JP2016032778A - Method for recovering soil particle adsorbate from environmental water region bottom part - Google Patents

Method for recovering soil particle adsorbate from environmental water region bottom part Download PDF

Info

Publication number
JP2016032778A
JP2016032778A JP2014155591A JP2014155591A JP2016032778A JP 2016032778 A JP2016032778 A JP 2016032778A JP 2014155591 A JP2014155591 A JP 2014155591A JP 2014155591 A JP2014155591 A JP 2014155591A JP 2016032778 A JP2016032778 A JP 2016032778A
Authority
JP
Japan
Prior art keywords
water
region
area
soil
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014155591A
Other languages
Japanese (ja)
Inventor
公隆 南
Kimitaka Minami
公隆 南
徹 川本
Toru Kawamoto
徹 川本
内田 達也
Tatsuya Uchida
達也 内田
竜一 上村
Ryuichi Uemura
竜一 上村
佐藤 秀一
Shuichi Sato
秀一 佐藤
勝平 宮井
Shohei Miyai
勝平 宮井
勇太郎 土屋
Yutaro Tsuchiya
勇太郎 土屋
雅明 谷本
Masaaki Tanimoto
雅明 谷本
巌 荒木
Iwao Araki
巌 荒木
伸夫 温井
Nobuo Nukui
伸夫 温井
健一 高坂
Kenichi Kosaka
健一 高坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AKUSU KYOTO KK
National Institute of Advanced Industrial Science and Technology AIST
Tokyo Power Technology Ltd
Original Assignee
AKUSU KYOTO KK
National Institute of Advanced Industrial Science and Technology AIST
Tokyo Power Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AKUSU KYOTO KK, National Institute of Advanced Industrial Science and Technology AIST, Tokyo Power Technology Ltd filed Critical AKUSU KYOTO KK
Priority to JP2014155591A priority Critical patent/JP2016032778A/en
Publication of JP2016032778A publication Critical patent/JP2016032778A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method and a system for reducing a volume of discharge soil and recovering a target soil particle adsorbate with an excellent efficiency by improving separation degree of soil particles having a high adsorption rate of the adsorbate in an environmental water region and by recovering the separated soil particles from the environmental water region interior.SOLUTION: Turbid water containing soil particles on a bottom part 1 is prepared by stirring the bottom part 1 of a specified region A in an environmental water region with a bottom part stirring device 4, the turbid water is caused to ride a water flow flowing in a cross-wise direction for a water depth direction for a prescribed distance, while the turbid water is caused to ride the water flow, the soil particles in the turbid water are subjected to fractional precipitation into small particles and particles larger than the small particles in accordance with precipitation speed and, thereby, the small particles and the particles larger than the small particles are classified based on movement distances.SELECTED DRAWING: Figure 1

Description

本発明は、環境水域の底部に存在する土壌粒子吸着物質を効率的に回収する方法に関する。   The present invention relates to a method for efficiently recovering soil particle adsorbing substances present at the bottom of an environmental water area.

原子力発電所の事故などにより環境中に放出された放射性セシウムは、様々なところに局所的に蓄積、残留し、また濃縮等もし、その対策、解決が切望されている。特に、放射性セシウムは土壌中の粘土鉱物などに強く吸着することが知られている。そのため、河川などの水系に入った放射性セシウムは、表層でなく、川底など、底部もしくはその上部近傍(以下、単に底部という)の土壌を構成する無機または有機の粒子(以下、単に土壌粒子ということがある)に吸着される。また、放射性セシウムが吸着した土壌粒子の一部は浮遊懸濁物となるが、水系の流れが滞留する場所で底部に沈降し、蓄積される。そのため、湖沼、ため池などの環境水域の底質等では、放射性セシウムの濃度が特に高くなることが知られており、その除去が特に重い課題となっている。
また、土壌粒子に吸着するのは放射性セシウムに限らない。重金属類、揮発性有機化合物(VOC)、農薬を含む薬品等の汚染物質や、これと対照的に鉄、アルミニウム、銅、貴金属、レアアース等の有価物質が水域底部の土壌粒子に吸着されることが知られており、これらの土壌粒子吸着物質を効率的に回収することが環境保全、希少金属資源のリサイクル等の観点から求められている。
The radioactive cesium released into the environment due to an accident at a nuclear power plant, etc. is locally accumulated, retained, concentrated, etc. in various places, and countermeasures and solutions are desired. In particular, it is known that radioactive cesium is strongly adsorbed by clay minerals in soil. Therefore, the radioactive cesium that entered the water system such as rivers is not the surface layer but inorganic or organic particles (hereinafter referred to simply as soil particles) that constitute the soil at the bottom or near the top (hereinafter simply referred to as the bottom) such as the river bottom. Is adsorbed). In addition, some of the soil particles adsorbed with radioactive cesium become suspended suspension, but settle and accumulate at the bottom at the place where the water-based flow stays. Therefore, it is known that the concentration of radioactive cesium is particularly high in the sediments of environmental waters such as lakes and ponds, and the removal thereof is a particularly heavy issue.
Moreover, what adsorb | sucks to a soil particle is not restricted to radioactive cesium. Contaminants such as heavy metals, volatile organic compounds (VOC), chemicals including agricultural chemicals, and in contrast, valuable substances such as iron, aluminum, copper, precious metals, rare earths, etc. are adsorbed on the soil particles at the bottom of the water area. Therefore, efficient recovery of these soil particle adsorbing substances is required from the viewpoints of environmental conservation, recycling of rare metal resources, and the like.

水系の底部に存在する土壌粒子吸着物質を回収するには、浚渫を行って蓄積した底質等を回収して行うのが直接的で効果的である。しかしながら、水域底部の土壌粒子吸着物質の分布は必ずしも表層に集中しているわけではなく、例えば汚染物質の場合、汚染深度(汚染土層厚)が30〜40cmに至る場合もある。このような際に、浚渫によりすべての底部を回収すると、大量の排出土が発生し、処理量、装置が大掛かりになるという問題が避けられない。   In order to recover the soil particle adsorbing substance existing at the bottom of the water system, it is effective to recover the sediment and the like accumulated by dredging. However, the distribution of the soil particle adsorbing substance at the bottom of the water area is not necessarily concentrated on the surface layer. For example, in the case of a contaminant, the contamination depth (contaminated soil layer thickness) may reach 30 to 40 cm. In such a case, if all the bottoms are collected by the dredger, a large amount of discharged soil is generated, and the problem that the processing amount and the apparatus become large is inevitable.

この問題のひとつの解決法として、浚渫土の土壌粒子を分級し、小粒径の土壌粒子を選択的に回収する方法がある。土壌粒子1つ当たりの吸着物質の吸着率は、通常は土壌粒子の表面積に比例して増加する。小粒径の土壌粒子は比表面積が大きいために、吸着物質の吸着率が高い。したがって、粒径の小さな土壌粒子を選択的に除去することで、排出土を減らしつつ、目的の土壌粒子吸着物質を効率的に回収することが可能となる。
この、土壌粒子を分級する方法として、例えば特許文献1には、放射性セシウムで汚染された汚染土のスラリーを摩砕機にかけて摩砕土のスラリーを得、この摩砕土のスラリーを液体サイクロンに連続的に供給することにより、放射性セシウムが濃縮された微粒子状の汚染土のスラリーを分離する方法がある。この方法では、微粒子状の汚染土のスラリーをオーバーフローさせ、同時に前記微粒子より粒径の大きい粒子状の除染土のスラリーをアンダーフローさせて、土壌粒子を分級している。
また、特許文献2には、汚染土壌を湿式ふるいにより分級処理して礫・粗砂を分離、除去してスラリー状の土砂とすること、このスラリー状の土砂に特定の処理を施した後、ハイドロサイクロン処理により砂・細砂と、汚染物質を高濃度に含む細粒子とに分級処理すること等が記載されている。
One solution to this problem is to classify dredged soil particles and selectively collect small-sized soil particles. The adsorption rate of the adsorbed material per soil particle usually increases in proportion to the surface area of the soil particle. Since the small-sized soil particles have a large specific surface area, the adsorption rate of the adsorbed substances is high. Therefore, by selectively removing soil particles having a small particle size, it is possible to efficiently recover the target soil particle adsorbing substance while reducing discharged soil.
As a method for classifying the soil particles, for example, in Patent Document 1, a slurry of contaminated soil contaminated with radioactive cesium is applied to a grinder to obtain a slurry of ground soil, and this slurry of ground soil is continuously added to a liquid cyclone. There is a method of separating a slurry of finely particulate contaminated soil enriched with radioactive cesium by supplying. In this method, the soil particles are classified by overflowing the particulate contaminated soil slurry and simultaneously underflowing the particulate decontaminated soil slurry having a particle diameter larger than that of the fine particles.
Patent Document 2 classifies contaminated soil by wet sieving to separate and remove gravel and coarse sand to form slurry-like sand, and after applying a specific treatment to this slurry-like sand, A hydrocyclone treatment classifies sand and fine sand and fine particles containing a high concentration of contaminants.

