気とともに、溶媒排出路35を介して、装置外に排出される。この際、装置内は35℃〜150℃に保持されていることが好ましく、より好ましくは90℃〜140℃である。反応温度をこの範囲に保持することにより、抽出される精油成分の分解を防止し、抽出効率を高めることができる。また、必要に応じて、溶媒蒸気供給路25および溶媒排出路35を加熱することにより、蒸気の凝結を防ぐこともできる。   The supplied steam comes into contact with the biomass placed on the perforated plate 2 while being heated by the microwave irradiated in the microwave generator, and rises while passing between the biomasses 1. Since the placed biomass 1 has moisture close to the equilibrium moisture content, the retained moisture is activated by microwaves, and the oil contained in the biomass is extracted by the activated water. The extracted oil is discharged out of the apparatus through the solvent discharge path 35 together with the rising solvent vapor. Under the present circumstances, it is preferable that the inside of an apparatus is hold | maintained at 35 to 150 degreeC, More preferably, it is 90 to 140 degreeC. By maintaining the reaction temperature within this range, it is possible to prevent the extracted essential oil component from being decomposed and increase the extraction efficiency. Further, if necessary, the condensation of vapor can be prevented by heating the solvent vapor supply path 25 and the solvent discharge path 35.

排出された、油を含む溶媒蒸気は、マイクロ波発生装置外に設置した溶媒蒸気凝縮手段によって冷却され、冷却された溶媒蒸気は溶媒回収手段によって回収される。溶媒蒸気には抽出油が含まれているので、排出された溶媒蒸気を冷却することにより、溶媒および、ともに蒸発してきた油分を液化させることができる。溶媒蒸気凝縮手段40における冷却部の温度は、通常−20〜10℃、溶媒が水の場合は−10〜5℃の範囲が好ましい。   The discharged solvent vapor containing oil is cooled by the solvent vapor condensing means installed outside the microwave generator, and the cooled solvent vapor is recovered by the solvent recovery means. Since the solvent oil contains extracted oil, the solvent and the oil that has evaporated together can be liquefied by cooling the discharged solvent vapor. The temperature of the cooling section in the solvent vapor condensing means 40 is preferably in the range of −20 to 10 ° C., and preferably in the range of −10 to 5 ° C. when the solvent is water.

溶媒回収手段50では、溶媒蒸気凝縮手段40において凝結した蒸留液を回収するとともに、溶媒凝縮手段40の冷却部で冷却された反応物をさらに、−86℃〜5℃で冷却することで、液化しなかったガス状物質を回収することもできる。溶媒が水の場合は、油分が上層に分離するのでそのまま分取することにより、油分を回収することができる。溶媒が有機溶媒の場合は、減圧蒸留などにより油分を回収することができる。   The solvent recovery means 50 recovers the distillate condensed in the solvent vapor condensing means 40 and further liquefies the reaction product cooled in the cooling part of the solvent condensing means 40 at −86 ° C. to 5 ° C. It is also possible to recover the gaseous substances that were not. When the solvent is water, the oil component is separated into the upper layer, so that the oil component can be recovered by collecting it as it is. When the solvent is an organic solvent, the oil can be recovered by vacuum distillation or the like.

本実施形態に係る装置および方法によれば、蒸気の発生もマイクロ波により行うため、加熱手段が1つで済み、最も省エネルギー型の装置となる。また、図3では溶媒蒸気発生手段20をマイクロ波発生装置10内にのみ設置した例を示したが、溶媒蒸気発生手段20にマイクロ波発生装置10の外に通じる溶媒供給路を設け、該装置外部から溶媒の補充ができるようにしてもよく、これにより蒸気の大量供給も可能となる。   According to the apparatus and method according to the present embodiment, since steam is generated by microwaves, only one heating means is required, and the apparatus is the most energy-saving. FIG. 3 shows an example in which the solvent vapor generating means 20 is installed only in the microwave generator 10, but the solvent vapor generating means 20 is provided with a solvent supply path leading to the outside of the microwave generator 10, and the apparatus The solvent may be replenished from the outside, which makes it possible to supply a large amount of steam.

また、マイクロ波発生装置の外に蒸気発生手段を有する場合と比べて、蒸気が結露する心配がなく(結露防止エネルギーが不要)、かつ、バイオマス抽出用の反応器とは別体になっているため、溶媒とバイオマスの双方にマイクロ波を照射することができる。溶媒にもマイクロ波を照射することで、溶媒を単分子化しやすく、また、外部加熱に比較して溶媒蒸気の性状が一定する。   Compared to the case where the steam generating means is provided outside the microwave generator, there is no concern that the steam will be condensed (condensation prevention energy is not required), and it is separate from the biomass extraction reactor. Therefore, both the solvent and the biomass can be irradiated with microwaves. By irradiating the solvent with microwaves, the solvent is easily made into a single molecule, and the property of the solvent vapor is constant as compared with external heating.

