JP2007098301A - Method for continuously cleaning and discharging soil - Google Patents

Method for continuously cleaning and discharging soil Download PDF

Info

Publication number
JP2007098301A
JP2007098301A JP2005292438A JP2005292438A JP2007098301A JP 2007098301 A JP2007098301 A JP 2007098301A JP 2005292438 A JP2005292438 A JP 2005292438A JP 2005292438 A JP2005292438 A JP 2005292438A JP 2007098301 A JP2007098301 A JP 2007098301A
Authority
JP
Japan
Prior art keywords
soil
water
volume
contaminated
sedimentation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005292438A
Other languages
Japanese (ja)
Inventor
Tadahiro Fujii
忠広 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005292438A priority Critical patent/JP2007098301A/en
Publication of JP2007098301A publication Critical patent/JP2007098301A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To continuously clean contaminated soil by contamination, complex contamination or the like by oil, organic compound materials, heavy metals and its compounds at a low cost. <P>SOLUTION: This method comprises the followings: (i) a process of slurrying for preparing a contaminated soil slurry by preparing a mixed fluid by injecting water to contaminated soil and sucking the mixed fluid by a water ejector utilizing pressurized water as a driving source; (ii) a process of precipitation-separation for continuously preparing precipitated soil comprising soil particles precipitated and separated from a downward flow at the time of recovering an upward flow as contaminated water by continuously precipitating and separating the contaminated soil slurry and separating into the upward flow of diluted water containing lots of contaminants and the downward flow consisting of most of the soil particles; and (iii) a process of discharge having an extruder continuously discharging and transferring the precipitated soil to prepare cleaned soil. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、汚染土壌と水でスラリーを連続的に作り、次いで、そのスラリーを連続的に沈降分離処理した後、その沈降分離した沈降土を排出し移送して洗浄土を得る汚染土壌の連続洗浄排出方法に関する。   In the present invention, a slurry is continuously made from contaminated soil and water, and then the slurry is continuously settled and separated, and then the sedimented and separated sediment is discharged and transferred to obtain washed soil. It relates to a cleaning and discharging method.

近年、産業活動による結果として、油、有機化合物質、重金属やその化合物による汚染及び複合汚染等による汚染土壌の存在が環境問題として注目されている。土壌汚染の問題点は、汚染された土壌の存在自体が問題であること以外に、その土壌を通過した水の水質汚染、土壌からの有害な揮発物質の拡散による大気汚染等により、生態系に多大の悪影響を及ぼしていることである。   In recent years, as a result of industrial activities, the presence of soil contaminated with oil, organic compounds, heavy metals and their compounds, and contaminated soil due to complex pollution has attracted attention as an environmental problem. The problem of soil contamination is that the existence of the contaminated soil itself is a problem, as well as water pollution of the water that has passed through the soil, air pollution due to the diffusion of harmful volatile substances from the soil, etc. It has a great negative effect.

このような土壌汚染による環境への悪影響を回避する方法として土壌浄化対策が提案されている。例えば、汚染土壌の掘削廃棄、汚染土壌の焼却処理、汚染物質の化学的抽出処理、あるいはバイオデメレーション等が挙げられる。これらの方法は、汚染物質の特性、汚染土壌の性質、環境及び処理費用・工期等を考慮して選択され、実施されている。   Soil remediation measures have been proposed as a method for avoiding such adverse environmental effects due to soil contamination. Examples thereof include excavation and disposal of contaminated soil, incineration processing of contaminated soil, chemical extraction processing of pollutants, or biodemetry. These methods are selected and implemented in consideration of the characteristics of pollutants, the nature of the contaminated soil, the environment, treatment costs and construction period, and the like.

しかし、上述した方法は大きな欠点を内在しているのが現実である。例えば、多くの場合に行われている汚染土壌の掘削廃棄方法は、汚染物質の移転に過ぎず、環境汚染が却って拡散する。焼却処理方法は、土を焼却するため、エネルギーの莫大な消費を必要とすると同時に熱による土壌の変質が生じる。   However, in reality, the above-described method has a major drawback. For example, in many cases, the excavation and disposal method of contaminated soil is merely transfer of pollutants, and environmental pollution spreads instead. Since the incineration method incinerates the soil, it requires enormous consumption of energy, and at the same time, the soil is altered by heat.

土壌洗浄処理方法では、水又は洗浄剤が使用される。水による洗浄の場合、土と汚染物質との分離に、例えば、特許文献1に記載されているようなサイクロンを利用するために、土組成のうち微細粒子も汚染物質とともに廃棄処理される。このために、土壌の数十%を廃棄する場合も発生している。   In the soil cleaning treatment method, water or a cleaning agent is used. In the case of washing with water, in order to use, for example, a cyclone as described in Patent Document 1 to separate soil and contaminants, fine particles in the soil composition are also discarded together with the contaminants. For this reason, some tens of percent of the soil is discarded.

土壌洗浄処理では、洗浄剤を用いる洗浄方法も多く開示されている。
特許文献2に記載の方法では、例えば、油汚染土壌の洗浄のために、土壌の質量に相当する水と非イオン性界面活性剤を加えて、10分間洗浄する。次いで、それを脱水した後のすすぎ洗浄のために、前回と同等量の水を加えて10分間攪拌洗浄を行っている。
In the soil cleaning treatment, many cleaning methods using a cleaning agent are also disclosed.
In the method described in Patent Document 2, for example, for washing oil-contaminated soil, water corresponding to the mass of the soil and a nonionic surfactant are added and washed for 10 minutes. Next, for rinsing and washing after dehydration, the same amount of water as before is added and stirring and washing is performed for 10 minutes.

特許文献3に記載の方法では、例えば、汚染土壌の質量の5倍の土壌洗浄剤を加えて15分間攪拌する。次いで、脱水して、更に土の質量の3倍の水で洗浄している。
また、難水溶性有機物による汚染土壌の洗浄方法として、洗浄水に非イオン性界面活性剤を投入して洗浄した後、その汚染水を処理するためにさらに鉄塩と高分子凝集剤を添加する方法も知られている。
In the method described in Patent Document 3, for example, a soil cleaning agent 5 times the mass of the contaminated soil is added and stirred for 15 minutes. Next, it is dehydrated and further washed with water 3 times the mass of the soil.
In addition, as a method of washing contaminated soil with poorly water-soluble organic matter, after adding a nonionic surfactant to the wash water and washing it, an iron salt and a polymer flocculant are added to treat the contaminated water. Methods are also known.

以上のような洗浄剤の使用や長い処理時間を要する方法は、経済的に不利である。また、化学的抽出処理法では、土壌が洗浄剤や抽出剤で更に汚染される可能性が残り、バイオメデレーションでは、効果が遅行性のために工期が長期化する。更には、従来の土壌洗浄方法は、土壌洗浄が回分操作で行われており、土壌をスラリー化した後、洗浄・排出までを一貫して連続操作で行う土壌連続洗浄排出方法は知られていなかった。   The use of such a cleaning agent and a method requiring a long processing time are economically disadvantageous. In addition, the chemical extraction treatment method leaves the possibility of further contamination of the soil with a cleaning agent or an extraction agent, and in biomedation, the work period is prolonged due to the delayed effect. Furthermore, in the conventional soil cleaning method, soil cleaning is performed by batch operation, and there is no known soil continuous cleaning and discharging method in which soil is slurried and then washed and discharged in a continuous operation. It was.

上述したように、従来公知の土壌洗浄方法には多くの問題があるが、汚染土壌中の汚染物質の種類や汚染環境等の土壌処理の前提条件が複雑なこともあって、コスト高な土壌浄化方法が採用されているのが現状であり、コスト削減を実現しうる土壌浄化方法が求められている。   As described above, there are many problems with the conventionally known soil cleaning methods, but the preconditions for soil treatment such as the types of pollutants in the contaminated soil and the contaminated environment may be complicated, so the cost of the soil Currently, a purification method is employed, and there is a demand for a soil purification method that can realize cost reduction.

特開2003−251330号公報JP 2003-251330 A 特開2003−1238号公報JP 2003-1238 A 特開2003−119495号公報JP 2003-119495 A

本発明は、上記のような従来方法の問題を解決するためになされたものであり、汚染土壌と希釈水でスラリーを作った後、該スラリーを連続的に沈降分離し、且つ連続的に安定して排出し移送することにより、浄化され且つ汚染土壌とほぼ同一組成で変質のない洗浄土を安定して高回収率で回収するとともに、汚染物質の含まれた汚染水を水処理し、回収された水を希釈水として有効に循環利用し、使用する水の量を節減することを目的とする。   The present invention has been made to solve the problems of the conventional methods as described above, and after making a slurry with contaminated soil and diluted water, the slurry is continuously settled and separated and continuously stabilized. In this way, the soil that has been purified and has almost the same composition as the contaminated soil and remains unaltered is recovered stably and at a high recovery rate, and the contaminated water containing the contaminant is treated with water and recovered. The purpose is to reduce the amount of water used by effectively circulating the used water as dilution water.

本発明者は、上記課題を解決するために鋭意研究した結果、環境への影響を考慮して、洗浄媒体として水のみを利用し、汚染された土壌を水で希釈してスラリーを作り、そのスラリーを連続して沈降分離し、大部分の汚染物質を含む汚染水を分離すると共に、沈降分離した沈降土を、連続して且つ安定な運転操作により目標とする高い洗浄率及び回収率で、洗浄土として得る方法を見出し、本発明を完成するに至った。なお、洗浄率とは、汚染物質の除去率のことである。
即ち、本発明は下記の通りである。
As a result of diligent research to solve the above-mentioned problems, the present inventor considers the influence on the environment, uses only water as a cleaning medium, dilutes contaminated soil with water, and creates a slurry. The slurry is continuously settled and separated, and the contaminated water containing most of the pollutants is separated, and the settled sediment is separated and settled at a target high washing rate and recovery rate through a stable operation. The inventors have found a method for obtaining the washing soil and have completed the present invention. The cleaning rate is the contaminant removal rate.
That is, the present invention is as follows.