水域底部は通常、0.74μm以下のいわゆるシルト・粘土の比率が高い。この場合、土壌粒子吸着物質を効率的に回収するために適した分級点は5〜50μm程度となる。しかし、湿式ふるいではこのような分級点の設定は通常は困難である。一方、湿式サイクロンを用いれば5〜50μm程度の分級点の設定は原理的には可能である。しかし、一度に処理できる流量が少なく、実用性に課題が生じる可能性が高い。
また、上記特許文献1及び2に記載された方法を、汚染物質を含む水域底部の土壌粒子の回収に適用する場合、浚渫土を環境水域の中から取り出し、陸上で土壌粒子を分級することになる。この場合、分級により分離された汚染の少ない土壌粒子(粒径の大きな土壌粒子)の取り扱いが問題となる。すなわち、粒径の大きな土壌粒子にも汚染物質が一定程度付着しているため、粒径の大きな土壌粒子を環境水域に戻す、という選択肢を採用し難いことがある。特に汚染物質が放射性物質の場合には、環境水域から取り出した土壌を再度環境水域に戻すことに対する抵抗が強い。
The bottom of the water area usually has a high ratio of so-called silt / clay of 0.74 μm or less. In this case, the classification point suitable for efficiently recovering the soil particle adsorbing substance is about 5 to 50 μm. However, such classification points are usually difficult to set with wet sieves. On the other hand, if a wet cyclone is used, a classification point of about 5 to 50 μm can be set in principle. However, the flow rate that can be processed at one time is small, and there is a high possibility that problems will arise in practicality.
In addition, when applying the method described in Patent Documents 1 and 2 to the recovery of soil particles at the bottom of the water area containing pollutants, the dredged soil is taken out from the environmental water area and the soil particles are classified on land. Become. In this case, handling of soil particles with small contamination separated by classification (soil particles with a large particle size) becomes a problem. That is, since a certain amount of contaminants are attached to soil particles having a large particle size, it may be difficult to adopt the option of returning the soil particles having a large particle size to the environmental water area. In particular, when the pollutant is a radioactive substance, the resistance to returning the soil taken out from the environmental water area back to the environmental water area is strong.

これらの問題を解決する方法として、環境水域内(水系中)で土壌粒子の縦方向の沈降速度の違いを利用して分級を行い、目的の小粒径の土壌粒子を選択的に陸上に移送する、という方法も知られている。例えば特許文献3には、汚染された閉鎖水域において、底質にエアーを取り込んだジェット水を吹き付ける等して底質を攪乱し、エアーにより底部から上方に向けて形成された水流(上方流)の中で、粒径の大きさによる沈降速度の差を利用した分級を行い、分級された細粒分をポンプで吸い上げ、水上でろ過する等して汚染物質を除去する方法が提示されている。上方流の中でも粒径の大きな粒子は沈降速度が速く水域底部に沈降する。よって、理論的には、上方流の流速を制御することで、沈降速度の違いを利用して分級点を自由に設定することが可能とされる。   As a method to solve these problems, classification is performed using the difference in the sedimentation velocity in the vertical direction of the soil particles in the environmental water area (in the water system), and the desired small-sized soil particles are selectively transferred to land. The method of doing is also known. For example, Patent Document 3 discloses that in a polluted closed water area, the bottom sediment is disturbed, for example, by blowing jet water that has taken air into the bottom sediment, and the water flow is formed upward from the bottom by air (upstream). Among them, classification using the difference in sedimentation speed depending on the size of the particle size, a method of removing pollutants by sucking the classified fine particles with a pump and filtering on water is proposed. . Among the upward flow, particles having a large particle size have a fast sedimentation rate and settle to the bottom of the water area. Therefore, theoretically, by controlling the flow velocity of the upward flow, it is possible to freely set the classification point using the difference in the sedimentation velocity.

特開2013−064690号公報JP 2013-064690 A 特開2006−116397号公報Japanese Patent Laid-Open No. 2006-11697 特開2011−52428号公報JP 2011-52428 A

しかし、特許文献3に記載の上方流を利用した分級方法は、粒度に対する沈降速度の変化が小さい。そのため、目的の土壌粒子吸着物質の吸着率の高い小粒径の土壌粒子を、上方流を利用して高精度に分級するのは、実際には非常に難しい。さらに、特許文献3に記載の方法では、回収される濁水の含泥率(小粒径の土壌粒子を含む濁水の含泥率)を上げることも難しい。すなわち、目的の小粒径の土壌粒子をポンプで吸い上げる際に、同時に大量の水も吸い上げることになる。   However, the classification method using the upward flow described in Patent Document 3 has a small change in the sedimentation speed with respect to the particle size. For this reason, it is actually very difficult to classify small-sized soil particles having a high adsorption rate of the target soil particle adsorbing substance with high accuracy using the upward flow. Furthermore, in the method described in Patent Document 3, it is difficult to increase the mud content of recovered turbid water (the mud content of turbid water containing small-sized soil particles). That is, when a soil particle having a desired small particle size is sucked up by a pump, a large amount of water is also sucked up at the same time.

本発明は、環境水域の底部に存在する土壌粒子を回収することにより、当該環境水域底部から目的の土壌粒子吸着物質を回収する方法であって、沈降速度の違いを利用して、環境水域内において吸着物質の吸着率の高い土壌粒子の分離度を高め、分離した土壌粒子を環境水域内から回収することにより、排出土の量を減容し、目的の土壌粒子吸着物質を優れた効率で回収する方法及びシステムを提供することを課題とする。   The present invention is a method for recovering the target soil particle adsorbing material from the bottom of the environmental water area by recovering the soil particles present at the bottom of the environmental water area, and using the difference in sedimentation speed, By increasing the degree of separation of soil particles with a high adsorption rate of adsorbents and recovering the separated soil particles from the environmental water area, the volume of discharged soil is reduced, and the target soil particle adsorbents are efficiently recovered. It is an object of the present invention to provide a recovery method and system.

本発明者らは、上記課題に鑑み鋭意検討を重ねた結果、環境水域中の、目的の土壌粒子吸着物質が存在する特定領域の底部を撹拌して濁水を生成し、この濁水を、水深方向に対して横方向に形成した水流に乗せ移動させ、その移動間に、該濁水中の粒径の異なる土壌粒子を、流水条件中での沈降速度の相違を利用して、所定の移動距離間で分別沈降させ、目的の粒径の粒子を選択的に分離、回収することができることを見出した。
本発明はこれらの知見に基づいて完成に至ったものである。
As a result of intensive studies in view of the above problems, the inventors of the present invention agitated the bottom of a specific area where the target soil particle adsorbing substance exists in the environmental water area to generate turbid water. The soil particles with different particle sizes in the muddy water are moved for a predetermined moving distance using the difference in sedimentation velocity under flowing water conditions. It was found that particles having a desired particle diameter can be selectively separated and recovered by fractional sedimentation.
The present invention has been completed based on these findings.

本発明の要旨は下記の通りである。
〔1〕
環境水域底部から土壌粒子吸着物質を回収する方法であって、
該環境水域中の特定領域の底部を撹拌して該底部の土壌粒子を含む濁水を生成し、該濁水を水深方向に対して横方向に流れる水流に乗せて所定距離間流し、その間に、該濁水中の土壌粒子を、沈降速度に応じて小粒子とそれより大粒子に分別沈降させ、これにより小粒子とそれより大粒子とを移動距離に基づき分級することを含む、方法。
〔2〕
前記横方向に流れる水流を一方向に形成する、〔1〕に記載の方法。
〔3〕
前記環境水域が限定水域である、〔1〕又は〔2〕に記載の方法。
〔4〕
前記限定水域を、シルトフェンスを用いて形成する、〔3〕に記載の方法。
〔5〕
高圧洗浄機を用いて前記水域底部に水を噴射し、これにより前記水域底部の撹拌を行うと同時に前記水流を形成する、〔1〕〜〔4〕のいずれか1項に記載の方法。
〔6〕
前記水流を、前記の濁水を生成する領域Aと前記の濁水を回収する領域Bとを結ぶ延長上の、領域Bを挟んで領域Aとは反対側の領域から水をくみ上げ、くみ上げた水を、前記延長上の、領域Aを挟んで領域Bとは反対側の領域に放出することにより形成する、〔1〕〜〔4〕のいずれか1項に記載の方法。
〔7〕
高圧洗浄機を用いて前記水域底部に水を噴射し、これにより前記水域底部の撹拌を行うと同時に前記水流を形成し、さらに、前記の濁水を生成する領域Aと前記の濁水を回収する領域Bとを結ぶ延長上の、領域Bを挟んで領域Aとは反対側の領域から水をくみ上げ、くみ上げた水を、前記延長上の、領域Aを挟んで領域Bとは反対側の領域に放出することによっても前記水流を形成する、〔1〕〜〔4〕のいずれか1項に記載の方法。
〔8〕
前記水流を形成するための水のくみ上げに、羽根車を有するポンプを用いる、〔6〕又は〔7〕に記載の方法。
〔9〕
前記環境水域の水深が10cm以上2m以下である、〔1〕〜〔8〕のいずれか1項に記載の方法。
〔10〕
回収される濁水の含泥率を1質量%以上とする、〔1〕〜〔9〕のいずれか1項に記載の方法。
〔11〕
回収される濁水中の土壌粒子の沈降速度が200cm/min以下である、〔1〕〜〔10〕のいずれか1項に記載の方法。
〔12〕
前記土壌粒子吸着物質が汚染物質である、〔1〕〜〔11〕のいずれか1項に記載の方法。
〔13〕
環境水域底部から土壌粒子吸着物質を回収するシステムであって、
該環境水域中の特定領域の底部を撹拌して該底部の土壌粒子を含む濁水を生成する手段と、該濁水を水深方向に対して横方向に流す水流を発生する手段と、該水流中で大きさに応じて移動距離間で分別沈降した該濁水中の土壌粒子を回収する手段とを含む、システム。
The gist of the present invention is as follows.
[1]
A method for recovering a soil particle adsorbing substance from the bottom of an environmental water area,
The bottom of a specific area in the environmental water area is agitated to produce turbid water containing soil particles at the bottom, and the turbid water is flowed for a predetermined distance on a water stream flowing in a direction transverse to the water depth direction. A method comprising separating sedimentation of soil particles in turbid water into small particles and larger particles according to a sedimentation rate, thereby classifying the small particles and larger particles based on a moving distance.
[2]
The method according to [1], wherein the water stream flowing in the lateral direction is formed in one direction.
[3]
The method according to [1] or [2], wherein the environmental water area is a limited water area.
[4]
The method according to [3], wherein the limited water area is formed using a silt fence.
[5]
The method according to any one of [1] to [4], wherein water is jetted to the bottom of the water area using a high-pressure washing machine, whereby the water stream is formed simultaneously with stirring of the bottom of the water area.
[6]
The water flow is drawn from a region opposite to the region A across the region B on the extension connecting the region A that generates the muddy water and the region B that collects the muddy water, and the pumped water The method according to any one of [1] to [4], wherein the method is formed by discharging into an area opposite to the area B across the area A on the extension.
[7]
Water is sprayed onto the bottom of the water area using a high-pressure washer, whereby the water stream is formed at the same time as stirring of the water area bottom, and further, the area A for generating the muddy water and the area for collecting the muddy water On the extension connecting B, water is drawn from a region opposite to region A across region B, and the pumped water is transferred to the region on the extension opposite to region B across region A. The method according to any one of [1] to [4], wherein the water stream is also formed by discharging.
[8]
The method according to [6] or [7], wherein a pump having an impeller is used for pumping up water to form the water flow.
[9]
The method according to any one of [1] to [8], wherein the water depth of the environmental water area is 10 cm or more and 2 m or less.
[10]
The method according to any one of [1] to [9], wherein the collected turbid water has a mud content of 1% by mass or more.
[11]
The method according to any one of [1] to [10], wherein the sedimentation rate of the soil particles in the turbid water to be collected is 200 cm / min or less.
[12]
The method according to any one of [1] to [11], wherein the soil particle adsorbing substance is a pollutant.
[13]
A system for collecting soil particle adsorbents from the bottom of an environmental water area,
Means for agitating the bottom of a specific area in the environmental water area to generate turbid water containing soil particles at the bottom; means for generating a water flow that causes the muddy water to flow in a direction transverse to the depth direction; and And a means for collecting soil particles in the muddy water that have been separated and settled between moving distances depending on the size.