本実施形態は、発生した蒸気を直ぐにバイオマスに当てることができ、また、図1〜図3に示す3種の装置の中で、バイオマスに当てる蒸気圧をやや高めにすることができるので、高沸点の油成分の抽出や、やや大きめに粉砕したバイオマス、硬質(幹や実の殻など)のバイオマスからの油の抽出に適している。蒸気圧が高くなることにより、バイオマス内部の油分も周りの水分に誘引されて抽出されすくなる。抽出容器の形状は、マイクロ波発生装置の庫内にできる限り平面的に広がった形状を有するものが、マイクロ波の被照射面積を増やすことができるので、好ましい。   In the present embodiment, the generated steam can be immediately applied to the biomass, and the steam pressure applied to the biomass can be slightly increased in the three types of apparatuses shown in FIGS. It is suitable for extracting oil components with boiling points, extracting oil from slightly crushed biomass, and hard (trunk, fruit shell, etc.) biomass. By increasing the vapor pressure, the oil inside the biomass is attracted by the surrounding moisture and is easily extracted. The shape of the extraction container is preferably one having a shape that spreads as much as possible in the interior of the microwave generator, since the area to be irradiated with microwaves can be increased.

本発明に係る装置および方法において、植物バイオマスとしては、栽培系バイオマス及び廃棄物系バイオマスが、主に使用される。栽培系バイオマスとしては、木や草の葉、実、枝、根などが挙げられる。廃棄物系バイオマスとしては、木材、間伐材、伐採木、剪定枝、おがくず、樹皮、チップ、端材、流木、竹、笹、木質建築廃材などの木質系バイオマス;モミ殻、稲藁、麦藁、バガス、アブラヤシ(パーム油の原料)のヤシ殻などの農作物系バイオマス;食品工場や外食産業から出る食品残渣などの食物系バイオマスなどを挙げることができる。これらのなかでも、油の含有量の観点では、栽培系バイオマスや食物系バイオマスが良く、成分の安定性では栽培系バイオマスが好適である。また、栽培系バイオマスのなかでも、実や葉が好ましく、一般的には広葉樹より針葉樹が好ましい。   In the apparatus and method according to the present invention, cultivation biomass and waste biomass are mainly used as plant biomass. Examples of cultivated biomass include trees, grass leaves, fruits, branches, and roots. Waste biomass includes timber, thinned wood, felled trees, pruned branches, sawdust, bark, chips, wood chips, driftwood, bamboo, firewood, wood construction waste wood, etc .; fir shell, rice straw, wheat straw, Agricultural biomass such as bagasse and oil palm (raw material of palm oil); food biomass such as food residues from food factories and the restaurant industry. Among these, from the viewpoint of oil content, cultivated biomass and food-based biomass are good, and cultivated biomass is suitable in terms of component stability. Moreover, fruit and leaves are preferable among cultivated biomass, and conifers are generally preferable to hardwoods.

本発明においては、抽出溶媒と分離された状態のバイオマスにマイクロ波を照射するので、バイオマスに含まれる水分を直接加熱することが可能となり、バイオマス中の油成分を通常の水蒸気蒸留よりも抽出しやすくなる。   In the present invention, microwaves are irradiated to the biomass separated from the extraction solvent, so that moisture contained in the biomass can be directly heated, and oil components in the biomass are extracted more than ordinary steam distillation. It becomes easy.

マイクロ波発生装置から照射されるマイクロ波の出力や周波数、照射方法は、特に限定されるものではなく、反応温度が所定の範囲に保持できるよう電気的に制御すればよい。出力が低すぎる場合は溶媒蒸気発生量が少なくなり、出力が高すぎる場合はバイオマスの発火、溶媒の突沸や急激な蒸発が起こるため、電気的に制御しながら10W〜20kWの範囲とするのが望ましい。マイクロ波の周波数は0.5〜10GHzが望ましい。0.5GHz未満の周波数では溶媒分子が電界の向きに追従可能で加熱効率が悪く、又、10GHzを超える周波数では、ガラス等の容器まで加熱されてしまい効率的でない。マイクロ波の照射は連続照射、間欠照射のいずれの方法であってもよいが、電気的に制御しながら連続照射するのが好ましい。マイクロ波発振器としては、マグネトロン等のマイクロ波発振器や、固体素子を用いたマイクロ波発振器等を適宜用いることができる。   The output, frequency, and irradiation method of the microwave irradiated from the microwave generator are not particularly limited, and may be electrically controlled so that the reaction temperature can be maintained within a predetermined range. If the output is too low, the amount of solvent vapor generated will be small. If the output is too high, biomass will ignite, bumping of the solvent and rapid evaporation will occur. desirable. The microwave frequency is preferably 0.5 to 10 GHz. If the frequency is less than 0.5 GHz, the solvent molecules can follow the direction of the electric field and the heating efficiency is poor, and if the frequency exceeds 10 GHz, the container such as glass is heated, which is not efficient. Microwave irradiation may be either continuous irradiation or intermittent irradiation, but it is preferable to perform continuous irradiation while being electrically controlled. As the microwave oscillator, a microwave oscillator such as a magnetron, a microwave oscillator using a solid element, or the like can be used as appropriate.