(1)下記(イ)、(ロ)、(ハ)を有することを特徴とする土壌連続洗浄排出方法。
(イ)土粒子、汚染物質及び含有水からなる汚染土壌と、該汚染土壌に流動性を付与するために注入する水から成る混合体を、圧力水を駆動源とする水エジェクターで混合して、注入水と圧力水を希釈水とする汚染土壌スラリーを連続して作るスラリー化工程、
(1) A soil continuous washing and discharging method comprising the following (a), (b), and (c).
(I) Mixing a mixture of contaminated soil composed of soil particles, contaminants and contained water and water injected to impart fluidity to the contaminated soil with a water ejector driven by pressure water. , A slurrying process that continuously creates a contaminated soil slurry using the injected water and pressure water as dilution water,

(ロ)該汚染土壌スラリーを沈降分離槽の中央部に注入し、沈降分離槽内で、土粒子を主とする下降流と、汚染物質を含む希釈水を主とする上昇流に分流することにより、土粒子と汚染物質を連続的に分離し、汚染物質を含む希釈水を汚染水として沈降分離槽の上部から連続して排出し、下降流から沈降分離した沈降土を沈降分離槽の下部から連続して排出する沈降分離工程、及び、   (B) Injecting the contaminated soil slurry into the center of the sedimentation separation tank, and dividing the slurry into a downward flow mainly composed of soil particles and an upward flow composed mainly of contaminated water in the sedimentation separation tank. In this way, soil particles and contaminants are continuously separated, diluted water containing contaminants is continuously discharged as contaminated water from the upper part of the sedimentation tank, and the settled soil settled and separated from the descending flow is removed from the lower part of the sedimentation tank. Sedimentation and separation step of continuously discharging from

(ハ)該沈降土を、押出機を用いて、沈降分離槽の下部から連続して排出し移送して洗浄土を得る排出工程。   (C) A discharging step in which the settling soil is continuously discharged and transferred from the lower part of the settling separation tank using an extruder to obtain washed soil.

(2)汚染土壌の単位時間当たりの体積Vに含まれる土粒子の体積をS、含有水の体積をG、汚染物質の体積をPとするとき、洗浄土に残留する汚染物質の体積をP1まで減少させるために、希釈水の体積Wが下記式(a)及び(b)を満足する条件で運転することを特徴とする上記(1)に記載の土壌連続洗浄排出方法。
W≧(P/P1−1)×G ………(a)
(G+W)/S≧1.5 ………(b)
(2) When the volume of soil particles contained in the volume V 0 of contaminated soil is S, the volume of contained water is G, and the volume of pollutants is P, the volume of pollutants remaining in the washed soil is In order to reduce to P1, the soil continuous washing and discharging method according to the above (1), wherein the volume W of the dilution water is operated under the conditions satisfying the following formulas (a) and (b).
W ≧ (P / P1-1) × G (a)
(G + W) /S≧1.5 (b)

(3)押出機が、沈降土を移送中に沈降土の充填率を高めることを特徴とする上記(1)又は(2)に記載の土壌連続洗浄排出方法。   (3) The soil continuous washing and discharging method according to the above (1) or (2), wherein the extruder increases the filling rate of the subsidence during transfer of the subsidence.

(4)沈降分離槽に流入する汚染土壌スラリーの時間当たりの体積をV、該Vを構成する土粒子の体積をS、含有水の体積をG、希釈水の体積をW、汚染物質の体積をPとし、かつ、該沈降分離槽の底部から排出する沈降土の時間当たりの体積をV1、該V1を構成する土粒子の体積をS1、含有水と希釈水の各一部からなる同伴水の体積をT1、汚染物質の体積をP1とするとき、下記式(c)及び(d)の運転条件を満足する沈降分離槽を用いることを特徴とする上記(1)〜(3)のいずれかに記載の土壌連続洗浄排出方法。   (4) The volume per hour of the contaminated soil slurry flowing into the settling tank is V, the volume of the soil particles constituting the V is S, the volume of the contained water is G, the volume of the diluted water is W, the volume of the pollutant P, and the volume per hour of the settled soil discharged from the bottom of the settling tank is V1, the volume of the soil particles constituting the V1 is S1, and the entrained water composed of each part of the contained water and dilution water Any one of the above (1) to (3), wherein a sedimentation tank satisfying the operating conditions of the following formulas (c) and (d) is used, where T1 is the volume of the pollutant and P1 is the volume of the contaminant. The soil continuous washing | cleaning discharge method of crab.

(S1/S)≧0.8 ………(c)
(T1/S1)≦2 ………(d)
(S1 / S) ≧ 0.8 (c)
(T1 / S1) ≦ 2 (d)

(5)沈降分離槽に流入する汚染土壌スラリーの時間当たりの体積をV、該Vを構成する土粒子の体積をS、含有水の体積をG、希釈水の体積をW、汚染物質の体積をPとするとき、沈降分離槽の運転条件が下記(e)を満足し、かつ、
((W+G)/S)≧1.5 ………(e)
(5) The volume per hour of the contaminated soil slurry flowing into the settling tank is V, the volume of soil particles constituting the V is S, the volume of contained water is G, the volume of diluted water is W, the volume of contaminants Is set to P, the operating conditions of the sedimentation tank satisfy the following (e), and
((W + G) / S) ≧ 1.5 (e)

該沈降分離槽の底部から排出する沈降土の時間当たりの体積をV1、該V1を構成する土粒子の体積をS1、含有水と希釈水の各一部からなる同伴水の体積をT1、汚染物質の体積をP1とし、かつ、   V1 is the volume per hour of the settled soil discharged from the bottom of the settling tank, S1 is the volume of the soil particles constituting the V1, T1 is the volume of the entrained water consisting of each part of the contained water and dilution water, and contamination. The volume of the substance is P1, and

沈降分離槽に接続する押出機の出口から排出する洗浄土の時間当たりの体積をV3、該V3を構成する土粒子の体積をS3、含有水と希釈水の各一部からなる同伴水の体積をT3、汚染物質の体積をP3とし、かつ、   The volume per hour of the washed soil discharged from the outlet of the extruder connected to the settling tank is V3, the volume of the soil particles constituting the V3 is S3, and the volume of the entrained water composed of each part of the contained water and the dilution water. Is T3, the volume of contaminant is P3, and

沈降分離槽の底部に存在する沈降土の体積をK1、該K1を構成する土粒子の体積をSK1、含有水と希釈水の各一部からなる同伴水の体積をTK1、そして汚染物質の体積をPK1とし、かつ、   The volume of settled soil existing at the bottom of the settling tank is K1, the volume of soil particles constituting the K1 is SK1, the volume of entrained water consisting of each part of the contained water and dilution water is TK1, and the volume of contaminants Is PK1, and

沈降分離槽に接続する押出機の出口における洗浄土の体積をK3、該K3を構成する土粒子の体積をSK3、含有水と希釈水の各一部からなる同伴水の体積をTK3、そして汚染物質の体積をPK3とするとき、   The volume of the washed soil at the outlet of the extruder connected to the settling tank is K3, the volume of the soil particles constituting the K3 is SK3, the volume of the entrained water consisting of each part of the contained water and the diluted water is TK3, and the contamination When the volume of the substance is PK3,

下記式(f)〜(j)の運転条件を満足する押出機を用いることを特徴とする上記(1)〜(4)のいずれかに記載の土壌連続洗浄排出方法。   The soil continuous washing and discharging method according to any one of the above (1) to (4), wherein an extruder that satisfies the operating conditions of the following formulas (f) to (j) is used.

(S3/S)≧0.8 ………(f)
(T3/S3)≦2 ………(g)
α=TK1/SK1 ………(h)
β=TK3/SK3 ………(i)
(α/β)≧1.2 ………(j)
(S3 / S) ≧ 0.8 (f)
(T3 / S3) ≦ 2 (g)
α = TK1 / SK1 (……) (h)
β = TK3 / SK3 (i)
(Α / β) ≧ 1.2 ……… (j)

(6)押出機の出口部を上方に上げ、押出機の入口部と出口部との間の垂直距離をH1とし、押出機の入口部と沈降分離槽の汚染水の排出口との間の垂直距離をH2とするとき、(H1/H2)が1.3〜0.4であることを特徴とする上記(1)〜(5)のいずれかに記載の土壌連続洗浄排出方法。   (6) Raise the outlet of the extruder upward, set the vertical distance between the inlet and outlet of the extruder to H1, and between the inlet of the extruder and the polluted water discharge port of the settling tank The soil continuous washing and discharging method according to any one of (1) to (5) above, wherein (H1 / H2) is 1.3 to 0.4 when the vertical distance is H2.

(7)沈降分離槽において、沈降土の堆積高さ及び/又は堆積土の圧力を検出して、沈降土の堆積時間を制御することを特徴とする上記(1)〜(6)のいずれかに記載の土壌連続洗浄排出方法。   (7) In any one of the above (1) to (6), in the sedimentation tank, the sedimentation height and / or pressure of the sedimentation soil is detected to control the sedimentation time of the sedimentation soil. The soil continuous washing | cleaning discharge | emission method as described in.