本発明の方法及びシステムによれば、粒径が数μm〜数十μmの土壌粒子であっても当該粒径以上の土壌粒子からより確実に精度良く分離し、選択的に回収することができる。したがって、より少ない土壌粒子の回収量で、より多くの土壌粒子吸着物質を回収することができる。しかも、本発明の方法及びシステムによれば、水深方向に対し横方向の水流中で分別沈降を行うので、水深の浅い水域においても土壌粒子を高い精度でより確実に分級し、目的の土壌粒子吸着物質を優れた効率で回収することができる。
また、本発明の方法及びシステムでは、環境水域底部の撹拌により生成した濁水中の土壌粒子を、当該環境水域内においてその場で分級できる。それゆえ目的の土壌粒子吸着物質の吸着率が少ない土壌粒子を陸上に上げる必要がなく、もちろんその保管場所の問題も生じない。またさらには汚染物質を含む土壌粒子を環境水域に戻す、という作業も必要ない。
According to the method and system of the present invention, even soil particles having a particle size of several μm to several tens of μm can be more reliably separated and selectively recovered from soil particles having the particle size or more. . Therefore, more soil particle adsorbing substances can be collected with a smaller amount of collected soil particles. Moreover, according to the method and system of the present invention, fractional sedimentation is performed in a water flow transverse to the water depth direction, so that the soil particles can be classified more reliably and accurately even in shallow water areas. The adsorbed material can be recovered with excellent efficiency.
Moreover, in the method and system of this invention, the soil particle in muddy water produced | generated by stirring of an environmental water area bottom part can be classified on the spot in the said environmental water area. Therefore, it is not necessary to raise the soil particles having a low adsorption rate of the target soil particle adsorbing substance to the land, and of course, the problem of the storage location does not occur. Furthermore, there is no need to return soil particles containing pollutants to the environmental waters.

本発明の方法及びシステムの一実施形態を示す概略説明図である。図1中の矢印qは各装置内の水流の向きを、矢印rは環境水域内の水流の向きを示す。1 is a schematic illustration showing an embodiment of the method and system of the present invention. The arrow q in FIG. 1 indicates the direction of the water flow in each device, and the arrow r indicates the direction of the water flow in the environmental water area. ストークス則によって計算される沈降速度と粒径の関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the sedimentation speed calculated by Stokes' law, and a particle size. 着底所要時間の粒径依存性の一例を示すグラフである。It is a graph which shows an example of the particle size dependence of bottoming required time. 着底距離の粒径依存性の一例を示すグラフである。It is a graph which shows an example of the particle size dependence of bottoming distance. 実施例に記載のため池底質の土壌粒子について、沈降速度の違いにより分画した土壌粒子の重量分布と、沈降速度の違いにより分画した土壌粒子の放射性セシウムの含有量分布を示すグラフである。It is a graph which shows the content distribution of the radioactive cesium of the weight distribution of the soil particle fractionated by the difference in the sedimentation rate, and the soil particle fractionated by the difference in the sedimentation rate about the soil particles of the pond bottom sediment for description in the examples. .

本発明の方法及びシステムの好ましい実施形態について説明する。
本発明において、汚染除去対象とする環境水域に特に制限はなく、例えば、小沼、ため池、湖、汽水湖、調整池、内湾域及び海を挙げることができる。本発明において環境水域は、後述する濁水生成領域からその外側に向けて所望の水流を形成するために、また、濁水の含泥率を所望のレベルに高めた状態で本発明を実施するために、土壌粒子が周囲に拡散しにくい限定水域(閉鎖水域)とすることが好ましい。例えば、水域中の特定の領域を取り囲むようにして、シルトフェンス、板壁、波板等の限定水域設置用壁を配設することにより、土壌粒子が拡散しにくい限定水域を設けることができる。濁水の濃度をより高めるために、土壌粒子の透過を完全に防ぐ樹脂性の壁を設置することも好ましい。なお、汚染除去の対象とする環境水域がため池のように限られた狭い水域である場合、限定水域設置用壁を設置しなくても、十分な回収効率が得られる場合もある。
本発明において撹拌される環境水域の底部は、典型的には底質である。
A preferred embodiment of the method and system of the present invention will be described.
In this invention, there is no restriction | limiting in particular in the environmental water area made into pollution removal object, For example, a marsh, a pond, a lake, a brackish lake, a regulation pond, an inner bay area, and the sea can be mentioned. In the present invention, the environmental water area is formed in order to form a desired water flow from the muddy water generation area, which will be described later, toward the outside thereof, and in order to carry out the present invention with the muddy water content increased to a desired level. It is preferable to use a limited water area (closed water area) in which soil particles hardly diffuse around. For example, it is possible to provide a limited water area in which soil particles hardly diffuse by disposing a limited water area setting wall such as a silt fence, a plate wall, and a corrugated sheet so as to surround a specific area in the water area. In order to further increase the concentration of turbid water, it is also preferable to install a resinous wall that completely prevents permeation of soil particles. When the environmental water area to be decontaminated is a narrow water area such as a pond, sufficient recovery efficiency may be obtained without installing a wall for installing the limited water area.
In the present invention, the bottom of the environmental water area to be stirred is typically sediment.

本発明における環境水域の形状に特に制限はなく、後述する濁水生成領域と濁水回収領域との間の距離を、目的の粒径の土壌粒子を分離するのに十分な距離とすることができればよい。水深や水域底部の深度にもよるが、数μm〜数十μmの分級点の設定で、より精度良く分離する観点から、濁水生成領域と濁水回収領域との間の距離(この距離は、後述する濁水生成装置と濁水回収装置との距離とする)は0.3m〜30mとすることが好ましく、1m〜10mとすることがより好ましい。本発明における環境水域の形状は、例えば、限定水域設置用壁を用いて水面が矩形になるように限定水域を設置することができる。
当該環境水域の水深は、生成した濁水の含泥率を高めるにはある程度浅い方が好ましい。すなわち、汚染された底部の深さがH[cm]、水深がH[cm]、底部の含水率がRであった場合、すべての汚染底部が撹拌され、濁水化した場合の含泥率は、H×(1−R)/{H+H×R}となり、水深が浅い方が濁水の含泥率を向上させることができる。一方、土壌粒子を舞上らせる高さはある程度高い方が土壌粒子を分別しやすい。これらを考慮し、環境水域の水深は10cm以上2m以下が好ましく、20cm以上1.5m以下がより好ましく、30cm以上1m以下が特に好ましい。環境水域中、後述する濁水生成領域から濁水回収領域までの間の水深は、より精度の高い分級を行う観点から、最深部と最浅部との差が0〜190cmが好ましく、0〜50cmがより好ましい。
There is no restriction | limiting in particular in the shape of the environmental water area in this invention, The distance between the muddy water production | generation area | region and muddy water collection | recovery area | region mentioned later should just be sufficient distance to isolate | separate the soil particle of the target particle diameter. . Depending on the water depth and the depth of the bottom of the water area, the distance between the turbid water generation area and the turbid water recovery area from the viewpoint of more accurate separation by setting a classification point of several μm to several tens of μm (this distance is described later The distance between the turbid water generating device and the turbid water collecting device is preferably 0.3 m to 30 m, more preferably 1 m to 10 m. As for the shape of the environmental water area in the present invention, for example, the limited water area can be installed so that the water surface is rectangular using a wall for setting the limited water area.
The depth of the environmental water area is preferably shallow to some extent in order to increase the mud content of the generated muddy water. That is, when the depth of the contaminated bottom is H B [cm], the water depth is H W [cm], and the moisture content of the bottom is R, all the contaminated bottoms are agitated and become mud. The rate is H B × (1−R) / {H W + H B × R}, and the shallower water depth can improve the mud content of muddy water. On the other hand, it is easier to separate the soil particles when the height at which the soil particles rise is higher to some extent. Considering these, the water depth in the environmental water area is preferably 10 cm or more and 2 m or less, more preferably 20 cm or more and 1.5 m or less, and particularly preferably 30 cm or more and 1 m or less. In the environmental water area, the water depth from the muddy water generation area to the muddy water recovery area, which will be described later, is preferably a difference between the deepest part and the shallowest part from the viewpoint of performing classification with higher accuracy, preferably 0 to 50 cm. More preferred.