また、マイクロ波発生装置内に設置される溶媒蒸気発生手段や抽出手段に用いられる装置の材質は、マイクロ波を透過するもの、例えばポリエチレン、テフロン(登録商標)などのプラスチック、陶器、石英ガラスなどが好適である。   Moreover, the material of the apparatus used for the solvent vapor generation means and extraction means installed in the microwave generator is a material that transmits microwaves, such as polyethylene, Teflon (registered trademark) plastic, earthenware, quartz glass, etc. Is preferred.

以下、本発明を実施例および比較例を用いて更に具体的に説明するが、本発明は以下の実施例のみに限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.

<実施例1(実施形態1の蒸気導入タイプ)>
図1に示したマイクロ波発生装置(10)内に設置された内径100mm高さ100mmのセパラブル三ツ口円筒フラスコ(30)に、テフロン製の目皿(2)を設置した。目皿の穴は5mmのものを使用し、その上に、バイオマスが下にこぼれ落ちないようにメッシュサイズ0.75φのテフロンパンチングシートを設置した。この上に、バイオマスとしてトドマツ葉粉砕物53.92gを加えた。トドマツ葉粉砕物は分析ミル(IKA Works Guangzhou社製 型式:A11 basic)にて8mmアンダーに破砕して得た。
<Example 1 (Steam introduction type of Embodiment 1)>
A Teflon eye plate (2) was installed in a separable three-necked cylindrical flask (30) having an inner diameter of 100 mm and a height of 100 mm installed in the microwave generator (10) shown in FIG. A 5 mm hole was used for the eye plate, and a Teflon punching sheet having a mesh size of 0.75φ was installed on the top so that the biomass would not spill down. On top of this, 53.92 g of Todomatsu leaf pulverized product was added as biomass. Todomatsu leaf pulverized product was obtained by crushing under 8 mm using an analysis mill (model: A11 basic, manufactured by IKA Works Guangzhou).

マイクロ波発生装置(10)の外に、純水161.09gと沸石を加えた500ml容のナス型フラスコ(20)をマントルヒーター(21)内に設置し、上記の円筒フラスコ(30)と連結した。さらに、円筒フラスコと連結するように長さ300mmのリービッヒ冷却管(40)を設置し、これに100ml容の分液ロート(50)を連結した。なお、冷却部(40)にはリービッヒ冷却管に加えて、分岐管にてさらに補助冷却用のジムロートを連結してもよい。また、分液ロートとリービッヒ冷却管との連結部を分岐し、余分な排ガスをドラフトへ送気する管を設けた。   In addition to the microwave generator (10), a 500 ml eggplant type flask (20) containing 161.09 g of pure water and zeolite was placed in the mantle heater (21) and connected to the cylindrical flask (30). did. Further, a Liebig condenser (40) having a length of 300 mm was installed so as to be connected to the cylindrical flask, and a 100 ml separatory funnel (50) was connected thereto. In addition to the Liebig cooling pipe, an auxiliary cooling Dimroth may be further connected to the cooling section (40) by a branch pipe. Further, a connecting portion between the separatory funnel and the Liebig cooling pipe was branched, and a pipe for supplying excess exhaust gas to the draft was provided.

上記のナス型フラスコ(20)を120℃のマントルヒーターにて加熱し、発生した蒸気が円筒フラスコ(30)に達した時点で、周波数2.45GHzのマイクロ波を該円筒フラスコに照射し、バイオマス試料温度を120〜150℃に保つようマイクロ波出力を制御しながら、60分間反応を行い、水蒸気蒸留を行った。また、このときのトータル反応時間は80分であった。なお、反応中適時、分液ロートに回収された液のうち、水層(下層)の適量を別容器(蒸留水容器)に移し、分液ロート中で常に油水分離ができるようにした。   The eggplant-shaped flask (20) is heated with a mantle heater at 120 ° C., and when the generated steam reaches the cylindrical flask (30), the cylindrical flask is irradiated with microwaves having a frequency of 2.45 GHz, and biomass While controlling the microwave output so as to keep the sample temperature at 120 to 150 ° C., the reaction was performed for 60 minutes, and steam distillation was performed. The total reaction time at this time was 80 minutes. When appropriate during the reaction, an appropriate amount of the aqueous layer (lower layer) of the liquid collected in the separating funnel was transferred to another container (distilled water container) so that oil-water separation was always possible in the separating funnel.

水蒸気蒸留初溜から10分毎の精油回収量を測定した。反応後の全油分収量は779.4mgであった。また、これをバイオマス100g−dryあたりの精油収量に換算すると3583.23mgであった。   The amount of essential oil recovered every 10 minutes from the initial distillation of steam distillation was measured. The total oil yield after the reaction was 779.4 mg. Moreover, it was 3583.23 mg when this was converted into the essential oil yield per biomass 100g-dry.

得られた精油の発熱量は、吉田製作所製熱量測定装置−Jにて測定したところ、42643J/gであった。   The calorific value of the obtained essential oil was 42463 J / g as measured with a calorimeter-J from Yoshida Seisakusho.