(8)水エジェクターにおいて、沈降分離槽の上部から連続して排出される汚染水を浄化した後の水の一部を駆動源の圧力水として使用することを特徴とする上記(1)〜(7)のいずれかに記載の土壌連続洗浄排出方法。   (8) In the water ejector, a part of the water after purifying the polluted water continuously discharged from the upper part of the settling tank is used as the pressure water of the driving source. 7) The soil continuous washing and discharging method according to any one of 7).

以下、本発明につき詳細に説明する。   Hereinafter, the present invention will be described in detail.

上記(1)に係わる発明につき説明する。
(1)に係わる発明は、油、無機化合物、有機化合物、重金属とその化合物等及びそれらにより複合汚染した汚染土壌に流動性を付与するため、水を注入して混合流体を作り、駆動源として圧力水を利用する水エジェクター(図1に一例を示す)で混合流体を吸引させて汚染土壌スラリーを作るスラリー化工程(イ)と、注入水と圧力水が希釈水となっている汚染土壌スラリーを連続的に沈降分離して、汚染物質を多く含む希釈水の上昇流と大方の土粒子からなる下降流に分流して、上昇流を汚染水として回収すると共に、下降流から沈降分離した土粒子からなる沈降土を連続して得る沈降分離工程(ロ)、及び、沈降土を連続的に排出し移送して洗浄土とする押出機を有する排出工程(ハ)からなることを特徴とする。
The invention relating to the above (1) will be described.
In order to impart fluidity to oil, inorganic compounds, organic compounds, heavy metals and their compounds, etc., and contaminated soil contaminated by them, the invention according to (1) is used to create a mixed fluid by injecting water, and as a drive source A slurrying step (a) in which a mixed fluid is sucked with a water ejector (an example is shown in FIG. 1) using pressure water to create a contaminated soil slurry, and a contaminated soil slurry in which the injected water and the pressure water are diluted water. Is separated into a rising flow of dilution water containing a large amount of contaminants and a downward flow consisting of most soil particles, and the upward flow is recovered as contaminated water, and the soil separated from the downward flow by sedimentation is separated. It is characterized by comprising a settling and separation step (B) for continuously obtaining settling soil composed of particles, and a discharge step (C) having an extruder for continuously discharging and transferring the settling soil to be washed soil. .

(イ)スラリー化工程
洗浄対象の汚染土壌は、土粒子、その含有水及び汚染物質から構成されている。土粒子径は、一般的には、おおよそ20000ミクロンから、1ミクロン以下の微粒子径まで分布している。汚染土壌の土粒子の体積と含有水の体積はほぼ同じである場合が多い。
(B) Slurry process The contaminated soil to be cleaned is composed of soil particles, water contained therein, and pollutants. The soil particle size is generally distributed from approximately 20000 microns to a particle size of 1 micron or less. In many cases, the volume of soil particles in the contaminated soil is substantially the same as the volume of water contained.

この汚染土壌に、配管内での流動性を確保する程度まで水を注入して混合体とした後、図1に示すような水エジェクターで吸引する。混合体は、1〜5MPaの圧力水(10気圧から50気圧程度の圧力水が好ましい)と吸引された空気と共にノズルから噴出し、その噴出の効果で減圧になった水エジェクター内に流入する。   Water is poured into this contaminated soil to the extent that fluidity in the pipe is ensured, and the mixture is then sucked with a water ejector as shown in FIG. The mixture is ejected from the nozzle together with 1 to 5 MPa of pressure water (preferably about 10 to 50 atmospheres of pressure water) and the sucked air, and flows into the water ejector whose pressure is reduced by the effect of the ejection.

混合体、圧力水及び空気は、スロート部を通過しつつ混合され、高速汚染土壌スラリーとして水エジェクターの出口部から流出する。即ち、注入水及び圧力水からなる希釈水と含有水及び吸引された空気が混合した高速汚染土壌スラリーが得られる。この高速汚染土壌スラリーは、水エジェクターの出口部から1〜10m/秒程度の速度で噴出するので、図2に示すような減速器を通過させることにより、空気を排気しながら0.01〜0.5m/秒程度に減速して汚染土壌スラリーとすることが好ましい。但し、これらの速度は一例であって、これらに限定されるものではない。   The mixture, the pressure water and the air are mixed while passing through the throat part, and flow out from the outlet part of the water ejector as a high-speed contaminated soil slurry. That is, a high-speed contaminated soil slurry in which dilution water composed of injected water and pressure water, contained water, and sucked air are mixed is obtained. Since this high-speed contaminated soil slurry is ejected at a speed of about 1 to 10 m / sec from the outlet of the water ejector, it passes through a speed reducer as shown in FIG. It is preferable to decelerate to about 5 m / sec to obtain a contaminated soil slurry. However, these speeds are examples, and are not limited to these.

注入水及び圧力水以外に、さらに水を追加して希釈水として土壌洗浄スラリーを作ることも可能である。汚染物質は土粒子間に大方存在しているので、この汚染土壌スラリーにおいては、土粒子間が分離するとともに、汚染物質は土粒子から剥離して希釈水と含有水に均一に分散される。汚染物質の含有水に対する濃度に比較して、汚染物質の含有水と希釈水に対する濃度はその希釈水量に逆比例して希薄になる。   In addition to the injection water and pressure water, it is also possible to add water to make a soil washing slurry as dilution water. Since the contaminants are mostly present between the soil particles, the soil particles are separated from each other in the contaminated soil slurry, and the contaminants are separated from the soil particles and uniformly dispersed in the diluted water and the contained water. Compared with the concentration of the pollutant with respect to the contained water, the concentration of the pollutant with respect to the contained water and the diluted water becomes diluted in inverse proportion to the amount of the diluted water.

汚染物質が油のような液体以外の重金属の場合でも、重金属汚染の発生源は化合物の場合が多く、その化合物は多くの土微粒子に付着して存在しているので、その土微粒子がコロイド状態で存在している結果として重金属も含有水と希釈水に均一に分散される。
このような状態にするのが、スラリー化工程である。
Even if the pollutant is a heavy metal other than a liquid such as oil, the source of heavy metal contamination is often a compound, and since the compound is attached to many soil particles, the soil particles are in a colloidal state. As a result, the heavy metal is also uniformly dispersed in the contained water and the diluted water.
Such a state is a slurrying process.

(ロ)沈降分離工程
汚染土壌スラリーを沈降分離槽の縦断面の上下及び左右方向のほぼ中央部に注入すると、主に土粒子からなる下降流と希釈水からなる上昇流に分流する。汚染土壌スラリーを構成する土粒子の80%(体積%)以上、望ましくは95%(体積%)以上が重力沈降するように、例えば、土粒子の大径からの累積量が95%(体積%)になる土粒子径のストークス沈降速度を目安として、主に希釈水からなる上昇流の上昇速度を実現する横断面積を有する沈降分離槽において、汚染土壌スラリーから分離した大方の土粒子は沈降分離槽の底部で堆積層を形成する沈降土になる。この沈降土を沈降分離槽から連続して排出する。
(B) Sedimentation separation process When contaminated soil slurry is injected into the vertical section of the sedimentation tank and approximately the center in the left-right direction, it is divided into a downward flow mainly composed of soil particles and an upward flow composed of dilution water. For example, the cumulative amount of soil particles from the large diameter is 95% (volume%) so that 80% (volume%) or more, preferably 95% (volume%) or more of the soil particles constituting the contaminated soil slurry is gravity settled. In the sedimentation tank with a cross-sectional area that realizes the ascent rate of the upward flow mainly composed of dilution water, the majority of the soil particles separated from the contaminated soil slurry are settled and separated using the Stokes sedimentation rate of the soil particle size It becomes a subsoil that forms a sedimentary layer at the bottom of the tank. This settling soil is continuously discharged from the settling tank.

沈降土には同伴水が存在しているが、該同伴水は含有水と希釈水の各一部から形成されているので、該同伴水の汚染物質濃度は希釈水の量に逆比例して減少しており、従って、沈降土の単位体積当たりの汚染物質の体積は、汚染土壌中の単位体積当たりの汚染物質の体積に比べて減少している。   Although entrained water is present in the subsidence soil, the entrained water is formed from each part of the contained water and the diluted water, so the concentration of contaminants in the entrained water is inversely proportional to the amount of diluted water. Thus, the volume of contaminant per unit volume of subsidence is reduced compared to the volume of contaminant per unit volume in the contaminated soil.

一方、該汚染土壌スラリーから分離した大部分の汚染物質を含む希釈水は上昇流となり、沈降分離槽の上部から汚染水として槽外に排出される。以上の操作をするのが沈降分離工程である。
沈降分離槽から排出された汚染水は多くの汚染物質を含有しているので、汚染水から汚染物質を除去した後、本発明の土壌連続洗浄排出方法に用いる注入水や圧力水などの希釈水として再使用することが、経済性の点から当然望ましい。
On the other hand, the dilution water containing most of the contaminants separated from the contaminated soil slurry becomes an upward flow and is discharged out of the tank as contaminated water from the upper part of the settling tank. The above operation is the sedimentation separation process.
Since the contaminated water discharged from the sedimentation tank contains many contaminants, after removing the contaminants from the contaminated water, diluted water such as injection water and pressure water used in the soil continuous washing and discharging method of the present invention. Of course, it is desirable to reuse as

沈降分離槽の形状としては、縦型円筒槽、上部円筒下部円錐槽、角型槽などを用いることができ、沈降土の排出口はその槽の最下部であることが好ましく、汚染水の排出口は槽上部に位置し且つ複数個あっても良い。   As the shape of the sedimentation separation tank, a vertical cylindrical tank, an upper cylindrical lower conical tank, a rectangular tank, or the like can be used, and the sedimentation outlet is preferably at the bottom of the tank, and the drainage of contaminated water is performed. There may be a plurality of outlets located in the upper part of the tank.