本発明において、環境水域の底部に含まれる、回収対象とする土壌粒子吸着物質に特に制限はなく、土壌粒子に吸着しうる汚染物質や有価物質を広く回収対象とすることができる。
上記汚染物質としては、例えば、放射性物質(放射性セシウム、放射性ストロンチウム、放射性プルトニウム、放射性コバルト、放射性マンガン等)、重金属類(カドミウム、鉛、ヒ素、クロム、水銀、亜鉛等)、揮発性有機化合物(VOC)、薬品(農薬、抗生物質等)を挙げることができる。
上記有価物質としては、例えば、鉄、アルミニウム、銅、貴金属、レアアース等を挙げることができる。
In the present invention, there is no particular limitation on the soil particle adsorbing substance to be collected contained in the bottom of the environmental water area, and pollutants and valuable substances that can be adsorbed on the soil particles can be widely collected.
Examples of the pollutants include radioactive substances (radiocesium, radioactive strontium, radioactive plutonium, radioactive cobalt, radioactive manganese, etc.), heavy metals (cadmium, lead, arsenic, chromium, mercury, zinc, etc.), volatile organic compounds ( VOC) and chemicals (agrochemicals, antibiotics, etc.).
Examples of the valuable substances include iron, aluminum, copper, noble metals, rare earths, and the like.

[本発明の方法]
本発明の方法の好ましい一実施形態を、図1を用いて説明する。図1は、本発明の理解を容易にするための説明図である。図1に示される各領域や各装置のサイズ、位置等は説明の便宜上大小を変えている場合があり、実際の関係をそのまま示すものではない。本発明で規定する事項以外は図1に示された形態に限定されるものでもない。
[Method of the present invention]
A preferred embodiment of the method of the present invention will be described with reference to FIG. FIG. 1 is an explanatory diagram for facilitating understanding of the present invention. The size, position, etc. of each region and each device shown in FIG. 1 may be changed for convenience of explanation, and do not show the actual relationship as they are. The items other than those defined in the present invention are not limited to the form shown in FIG.

目的の土壌粒子吸着物質が存在する特定領域(A)の底部(1)は、底部撹拌装置(4)を用いて撹拌され、これにより特定領域(A)において、底部(1)の土壌粒子を含む濁水を生成する(特定領域(A)を「濁水生成領域(A)」ともいう)。濁水生成領域(A)の大きさは、環境水域の広さ、深さ等により適宜に調整される。濁水生成領域(A)は、その水面の面積が通常は900〜10000cm程度となることが好ましい。
底部撹拌装置(4)は、特定の領域内で局所的に底部を撹拌できる機能を有し、底部撹拌装置の周辺において、一様な濁水を生成できることが好ましい。濁水生成領域(A)において必ずしも底部から水面までを均一な濁水とすることを要するものではなく、沈降速度の違いによる分離が可能となる高さまで土壌粒子を舞い上がらせることができればよい。
濁水生成のために土壌粒子を舞い上がらせる高さは、環境水域の水深にもよるが、10cm以上が好ましく、20cm以上がより好ましく、30cm以上がさらに好ましい。本発明では、土壌粒子を水面と略水平に流れる水流に乗せ、流水条件中での沈降速度の相違を利用して分級するため、上方流により分級する方法に比べると、土壌粒子を舞い上がらせる高さを抑えても、より高精度の分級が可能である。本発明に方法において、土壌粒子を舞い上がらせる高さは、濁水生成領域の水深以下である。本発明では、環境水域の水深が浅く上方流による高精度の分級が困難な水域でも、精度の高い分級を可能とする。
The bottom part (1) of the specific area (A) where the target soil particle adsorbing substance is present is stirred using the bottom agitator (4), whereby the soil particles of the bottom part (1) are removed in the specific area (A). The muddy water containing is produced | generated (a specific area | region (A) is also called "turbid water production | generation area | region (A)"). The size of the muddy water generation region (A) is appropriately adjusted depending on the size and depth of the environmental water region. The muddy water generation region (A) preferably has an area of the water surface of usually about 900 to 10000 cm 2 .
The bottom agitator (4) preferably has a function of locally agitating the bottom within a specific region, and is preferably capable of generating uniform turbid water around the bottom agitator. In the turbid water generation region (A), it is not always necessary to make the turbid water uniform from the bottom to the water surface, and it is sufficient if the soil particles can be raised to a height that allows separation due to the difference in sedimentation speed.
The height at which the soil particles rise to generate turbid water is preferably 10 cm or more, more preferably 20 cm or more, and even more preferably 30 cm or more, although it depends on the depth of the environmental water. In the present invention, soil particles are placed on a water stream that flows substantially horizontally with the water surface, and classification is performed by using the difference in sedimentation speed under flowing water conditions. Even if this is suppressed, more accurate classification is possible. In the method of the present invention, the height at which the soil particles are raised is equal to or less than the depth of the muddy water generation region. In the present invention, highly accurate classification is possible even in a water area where the environmental water area is shallow and it is difficult to classify with high accuracy by upward flow.

底部撹拌装置(4)の具体例としては、高圧洗浄機、水中モーター、浚渫用サンドポンプ等が挙げられる。高圧洗浄機を用いる場合、水を高圧で噴射することにより濁水生成領域の底部を撹拌する。この場合、水の噴射を後述する水流の形成にも利用できる利点がある。
目的の土壌粒子吸着物質が底部の浅い領域(例えば底質の表面及びその付近)に溜まっている場合には、底部の浅い領域を選択的に撹拌し、必要以上に深い領域を撹拌しないことが好ましい。このような場合、底部撹拌装置として高圧洗浄機を用いて、その噴射ノズルの形状を図1に示すようにベンドを有する形状(例えばL字型)とすることで、底部の浅い領域を選択的に撹拌することができる。
ここで、高圧洗浄機とは、ポンプで水を強力噴射することにより、汚れを吹き飛ばして落とす機能を有する機器である。高圧洗浄機が有する水の強力噴射機能が、底部を撹拌して均一な濁水を形成するのに適している。本発明において「高圧洗浄機」は、洗浄目的に製造された高圧洗浄機に限らず、水を高圧で噴射できる機能を有する装置を広く含む意味に用いる。
Specific examples of the bottom agitator (4) include a high pressure washer, a submersible motor, and a sand pump for dredging. When using a high-pressure washing machine, the bottom part of a muddy water production | generation area | region is stirred by injecting water at a high pressure. In this case, there is an advantage that the jet of water can also be used for forming a water flow described later.
If the target soil particle adsorbing substance is accumulated in the shallow region of the bottom (for example, the surface of the sediment and its vicinity), the shallow region of the bottom is selectively stirred and the region deeper than necessary may not be stirred. preferable. In such a case, a high pressure washer is used as the bottom agitator, and the shape of the injection nozzle is changed to a shape having a bend as shown in FIG. Can be stirred.
Here, the high pressure washer is a device having a function of blowing off and removing dirt by strongly jetting water with a pump. The high-pressure washing function of the high pressure washer is suitable for stirring the bottom to form uniform turbid water. In the present invention, the “high pressure washer” is not limited to a high pressure washer manufactured for the purpose of washing, but is used to mean a wide range of devices having a function of jetting water at a high pressure.

濁水生成領域(A)で生成された濁水を、濁水生成領域(A)から濁水回収領域(B)へと流れる水流に乗せて流しながら、流水中における土壌粒子の沈降速度の相違に応じて沈降させる。これにより、濁水生成領域(A)からの移動距離に基づき、土壌粒子を、小粒子とそれより粒径の大きな大粒子に分別沈降させ、目的の小粒子とそれより粒径の大きな大粒子とを移動距離に基づき分級することができる。水流の形成については後述する。
目的の沈降速度の土壌粒子(所望の小粒径の土壌粒子)は、当該沈降速度に応じた移動距離の領域(すなわち濁水回収領域(B))に設置された濁水回収装置(7)により回収される。これにより、目的の沈降速度の土壌粒子(目的の土壌粒子吸着物質の吸着率の高い土壌粒子)を環境水域から選択的に回収することができる。
本発明において、回収される土壌粒子の沈降速度が200cm/min以下であることが好ましく、50cm/min以下がさらに好ましい。本発明において「沈降速度」は、特に断りのない限り純水中における沈降速度を意味する。
The turbid water generated in the turbid water generation region (A) is carried on the water flow flowing from the turbid water generation region (A) to the turbid water recovery region (B), and settled according to the difference in the sedimentation speed of the soil particles in the flowing water. Let Thus, based on the moving distance from the turbid water generation region (A), the soil particles are separated and settled into small particles and larger particles having a larger particle size, and the target small particles and larger particles having a larger particle size are obtained. Can be classified based on the moving distance. The formation of the water flow will be described later.
Soil particles having a desired sedimentation speed (soil particles having a desired small particle size) are collected by a turbid water collection device (7) installed in a moving distance area (that is, a turbid water collection area (B)) according to the settling speed. Is done. As a result, soil particles having a target sedimentation rate (soil particles having a high adsorption rate of the target soil particle adsorbing substance) can be selectively recovered from the environmental water area.
In the present invention, the sedimentation rate of the collected soil particles is preferably 200 cm / min or less, and more preferably 50 cm / min or less. In the present invention, “sedimentation rate” means a sedimentation rate in pure water unless otherwise specified.

濁水回収装置(7)は、濁水を回収でき、これを環境水域から除去できれば特に制限はない。濁水回収装置(7)は、通常は回収した水が流通する管と、水をくみ上げるためのポンプとを少なくとも備える。濁水の回収には、例えば、水中ポンプ、サンドポンプ、浚渫用ポンプなどの液体用ポンプを使用することができる。濁水回収装置(7)は、木の葉やごみなどを吸い込み、動作が止まってしまうことがある。この問題を回避するために、カッターなどを具備した構成としたり、濁水回収装置の周りにメッシュ状の籠を設置したりすることも好ましい。   The muddy water collection device (7) is not particularly limited as long as muddy water can be collected and removed from the environmental water area. The muddy water recovery device (7) normally includes at least a pipe through which the recovered water circulates and a pump for pumping up the water. For recovery of muddy water, for example, a liquid pump such as a submersible pump, a sand pump, or a dredging pump can be used. The muddy water recovery device (7) may suck in leaves, garbage, etc., and stop operating. In order to avoid this problem, it is also preferable to have a configuration equipped with a cutter or the like, or to install a mesh-like ridge around the turbid water recovery device.