<実施例2(実施形態3の蒸気発生、縦列タイプ)>
図3に示したマイクロ波発生装置(10)内に設置された内径100mm高さ100mmのセパラブル三ツ口円筒フラスコ(30)に、純水161.09gと沸石を加え、テフロン製の目皿(2)を設置した。目皿及びバイオマス落下防止用シートは実施例1と同様のものを用いた。この上に、バイオマスとして8mmアンダーに粉砕したトドマツ葉粉砕物53.92gを加えた。マイクロ波発生装置(10)外に、円筒フラスコ(30)と連結するように長さ300mmのリービッヒ冷却管(40)を連結し、さらに100ml容の分液ロート(50)を連結した。なお、冷却部(40)にはリービッヒ冷却管に加えて分岐管にて補助冷却用のジムロートを連結してもよい。また、分液ロートとリービッヒ冷却管との連結部を分岐し、余分な排ガスをドラフトへ送気する管を設けた。
<Example 2 (steam generation, tandem type of embodiment 3)>
To a separable three-necked cylindrical flask (30) having an inner diameter of 100 mm and a height of 100 mm installed in the microwave generator (10) shown in FIG. Was installed. The same thing as Example 1 was used for the eye plate and the biomass fall prevention sheet. On top of this, 53.92 g of Todomatsu leaf pulverized material pulverized to 8 mm under as biomass was added. A Liebig condenser tube (40) having a length of 300 mm was connected to the outside of the microwave generator (10) so as to be connected to the cylindrical flask (30), and a 100 ml separatory funnel (50) was further connected. In addition to the Liebig cooling pipe, an auxiliary cooling Dimroth may be connected to the cooling section (40) by a branch pipe. Further, a connecting portion between the separatory funnel and the Liebig cooling pipe was branched, and a pipe for supplying excess exhaust gas to the draft was provided.

周波数2.45GHzのマイクロ波を上記反応装置に照射し、バイオマス試料温度を120〜150℃に保つようマイクロ波出力を制御しながら、60分間反応を行い、水蒸気蒸留を行った。なお、反応中適時、分液ロートに回収された液のうち、水層(下層)の適量を蒸留水容器に移し、分液ロート中で常に油水分離ができるようにした。   The reaction apparatus was irradiated with microwaves having a frequency of 2.45 GHz, and the reaction was performed for 60 minutes while controlling the microwave output so as to keep the biomass sample temperature at 120 to 150 ° C., and steam distillation was performed. In addition, of the liquid collected in the separating funnel at an appropriate time during the reaction, an appropriate amount of the aqueous layer (lower layer) was transferred to a distilled water container so that oil-water separation was always possible in the separating funnel.

水蒸気蒸留初溜から10分毎の精油回収量を測定した。反応後の全油分収量は549.7mgであった。また、これをバイオマス100g−dryあたりの精油収量に換算すると2527.20mgであった。   The amount of essential oil recovered every 10 minutes from the initial distillation of steam distillation was measured. The total oil yield after the reaction was 549.7 mg. Moreover, when this was converted into the essential oil yield per 100 g-dry of biomass, it was 2527.20 mg.

<比較例(従来型水蒸気蒸留)>
マイクロ波照射を行わない他は、実施例1と同一の装置構成にて従来法の水蒸気蒸留を行った。なお、蒸気発生用のナス型フラスコ(20)と反応容器(30)との水蒸気導入連結部分及び反応容器出口とリービッヒ冷却管との連結部に補助加熱手段としてリボンヒーターを設置した。マントルヒーター内(21)に設置した500ml容のナス型フラスコ(20)には、純水499.99gと沸石を加えた。反応容器(30)には、目皿、バイオマス落下防止用シートの上にトドマツ葉の粉砕物60.08gを加えた。
<Comparative example (conventional steam distillation)>
Except not performing microwave irradiation, the steam distillation of the conventional method was performed by the same apparatus structure as Example 1. FIG. Ribbon heaters were installed as auxiliary heating means at the steam introduction connecting portion between the eggplant-shaped flask (20) for generating steam and the reaction vessel (30) and at the connecting portion between the reaction vessel outlet and the Liebig condenser. To a 500 ml eggplant type flask (20) installed in the mantle heater (21), 499.99 g of pure water and zeolite were added. In the reaction vessel (30), 60.08 g of pulverized Todomatsu leaf was added to the eye plate and the biomass falling prevention sheet.

ナス型フラスコ(20)を120℃のマントルヒーターにて加熱し、水蒸気導入連結部分及び反応容器出口とリービッヒ冷却管との連結部に設置したリボンヒータも120℃にて加温した。発生した蒸気が反応容器(30)に達した時点から、60分間反応を行い、水蒸気蒸留を行った。また、このときのトータル反応時間は133分であった。なお、反応中適時、分液ロートに回収された液のうち、水層(下層)の適量を蒸留水容器に移し、分液ロート中で常に油水分離ができるようにした。   The eggplant-shaped flask (20) was heated with a 120 ° C. mantle heater, and the ribbon heater installed at the steam inlet connection portion and the connection portion between the reaction vessel outlet and the Liebig condenser was also heated at 120 ° C. The reaction was performed for 60 minutes from the time when the generated steam reached the reaction vessel (30), and steam distillation was performed. Further, the total reaction time at this time was 133 minutes. In addition, of the liquid collected in the separating funnel at an appropriate time during the reaction, an appropriate amount of the aqueous layer (lower layer) was transferred to a distilled water container so that oil-water separation was always possible in the separating funnel.