(ハ)排出工程
沈降土は、沈降分離槽に接続した押出機を介して槽外に排出し移送する。
押出機は、沈降分離槽に注入した汚染土壌スラリーが沈降分離して堆積層を形成することなく、即ち、目標より多くの同伴水とともに沈降分離槽外に流出するのを防止すると同時に、その同伴水を減少させるために沈降土が沈降分離槽内で必要な堆積時間を保持するように押出機の吐出量を制御する機能も兼ねながら移送する装置である。この必要な堆積時間とは0.5分から3分程度で十分である。
(C) Discharge process The settled soil is discharged out of the tank and transferred through an extruder connected to the sedimentation tank.
The extruder prevents the contaminated soil slurry injected into the settling tank from settling and forming a sediment layer, that is, preventing it from flowing out of the settling tank with more entrained water than the target, and at the same time In order to reduce water, the sedimentation soil is transported while also having the function of controlling the discharge amount of the extruder so as to maintain the necessary accumulation time in the sedimentation tank. The necessary deposition time is about 0.5 to 3 minutes.

上記(2)に係わる発明につき説明する。
汚染土壌の体積Vに含まれる土粒子の体積をS、含有水の体積をG、汚染物質の体積をPとするとき、汚染物質の水に対する濃度比率Rは(P/G)である。
The invention relating to the above (2) will be described.
When the volume of soil particles contained in the volume V 0 of the contaminated soil is S, the volume of the contained water is G, and the volume of the pollutant is P, the concentration ratio R 0 of the pollutant to water is (P / G). .

希釈水の体積Wと汚染土壌Vとで均質なスラリーを作る場合、汚染物質の水に対する濃度比率RSは(P/(G+W))である。当然、汚染物質濃度比率RSはRに比較して小さい。理想的な状態として、このスラリーから土粒子の全量を分離し且つ同伴水の体積が含有水量相当のGであると仮定すれば、その該同伴水中の汚染物質P1は(P/(G+W))×Gとなる。従って、洗浄土に残留する汚染物質を体積P1まで減少させるために必要な希釈水Wは、下記式(a)を満足すればよい。 When a homogeneous slurry is formed with the volume W of the dilution water and the contaminated soil V 0 , the concentration ratio RS of the pollutant to water is (P / (G + W)). Naturally, the pollutant concentration ratio RS is small compared to R0 . As an ideal condition, assuming that the total amount of soil particles is separated from the slurry and the volume of the entrained water is G corresponding to the amount of contained water, the pollutant P1 in the entrained water is (P / (G + W)) XG. Therefore, the dilution water W necessary for reducing the contaminants remaining in the cleaning soil to the volume P1 may satisfy the following formula (a).

W≧((P/P1)−1)×G ………(a)
なお、下記式(a−1)、(a−2)、(a−3)及び(a−4)は、上記式(a)の導入式である。
W ≧ ((P / P1) −1) × G (a)
The following formulas (a-1), (a-2), (a-3) and (a-4) are introduction formulas of the above formula (a).

P1=(P/(G+W))×G ………(a−1)
P1/P=G/(G+W) ………(a−2)
(G+W)=G×(P/P1) ………(a−3)
W=G×((P/P1)−1) ………(a−4)
P1 = (P / (G + W)) × G (a-1)
P1 / P = G / (G + W) ......... (a-2)
(G + W) = G × (P / P1) (a-3)
W = G × ((P / P1) −1) (a-4)

同時に、汚染土壌のスラリーの管内流動性を確保するための希釈水の必要量は、下記式(b)を満足すればよい。
(G+W)/S≧1.5 ………(b)
At the same time, the necessary amount of dilution water for ensuring the fluidity of the contaminated soil slurry in the pipe may satisfy the following formula (b).
(G + W) /S≧1.5 (b)

(2)に係わる発明は、これらの式(a)及び(b)を満足する条件で運転することを特徴とする前記(1)に記載の土壌連続洗浄排出方法である。
また、この汚染物質PをP1まで減少させる際に、その削減の程度に応じて、2回とか3回等の多段操作によって実現することが望ましい。
The invention according to (2) is the soil continuous washing and discharging method according to the above (1), characterized in that the operation is performed under conditions satisfying these expressions (a) and (b).
Moreover, when reducing this pollutant P to P1, it is desirable to implement | achieve by multistage operation of 2 times or 3 times etc. according to the degree of the reduction.

(2)に係わる発明について更に詳細に説明する。
本発明において、スラリー化工程で作られた汚染土壌スラリーは、次の沈降分離工程に移送され、連続的に沈降分離槽で沈降分離されて大部分の土粒子は下降流となり、土粒子から剥離した汚染物質を含む希釈水は上昇流となり、汚染水として分離されて槽外に排出される。
The invention relating to (2) will be described in more detail.
In the present invention, the contaminated soil slurry produced in the slurrying process is transferred to the next sedimentation separation process, where it is continuously settled and separated in the sedimentation separation tank, so that most of the soil particles are descended and separated from the soil particles. The diluted water containing pollutants becomes an upward flow, is separated as contaminated water, and is discharged out of the tank.

この現象の概念は下記のとおりである。
沈降分離槽での土壌スラリー流体のマスバランスを図3に示す。図3において、沈降分離槽に連続的に流入するスラリーの流量(V)、沈降分離槽の上部から連続的に排出される汚染水の流量(V2)、沈降分離槽の下部から連続的に排出される沈降土の流量(V1)は、下記の通りである。
The concept of this phenomenon is as follows.
The mass balance of the soil slurry fluid in the settling tank is shown in FIG. In FIG. 3, the flow rate (V) of slurry continuously flowing into the settling separation tank, the flow rate (V2) of contaminated water continuously discharged from the upper part of the settling separation tank, and continuous discharge from the lower part of the settling separation tank. The flow rate (V1) of the settled soil is as follows.

V=S+G+W+P
V2=S2+W2+P2
V1=S1+G+W1+P1
V=V1+V2
なお、土壌スラリー流体に関する記号は下記の通りである(単位は、時間当たりの体積)。
V = S + G + W + P
V2 = S2 + W2 + P2
V1 = S1 + G + W1 + P1
V = V1 + V2
In addition, the symbol regarding a soil slurry fluid is as follows (a unit is a volume per time).

V:沈降分離槽に連続的に流入するスラリーの流量(即ち、V1+V2)
V1:沈降分離槽の下部から連続的に排出される沈降土の流量
V2:沈降分離槽の上部から連続的に排出される汚染水の流量
S:汚染土壌の土粒子の総体積(即ち、S1+S2)
S1:沈降分離槽の下部から連続的に排出される土粒子の体積
S2:沈降分離槽の上部から連続的に排出される土粒子の体積
V: Flow rate of slurry continuously flowing into the settling tank (ie, V1 + V2)
V1: Flow rate of sedimentary soil discharged continuously from the lower part of the sedimentation tank V2: Flow rate of contaminated water continuously discharged from the upper part of the sedimentation tank S: Total volume of soil particles in the contaminated soil (ie, S1 + S2) )
S1: Volume of soil particles continuously discharged from the lower part of the sedimentation tank S2: Volume of soil particles continuously discharged from the upper part of the sedimentation tank

P:汚染土壌の汚染物質の体積(即ち、P1+P2)
P1:沈降分離槽の下部から連続的に排出される汚染物質の体積
P2:沈降分離槽の上部から連続的に排出される汚染物質の体積
W:汚染土壌に加えた希釈水の体積(即ち、W1+W2)
W1:沈降分離槽の下部から連続的に排出される希釈水の体積
W2:沈降分離槽の上部から連続的に排出される希釈水の体積
P: Volume of pollutant in the contaminated soil (ie P1 + P2)
P1: Volume of contaminants continuously discharged from the lower part of the sedimentation tank P2: Volume of contaminants continuously discharged from the upper part of the sedimentation tank W: Volume of diluted water added to the contaminated soil (ie, W1 + W2)
W1: Volume of dilution water continuously discharged from the lower part of the settling separation tank W2: Volume of dilution water discharged continuously from the upper part of the settling separation tank

G:洗浄前の汚染土壌に同伴して存在していた含有水の体積
T:沈降分離槽入口でのスラリー中の単位土壌当たりの水量(即ち、含有水G+希釈水W)
また、スラリー流体以外に関する記号は下記の通りである。
u1:流体V1が沈降分離槽を流下する時の平均速度(即ち、V1/A)
u2:流体V2が沈降分離槽を上昇する時の平均速度(即ち、V2/A)
このu2は、土壌の累積微粒子量がS2になる土粒子径の沈降速度に等しい。
G: Volume of water contained in the contaminated soil before washing T: Water amount per unit soil in the slurry at the inlet of the sedimentation tank (ie, contained water G + diluted water W)
Further, symbols related to other than the slurry fluid are as follows.
u1: Average speed when the fluid V1 flows down the sedimentation tank (ie, V1 / A)
u2: Average speed when fluid V2 moves up the sedimentation tank (ie, V2 / A)
This u2 is equal to the sedimentation speed of the soil particle diameter at which the amount of accumulated fine particles of the soil becomes S2.