濁水回収装置(7)は、分離された目的の沈降速度の土壌粒子(目的の粒径の土壌粒子)が沈殿する領域あるいはその近傍に設置される。例えば、目的の粒径の土壌粒子が底部に沈殿する領域に設置する場合は、濁水回収装置(7)を底部付近に設置し、沈殿した目的の土壌粒子を濁水として回収することができる。また、目的の粒径の土壌粒子が、特定粒径以下の粒子のすべてである場合には、当該特定粒径の粒子が底部に沈殿する領域の底部付近に濁水回収装置(7)を設置すると同時に、それよりも水面側にさらに1つ又は2つ以上の濁水回収装置を設置することができる。   The turbid water recovery device (7) is installed in or near a region where the separated soil particles having a target settling velocity (soil particles having a target particle size) are precipitated. For example, when installing in the area | region where the soil particle of the target particle size settles to a bottom part, a muddy water collection | recovery apparatus (7) can be installed in bottom vicinity, and the settled target soil particle can be collect | recovered as muddy water. Moreover, when the soil particle of the target particle diameter is all the particles below a specific particle diameter, when a muddy water collection | recovery apparatus (7) is installed in the bottom vicinity of the area | region where the particle | grains of the said specific particle diameter settle at the bottom part. At the same time, one or more muddy water recovery devices can be further installed on the water surface side.

濁水回収装置(7)の動作は、連続的であってもよいし、断続的であってもよい。濁水回収装置(7)を断続的に動作させることにより、目的の粒径の粒子をある程度沈殿させ、堆積させた状態で回収することができ、回収した濁水中の含泥率をより高めることができる。
また、例えば、濁水回収装置が設置された場所やその付近において濁水が滞留するような形状の環境水域である場合や、濁水回収装置近傍に、土壌粒子を通さず水を透過させる限定水域設置用壁が設置されている場合などは、当該濁水回収装置が設置された場所に沈殿する沈降速度を有する土壌粒子の他、当該土壌粒子よりも沈降速度の遅い粒子(より小さな粒径の粒子)もまた、濁水回収装置の設置場所に沈降させることができる。したがって、断続的に濁水回収装置を稼働させることにより、目的の粒子の濃度をより高めた状態で目的の粒径の土壌粒子を含む濁水を効率的に回収できる。
本発明において、回収する濁水中の含泥率は、1質量%以上が好ましく、2質量%以上がより好ましく、3質量%以上がさらに好ましい。上方流による分級では、目的の小粒径の土壌粒子を堆積させて回収することができないため、目的の小粒径の土壌粒子を含む濁水を、上記含泥率で回収することは実際上困難である。これに対し、本発明の方法ないしシステムによれば、目的の粒径の土壌粒子を、高い含泥率で回収することが可能となる。したがって、回収される水の量を抑えることができ、目的の土壌粒子(土壌粒子吸着物質が吸着した土壌粒子)を優れた効率で回収することができる。濁水中の含泥率は通常は20質量%以下である。
The operation of the turbid water recovery device (7) may be continuous or intermittent. By intermittently operating the turbid water recovery device (7), particles of a desired particle size can be precipitated to some extent and collected in a deposited state, and the mud content in the recovered turbid water can be further increased. it can.
Also, for example, when the environment water area is such that turbid water stays at or near the place where the turbid water recovery device is installed, or for limited water area installation that allows water to pass through soil particles without passing through the soil particles In the case where a wall is installed, in addition to soil particles having a sedimentation rate that settles in the place where the turbid water recovery device is installed, particles with a sedimentation rate slower than the soil particles (particles with a smaller particle size) are also present. Moreover, it can be settled in the installation place of a muddy water collection | recovery apparatus. Therefore, by intermittently operating the turbid water recovery device, it is possible to efficiently recover turbid water containing soil particles having a target particle size in a state where the concentration of the target particles is further increased.
In this invention, 1 mass% or more is preferable, as for the mud content rate in the muddy water collect | recovered, 2 mass% or more is more preferable, and 3 mass% or more is further more preferable. In the classification by the upward flow, it is difficult to collect the muddy water containing the target small-sized soil particles at the above mud content because the target small-sized soil particles cannot be collected and collected. It is. On the other hand, according to the method or system of the present invention, it is possible to recover soil particles having a target particle size with a high mud content. Therefore, the amount of recovered water can be suppressed, and target soil particles (soil particles adsorbed with soil particle adsorbing substances) can be recovered with excellent efficiency. The mud content in muddy water is usually 20% by mass or less.

図1に記載の濁水回収装置(7)は、管の末端に水中ポンプが設置された形態が示されている。本発明に用いる濁水生成装置(7)はこの形態に限定されず、ポンプは管内のいずれの場所に設置されていてもよい。また、水中ポンプ以外のくみ上げポンプを用いて水をくみ上げることもできる。このことは後述する水流発生装置についても同様である。   The muddy water recovery device (7) shown in FIG. 1 shows a form in which a submersible pump is installed at the end of the pipe. The muddy water production | generation apparatus (7) used for this invention is not limited to this form, The pump may be installed in any place in a pipe | tube. It is also possible to pump water using a pumping pump other than the submersible pump. The same applies to the water flow generator described later.

続いて、本発明における水流の形成について説明する。
本発明において、「水深方向に対して横方向に流れる水流」は、水面に沿った流れが好ましい。「水面に沿った流れ」とは、必ずしも水面と平行の流れである必要はなく、目的の分別沈降が可能な範囲で、水面に対してある程度の角度を持った流れであってもよい。
上記水流は、底部撹拌装置(4)として高圧洗浄機を用いることで形成することができる。例えば、図1に示すように底部撹拌装置(4、高圧洗浄機)の水噴射口を、撹拌すべき底部中に設置し、そこから水流形成方向に向けて水を噴射することで、濁水を生成しながら、所望の水流を形成することができる。
上記水流は、濁水生成領域(A)からその外側に向けて、一又は二以上の方向に向けて形成することができる。例えば、高圧洗浄機の水噴射口を回転させることで、濁水生成領域(A)からその外側に向けて、水深方向に対して横方向に流れる水流を、濁水生成領域(A)から放射状に形成することもできる。
Subsequently, the formation of a water flow in the present invention will be described.
In the present invention, the “water flow flowing in the direction transverse to the water depth direction” is preferably a flow along the water surface. The “flow along the water surface” does not necessarily need to be a flow parallel to the water surface, and may be a flow having a certain angle with respect to the water surface as long as the target fractional sedimentation is possible.
The water stream can be formed by using a high pressure washer as the bottom agitator (4). For example, as shown in FIG. 1, the water injection port of the bottom agitator (4, high pressure washer) is installed in the bottom to be agitated, and turbid water is injected by injecting water in the direction of water flow formation therefrom. The desired water stream can be formed while it is being produced.
The said water flow can be formed toward one or two or more directions toward the outer side from the muddy water production | generation area | region (A). For example, by rotating the water injection port of the high pressure washer, a water flow that flows laterally from the muddy water generation region (A) toward the outside is formed radially from the muddy water generation region (A). You can also

また、本発明における水流を、水流発生装置(6)を用いて形成してもよい。
水流発生装置(6)は、例えば、濁水生成領域(A)(以下、単に「領域A」ともいう)と濁水回収領域(B)(以下、単に「領域B」ともいう)とを結ぶ延長上の、領域Bを挟んで領域Aとは反対側の領域(領域b)から水をくみ上げ、くみ上げた水を、領域Bと領域Aとを結ぶ延長上の、領域Aを挟んで領域Bとは反対側の領域(領域a)へと放出する機構を有する。図1に記載の水流発生装置(6)は、領域aと領域bとを繋ぐ管を有し、領域bの中に配設された管の末端からポンプを用いて水をくみ上げ、くみ上げた水を、領域aの中に配設された、管のもう一方の末端から排出する機構を備えた構成を有する。
また、1つの領域Aに対して、直線上に配置する上記領域a、b及びBの組み合わせからなる領域のセットを2つ以上設けることにより、領域Aの外側にむけて2以上の方向に、横方向に流れる水流を形成することもできる。この場合、例えば2つ以上の各領域bからくみ上げた水をそれぞれ対応する各領域aに排出することで、領域Aの外側にむけて2以上の方向に水流を形成することができる。また、領域Aと領域Bないし領域bとが近接もしくは重複していてもよい。
Moreover, you may form the water flow in this invention using a water flow generator (6).
The water flow generator (6) is, for example, an extension connecting the muddy water generation area (A) (hereinafter also simply referred to as “area A”) and the muddy water recovery area (B) (hereinafter also simply referred to as “area B”). In the region B, the water is pumped up from the region (region b) opposite to the region A, and the pumped water is an extension connecting the region B and the region A. It has a mechanism for discharging to the opposite region (region a). The water flow generator (6) shown in FIG. 1 has a pipe connecting the region a and the region b, pumps water from the end of the tube disposed in the region b using a pump, and pumps up the water. Is provided in the region a, and has a structure including a mechanism for discharging from the other end of the tube.
Further, by providing two or more sets of regions composed of combinations of the regions a, b and B arranged on a straight line for one region A, in two or more directions toward the outside of the region A, A transverse water flow can also be formed. In this case, for example, by discharging water pumped up from two or more regions b to the corresponding regions a, water flows can be formed in two or more directions toward the outside of the region A. Further, the region A and the region B or the region b may be close to each other or overlap each other.