反応後の油分収量は525.1mgであった。また、これをバイオマス100g−dryあたりの精油収量に換算すると2166.59mgであった。   The oil yield after the reaction was 525.1 mg. Moreover, it was 2166.59 mg when this was converted into the essential oil yield per 100 g-dry of biomass.

実施例1,2および比較例における蒸留初留から10分毎の精油回収量を、試料100g−dryあたりの精油収量に換算した値の結果を、表1に示す。表1から明らかなように、本実施例は水蒸気蒸留よりも短時間でかつ多量の精油を回収することができた。   Table 1 shows the results of values obtained by converting the amount of recovered essential oil every 10 minutes from the first distillation in Examples 1 and 2 and Comparative Examples into the yield of essential oil per 100 g-dry of the sample. As is apparent from Table 1, this example was able to recover a large amount of essential oil in a shorter time than steam distillation.

Figure 2007098383
Figure 2007098383

<実施例3(消費電力の比較)>
実施例1,2および比較例の反応における消費電力を測定した。マイクロ波照射装置の消費電力は、マイクロ波照射制御装置からの電力供給値をデータロガーより得て、その積算値から算出した。マントルヒーターの消費電力はYOKOGAWA製WT130デジタルパワーメーターにて消費電力を測定して得た。比較例(従来法)での値を基準として、各実施例の単位精油収量あたりの消費エネルギーを比較した結果を表2に示す。表2の結果から、本発明の方法および装置は従来法と比べて省エネルギーであることがわかる。
<Example 3 (comparison of power consumption)>
The power consumption in the reactions of Examples 1 and 2 and Comparative Example was measured. The power consumption of the microwave irradiation device was calculated from the integrated value obtained from the data logger obtained from the power supply value from the microwave irradiation control device. The power consumption of the mantle heater was obtained by measuring the power consumption with a WT130 digital power meter manufactured by YOKOGAWA. Table 2 shows the results of comparing the energy consumption per unit essential oil yield of each Example, based on the value in the comparative example (conventional method). From the results in Table 2, it can be seen that the method and apparatus of the present invention are energy saving compared to the conventional method.

Figure 2007098383
Figure 2007098383

本発明の方法により、植物バイオマスから様々な天然物質を抽出し、その抽出物を製薬、化粧品、食品、芳香剤、染色剤などの様々な産業分野で利用することが可能となる。また、抽出後の植物バイオマスは、燃料として利用することができる。さらに、本発明の方法および装置は、小規模の抽出試験に応用することもできる。   By the method of the present invention, various natural substances can be extracted from plant biomass, and the extract can be used in various industrial fields such as pharmaceuticals, cosmetics, foods, fragrances, and dyes. Moreover, the plant biomass after extraction can be utilized as a fuel. Furthermore, the method and apparatus of the present invention can be applied to small scale extraction tests.

実施形態1に係る抽出装置の概略を示す構成図である。It is a block diagram which shows the outline of the extraction apparatus which concerns on Embodiment 1. FIG. 実施形態2に係る抽出装置の概略を示す構成図である。It is a block diagram which shows the outline of the extraction apparatus which concerns on Embodiment 2. FIG. 実施形態3に係る抽出装置の概略を示す構成図である。It is a block diagram which shows the outline of the extraction apparatus which concerns on Embodiment 3.

符号の説明Explanation of symbols

1 バイオマス
2 多孔板
10 マイクロ波発生手段
20 溶媒蒸気発生手段
21 加熱手段
25 溶媒蒸気供給路
30 抽出手段
35 溶媒排出路
40 溶媒蒸気凝縮手段
50 溶媒回収手段
DESCRIPTION OF SYMBOLS 1 Biomass 2 Porous board 10 Microwave generation means 20 Solvent vapor generation means 21 Heating means 25 Solvent vapor supply path 30 Extraction means 35 Solvent discharge path 40 Solvent vapor condensation means 50 Solvent recovery means

Claims (15)