A:沈降分離槽の横断面積(u2を実現する断面積である)
D:沈降分離槽の横断面の直径又は相当直径(なお、相当直径とは、横断面形状が円形でない場合、その断面積に等しい円面積を想定した場合の直径を言う。)
L1:流体V1が流下する範囲の沈降分離槽の縦断面長さ
L2:流体V2が上昇する範囲の沈降分離槽の縦断面長さ
R:土粒子の沈降速度
A: Cross-sectional area of sedimentation separation tank (the cross-sectional area that realizes u2)
D: Diameter or equivalent diameter of the cross section of the sedimentation separation tank (Note that the equivalent diameter means a diameter assuming a circular area equal to the cross sectional area when the cross sectional shape is not circular.)
L1: Longitudinal section length of sedimentation separation tank where fluid V1 flows down L2: Longitudinal section length of sedimentation separation tank where fluid V2 rises R: Sedimentation speed of soil particles

スラリーを移送するための条件は、スラリーの流動性を確保して、配管移送するために、(G+W)/S≧1.5であることが望ましい。
汚染土壌の体積V当たりの汚染物質の含有量Pから洗浄土の汚染物質P1を実現するために、希釈水Wの条件が、W≧(P/P1−1)×Gを満足することにより、土壌洗浄を実現できるのである。
The conditions for transferring the slurry are preferably (G + W) /S≧1.5 in order to secure the fluidity of the slurry and transfer the piping.
In order to realize the pollutant P1 of the washing soil from the pollutant content P per volume V 0 of the contaminated soil, the condition of the dilution water W satisfies W ≧ (P / P1-1) × G So, soil cleaning can be realized.

上記(3)に係わる発明につき説明する。
前記押出機が沈降土を沈降分離槽の下部から排出し移送して洗浄土とするときに、沈降土の同伴水が少ないこと、即ち、土粒子の充填密度が大きいことが洗浄率の向上になる。したがって、運転開始時などの運転条件の変動で沈降土の同伴水が多くなる状況が生じた際に、その同伴水を減少させることが好ましい。その方法としては、押出機の入口部のスクリュウの断面直径D1、出口部の断面直径D3とするとき、(D1/D3)≧1.5を満足するようにスクリュウ直径を出口に向かって順次減少させるとともに、スクリュウ長さLを、L≧(4×D1)にすることによりスクリュウ内部で充填密度を高めて、同伴水を減少させることが好ましい。
The invention relating to the above (3) will be described.
When the extruder discharges the settled soil from the lower part of the sedimentation tank and transfers it to the washed soil, the amount of entrained water in the settled soil is small, that is, the packing density of the soil particles is large, which improves the washing rate. Become. Therefore, it is preferable to reduce the entrained water when a situation occurs in which the entrained water of the subsoil increases due to fluctuations in operating conditions such as at the start of operation. As the method, when the cross-sectional diameter D1 of the screw at the inlet of the extruder and the cross-sectional diameter D3 of the outlet are set, the screw diameter is gradually decreased toward the outlet so as to satisfy (D1 / D3) ≧ 1.5. In addition, it is preferable to increase the packing density inside the screw by reducing the screw length L to L ≧ (4 × D1) and to reduce the entrained water.

別の方法としては、押出機の出口部に、常時、土壌を20KPa(0.2気圧)以上の圧力で圧縮するシリンダーを設置することにより充填密度を高める事が出来る。
このように、同伴水を少なくするための機能を有する押出機を有することが本発明において好ましい。
As another method, the packing density can be increased by installing a cylinder that constantly compresses the soil at a pressure of 20 KPa (0.2 atm) or more at the outlet of the extruder.
Thus, it is preferable in the present invention to have an extruder having a function for reducing entrained water.

上記(4)係わる発明につき説明する。
前記沈降分離槽に流入する汚染土壌スラリーの単位時間当たりの体積をV、該Vを構成する土粒子の体積をS、含有水の体積をG、希釈水の体積をW、そして汚染物質の体積をPとし、かつ、該沈降分離槽の底部から排出する沈降土の単位時間当たりの体積をV1、該V1を構成する土粒子の体積をS1、含有水と希釈水の各一部からなる同伴水の体積をT1、そして汚染物質の体積をP1とするとき、沈降分離槽の上昇流(汚染土壌スラリーから分離した汚染物質を主に含有する汚染水)に浮遊する土微粒子の累積量が、土粒子の目標収率を実現する累積量となることが好ましい。
The invention relating to the above (4) will be described.
The volume per unit time of the contaminated soil slurry flowing into the settling tank is V, the volume of soil particles constituting the V is G, the volume of water contained is G, the volume of diluted water is W, and the volume of contaminants And P1, the volume per unit time of the subsidence discharged from the bottom of the subsidence separation tank is V1, the volume of the soil particles constituting the V1 is S1, and the entrained water consists of a part of the contained water and dilution water. When the water volume is T1 and the pollutant volume is P1, the cumulative amount of soil fine particles floating in the upward flow of the sedimentation tank (contaminated water mainly containing the pollutant separated from the contaminated soil slurry) is It is preferable that the accumulated amount achieves the target yield of the soil particles.

すなわち、上昇する土粒子を極力少なくさせるためには、累積量の境界になる粒子径を浮遊限界とするストークス速度を実現するように沈降分離槽の横断面積を設定することが好ましい。具体的には、洗浄土の収率を80%(体積%)以上にして、且つ同伴水を土粒子の体積の2倍以下を実現することができる沈降分離槽が好ましい。   That is, in order to reduce the rising soil particles as much as possible, it is preferable to set the cross-sectional area of the sedimentation separation tank so as to realize the Stokes velocity in which the particle diameter that becomes the boundary of the cumulative amount is the floating limit. Specifically, it is preferable to use a sedimentation tank capable of achieving a washing soil yield of 80% (volume%) or more and realizing entrained water twice or less the volume of soil particles.

そのような運転条件は、下記式(c)、(d)を満たす条件である。
(S1/S)≧0.8 ………(c)
(W1/S1)≦2 ………(d)
Such operating conditions are conditions that satisfy the following formulas (c) and (d).
(S1 / S) ≧ 0.8 (c)
(W1 / S1) ≦ 2 (d)

上記(5)に係わる発明につき説明する。
沈降分離槽に流入する汚染土壌スラリーの単位時間当たりの体積をV、該Vを構成する土粒子の体積をS、含有水の体積をG、希釈水の体積をW、そして汚染物質の体積をPとするとき、沈降分離槽の運転条件が、((W+G)/S)≧1.5を満足することが好ましい。また、沈降分離槽の底部から排出する沈降土には含有水Gと希釈水Wの一部からなる同伴水が存在しており、洗浄率を高めるためには同伴水の少ないことが望ましい。その同伴水量を極力少なくする手段として、押出機で移送すると同時にスクリュウ軸の長手方向に向かってスクリュウ直径を小さくして圧縮機能を付加することにより、同伴水量を小さくすることが好ましい。
The invention relating to the above (5) will be described.
The volume per unit time of the contaminated soil slurry flowing into the settling tank is V, the volume of soil particles constituting the V is S, the volume of contained water is G, the volume of diluted water is W, and the volume of contaminants is When P is set, it is preferable that the operating conditions of the sedimentation tank satisfy ((W + G) / S) ≧ 1.5. In addition, in the settled soil discharged from the bottom of the settling tank, accompanying water composed of part of the contained water G and dilution water W is present, and it is desirable that the amount of accompanying water is small in order to increase the washing rate. As a means for reducing the amount of entrained water as much as possible, it is preferable to reduce the amount of entrained water by adding a compression function by reducing the screw diameter toward the longitudinal direction of the screw shaft at the same time as being transferred by an extruder.

この機能を説明すると以下の通りである。
沈降分離槽の底部から排出される沈降土の単位時間当たりの体積をV1、該V1を構成する土粒子の体積をS1、含有水と希釈水の各一部からなる同伴水の体積をT1、そして汚染物質の体積をP1とし、かつ、沈降分離槽に接続する押出機の出口から排出する洗浄土の単位時間当たりの体積をV3、該V3を構成する土粒子の体積をS3、含有水と希釈水の各一部からなる同伴水の体積をT3、そして汚染物質の体積をP3とし、かつ、沈降分離槽の底部から排出する沈降土の単位体積をK1、該K1を構成する土粒子の体積をSK1、含有水と希釈水からなる同伴水の体積をTK1、そして汚染物質の体積をPK1とし、かつ、沈降分離槽に接続する押出機の出口から排出する洗浄土の単位体積をK3、該K3を構成する土粒子の体積をSK3、含有水と希釈水からなる同伴水の体積をTK3、そして汚染物質の体積をPK3とするとき、押出機出口の洗浄土の収率は大きいことが望ましく、(S3/S)が0.8以上であることが好ましく、さらに、0.95以上であることが経済的に望ましい。
This function is described as follows.
The volume per unit time of the subsidence discharged from the bottom of the subsidence separation tank is V1, the volume of soil particles constituting the V1 is S1, the volume of entrained water consisting of each part of the contained water and the dilution water is T1, And the volume of the pollutant is P1, and the volume per unit time of the washing soil discharged from the outlet of the extruder connected to the settling tank is V3, the volume of the soil particles constituting the V3 is S3, The volume of entrained water composed of each part of the dilution water is T3, the volume of the pollutant is P3, the unit volume of the subsidence soil discharged from the bottom of the subsidence separator is K1, and the soil particles constituting the K1 The volume of SK1, the volume of entrained water composed of contained water and dilution water is TK1, the volume of contaminants is PK1, and the unit volume of the washing soil discharged from the outlet of the extruder connected to the settling tank is K3, The volume of the soil particles constituting the K3 When the volume of entrained water consisting of K3, containing water and dilution water is TK3, and the volume of contaminants is PK3, the yield of the washing soil at the exit of the extruder is desirably large, and (S3 / S) is 0. It is preferably 8 or more, and more preferably 0.95 or more economically.

更には、洗浄土の同伴水は極力少ないことが洗浄率の向上につながるので望ましく、(T3/S3)が2以下であることが好ましく、さらに1.5以下であることが望ましい。   Furthermore, it is desirable that the amount of water accompanying the washing soil is as small as possible because it leads to an improvement in the washing rate, and (T3 / S3) is preferably 2 or less, and more preferably 1.5 or less.