水流発生装置(6)にポンプを使用する場合、内部に羽根車等を具備したタイプのポンプを使用することにより、土壌粒子の解砕等の効果を合わせて発揮させることができる。土壌粒子は個々の一次粒子が凝集した二次粒子を形成している場合があり、この二次粒子は広い表面積を有するにもかかわらず、沈降速度は二次粒子のそれに従う場合がある。このような場合には二次粒子を解砕することで、より分離効率を向上させることが可能となる。水流発生装置(6)のポンプに羽根車が入ったタイプを使用することにより、この二次粒子を解砕し、一次粒子化することができる。本発明に方法では、羽根車の入ったポンプを水流発生装置(6)とは別に用意し、このポンプを水域内で循環させて2次粒子を解砕することもできる。   When a pump is used for the water flow generator (6), effects such as pulverization of soil particles can be exhibited by using a pump of a type equipped with an impeller inside. The soil particles may form secondary particles in which individual primary particles are aggregated, and even though the secondary particles have a large surface area, the sedimentation rate may follow that of the secondary particles. In such a case, it is possible to further improve the separation efficiency by crushing the secondary particles. By using a type in which an impeller is included in the pump of the water flow generator (6), the secondary particles can be crushed and converted into primary particles. In the method of the present invention, a pump containing an impeller can be prepared separately from the water flow generator (6), and the secondary particles can be crushed by circulating the pump in the water area.

本発明における水流の形成には、上記底部撹拌装置(高圧洗浄機)による水流形成と、上記水流発生装置による水流形成とを組み合わせてもよい。また、濁水生成領域(A)から外側に向けて一方向のみに水流を形成する態様とすることにより、より安定した水流を形成することができる。
本発明において、限定水域で行う場合、底部撹拌装置(4)及び水流発生装置(6)から排出される水の量の合計I(水流発生装置を用いない場合は底部撹拌装置から排出される水の量II)と、濁水回収装置(7)及び水流発生装置(6)からくみ上げられる水の量の合計II(水流発生装置を用いない場合は濁水回収装置からくみ上げられる水の量II)は、0≦I/II≦2が好ましく、0.1≦I/II≦1がより好ましく、0.1≦I/II<1がさらに好ましく、0.2≦I/II<1がさらに好ましい。I/IIを上記好ましい範囲内とすることにより、生成した濁水の拡散をより抑えた状態で、土壌粒子を水流に乗せて濁水回収領域側へと効率的に流すことができる。
The formation of the water flow in the present invention may be a combination of the water flow formation by the bottom stirrer (high pressure washer) and the water flow formation by the water flow generator. Moreover, the more stable water flow can be formed by setting it as the aspect which forms a water flow only to one direction toward the outer side from a muddy water production | generation area | region (A).
In the present invention, when performed in a limited water area, the total amount of water discharged from the bottom agitator (4) and the water flow generator (6) I (the water discharged from the bottom agitator when the water flow generator is not used) And the total amount of water pumped up from the muddy water recovery device (7) and the water flow generator (6) II (the amount of water pumped up from the muddy water recovery device II when the water flow generator is not used), 0 ≦ I / II ≦ 2 is preferable, 0.1 ≦ I / II ≦ 1 is more preferable, 0.1 ≦ I / II <1 is further preferable, and 0.2 ≦ I / II <1 is further preferable. By setting I / II within the above-mentioned preferable range, it is possible to efficiently flow soil particles onto the turbid water collection region side with the water flow in a state where diffusion of the generated turbid water is further suppressed.

本発明において、土壌粒子を分別沈降させるための、水深方向に対して横方向に流れる水流の流速は、水流発生装置(6)の性能を考慮すると、通常は0.01〜10m/minであり、0.05〜1m/minであってもよい。   In the present invention, the flow velocity of the water flow flowing in the direction transverse to the water depth direction for separating and sedimenting the soil particles is usually 0.01 to 10 m / min in consideration of the performance of the water flow generator (6). 0.05 to 1 m / min.

図1に示されるように、水流に乗った濁水中の土壌粒子は、沈降速度が速い順に(粒径が大きい順に)連続的に底部に沈殿していく。沈降速度の速い土壌粒子は濁水生成領域(A)からの移動距離が短く、濁水生成領域(A)により近い位置に沈殿する。一方、沈降速度の遅い土壌粒子は、沈殿するまでの間の濁水回収領域(A)からの移動距離が長い。本発明では、沈降速度が遅い目的の小粒径の土壌粒子が、濁水回収領域で沈殿する態様の他、濁水回収領域において浮遊状態でいるような設計も可能である。この場合、濁水回収装置は、浮遊して流れて来た土壌粒子を回収するように設置する。
本発明では、濁水生成領域と濁水回収領域との間の距離、濁水生成領域から濁水回収領域へと流れる水流の流速を、環境水域の水深等も考慮して適宜に調節する。これにより、濁水中に存在する粒径が数μm〜数十μmオーダーの目的の土壌粒子を、沈降速度に応じた移動距離に基づき、連続的に且つ精度良く分級することができ、目的の小粒径の土壌粒子を含む濁水を優れた選択性で回収することができる。
As shown in FIG. 1, soil particles in muddy water riding on a water stream are continuously deposited at the bottom in order of increasing sedimentation speed (in order of increasing particle diameter). Soil particles having a high sedimentation speed have a short moving distance from the muddy water generation region (A), and settle at a position closer to the muddy water generation region (A). On the other hand, soil particles having a slow sedimentation speed have a long moving distance from the muddy water collection area (A) until they settle. In the present invention, in addition to a mode in which soil particles having a small particle size with a slow sedimentation rate are precipitated in the turbid water collection region, a design in which the soil particles are floating in the turbid water collection region is also possible. In this case, the muddy water collection device is installed so as to collect the soil particles that have floated and flowed.
In the present invention, the distance between the turbid water generation region and the turbid water recovery region and the flow velocity of the water flow flowing from the turbid water generation region to the turbid water recovery region are appropriately adjusted in consideration of the water depth of the environmental water region. This makes it possible to classify target soil particles having a particle size in the order of several μm to several tens of μm in turbid water continuously and accurately based on the moving distance according to the sedimentation speed. Turbid water containing soil particles having a particle size can be recovered with excellent selectivity.

続いて、流水中における土壌粒子の、粒径に応じた分別沈降の理論を説明する。
本発明において「沈降速度」とは、対流などが存在しない状態で土壌粒子を水中(純水中)に静置した場合に、当該土壌粒子が単位時間当たりに水底に向けて沈降する距離(水底に向けて移動した距離)を表す。沈降速度は下記ストークスの式で計算される。

={(ρ−ρ)g/(18η)}×d (式1)

ここで、vは土壌粒子の沈降速度(cm/s)、ρは土壌粒子の密度(グラム/cm)、ρは水の密度(グラム/cm)、gは重力加速度(cm/s)、ηは水の粘度(グラム/cm・s)、dは土壌粒子の粒径(cm)を示す。
上記式1に、環境水域内の底部撹拌により生じた濁水に当てはめるため、式1に、ρ=2.6[グラム/cm]、ρ=0.9882[グラム/cm]、g=980.665[cm/s]、η=0.01[g/cm・s]を代入すると、下記式2が導かれる。

vs=8781.31×d (式2)

上記式2のvs(cm/s)をvs’(cm/min)に、d(cm)をd’(μm)とすると、上記式2は下記式3に置き換えられる。

vs’=8781.31×60×10−8×d’
=0.005226×d’ (式3)

上記式3に基づき、沈降速度(cm/min)の粒径(μm)依存性を示すグラフを図2に示す。
Next, the theory of fractional sedimentation according to the particle size of soil particles in running water will be described.
In the present invention, “sedimentation velocity” refers to the distance at which soil particles settle toward the bottom of the water per unit time when the soil particles are left in water (pure water) in the absence of convection, etc. Represents the distance traveled toward. The settling velocity is calculated by the following Stokes equation.

v S = {(ρ S −ρ W ) g / (18η)} × d 2 (Formula 1)

Here, v S is the sedimentation rate of soil particles (cm / s), ρ S is the density of soil particles (gram / cm 3 ), ρ W is the density of water (gram / cm 3 ), and g is the acceleration of gravity (cm / S 2 ), η is the viscosity of water (grams / cm · s), and d is the particle size (cm) of the soil particles.
In order to apply the above formula 1 to the turbid water generated by the bottom stirring in the environmental water area, ρ S = 2.6 [gram / cm 3 ], ρ W = 0.9882 [gram / cm 3 ], g Substituting = 980.665 [cm / s 2 ] and η = 0.01 [g / cm · s], the following formula 2 is derived.

vs = 8781.31 × d 2 (Formula 2)

When vs (cm / s) in the above formula 2 is vs '(cm / min) and d (cm) is d' (μm), the above formula 2 is replaced by the following formula 3.

vs ′ = 8781.31 × 60 × 10 −8 × d ′ 2
= 0.005226 × d ′ 2 (Formula 3)

A graph showing the particle size (μm) dependence of the sedimentation rate (cm / min) based on the above formula 3 is shown in FIG.

上記式3の通り、土壌粒子の沈降速度は粒径の2乗に比例する。すなわち、土壌粒子を沈降速度の違いを利用して分級することにより、土壌粒子をより精密に分級することが可能となる。例えば、底部撹拌装置により底質からH(cm)の初期高さに巻き上げられた土壌粒子が再び底部に着底するために必要な着底所要時間t(min)は、下記式4で表される。

=H/vs’=191×H/d’ (式4)

さらに、流速v[m/min]の水流を水面と平行に形成させた場合、底部からHcmの初期高さに巻き上げられた土壌粒子が着底する位置の、濁水生成領域からの距離L(着底距離L、単位:m)は、下記式5で表される。

L=t×v=191×H×v/d’ (式5)
As shown in Equation 3, the sedimentation rate of the soil particles is proportional to the square of the particle size. That is, it is possible to classify the soil particles more precisely by classifying the soil particles using the difference in sedimentation speed. For example, the required time t S (min) required for the soil particles wound up to the initial height of H (cm) from the bottom sediment by the bottom stirrer to reach the bottom again is expressed by the following formula 4. Is done.

t S = H / vs ′ = 191 × H / d ′ 2 (Formula 4)

Further, when a water flow having a flow velocity of v h [m / min] is formed parallel to the water surface, the distance L (from the muddy water generation region at the position where the soil particles rolled up to the initial height of Hcm from the bottom settle down. The bottoming distance L, unit: m) is expressed by the following formula 5.