マイクロ波を用いて植物バイオマスから油を抽出する方法であって、
植物バイオマスを含むマイクロ波発生装置内において、抽出溶媒蒸気を生成または導入し、マイクロ波によって前記抽出溶媒および植物バイオマスを加熱して油を抽出し、
該油を含む溶媒蒸気を前記装置外に排出して凝縮し、抽出油および溶媒を回収することを特徴とする方法。
A method for extracting oil from plant biomass using microwaves,
In a microwave generator containing plant biomass, an extraction solvent vapor is generated or introduced, and the extraction solvent and plant biomass are heated by microwave to extract oil,
A method comprising exhausting the solvent vapor containing the oil out of the apparatus and condensing it to recover the extracted oil and the solvent.
マイクロ波を用いて植物バイオマスから油を抽出する方法であって、
マイクロ波発生装置内において、抽出容器に収容された植物バイオマスにマイクロ波を照射し、該装置内に導入された抽出溶媒蒸気と前記植物バイオマスとを接触させて油を抽出し、
該油を含む溶媒蒸気を前記装置外に排出して凝縮し、抽出油および溶媒を回収することを特徴とする方法。
A method for extracting oil from plant biomass using microwaves,
In the microwave generator, the plant biomass contained in the extraction container is irradiated with microwaves, and the extraction solvent vapor introduced into the device is brought into contact with the plant biomass to extract oil,
A method comprising exhausting the solvent vapor containing the oil out of the apparatus and condensing it to recover the extracted oil and the solvent.
マイクロ波を用いて植物バイオマスから油を抽出する方法であって、
マイクロ波発生装置内において、抽出溶媒と抽出容器に収容された植物バイオマスにマイクロ波を照射し、マイクロ波によって加熱された前記溶媒蒸気と植物バイオマスとを接触させて油を抽出し、
該油を含む溶媒蒸気を前記装置外に排出して凝縮し、抽出油および溶媒を回収することを特徴とする方法。
A method for extracting oil from plant biomass using microwaves,
In the microwave generator, the plant biomass contained in the extraction solvent and the extraction container is irradiated with microwaves, the solvent vapor heated by the microwave and the plant biomass are contacted, and oil is extracted,
A method comprising exhausting the solvent vapor containing the oil out of the apparatus and condensing it to recover the extracted oil and the solvent.
前記抽出溶媒は、マイクロ波吸収性である請求項1〜3のいずれか1項に記載の方法。   The method according to claim 1, wherein the extraction solvent is microwave-absorbing. 前記抽出溶媒は水である請求項1〜4のいずれか1項に記載の方法。   The method according to claim 1, wherein the extraction solvent is water. 前記植物バイオマスは、栽培系バイオマスまたは廃棄物系バイオマスである請求項1〜5のいずれか1項に記載の方法。   The method according to any one of claims 1 to 5, wherein the plant biomass is cultivated biomass or waste biomass. 前記マイクロ波の周波数が、0.5GHz〜10GHzである請求項1〜6のいずれか1項に記載の方法。   The method according to any one of claims 1 to 6, wherein a frequency of the microwave is 0.5 GHz to 10 GHz. 植物バイオマスから油を抽出するための抽出装置であって、
マイクロ波発生手段と、溶媒蒸気発生手段と、溶媒蒸気によって植物バイオマスから油を抽出する抽出手段とを備え、
抽出溶媒を蒸気状態にするために該溶媒を加熱する加熱手段を有していることを特徴とする抽出装置。
An extraction device for extracting oil from plant biomass,
Microwave generation means, solvent vapor generation means, and extraction means for extracting oil from plant biomass by solvent vapor,
An extraction apparatus comprising heating means for heating the extraction solvent to make it vapor.
前記抽出手段は、植物バイオマスを収容し、抽出溶媒蒸気によって該植物バイオマスから油を抽出するための抽出容器である請求項8に記載の抽出装置。   The extraction device according to claim 8, wherein the extraction means is an extraction container that contains plant biomass and extracts oil from the plant biomass by extraction solvent vapor. 前記溶媒蒸気発生手段として前記抽出溶媒を貯留する貯留槽を有する請求項8または9に記載の抽出装置。   The extraction device according to claim 8 or 9, further comprising a storage tank for storing the extraction solvent as the solvent vapor generation means. さらに、溶媒蒸気凝縮手段と、溶媒回収手段とを備えた請求項8〜10のいずれか1項に記載の抽出装置。   The extraction device according to any one of claims 8 to 10, further comprising a solvent vapor condensing unit and a solvent recovery unit. 前記抽出溶媒は水である請求項8〜11のいずれか1項に記載の抽出装置。   The extraction device according to any one of claims 8 to 11, wherein the extraction solvent is water. 前記加熱手段によって発生させた溶媒蒸気が、溶媒蒸気供給路を介して前記抽出手段に供給されるように構成されている請求項8〜12のいずれか1項に記載の抽出装置。   The extraction apparatus according to any one of claims 8 to 12, wherein the solvent vapor generated by the heating means is supplied to the extraction means via a solvent vapor supply path. 前記加熱手段によって発生させた溶媒蒸気が、上方に配置された前記抽出手段に供給されるように構成されている請求項8〜13のいずれか1項に記載の抽出装置。   The extraction apparatus according to any one of claims 8 to 13, wherein the solvent vapor generated by the heating unit is supplied to the extraction unit disposed above. 前記加熱手段は、マイクロ波発生装置または電気ヒータである請求項8〜14のいずれか1項に記載の抽出装置。
The extraction device according to any one of claims 8 to 14, wherein the heating means is a microwave generator or an electric heater.
JP2006146354A 2005-09-07 2006-05-26 Extraction method of oil from plant biomass using microwaves Expired - Fee Related JP4923733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006146354A JP4923733B2 (en) 2005-09-07 2006-05-26 Extraction method of oil from plant biomass using microwaves