この条件を実現するために、沈降分離槽の沈降土で(T1/S1)≧2の場合が発生したときには、押出機で土粒子の充填率を高める機能が必要である。即ち、土粒子の充填率の指標として(水の体積)/(土粒子の体積)で表現すると、押出機の入口と出口の充填率指標をαとβとすれば、α=TK1/SK1、β=TK3/SK3である。この充填率指標を押出機で高め、その程度は、(α/β)≧1.2であることが好ましい。   In order to realize this condition, when the case of (T1 / S1) ≧ 2 occurs in the sedimentation soil of the sedimentation tank, a function to increase the filling rate of the soil particles with an extruder is required. That is, when expressed as (volume of water) / (volume of soil particles) as an index of the filling rate of soil particles, α = TK1 / SK1, if the filling rate indexes at the inlet and outlet of the extruder are α and β, β = TK3 / SK3. This filling rate index is increased by an extruder, and the degree thereof is preferably (α / β) ≧ 1.2.

上記(6)に係わる発明を図4に基づいて説明する。
押出機を傾斜させて用いる実施態様である。押出機の出口部のB点を上方に上げて、その出口の水平高さが沈降分離槽の汚染水の排出口のC点の水平高さより上方にあれば、沈降土の同伴水が装置の運転開始時や条件変動等で多いときでも、スラリーが漏洩することを防止すると同時に沈降土を圧縮することも可能である。このことは、沈降分離槽を連続的に安定して運転するためには重要なことである。
The invention relating to the above (6) will be described with reference to FIG.
This is an embodiment in which an extruder is inclined. If the B point of the outlet part of the extruder is raised upward and the horizontal height of the outlet is above the horizontal height of point C of the contaminated water discharge port of the settling tank, the entrained water of the subsidized soil is Even when there are many at the start of operation or when conditions change, it is possible to prevent the slurry from leaking and at the same time to compress the sediment. This is important in order to operate the sedimentation separation tank continuously and stably.

押出機の出口部B点は、常に汚染水排出口C点の水平高さより上位に位置する必要のない場合がある。即ち、土粒子の組成から、沈降土が堆積しやすくて、脱水性が高い場合(土の充填密度が大きい)には、押出機の出口部B点が汚染水排出口C点の水平位置より低い位置にあっても、沈降分離槽を連続的に安定して運転することができる。さらには、押出機のスクリュウの抵抗による沈降土の流出が阻止されることまで考慮するならば、押出機の入口部F点と押出機の出口部B点との間の垂直距離をH1とし、押出機の入口部F点と沈降分離槽の汚染水排出口C点の間の垂直距離をH2とするとき、(H1/H2)は0.4〜1.2であることが好ましく、より好ましくは0.8〜1.1であり、理想的には(H1/H2)=1である。   The exit B point of the extruder may not always need to be positioned higher than the horizontal height of the contaminated water discharge point C. That is, from the composition of the soil particles, when the settled soil is easy to deposit and the dewaterability is high (the soil filling density is large), the exit B point of the extruder is more than the horizontal position of the contaminated water discharge port C point. Even in a low position, the sedimentation tank can be operated continuously and stably. Furthermore, if considering that the outflow of the sediment due to the resistance of the screw of the extruder is prevented, the vertical distance between the inlet portion F point of the extruder and the outlet portion B point of the extruder is H1, When the vertical distance between the inlet F point of the extruder and the contaminated water discharge port C point of the settling tank is H2, (H1 / H2) is preferably 0.4 to 1.2, more preferably. Is 0.8 to 1.1, and ideally (H1 / H2) = 1.

上記(7)に係わる発明につき説明する。
前記沈降分離槽で沈降分離した沈降土は槽底部に向かって充填密度の大きい堆積層を形成するが、沈降分離槽出口では目標とする洗浄を実現するための充填密度を確保することが必要である。従って、その充填密度を実現するための堆積層高さが必要になる。即ち、必要な堆積層高さが存在しないと、同伴水が多くなり洗浄率が悪化するので、常時堆積層高さを維持するためには、堆積層高さを把握する必要がある。その堆積層高さを適切な範囲内に維持するために、堆積層高さをプロペラ式レベル計で測定したり、堆積層高さに起因する圧力をダイアフラム式圧力計器で検出して、沈降土の堆積時間を制御することが好ましい。そのためには、例えば、押出機の回転数を制御することが好ましい。
The invention relating to the above (7) will be described.
Sedimented sediment separated in the sedimentation tank forms a deposited layer with a high packing density toward the bottom of the tank, but it is necessary to secure the packing density to achieve the target cleaning at the sedimentation tank outlet. is there. Therefore, the height of the deposited layer is required to realize the packing density. That is, if the required height of the deposited layer does not exist, the amount of entrained water increases and the cleaning rate deteriorates. Therefore, in order to always maintain the height of the deposited layer, it is necessary to grasp the height of the deposited layer. In order to maintain the height of the sedimentary layer within an appropriate range, the height of the sedimentary layer is measured with a propeller level meter, or the pressure due to the sedimentary layer height is detected with a diaphragm pressure gauge, It is preferable to control the deposition time. For that purpose, for example, it is preferable to control the rotation speed of the extruder.

上記(8)に係わる発明につき説明する。
汚染土壌の単位体積Vに含まれる土粒子の体積をS、含有水の体積をG及び汚染物質の体積をPとするとき、洗浄土に残留する汚染物質の体積をP1まで減少させるために、汚染土壌の希釈水の体積Wが前記の式(a)及び(b)を満足する条件で運転するときに、該希釈水の体積Wの一部を水エジェクターの駆動源の圧力水として使用することが好ましい。
The invention relating to the above (8) will be described.
In order to reduce the volume of contaminants remaining in the washed soil to P1, where S is the volume of soil particles contained in the unit volume V 0 of the contaminated soil, G is the volume of water contained, and P is the volume of contaminants. When the volume W of diluted water in the contaminated soil is operated under the conditions satisfying the above formulas (a) and (b), a part of the volume W of the diluted water is used as pressure water for the drive source of the water ejector. It is preferable to do.

本発明の土壌連続洗浄排出方法は、連続化されており、設備の小型化を実現すると同時に、汚染水を浄化した後の水を循環使用することにより、比例費の大幅な削減が可能である。   The soil continuous washing and discharging method of the present invention is continuous, and at the same time, the equipment can be downsized, and at the same time, by recirculating and using the water after purifying the contaminated water, the proportional cost can be significantly reduced. .

以下、実施例を挙げて、本発明をさらに説明するが、本発明はこれら実施例のみに限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further, this invention is not limited only to these Examples.

〔実施例1〕
図5は、実施例1における土壌連続洗浄排出方法を示す概略図である。
油による汚染土壌(該土壌を構成する土粒子0.94m/hr、含有水1m/hr及び油0.06m/hr)及び注入水(2m/hr)からなる混合体を、圧力水(4m/hr、圧力20MPa)と空気(10m/hr)とで駆動する水エジェクターを介して高速汚染土壌スラリーを作る。
[Example 1]
FIG. 5 is a schematic diagram illustrating a soil continuous washing and discharging method in the first embodiment.
Contaminated soil by oil (soil particles constituting the soil 0.94 m 3 / hr, containing water 1 m 3 / hr and the oil 0.06 m 3 / hr) the mixture consisting of and injection water (2m 3 / hr), the pressure High speed contaminated soil slurry is made through a water ejector driven by water (4 m 3 / hr, pressure 20 MPa) and air (10 m 3 / hr).

この時、高速汚染土壌スラリーは、注入水と圧力水の和である6m/hrが希釈水となっており、汚染物質である油は含有水と希釈水に均一に分散している噴流であるから、減速器を通して減速し、汚染土壌スラリーとした。用いた減速器は、前記の図2に示したようなもので、入口と出口の直径が300mm、長さが1mで、中央部が太くなった円筒状管の内部に衝撃円盤を内蔵しており、流入したスラリーがここで衝突すると同時に空気を排気することにより減速する。 At this time, the high-speed contaminated soil slurry is a diluting water of 6 m 3 / hr which is the sum of the injected water and the pressure water, and the oil that is the pollutant is a jet dispersed uniformly in the contained water and the diluting water. Therefore, it was decelerated through a decelerator to obtain a contaminated soil slurry. The speed reducer used was as shown in FIG. 2 described above, and had an impact disk built in a cylindrical tube having a diameter of 300 mm and a length of 1 m at the inlet and outlet and a thick central portion. In addition, the inflowing slurry collides here and decelerates by exhausting air.

図5に示すように、上記の汚染土壌スラリーを、1m直径で1m高さの円筒部と、1m直径で1m高さの円錐部からなる円筒円錐型の沈降分離槽の上下方向の中央部に導入した。汚染土壌スラリー中の土粒子の大部分は下降流となって沈降して沈降土となる。該沈降土の組成は、土粒子0.92m/hr、水1.3m/hr及び油0.01m/hrであった。この沈降土は、沈降分離槽に接続する押出機で移送して洗浄土となる。この洗浄土の組成は、沈降土の組成と同一である。 As shown in FIG. 5, the above-mentioned contaminated soil slurry is placed in the center in the vertical direction of a cylindrical conical sedimentation separation tank consisting of a 1 m diameter 1 m high cylinder part and a 1 m 1 m high cone part. Introduced. Most of the soil particles in the contaminated soil slurry settle down as a downflow and become sedimentary soil. The composition of該沈Hod was soil particles 0.92 m 3 / hr, water 1.3 m 3 / hr and the oil 0.01 m 3 / hr. This subsidence soil is transferred by an extruder connected to a sedimentation separation tank to be washed soil. The composition of the washed soil is the same as that of the subsidence soil.