L = t S × v h = 191 × H × v h / d ′ 2 (Formula 5)

着底所要時間ts(min)及び着底距離L(m)の、土壌粒子の粒径(μm)依存性の例を、それぞれ図3及び図4に示す(初期高さ、水流の流速を、それぞれ30[cm]、0.5[m/min]とした)。これに従えば、例えば初期高さが30cmの場合、粒径20μm、40μm及び60μmの粒子の着床所要時間はそれぞれ14分、3.6分及び1.6分となる。着底所要時間は粒径の2乗に反比例するため、例えば粒径が2倍異なる場合には、着床所要時間は4倍異なる。また、着底距離も粒径の2乗に比例し、例えば粒径20μm、40μm及び60μmの場合、それぞれ7.2[m]、1.8[m]、及び0.8[m]となる。このように、本発明の方法ないしシステムにより、例えば20μmと40μmといった非常に小さな粒径領域における土壌粒子を、水深が30cm程度の浅い水域においても、メートルスケールの移動度の差として、より確実に分級し、より少ない土壌の排出量で、より多くの土壌粒子吸着物質を効率的に除去することが可能にする。   Examples of the particle size (μm) dependence of the time required for bottoming ts (min) and the bottoming distance L (m) are shown in FIG. 3 and FIG. 4 respectively (initial height, flow velocity of water flow, 30 [cm] and 0.5 [m / min] respectively). According to this, for example, when the initial height is 30 cm, the time required for implantation of particles having a particle size of 20 μm, 40 μm and 60 μm is 14 minutes, 3.6 minutes and 1.6 minutes, respectively. Since the time required for bottoming is inversely proportional to the square of the particle size, for example, when the particle size differs by 2 times, the time required for landing differs by 4 times. Also, the bottoming distance is proportional to the square of the particle diameter, and for example, when the particle diameter is 20 μm, 40 μm, and 60 μm, they are 7.2 [m], 1.8 [m], and 0.8 [m], respectively. . As described above, the method or system of the present invention ensures that soil particles in a very small particle size region, such as 20 μm and 40 μm, can be more reliably determined as a difference in mobility on a metric scale even in a shallow water region having a water depth of about 30 cm. Classification enables more soil particle adsorbents to be efficiently removed with less soil emissions.

[本発明のシステム]
本発明のシステムは、本発明の方法を実施するために用いられる。
本発明のシステムは、環境水域中の特定領域の底部を撹拌して該底部の土壌粒子を含む濁水を生成する手段(濁水生成手段)と、該濁水を前記特定領域の水深方向に対して横方向に流す水流を発生する手段(水流発生手段)と、該水流中で大きさに応じて移動距離間で分別沈降した該濁水中の土壌粒子を回収する手段(土壌粒子回収手段)とを少なくとも含む。
濁水生成手段としては、例えば、上述した底部撹拌装置(4)を挙げることができる。濁水生成手段は好ましくは高圧洗浄機である。
水流発生手段としては、例えば、上述した水流発生装置(6)を挙げることができる。また、上記濁水生成手段が水流発生手段を兼ねることもできる。例えば、濁水生成手段として高圧洗浄機を用いることで、濁水を生成しながら、所望の水流を形成することができる。
土壌粒子回収手段としては、目的の土壌粒子を含む濁水を回収できるものであれば特に制限はない。例えば、上述した濁水回収装置を挙げることができる。
[System of the present invention]
The system of the present invention is used to implement the method of the present invention.
The system of the present invention includes a means (turbid water generating means) for agitating the bottom of a specific region in the environmental water area to generate turbid water containing soil particles at the bottom, and the turbid water transverse to the depth direction of the specific area. Means for generating a water flow flowing in the direction (water flow generating means) and means for recovering soil particles in the muddy water that have been separated and settled between the moving distances according to the size of the water stream (soil particle recovery means) Including.
As a muddy water production | generation means, the bottom part stirring apparatus (4) mentioned above can be mentioned, for example. The turbid water generating means is preferably a high pressure washer.
Examples of the water flow generating means include the above-described water flow generating device (6). The muddy water generating means can also serve as the water flow generating means. For example, by using a high pressure washer as the turbid water generating means, a desired water flow can be formed while generating turbid water.
The soil particle recovery means is not particularly limited as long as it can recover turbid water containing the target soil particles. For example, the muddy water collection | recovery apparatus mentioned above can be mentioned.

本発明のシステムを、目的の土壌粒子吸着物質が底部に存在する環境水域に設置して稼働させることで、本発明の方法を実施することができ、環境水域底部から目的の土壌粒子吸着物質を効率的に回収することができる。
すなわち、濁水生成手段により、水域中の特定領域(土壌粒子吸着物質が存在する特定の領域)の底部を撹拌して濁水を生成し、同時に水流発生手段により水深方向に対して横方向に水流を発生させる。生成した濁水はこの水流に乗って所定距離間流れ、その間に、該濁水中の土壌粒子が、沈降速度に応じて分別沈降する。目的の粒径の土壌粒子は、当該土壌粒子が沈降した場所に設置される土壌粒子回収手段により、濁水として回収することができる。
By installing and operating the system of the present invention in an environmental water area where the target soil particle adsorbing substance exists at the bottom, the method of the present invention can be carried out, and the target soil particle adsorbing substance is removed from the bottom of the environmental water area. It can be recovered efficiently.
That is, the turbid water generating means agitates the bottom of a specific area in the water area (specific area where the soil particle adsorbing substance exists) to generate turbid water, and at the same time, the water flow generating means generates a water flow transversely to the depth direction. generate. The generated muddy water rides on this water flow and flows for a predetermined distance, during which the soil particles in the muddy water are separated and settled according to the settling speed. Soil particles having a target particle size can be recovered as turbid water by a soil particle recovery means installed at a place where the soil particles have settled.

以下に、本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれらに限定して解釈されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention should not be construed as being limited thereto.

<実施例1>
福島県のため池で採取した底質100g(含水率67.5%)を1Lメスシリンダーに入れ、蒸留水を添加し、全体積が1Lになる様調製した。攪拌機で700rpmの回転速度で1分間撹拌した後、所望の沈降速度の粒子を採取できるように一定時間静置して、上澄み水10cm分(約300mL)をシリンジ(200mL)を用いて速やかに採取した。その後、残りの700mLに再度蒸留水を添加し、全体積を1Lになる様調製、攪拌し、上記静置時間を変えて、上澄み水を回収した。この操作を10〜20回繰り返し、沈降速度の異なる複数の画分を得た。得られた画分に含まれる土壌粒子の沈降速度、乾燥重量、及び放射性セシウム濃度を測定した。結果を図5に示す。
<Example 1>
100 g of bottom sediment collected from a pond in Fukushima Prefecture (water content 67.5%) was placed in a 1 L graduated cylinder and distilled water was added to prepare a total volume of 1 L. After stirring for 1 minute at a rotation speed of 700 rpm with a stirrer, let stand for a certain period of time so that particles with the desired sedimentation speed can be collected, and quickly collect 10 cm (about 300 mL) of supernatant water using a syringe (200 mL) did. Thereafter, distilled water was added again to the remaining 700 mL, and the whole volume was adjusted to 1 L, stirred, and the standing time was changed to collect the supernatant water. This operation was repeated 10 to 20 times to obtain a plurality of fractions having different sedimentation rates. The sedimentation rate, dry weight, and radioactive cesium concentration of the soil particles contained in the obtained fraction were measured. The results are shown in FIG.

図5に示されるように、ため池で採取した底質には、沈降速度が5cm/分より遅い粒子が、全画分の乾燥重量中、64質量%含まれており、それらが含む放射性セシウムは、全画分中の79%に至っていた。すなわち、沈降速度が5cm/分より遅い小粒径の粒子のみを回収することにより(すなわち底質の64質量%の回収量で)底質中の放射性セシウムの80%近くを除去できることが示された。
図2に従えば、5cm/分以下の沈降速度の土壌粒子の粒径は30μm以下となる。そして図3に従えば、30μmの粒子の着底所要時間が約6分である。すなわち、濁水生成領域と濁水回収領域との間の距離を約3mに設定することにより、5cm/分以下の沈降速度の土壌粒子を選択的に回収することができる(図4)。
As shown in FIG. 5, the sediment collected from the pond contains 64% by mass of particles whose sedimentation rate is slower than 5 cm / min in the dry weight of all fractions. , And reached 79% of all fractions. That is, it is shown that only 80% of the radioactive cesium in the sediment can be removed by collecting only particles having a small particle size whose sedimentation rate is slower than 5 cm / min (that is, with a recovery amount of 64% by mass of the sediment). It was.
According to FIG. 2, the particle size of soil particles having a sedimentation speed of 5 cm / min or less is 30 μm or less. Then, according to FIG. 3, the time required for bottoming of 30 μm particles is about 6 minutes. That is, by setting the distance between the turbid water generation region and the turbid water recovery region to about 3 m, soil particles having a sedimentation velocity of 5 cm / min or less can be selectively recovered (FIG. 4).

本発明の方法及びシステムは、環境水域の底部から有害物質を効率的に除去したり、有価物質を効率的に回収したりするのに利用することができる。   The method and system of the present invention can be used to efficiently remove harmful substances from the bottom of the environmental water area or to efficiently recover valuable substances.