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005258681 2005-09-07
JP2005258681 2005-09-07
JP2006146354A JP4923733B2 (en) 2005-09-07 2006-05-26 Extraction method of oil from plant biomass using microwaves

Publications (2)

Publication Number Publication Date
JP2007098383A true JP2007098383A (en) 2007-04-19
JP4923733B2 JP4923733B2 (en) 2012-04-25

Family

ID=38025839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006146354A Expired - Fee Related JP4923733B2 (en) 2005-09-07 2006-05-26 Extraction method of oil from plant biomass using microwaves

Country Status (1)

Country Link
JP (1) JP4923733B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007231196A (en) * 2006-03-02 2007-09-13 Tokyo Electric Power Co Inc:The Volatile oil extractor using microwave
JP2008264760A (en) * 2007-04-20 2008-11-06 Food Industry Research & Development Institute Quick extraction method by microwave irradiation
JP2009148658A (en) * 2007-12-19 2009-07-09 Tokyo Electric Power Co Inc:The Compact extraction device for microwave oven
JP2009213449A (en) * 2008-03-12 2009-09-24 Tokyo Electric Power Co Inc:The Method for producing monosaccharide and ethanol by using oil-based plant biomass residue as raw material
JP2010279916A (en) * 2009-06-05 2010-12-16 Tokyo Electric Power Co Inc:The Multiple effective utilization system of plant biomass
JP2012030167A (en) * 2010-07-29 2012-02-16 Kanematsu Engineering Kk Extractor using microwave
CN102485361A (en) * 2010-12-01 2012-06-06 东港市低压电器附件厂 Food waste environment friendly disposer
CN102580348A (en) * 2012-02-24 2012-07-18 安徽科技学院 Active constituent extractor for natural substance
JP2014196896A (en) * 2013-03-05 2014-10-16 四国計測工業株式会社 Microwave irradiation apparatus and method
JP2015536966A (en) * 2012-11-14 2015-12-24 アクゾ ノーベル ケミカルズ インターナショナル ベスローテン フエンノートシャップAkzo Nobel Chemicals International B.V. Methods for preparing bioactive plant compositions and compositions made from the methods
JP2017008111A (en) * 2016-10-17 2017-01-12 エステー株式会社 Aromatic composition and aromatic agent using the same, deodorant and antibacterial agent
WO2017088624A1 (en) * 2015-11-25 2017-06-01 东南大学 Method and apparatus for drying biological solid material employing both microwave irradiation and solvent extraction
CN108568138A (en) * 2018-07-09 2018-09-25 山东端信堂大禹药业有限公司 A kind of device and its extracting method extracting tanshinone compound from Radix Salviae Miltiorrhizae
CN110170514A (en) * 2019-07-09 2019-08-27 北京石油化工学院 A kind of steam coupling microwaves heat treatment contaminated soil equipment
KR20210123650A (en) * 2020-04-03 2021-10-14 한국과학기술연구원 Apparatus for conversion of large capacity natural material using microwave with preset pressure function

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106554840A (en) * 2015-09-30 2017-04-05 中国石油化工股份有限公司 Crude oil sludge processing method and its using steam warm stove and device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04183796A (en) * 1990-11-15 1992-06-30 Pare Josselin Method and device for microwave extraction of volatile oil
JPH07248187A (en) * 1994-03-14 1995-09-26 Hitachi Ltd Heating dryer
JPH0985001A (en) * 1995-09-20 1997-03-31 Shozo Koyama Distillation and separation method and distillation and separation apparatus
JPH11114302A (en) * 1997-10-14 1999-04-27 Toyo Kouatsu:Kk Small-sized extractor
JP2002542941A (en) * 1999-04-30 2002-12-17 バルール・ボワ・アンドユストウリ Method for extracting natural liquor of woody plant material, device for performing the method, and use of the method for producing dry woody plant or liquor
JP2004089786A (en) * 2002-08-29 2004-03-25 Croda Japan Kk Extraction method for plant extract
JP2006051483A (en) * 2004-08-13 2006-02-23 Entron:Kk Drying treatment apparatus by complex heating for organic waste

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04183796A (en) * 1990-11-15 1992-06-30 Pare Josselin Method and device for microwave extraction of volatile oil
JPH07248187A (en) * 1994-03-14 1995-09-26 Hitachi Ltd Heating dryer
JPH0985001A (en) * 1995-09-20 1997-03-31 Shozo Koyama Distillation and separation method and distillation and separation apparatus
JPH11114302A (en) * 1997-10-14 1999-04-27 Toyo Kouatsu:Kk Small-sized extractor
JP2002542941A (en) * 1999-04-30 2002-12-17 バルール・ボワ・アンドユストウリ Method for extracting natural liquor of woody plant material, device for performing the method, and use of the method for producing dry woody plant or liquor
JP2004089786A (en) * 2002-08-29 2004-03-25 Croda Japan Kk Extraction method for plant extract
JP2006051483A (en) * 2004-08-13 2006-02-23 Entron:Kk Drying treatment apparatus by complex heating for organic waste