一方、沈降分離槽で汚染土壌スラリーから分離された大部分の希釈水は上昇流となり、汚染水として槽外に排出される。汚染水の組成は、水5.7m/hr、土粒子0.02m/hr及び油0.05m/hrであった。
この結果、洗浄土中の油は、汚染土壌中の油(100%)に比較して、17%まで削減できた(油除去率83%)。また、土壌収率は98%に達した。
On the other hand, most of the dilution water separated from the contaminated soil slurry in the settling tank becomes an upward flow and is discharged out of the tank as contaminated water. The composition of the contaminated water, water 5.7 m 3 / hr, was soil particles 0.02 m 3 / hr and the oil 0.05 m 3 / hr.
As a result, the oil in the washed soil was reduced to 17% (oil removal rate 83%) compared to the oil in the contaminated soil (100%). Moreover, the soil yield reached 98%.

〔実施例2〕
図6は、実施例2における土壌連続洗浄排出方法を示す概略図である。
実施例2では、実施例1における沈降分離槽の円錐部の高さを0.5mに短縮したものを用いて運転した。
汚染土壌から汚染土壌スラリーを作るまでの条件は実施例1と同一にしたので、実施例2の汚染土壌スラリーの組成は、実施例1の汚染土壌スラリーと同一である。
[Example 2]
FIG. 6 is a schematic diagram illustrating a soil continuous washing and discharging method in the second embodiment.
In Example 2, it operated using what reduced the height of the cone part of the sedimentation tank in Example 1 to 0.5 m.
Since the conditions from the contaminated soil to the production of the contaminated soil slurry were the same as in Example 1, the composition of the contaminated soil slurry in Example 2 was the same as that in Example 1.

沈降土の各組成の流通速度は、土粒子0.90m/hr、水1.5m/hr及び油0.013m/hrであったが、沈降土の1リットルあたりの体積組成は土粒子0.31リットル、水0.684リットル、油0.006リットルであった。 Velocity of each composition of the precipitated soil, soil particles 0.90 m 3 / hr, but was water 1.5 m 3 / hr and the oil 0.013 m 3 / hr, the volume composition per liter of sedimentation soil Soil The particles were 0.31 liter, water was 0.684 liter, and oil was 0.006 liter.

沈降土は、沈降分離槽に接続する押出機で移送して洗浄土とした。
用いた押出機は、スクリュウ断面を入口部から出口部に向かって細くした形状のものである。具体的には、押出機のスクリュウ軸の断面直径を一定のDsとして、押出機の入口部のスクリュウ断面直径をDe及び出口部のスクリュウ断面直径をDo、スクリュウ長さをLsとするとき、Ls=6Dsとし、入口部から出口部に向かってスクリュウ断面直径をDe=3DsからDo=2Dsまで漸次減少させた。
このような設計の押出機を用いて土粒子の充填密度を高めることにより、洗浄土の各組成の流通速度は、土粒子0.9m/hr、水1.5m/hr及び油0.013m/hrであったが、洗浄土の1リットルあたりの体積組成は、土粒子0.37リットル、水0.625リットル、油0.005リットルであった。
The settled soil was transferred to a washing soil by an extruder connected to the sedimentation tank.
The used extruder has a shape in which the cross section of the screw is narrowed from the inlet portion toward the outlet portion. Specifically, when the cross-sectional diameter of the screw shaft of the extruder is constant Ds, the screw cross-sectional diameter of the inlet portion of the extruder is De, the screw cross-sectional diameter of the outlet portion is Do, and the screw length is Ls, Ls = 6 Ds, and the screw cross-sectional diameter was gradually decreased from De = 3 Ds to Do = 2 Ds from the inlet to the outlet.
By increasing the packing density of such soil particles using an extruder design, velocity of each composition of the cleaning soil, soil particles 0.9 m 3 / hr, water 1.5 m 3 / hr and the oil 0. The volume composition per liter of the washed soil was 0.37 liter of soil particles, 0.625 liter of water, and 0.005 liter of oil, although it was 013 m 3 / hr.

一方、沈降分離槽内でスラリーから分離した大部分の希釈水は上昇流となって、汚染水として槽外に排出される。汚染水の組成は、土粒子0.04m/hr、油0.047m/hr及び水5.5m/hrであった。また、前記(5)で定義した充填率指標のαは2.2、βは1.7であり、α/β=1.3であった。
この結果、洗浄土中の油は、汚染土壌中の油(100%)に比較して22%にまで削減できた(油除去率78%)。また、土壌収率は96%に達した。
On the other hand, most of the dilution water separated from the slurry in the settling tank becomes an upward flow and is discharged out of the tank as contaminated water. The composition of the contaminated water was soil particles 0.04 m 3 / hr, the oil 0.047m 3 / hr, and water 5.5 m 3 / hr. Further, α of the filling rate index defined in (5) was 2.2, β was 1.7, and α / β = 1.3.
As a result, the oil in the washing soil was reduced to 22% (oil removal rate 78%) compared to the oil (100%) in the contaminated soil. The soil yield reached 96%.

本発明の土壌連続洗浄排出方法は、油、有機化合物質、重金属やその化合物による汚染及び複合汚染等による汚染土壌を、小型の設備により連続的に低コストで浄化することができるので、産業活動に伴う環境問題の解決に極めて有用である。   The soil continuous washing and discharging method of the present invention can purify contaminated soil caused by oil, organic compounds, heavy metals and their compounds and complex pollution, etc., continuously and at low cost by using small equipment. It is extremely useful for solving environmental problems.

本発明に用いる水エジェクターの一例の概略図である。It is the schematic of an example of the water ejector used for this invention. 本発明に用いる減速器の一例の概略図である。It is the schematic of an example of the speed reducer used for this invention. 沈降分離槽での土壌スラリー流体のマスバランスを示す図である。It is a figure which shows the mass balance of the soil slurry fluid in a sedimentation tank. 本発明の方法において、押出機を傾斜させて用いる場合の例を示す概略図である。In the method of this invention, it is the schematic which shows the example in the case of using an extruder inclined. 実施例1の土壌連続洗浄排出方法を示す概略図である。It is the schematic which shows the soil continuous washing | cleaning discharge method of Example 1. FIG. 実施例2の土壌連続洗浄排出方法を示す概略図である。It is the schematic which shows the soil continuous washing | cleaning discharge method of Example 2. FIG.

符号の説明Explanation of symbols

F 入口部
B 出口部
C 汚染水排出口
H1 FとBとの間の垂直距離
H2 FとCとの間の垂直距離
F Inlet part B Outlet part C Contaminated water outlet H1 Vertical distance between F and B H2 Vertical distance between F and C

Claims (8)

下記(イ)、(ロ)、(ハ)を有することを特徴とする土壌連続洗浄排出方法。
(イ)土粒子、汚染物質及び含有水からなる汚染土壌と、該汚染土壌に流動性を付与するために注入する水から成る混合体を、圧力水を駆動源とする水エジェクターで混合して、注入水と圧力水を希釈水とする汚染土壌スラリーを連続して作るスラリー化工程、
(ロ)該汚染土壌スラリーを沈降分離槽の中央部に注入し、沈降分離槽内で、土粒子を主とする下降流と、汚染物質を含む希釈水を主とする上昇流に分流することにより、土粒子と汚染物質を連続的に分離し、汚染物質を含む希釈水を汚染水として沈降分離槽の上部から連続して排出し、下降流から沈降分離した沈降土を沈降分離槽の下部から連続して排出する沈降分離工程、及び、
(ハ)該沈降土を、押出機を用いて、沈降分離槽の下部から連続して排出し移送して洗浄土を得る排出工程。
The soil continuous washing | cleaning discharge method characterized by having the following (I), (B), (C).
(I) Mixing a mixture of contaminated soil composed of soil particles, contaminants and contained water and water injected to impart fluidity to the contaminated soil with a water ejector driven by pressure water. , A slurrying process that continuously creates a contaminated soil slurry using the injected water and pressure water as dilution water,
(B) Injecting the contaminated soil slurry into the center of the sedimentation separation tank, and dividing the slurry into a downward flow mainly composed of soil particles and an upward flow composed mainly of contaminated water in the sedimentation separation tank. In this way, soil particles and contaminants are continuously separated, diluted water containing contaminants is continuously discharged as contaminated water from the upper part of the sedimentation tank, and the settled soil settled and separated from the descending flow is removed from the lower part of the sedimentation tank. Sedimentation and separation step of continuously discharging from
(C) A discharging step in which the settling soil is continuously discharged and transferred from the lower part of the settling separation tank using an extruder to obtain washed soil.
汚染土壌の単位時間当たりの体積Vに含まれる土粒子の体積をS、含有水の体積をG、汚染物質の体積をPとするとき、洗浄土に残留する汚染物質の体積をP1まで減少させるために、希釈水の体積Wが下記式(a)及び(b)を満足する条件で運転することを特徴とする請求項1に記載の土壌連続洗浄排出方法。
W≧(P/P1−1)×G ………(a)
(G+W)/S≧1.5 ………(b)
When the volume of soil particles contained in the volume V 0 per unit time of contaminated soil is S, the volume of contained water is G, and the volume of pollutants is P, the volume of pollutants remaining in the washed soil is reduced to P1. In order to make it operate | move, the volume W of dilution water operates on the conditions which satisfy | fill following formula (a) and (b), The soil continuous washing | cleaning discharge method of Claim 1 characterized by the above-mentioned.
W ≧ (P / P1-1) × G (a)
(G + W) /S≧1.5 (b)
押出機が、沈降土を移送中に沈降土の充填率を高めることを特徴とする請求項1又は2に記載の土壌連続洗浄排出方法。   3. The soil continuous washing and discharging method according to claim 1 or 2, wherein the extruder increases the filling rate of the settled soil during transfer of the settled soil. 沈降分離槽に流入する汚染土壌スラリーの時間当たりの体積をV、該Vを構成する土粒子の体積をS、含有水の体積をG、希釈水の体積をW、汚染物質の体積をPとし、かつ、該沈降分離槽の底部から排出する沈降土の時間当たりの体積をV1、該V1を構成する土粒子の体積をS1、含有水と希釈水の各一部からなる同伴水の体積をT1、汚染物質の体積をP1とするとき、下記式(c)及び(d)の運転条件を満足する沈降分離槽を用いることを特徴とする請求項1〜3のいずれかに記載の土壌連続洗浄排出方法。
(S1/S)≧0.8 ………(c)
(T1/S1)≦2 ………(d)
The volume per hour of the contaminated soil slurry flowing into the settling tank is V, the volume of the soil particles constituting the V is S, the volume of the contained water is G, the volume of the diluted water is W, and the volume of the pollutant is P. And V1 is the volume per hour of the settled soil discharged from the bottom of the settling tank, S1 is the volume of the soil particles constituting the V1, and the volume of entrained water consisting of each part of the contained water and the dilution water. The soil continuation according to any one of claims 1 to 3, wherein a sedimentation separation tank that satisfies the operating conditions of the following formulas (c) and (d) is used when T1 and the pollutant volume are P1. Cleaning discharge method.
(S1 / S) ≧ 0.8 (c)
(T1 / S1) ≦ 2 (d)
沈降分離槽に流入する汚染土壌スラリーの時間当たりの体積をV、該Vを構成する土粒子の体積をS、含有水の体積をG、希釈水の体積をW、汚染物質の体積をPとするとき、沈降分離槽の運転条件が下記(e)を満足し、かつ、
((W+G)/S)≧1.5 ………(e)
該沈降分離槽の底部から排出する沈降土の時間当たりの体積をV1、該V1を構成する土粒子の体積をS1、含有水と希釈水の各一部からなる同伴水の体積をT1、汚染物質の体積をP1とし、かつ、
沈降分離槽に接続する押出機の出口から排出する洗浄土の時間当たりの体積をV3、該V3を構成する土粒子の体積をS3、含有水と希釈水の各一部からなる同伴水の体積をT3、汚染物質の体積をP3とし、かつ、
沈降分離槽の底部に存在する沈降土の体積をK1、該K1を構成する土粒子の体積をSK1、含有水と希釈水の各一部からなる同伴水の体積をTK1、そして汚染物質の体積をPK1とし、かつ、
沈降分離槽に接続する押出機の出口における洗浄土の体積をK3、該K3を構成する土粒子の体積をSK3、含有水と希釈水の各一部からなる同伴水の体積をTK3、そして汚染物質の体積をPK3とするとき、
下記式(f)〜(j)の運転条件を満足する押出機を用いることを特徴とする請求項1〜4のいずれかに記載の土壌連続洗浄排出方法。
(S3/S)≧0.8 ………(f)
(T3/S3)≦2 ………(g)
α=TK1/SK1 ………(h)
β=TK3/SK3 ………(i)
(α/β)≧1.2 ………(j)
The volume per hour of the contaminated soil slurry flowing into the settling tank is V, the volume of soil particles constituting the V is S, the volume of contained water is G, the volume of diluted water is W, and the volume of pollutants is P. When the operation condition of the sedimentation tank satisfies the following (e), and
((W + G) / S) ≧ 1.5 (e)
V1 is the volume per hour of the settled soil discharged from the bottom of the settling tank, S1 is the volume of the soil particles constituting the V1, T1 is the volume of the entrained water consisting of each part of the contained water and dilution water, and contamination. The volume of the substance is P1, and
The volume per hour of the washed soil discharged from the outlet of the extruder connected to the settling tank is V3, the volume of the soil particles constituting the V3 is S3, and the volume of the entrained water composed of each part of the contained water and the dilution water. Is T3, the volume of contaminant is P3, and
The volume of settled soil existing at the bottom of the settling tank is K1, the volume of soil particles constituting the K1 is SK1, the volume of entrained water consisting of each part of the contained water and dilution water is TK1, and the volume of contaminants Is PK1, and
The volume of the washed soil at the outlet of the extruder connected to the settling tank is K3, the volume of the soil particles constituting the K3 is SK3, the volume of the entrained water consisting of each part of the contained water and the diluted water is TK3, and the contamination When the volume of the substance is PK3,
The continuous soil washing and discharging method according to any one of claims 1 to 4, wherein an extruder that satisfies the operating conditions of the following formulas (f) to (j) is used.
(S3 / S) ≧ 0.8 (f)
(T3 / S3) ≦ 2 (g)
α = TK1 / SK1 (……) (h)
β = TK3 / SK3 (i)
(Α / β) ≧ 1.2 ……… (j)
押出機の出口部を上方に上げ、押出機の入口部と出口部との間の垂直距離をH1とし、押出機の入口部と沈降分離槽の汚染水の排出口との間の垂直距離をH2とするとき、(H1/H2)が1.3〜0.4であることを特徴とする請求項1〜5のいずれかに記載の土壌連続洗浄排出方法。   Raise the outlet of the extruder upward, let H1 be the vertical distance between the inlet and outlet of the extruder, and let the vertical distance between the inlet of the extruder and the contaminated water discharge port of the settling tank The soil continuous washing and discharging method according to any one of claims 1 to 5, wherein when H2, (H1 / H2) is 1.3 to 0.4. 沈降分離槽において、沈降土の堆積高さ及び/又は堆積土の圧力を検出して、沈降土の堆積時間を制御することを特徴とする請求項1〜6のいずれかに記載の土壌連続洗浄排出方法。   The soil continuous washing according to any one of claims 1 to 6, wherein the sedimentation height of the sedimentation soil and / or the pressure of the sedimentation soil is detected in the sedimentation tank to control the sedimentation time of the sedimentation soil. Discharge method. 水エジェクターにおいて、沈降分離槽の上部から連続して排出される汚染水を浄化した後の水の一部を駆動源の圧力水として使用することを特徴とする請求項1〜7のいずれかに記載の土壌連続洗浄排出方法。   In a water ejector, a part of water after purifying the polluted water continuously discharged | emitted from the upper part of a sedimentation-separation tank is used as pressure water of a drive source. The soil continuous washing discharge method as described.
JP2005292438A 2005-10-05 2005-10-05 Method for continuously cleaning and discharging soil Pending JP2007098301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005292438A JP2007098301A (en) 2005-10-05 2005-10-05 Method for continuously cleaning and discharging soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005292438A JP2007098301A (en) 2005-10-05 2005-10-05 Method for continuously cleaning and discharging soil

Publications (1)

Publication Number Publication Date
JP2007098301A true JP2007098301A (en) 2007-04-19

Family

ID=38025759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005292438A Pending JP2007098301A (en) 2005-10-05 2005-10-05 Method for continuously cleaning and discharging soil

Country Status (1)

Country Link
JP (1) JP2007098301A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123548A1 (en) 2007-04-04 2008-10-16 Rohm Co., Ltd. Flotox type eeprom
JP2010284624A (en) * 2009-06-15 2010-12-24 Dojo Kankyo Process Kenkyusho:Kk Apparatus of producing mixture of soil and water using high pressure water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123548A1 (en) 2007-04-04 2008-10-16 Rohm Co., Ltd. Flotox type eeprom
JP2010284624A (en) * 2009-06-15 2010-12-24 Dojo Kankyo Process Kenkyusho:Kk Apparatus of producing mixture of soil and water using high pressure water

Similar Documents

Publication Publication Date Title
CN100579917C (en) Three-phase cyclone separator and cleaning treatment system for oil-containing water
CN1179113A (en) Method and apparatus for separatin non-soluble particles from liquid
CN104829070A (en) Oil and gas field drilling fluid waste treatment-while-drilling system
CN101391824A (en) Aggregation sinking and emerging treatment device for oilfield produced waste water
CN101434439A (en) Glass fibre wastewater pretreatment method
JP2001020318A (en) Waters purifying method and waters purifying system and dam soil discharging system
CN104058526A (en) Flushing fluid purification treatment process
CN2936380Y (en) Unpowered waste water filtering and sterilizing treating device
JP2011056487A (en) Cleaning treatment method and apparatus
KR100774583B1 (en) A screw-type high flow sand filter
CN102049347B (en) Method for separating solid particle mixture
JP2007098301A (en) Method for continuously cleaning and discharging soil
JP2016032778A (en) Method for recovering soil particle adsorbate from environmental water region bottom part
JP2005205251A (en) System and apparatus for classifying dredged soil by using pneumatic conveying system
CN202193677U (en) High-efficiency sedimentation device used for mines
CN103086455B (en) Oilfield sewage treatment apparatus
JP5738115B2 (en) New continuous pollutant wastewater treatment apparatus and method for adding flocculant to polluted wastewater
CN208200649U (en) Efficient magnetic force floatation purification device
CN207608352U (en) Sewage disposal desanding device
JP4372067B2 (en) Contaminated soil continuous cleaning method
CN212151802U (en) Pretreatment equipment for grinding oil stains and SS in wastewater
CN103864174A (en) Oily sewage oil eliminator
CN201729725U (en) Oilfield-produced sewage aggregation and floating-sinking processing device
JP3737099B1 (en) Contaminated soil continuous cleaning method
JP2007136375A (en) Method and apparatus for separation of solid

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20070112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070925