1 環境水域底部(底質)
2 限定水域設置用壁(シルトフェンス)
3 水面
4 底部撹拌装置(高圧洗浄機)
5 水噴射口
6 水流発生装置
7 濁水回収装置
8 浮き
P ポンプ
A 濁水生成領域
B 濁水回収領域
1 Environmental water area bottom (sediment)
2 Wall for limited water installation (silt fence)
3 Water surface 4 Bottom stirrer (high pressure washer)
5 Water jet 6 Water flow generator 7 Muddy water recovery device 8 Floating P Pump A Muddy water generation area B Muddy water recovery area

Claims (13)

環境水域底部から土壌粒子吸着物質を回収する方法であって、
該環境水域中の特定領域の底部を撹拌して該底部の土壌粒子を含む濁水を生成し、該濁水を水深方向に対して横方向に流れる水流に乗せて所定距離間流し、その間に、該濁水中の土壌粒子を、沈降速度に応じて小粒子とそれより大粒子に分別沈降させ、これにより小粒子とそれより大粒子とを移動距離に基づき分級することを含む、方法。
A method for recovering a soil particle adsorbing substance from the bottom of an environmental water area,
The bottom of a specific area in the environmental water area is agitated to produce turbid water containing soil particles at the bottom, and the turbid water is flowed for a predetermined distance on a water stream flowing in a direction transverse to the water depth direction. A method comprising separating sedimentation of soil particles in turbid water into small particles and larger particles according to a sedimentation rate, thereby classifying the small particles and larger particles based on a moving distance.
前記横方向に流れる水流を一方向に形成する、請求項1に記載の方法。   The method of claim 1, wherein the laterally flowing water stream is formed in one direction. 前記環境水域が限定水域である、請求項1又は2に記載の方法。   The method according to claim 1 or 2, wherein the environmental water area is a limited water area. 前記限定水域を、シルトフェンスを用いて形成する、請求項3に記載の方法。   The method according to claim 3, wherein the limited water area is formed using a silt fence. 高圧洗浄機を用いて前記水域底部に水を噴射し、これにより前記水域底部の撹拌を行うと同時に前記水流を形成する、請求項1〜4のいずれか1項に記載の方法。   The method according to any one of claims 1 to 4, wherein water is jetted to the bottom of the water area using a high-pressure washing machine, whereby the water stream is formed simultaneously with stirring of the bottom of the water area. 前記水流を、前記の濁水を生成する領域Aと前記の濁水を回収する領域Bとを結ぶ延長上の、領域Bを挟んで領域Aとは反対側の領域から水をくみ上げ、くみ上げた水を、前記延長上の、領域Aを挟んで領域Bとは反対側の領域に放出することにより形成する、請求項1〜4のいずれか1項に記載の方法。   The water flow is drawn from a region opposite to the region A across the region B on the extension connecting the region A that generates the muddy water and the region B that collects the muddy water, and the pumped water The method according to any one of claims 1 to 4, wherein the method is formed by discharging to a region opposite to the region B across the region A on the extension. 高圧洗浄機を用いて前記水域底部に水を噴射し、これにより前記水域底部の撹拌を行うと同時に前記水流を形成し、さらに、前記の濁水を生成する領域Aと前記の濁水を回収する領域Bとを結ぶ延長上の、領域Bを挟んで領域Aとは反対側の領域から水をくみ上げ、くみ上げた水を、前記延長上の、領域Aを挟んで領域Bとは反対側の領域に放出することによっても前記水流を形成する、請求項1〜4のいずれか1項に記載の方法。   Water is sprayed onto the bottom of the water area using a high-pressure washer, whereby the water stream is formed at the same time as stirring of the water area bottom, and further, the area A for generating the muddy water and the area for collecting the muddy water On the extension connecting B, water is drawn from a region opposite to region A across region B, and the pumped water is transferred to the region on the extension opposite to region B across region A. The method according to claim 1, wherein the water stream is also formed by discharging. 前記水流を形成するための水のくみ上げに、羽根車を有するポンプを用いる、請求項6又は7に記載の方法。   The method according to claim 6 or 7, wherein a pump having an impeller is used for pumping up water to form the water flow. 前記環境水域の水深が10cm以上2m以下である、請求項1〜8のいずれか1項に記載の方法。   The method of any one of Claims 1-8 whose water depth of the said environmental water area is 10 cm or more and 2 m or less. 回収される濁水の含泥率を1質量%以上とする、請求項1〜9のいずれか1項に記載の方法。   The method of any one of Claims 1-9 which makes the mud content rate of the collected muddy water 1 mass% or more. 回収される濁水中の土壌粒子の沈降速度が200cm/min以下である、請求項1〜10のいずれか1項に記載の方法。   The method of any one of Claims 1-10 whose sedimentation speed | rate of the soil particle in the muddy water collect | recovered is 200 cm / min or less. 前記土壌粒子吸着物質が汚染物質である、請求項1〜11のいずれか1項に記載の方法。   The method according to claim 1, wherein the soil particle adsorbing substance is a pollutant. 環境水域底部から土壌粒子吸着物質を回収するシステムであって、
該環境水域中の特定領域の底部を撹拌して該底部の土壌粒子を含む濁水を生成する手段と、該濁水を水深方向に対して横方向に流す水流を発生する手段と、該水流中で大きさに応じて移動距離間で分別沈降した該濁水中の土壌粒子を回収する手段とを含む、システム。
A system for collecting soil particle adsorbents from the bottom of an environmental water area,
Means for agitating the bottom of a specific area in the environmental water area to generate turbid water containing soil particles at the bottom; means for generating a water flow that causes the muddy water to flow in a direction transverse to the depth direction; and And a means for collecting soil particles in the muddy water that have been separated and settled between moving distances depending on the size.
JP2014155591A 2014-07-30 2014-07-30 Method for recovering soil particle adsorbate from environmental water region bottom part Pending JP2016032778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014155591A JP2016032778A (en) 2014-07-30 2014-07-30 Method for recovering soil particle adsorbate from environmental water region bottom part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014155591A JP2016032778A (en) 2014-07-30 2014-07-30 Method for recovering soil particle adsorbate from environmental water region bottom part

Publications (1)

Publication Number Publication Date
JP2016032778A true JP2016032778A (en) 2016-03-10

Family

ID=55451959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014155591A Pending JP2016032778A (en) 2014-07-30 2014-07-30 Method for recovering soil particle adsorbate from environmental water region bottom part

Country Status (1)

Country Link
JP (1) JP2016032778A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018003421A (en) * 2016-07-01 2018-01-11 東亜建設工業株式会社 Water bottom resource collection method and system
WO2018076274A1 (en) * 2016-10-28 2018-05-03 喜美农业生技股份有限公司 Substance separation method and system
CN109443691A (en) * 2018-11-10 2019-03-08 中国海洋大学 A kind of wave causes the experimental provision of sediment erosion inside seepage flow induction sea bed
JP2019095300A (en) * 2017-11-22 2019-06-20 株式会社環境整美 Lake decontamination method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002028526A (en) * 2000-07-14 2002-01-29 Mitsuhiro Fujiwara Cleaning apparatus for river bed, lake/marsh beds and the like
JP2005046756A (en) * 2003-07-30 2005-02-24 Kajima Corp Processing method for polluted bottom sediment at bottom of water
JP2011052428A (en) * 2009-09-01 2011-03-17 Tokai Univ Method of cleaning bottom sediment by resuspension

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002028526A (en) * 2000-07-14 2002-01-29 Mitsuhiro Fujiwara Cleaning apparatus for river bed, lake/marsh beds and the like
JP2005046756A (en) * 2003-07-30 2005-02-24 Kajima Corp Processing method for polluted bottom sediment at bottom of water
JP2011052428A (en) * 2009-09-01 2011-03-17 Tokai Univ Method of cleaning bottom sediment by resuspension

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018003421A (en) * 2016-07-01 2018-01-11 東亜建設工業株式会社 Water bottom resource collection method and system
WO2018076274A1 (en) * 2016-10-28 2018-05-03 喜美农业生技股份有限公司 Substance separation method and system
JP2019095300A (en) * 2017-11-22 2019-06-20 株式会社環境整美 Lake decontamination method
CN109443691A (en) * 2018-11-10 2019-03-08 中国海洋大学 A kind of wave causes the experimental provision of sediment erosion inside seepage flow induction sea bed

Similar Documents

Publication Publication Date Title
US10702875B2 (en) System and method for collecting heavy minerals
CN101279811B (en) Four-phase solid-liquid separation method for well drilling wastes
JP2016032778A (en) Method for recovering soil particle adsorbate from environmental water region bottom part
BR112014006219B1 (en) fluid treatment apparatus, groundwater treatment apparatus and fluid treatment method
JP5997402B1 (en) Rainwater treatment method for soil purification facilities to purify contaminated soil
KR101693575B1 (en) Apparatus for washing soils contaminated by heavy metals and method therefor
CN104058526A (en) Flushing fluid purification treatment process
JP2001020318A (en) Waters purifying method and waters purifying system and dam soil discharging system
JP2014085172A (en) Suspended matter separation device and suspended matter separation method
KR101307288B1 (en) Initial storm runoff particulate pollutant reduction device
JP6247663B2 (en) Firewood system
JP4382397B2 (en) Earth and sand cleaning device and earth and sand cleaning method
JP6006762B2 (en) Classifier pump for dredging and dredging system
CN206034404U (en) Aquatic greasy dirt clearance is with circle bucket shape oil suction device
JP5286201B2 (en) Bottom sediment purification method by resuspension
CN205516663U (en) Saw dirt grout separator
JP5703150B2 (en) Method and apparatus for separation of foreign matter contaminated soil in water
JP2015033665A (en) Settling separation apparatus for coagulant-added turbid water
JP2015190139A (en) Equipment and method for disposing of dredge soil
JP6004529B2 (en) Mud treatment system
JP2009072747A (en) Water treatment apparatus utilizing microbubbles and water treatment method
CN203916176U (en) Sprial flow centrifugal type desanding filter plant
JP2007098301A (en) Method for continuously cleaning and discharging soil
JP2017094234A (en) Polluted soil purification method and purification system
KR20170136027A (en) A Floatation tank for removal of oil for Rare Earth wastewater treatment system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170721

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180313

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180925