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007231196A (en) * 2006-03-02 2007-09-13 Tokyo Electric Power Co Inc:The Volatile oil extractor using microwave
JP2008264760A (en) * 2007-04-20 2008-11-06 Food Industry Research & Development Institute Quick extraction method by microwave irradiation
JP2009148658A (en) * 2007-12-19 2009-07-09 Tokyo Electric Power Co Inc:The Compact extraction device for microwave oven
JP2009213449A (en) * 2008-03-12 2009-09-24 Tokyo Electric Power Co Inc:The Method for producing monosaccharide and ethanol by using oil-based plant biomass residue as raw material
JP2010279916A (en) * 2009-06-05 2010-12-16 Tokyo Electric Power Co Inc:The Multiple effective utilization system of plant biomass
JP2012030167A (en) * 2010-07-29 2012-02-16 Kanematsu Engineering Kk Extractor using microwave
CN102485361A (en) * 2010-12-01 2012-06-06 东港市低压电器附件厂 Food waste environment friendly disposer
CN102580348A (en) * 2012-02-24 2012-07-18 安徽科技学院 Active constituent extractor for natural substance
JP2015536966A (en) * 2012-11-14 2015-12-24 アクゾ ノーベル ケミカルズ インターナショナル ベスローテン フエンノートシャップAkzo Nobel Chemicals International B.V. Methods for preparing bioactive plant compositions and compositions made from the methods
JP2014196896A (en) * 2013-03-05 2014-10-16 四国計測工業株式会社 Microwave irradiation apparatus and method
WO2017088624A1 (en) * 2015-11-25 2017-06-01 东南大学 Method and apparatus for drying biological solid material employing both microwave irradiation and solvent extraction
US10661320B2 (en) 2015-11-25 2020-05-26 Southeast University Method and apparatus for dewatering biological solid material employing both microwave irradiation and solvent extraction
JP2017008111A (en) * 2016-10-17 2017-01-12 エステー株式会社 Aromatic composition and aromatic agent using the same, deodorant and antibacterial agent
CN108568138A (en) * 2018-07-09 2018-09-25 山东端信堂大禹药业有限公司 A kind of device and its extracting method extracting tanshinone compound from Radix Salviae Miltiorrhizae
CN110170514A (en) * 2019-07-09 2019-08-27 北京石油化工学院 A kind of steam coupling microwaves heat treatment contaminated soil equipment
KR20210123650A (en) * 2020-04-03 2021-10-14 한국과학기술연구원 Apparatus for conversion of large capacity natural material using microwave with preset pressure function
KR102327152B1 (en) 2020-04-03 2021-11-17 한국과학기술연구원 Apparatus for conversion of large capacity natural material using microwave with preset pressure function

Also Published As

Publication number Publication date
JP4923733B2 (en) 2012-04-25

Similar Documents

Publication Publication Date Title
JP4923733B2 (en) Extraction method of oil from plant biomass using microwaves
Taghizadeh-Alisaraei et al. Potential of biofuel production from pistachio waste in Iran
JP4923649B2 (en) Plant biomass processing system using microwaves
Aysu et al. Biomass pyrolysis in a fixed-bed reactor: Effects of pyrolysis parameters on product yields and characterization of products
Su et al. State-of-the-art of the pyrolysis and co-pyrolysis of food waste: Progress and challenges
Chouchene et al. Combined process for the treatment of olive oil mill wastewater: Absorption on sawdust and combustion of the impregnated sawdust
Rahman Pyrolysis of water hyacinth in a fixed bed reactor: Parametric effects on product distribution, characterization and syngas evolutionary behavior
JP5211429B2 (en) Essential oil extraction equipment using microwaves
JP2007097422A (en) System for fermentation, distillation and drying
Chan et al. Progress in thermochemical co-processing of biomass and sludge for sustainable energy, value-added products and circular economy
Zhang et al. Full recycling of high-value resources from cabbage waste by multi-stage utilization
Velmurugan Review of research and development on pyrolysis process
Allende et al. Energy recovery from sugarcane bagasse under varying microwave-assisted pyrolysis conditions
Song et al. Study on the microwave extraction process and product distribution of essential oils from citrus peel
JP5287524B2 (en) Multiple effective utilization system of plant biomass
JP2010520318A (en) Method for producing high carbon content vegetable carbon and apparatus for carrying out the method
JP2007054688A (en) Extraction method of organic substance and extractor of organic substance
JP2010280849A (en) Utilization system of plant-based biomass
Li et al. White poplar microwave pyrolysis: Heating rate and optimization of biochar yield
JP5267195B2 (en) Microwave extraction device for plant-derived essential oil
Marques et al. Strategies for enhancing soil phytoremediation and biomass valorization
JP2007313442A (en) Microwave extraction method and extraction apparatus
ES2377897T3 (en) VEH�? SELF-PROPELLED HARVEST ASSY FOR COLLECTION PRODUCTS TO BE USED TECHNICALLY.
JP5050456B2 (en) Separation device
JP2009160528A (en) Separation apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4923733

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees