JP2007136375A - Method and apparatus for separation of solid - Google Patents

Method and apparatus for separation of solid Download PDF

Info

Publication number
JP2007136375A
JP2007136375A JP2005335268A JP2005335268A JP2007136375A JP 2007136375 A JP2007136375 A JP 2007136375A JP 2005335268 A JP2005335268 A JP 2005335268A JP 2005335268 A JP2005335268 A JP 2005335268A JP 2007136375 A JP2007136375 A JP 2007136375A
Authority
JP
Japan
Prior art keywords
fluid
solid
treated
separation
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005335268A
Other languages
Japanese (ja)
Inventor
Yasuji Kotsutsumi
古堤泰次
Hiroyuki Kotsutsumi
古堤裕行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YABU TOYOHIRO
Original Assignee
YABU TOYOHIRO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YABU TOYOHIRO filed Critical YABU TOYOHIRO
Priority to JP2005335268A priority Critical patent/JP2007136375A/en
Publication of JP2007136375A publication Critical patent/JP2007136375A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cyclones (AREA)
  • Separating Particles In Gases By Inertia (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for separation of a solid which achieve a high separation efficiency with energy saved, require less labor and are compact and economical. <P>SOLUTION: The solid separating apparatus 1 is so constructed as to efficiently collide/flocculate fine solid particles in a to-be-treated fluid with each other, and be settled. The apparatus 1 is separately constituted by a cylindrical swinging separation vessel 2 having two or more built-in cap-shaped cylinders 221, 222 and 223 applying a strong centrifugal force to fine solid particles 7 for flocculation/accumulation, and a settlement separation vessel 3 for settling and separating the flocculated fine solid particles 7. The swinging separation vessel 2 and the settlement separation vessel 3 are connected with each other through a pair of spraying pipes 41 and 43 spraying the to-be-treated fluid 6 and a single clear fluid rising pipe 5 in which the clear fluid 61 of the to-be-treated fluid 6 passes through the central part of the swinging separation vessel 2 and is discharged outside. The apparatus 1 and a fluid storage mechanism 9 are connected with pipes or the like to form a loop. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、クーリングタワー、研磨機、研削盤などの循環冷却水、塗装ラインのブース洗浄水および廃水・汚水などの液体中に含まれて不純物となっている固体微粒子やスラッジ、あるいは工場廃ガス、焼却炉廃ガスなどの粉塵となっている固体微粒子を、高効率で、しかも経済的に、分離するサイクロン型固体の分離方法および分離装置に関するものである。 The present invention relates to solid fine particles and sludge that are contained in liquids such as circulating cooling water such as cooling towers, polishing machines, and grinding machines, booth washing water and waste water / sewage of coating lines, or factory waste gas, The present invention relates to a cyclone-type solid separation method and separation apparatus for separating solid fine particles, which are dust such as incinerator waste gas, with high efficiency and economically.

従来から液体中に含まれて不純物となっている固体微粒子の除去方法としては、濾過材を利用した濾過機、遠心力を利用した遠心分離機、液体サイクロンなどがあり、また、廃ガス中に含まれる粉塵についてはバグフィルター、電気集塵機などがある。しかしながらとくに、冷却水、切削油、洗浄水などについては繰り返し使用できることから、これらの液体をタンクに適当量貯留して循環使用することが多く、この場合の液体中に含まれる不純物は、流路に設置されたストレーナーなどのフィルターで簡易的に濾過除去する方法、炉材を用いた濾過装置(例えば、特許文献1および特許文献2参照)、および砂濾過と薬品処理を用いた装置(例えば、特許文献3および特許文献4参照)があった。   Conventional methods for removing solid fine particles contained in liquids as impurities include filters using filter media, centrifuges using centrifugal force, liquid cyclones, etc., and in waste gas There are bug filters, electric dust collectors, etc. for the contained dust. However, in particular, since cooling water, cutting oil, washing water, etc. can be used repeatedly, these liquids are often stored in an appropriate amount in a tank and circulated, and impurities contained in the liquid in this case A method of simply filtering and removing with a filter such as a strainer installed in a filter, a filtration device using a furnace material (for example, refer to Patent Document 1 and Patent Document 2), and a device using sand filtration and chemical treatment (for example, Patent Document 3 and Patent Document 4).

特開2002-331207号公報JP 2002-331207 A 特開2003-181219号公報Japanese Patent Laid-Open No. 2003-181219 特開平11-128953号公報Japanese Patent Laid-Open No. 11-128953 特開2002-1392号公報JP 2002-1392 A

上記のような従来の簡易的なフィルターによる不純物の除去方法では、目詰まりが起こるため、フィルターの定期的な交換や洗浄およびタンク内の底部に堆積した不純物の清掃などの手間を必要とすること、洗浄水の入れ替え・放流などがあって大変不経済であった。また、濾材を用いた濾過装置では同様に濾材の洗浄や交換に手間と膨大な経費が必要であった。   The conventional methods for removing impurities using a simple filter as described above may cause clogging, which requires time and labor such as periodic replacement and cleaning of the filter and cleaning of impurities accumulated at the bottom of the tank. It was very uneconomical due to the replacement and release of washing water. In addition, in the filtration apparatus using the filter medium, the labor and enormous cost are similarly required for cleaning and replacement of the filter medium.

本発明は、従来方法のかかる問題解決を図るとともに、近年、とくに要求されてきた省資源・省エネギー化を実現した高効率の分離装置を提供するものである。即ち、従来にない特殊構造の旋回分離装置とすることによって、手間の掛からない省エネルギーで高い分離効率が得られ、液体だけでなく排ガスなどの気体にも適用できるコンパクトで経済的な不純物である固体の分離方法および固体の分離装置を提供することを目的としたものである。 The present invention provides a high-efficiency separation apparatus that solves the problems of the conventional method and realizes resource saving and energy saving that have been particularly demanded in recent years. That is, by using an unprecedented special structure swivel separator, high separation efficiency can be obtained with energy saving and hassle-free, and it is a compact and economical impurity that can be applied not only to liquids but also to gases such as exhaust gases. It is an object of the present invention to provide a separation method and a solid separation device.

本発明は、長年にわたる濾過・分離装置の開発・設計の経験に基づき、鋭意研究の結果得られたもので、上記目的を達成するためには、第一に、被処理流体(以後、液体または気体をまとめて流体という)中の不純物である固体微粒子同士を効率よく衝突・凝集させ濃縮する必要のあること、第二には、凝集・濃縮させた固体微粒子を速やかに沈降させる必要のあること、第三には、流体中に含まれる極微量の固体微粒子をさらに分離捕捉させる必要のあること、そして第四には、不純物となる固体微粒子の生成速度および堆積速度に対応させるように被処理流体から固体微粒子を適宜、着実に分離除去する必要のあることに着目してなされたものである。   The present invention was obtained as a result of diligent research based on many years of experience in the development and design of filtration / separation devices. In order to achieve the above object, first, a fluid to be treated (hereinafter referred to as liquid or It is necessary to efficiently collide and agglomerate solid particulates that are impurities in the gas (collectively referred to as fluid), and secondly, it is necessary to quickly settle the aggregated and condensed solid particulates. Thirdly, it is necessary to further separate and capture a very small amount of solid fine particles contained in the fluid, and fourth, to be treated so as to correspond to the production rate and deposition rate of solid fine particles which become impurities. This is made by paying attention to the necessity of steadily separating and removing solid fine particles from a fluid as appropriate.

具体的には、固体分離方法に係わる第一の発明の一つ目は、圧力損失を著しく増加させることなく被処理流体を超高速の旋回流となし、当該流体中に含まれる固体微粒子に強い遠心力を作用させて衝突・凝集させ、外側方向に当該固体微粒子を移動・集積させて、さらに旋回させながら複数の逆截頭円錐形筒(以後、カップ形筒体という)内傾斜面を緩やかに下降させることである。   Specifically, the first aspect of the first invention relating to the solid separation method is that the fluid to be treated is an ultra-high-speed swirling flow without significantly increasing pressure loss, and is strong against solid fine particles contained in the fluid. Applying centrifugal force to collide and agglomerate, move and accumulate the solid fine particles in the outer direction, and further swivel the inner inclined surfaces of multiple inverted frustoconical cylinders (hereinafter referred to as cup-shaped cylinders) gently To lower.

また、固体分離方法に係わる第一の発明の二つ目は、固体微粒子が速やかに沈降するよう、凝集・集積した上記固体微粒子を含む流体を静止もしくは緩やかに流動している流体中に大きな初速度を与えて噴射することである。   The second aspect of the first invention related to the solid separation method is that the fluid containing the solid particles aggregated and accumulated in a fluid that is stationary or gently flowing so that the solid particles settle quickly. Injecting at a speed.

また、固体分離方法に係わる第一の発明の三つ目は、固体微粒子と分離された流体を溢流上昇させ、上記複数のカップ形筒体内を再び通過させて、上記被処理流体と向流接触させながら清澄流体となし、溢流排出させることも特定事項としている。 In the third aspect of the first invention related to the solid separation method, the fluid separated from the solid particulates overflows and passes again through the plurality of cup-shaped cylinders to counter flow with the fluid to be treated. It is also a specific matter to make it a clarified fluid while it is in contact, and to discharge the overflow.

また、固体分離方法に係わる第一の発明の四つ目は、大量の上記被処理流体から少量の被処理流体を連続的に吸取り・圧送して上記固体微粒子のみ分離除去して、上記清澄流体は元の上記被処理流体中に返送するという一連の操作をサイクルとして連続的に行なうことを特定事項としている。 The fourth aspect of the first invention relating to the solid separation method is that the small amount of fluid to be treated is continuously sucked and pumped from a large amount of the fluid to be treated, and only the solid fine particles are separated and removed. Has a specific matter of continuously performing a series of operations of returning to the original fluid to be treated as a cycle.

また、第一の発明を実施するための固体分離装置に係わる第二の発明の一つ目は、上記固体分離装置は、固体微粒子に強い遠心力を与えて固体微粒子を凝集させ、そして濃縮・集積する円筒形の旋回分離槽と、凝集した固体微粒子を沈降分離させる沈降分離槽とに分離されていて、前記旋回分離槽と前記沈降分離層は、前記旋回分離槽を出た被処理流体が前記沈降分離層の上層部に噴射されるよう配設された一対の噴射パイプで接続されており、さらに前記被処理流体が前記沈降分離槽内から前記旋回分離槽の中央部を通って溢流液となって外部に排出されるよう、前記沈降分離槽と前記旋回分離槽が単一の清澄流体上昇パイプで接続されていることを特定事項とするものである。   A first aspect of the second invention related to the solid separation apparatus for carrying out the first invention is that the solid separation apparatus agglomerates the solid fine particles by applying a strong centrifugal force to the solid fine particles. It is separated into a cylindrical swirl separation tank that accumulates and a settling separation tank that settles and separates the agglomerated solid fine particles, and the swirl separation tank and the settling separation layer are processed fluids that have exited the swirl separation tank. It is connected by a pair of injection pipes arranged so as to be sprayed to the upper layer part of the sedimentation separation layer, and the fluid to be treated overflows from the sedimentation tank through the center of the swirl separation tank A specific matter is that the settling separation tank and the swirl separation tank are connected by a single clarified fluid ascending pipe so as to be discharged as a liquid.

また、第一の発明を実施するための固体分離装置に係わる第二の発明の二つ目は、上記旋回分離槽の上部には高速旋回手段が、中央部から下部には、遠心力によって凝集された固体微粒子が緩やかに下降して濃縮・集積される濃縮集積手段が、そして下部には上記沈降分離槽に接続するための接続口が配設されていることを特定事項とするものである。 The second aspect of the second invention relating to the solid separation apparatus for carrying out the first aspect of the invention is that the high-speed swirling means is located in the upper part of the swirl separation tank and the central part to the lower part are aggregated by centrifugal force. It is a specific matter that the concentration and collection means for concentrating and accumulating the collected solid fine particles gently descends, and that a connection port for connection to the settling separation tank is provided at the lower part. .

また、第一の発明を実施するための固体分離装置に係わる第二の発明の三つ目は、上記高速旋回手段の頂部中心部には、前記被処理流体の清澄流体を溢流排出させるための流体排出パイプが前記旋回分離槽と平行且つ上向きに、そして前記旋回分離槽の外筒と前記流体排出パイプが二重管を形成するよう、適宜長さを有して配設されていること、および前記高速旋回手段の中央部には、導入された被処理流体が前記流体排出パイプの外周部に高速噴射されて高速旋回流となるよう被処理流体の流入パイプが前記旋回分離槽に対して直角に、且つ接線方向に配設されており、この流入パイプの噴出口は前記旋回分離槽の壁面側に寄っていて縦方向長方形に断面縮小されて配設されていることを特定事項とするものである。 The third aspect of the second invention related to the solid separation apparatus for carrying out the first invention is to allow the clarified fluid of the fluid to be treated to overflow and be discharged at the center of the top of the high-speed swirling means. The fluid discharge pipe is disposed with an appropriate length so as to be parallel and upward with the swirl separation tank, and so that the outer cylinder of the swirl separation tank and the fluid discharge pipe form a double pipe. And an inflow pipe of the fluid to be treated with respect to the swirl separation tank so that the introduced fluid to be treated is jetted at a high speed on the outer peripheral portion of the fluid discharge pipe to form a high-speed swirling flow. The jet outlet of this inflow pipe is close to the wall surface side of the swirl separation tank and is reduced in cross section to a vertical rectangle. To do.

また、第一の発明を実施するための固体分離装置に係わる第二の発明の四つ目は、上記濃縮集積手段は、上記高速旋回手段で遠心凝集した固体微粒子を含む被処理流体や上記被処理流体の溢流液の流路となる適当寸法の口径を有する広口と適当寸法の口径を有する狭口を備えたカップ形筒体の複数個が、高さ方向に所定間隔で配設されたものであること、および当該カップ形筒体の広口口径は上記円筒形旋回分離槽の内径と同一寸法に構成されていて、このカップ形筒体のそれぞれの広口の外周面が上記円筒形旋回分離槽の内周面に所定間隔で溶接固定して配設されていることを特定事項とするものである。 According to a fourth aspect of the second invention relating to the solid separation apparatus for carrying out the first invention, the concentration and accumulation means includes a fluid to be treated containing solid fine particles centrifugally aggregated by the high-speed swirling means, A plurality of cup-shaped cylinders having a wide opening having an appropriate size and a narrow opening having an appropriate size serving as a flow path for the overflow liquid of the processing fluid are disposed at predetermined intervals in the height direction. The cup-shaped cylindrical body has the same wide diameter as the inner diameter of the cylindrical swivel separation tank, and the outer peripheral surface of each wide-mouthed cup-shaped tubular body has the cylindrical swivel separation. A specific matter is that the tank is welded and fixed to the inner peripheral surface of the tank at a predetermined interval.

また、第一の発明を実施するための固体分離装置に係わる第二の発明の五つ目は、上記一対の噴射パイプは、上記濃縮集積手段の最上段、もしくは2段目のカップ形筒体の狭口の近傍にあって、そして上記旋回分離槽の円筒体側面に垂直で外向きに、且つ互いに反対方向に向いていて、しかもこの噴射パイプの中心を水平方向に適宜ずらして配設されていること、およびそれぞれの噴射パイプは途中で湾曲して上記沈降分離槽の上部に接続されよう配設されていることを特定事項とするものである。 The fifth aspect of the second invention relating to the solid separation apparatus for carrying out the first invention is that the pair of injection pipes are the uppermost or second cup-shaped cylindrical body of the concentration and accumulation means. In the vicinity of the narrow opening of the swirl separation tank and perpendicular to the cylindrical side surface of the swirl separation tank and facing in the opposite direction, and the center of the injection pipe is appropriately shifted in the horizontal direction. And that each injection pipe is curved in the middle and connected to the upper part of the settling separation tank.

また、第一の発明を実施するための固体分離装置に係わる第二の発明の六つ目は、上記沈降分離槽は、上記旋回分離槽より大きい容積を有し、且つ上記の凝集固体微粒子が沈降分離するに充分な縦長構造のタンクであって、この沈降分離槽の上部外周部には上記一対の噴射パイプを接続する2個の導入口と、当該沈降分離槽の上部中央部には上記旋回分離槽の下部に設置された接続口に接続する1個の排出口がそれぞれ配設されており、そして当該沈降分離槽の下部には、沈降分離した固体微粒子の適当量を一時貯留させるための円錐形タンクとこの沈降分離した固体微粒子を適宜排出するためのスラッジ排出バルブが配設されていることを特定事項とするものである。 The sixth aspect of the second invention relating to the solid separation apparatus for carrying out the first invention is that the sedimentation separation tank has a larger volume than the swirl separation tank, and the aggregated solid fine particles are A tank having a vertically long structure sufficient for sedimentation separation, and two inlets connecting the pair of injection pipes to the upper outer peripheral portion of the sedimentation separation tank, and the upper central portion of the sedimentation separation tank at the upper central portion. One discharge port connected to a connection port installed in the lower part of the swirl separation tank is provided, and the lower part of the settling separation tank temporarily stores an appropriate amount of the settled and separated solid fine particles. It is a specific matter that a conical tank and a sludge discharge valve for appropriately discharging the settled and separated solid fine particles are provided.

また、第一の発明を実施するための固体分離装置に係わる第二の発明の七つ目は、上記固体分離装置と上記被処理流体の流体貯留手段とは、上記被処理流体の一部適当量を当該流体貯留手段から吸取り圧送する流体圧送手段と流量調節用バルブおよび上記流入パイプを介して連結されていること、および上記固体分離装置を出た上記清澄流体が当該流体貯留手段に返送されるよう上記清澄流体の返送パイプと上記流体排出パイプを介して連結されていて、上記固体分離装置と当該流体貯留手段との両者が流体圧送手段やパイプ類でループを形成するよう配設されていることを特定事項とするものである。 A seventh aspect of the second invention related to the solid separation apparatus for carrying out the first invention is that the solid separation device and the fluid storage means for the fluid to be treated are partly suitable for the fluid to be treated. The fluid pumping means for sucking and pumping the amount of the fluid from the fluid storage means is connected to the flow rate adjusting valve and the inflow pipe, and the clarified fluid exiting the solid separator is returned to the fluid storage means. The clarified fluid return pipe and the fluid discharge pipe are connected to each other, and both the solid separation device and the fluid storage means are arranged to form a loop with the fluid pressure feeding means and pipes. Is a specific matter.

以上、説明したように、固体分離方法に係わる第一の発明および固体分離装置に係わる第二の発明によれば、省エネルギーで高い分離効率が得られ、しかもフィルター交換などの手間の掛からないコンパクトで経済的、且つ、多くの流体に適用可能な固体分離装置とすることができる。 As described above, according to the first invention relating to the solid separation method and the second invention relating to the solid separation apparatus, high separation efficiency can be obtained with energy saving, and there is no need for trouble such as filter replacement. It is possible to provide a solid separation device that is economical and applicable to many fluids.

具体的には、旋回分離槽の高速旋回手段に、被処理流体をポンプなどで高速圧送すると、流入口が断面縦長方形に縮小されているため、板状となった超高速の旋回流がこの旋回分離槽の頂部の流体排出パイプの周辺に生じ、被処理流体中に含まれる固体微粒子には強い遠心力が作用することとなる。そうすると、固体微粒子同士は衝突・凝集を繰り返すことからほとんどの粒子は捕捉されて肥大化し、外向きに移動し旋回分離槽の内壁面に集積されるため高い捕捉率となる。この凝集・集積された固体微粒子は被処理流体とともに流下して行くが、先ずは、最上段のカップ形筒体の内斜面を下降することとなる。ここで、凝集・集積した固体微粒子は斜面の円周方向に沿って回りながら下降し、流路が次第に狭くなるためさらに集積して、狭口を被処理流体とともに飛び出す。このとき、集積した固体微粒子には遠心力が強く作用しているため大部分の固体微粒子は外向きに運ばれて被処理流体とともに左右一対の噴射パイプに送り込まれて行き、このパイプの湾曲部を通って下方に配設された沈降分離槽の上部流体中に勢いよく噴射される。被処理流体とともに沈降分離槽に噴射された固体微粒子は、集積肥大化しており、さらには噴射による高い初速度を得ていることからその慣性力で沈降分離槽内の流体中を速やかに沈降して行くため、分離時間は短くなり小型化できてコンパクトな沈降分離槽ですむことになる。   Specifically, when the fluid to be treated is pumped to the high-speed swirling means of the swirling separation tank with a pump or the like, the inflow port is reduced to a vertical rectangular section, so that a super-high-speed swirling flow in the form of a plate is generated. A strong centrifugal force acts on the solid fine particles that occur around the fluid discharge pipe at the top of the swirl separation tank and are contained in the fluid to be treated. Then, since the solid microparticles repeatedly collide and agglomerate, most of the particles are captured and enlarged, move outward, and accumulate on the inner wall surface of the swirl separation tank, resulting in a high capture rate. The agglomerated and accumulated solid fine particles flow down together with the fluid to be treated. First, the inner fine slope of the uppermost cup-shaped cylinder is lowered. Here, the agglomerated and accumulated solid fine particles descend while rotating along the circumferential direction of the slope, and since the flow path gradually narrows, they are further accumulated and jump out of the narrow port together with the fluid to be treated. At this time, since the centrifugal force acts on the accumulated solid fine particles, most of the solid fine particles are carried outwardly and sent to the pair of right and left injection pipes together with the fluid to be processed. And vigorously injected into the upper fluid of a sedimentation tank disposed below. The solid fine particles injected into the sedimentation separation tank together with the fluid to be treated are accumulated and enlarged, and since a high initial velocity is obtained by the injection, the inertial force quickly settles in the fluid in the sedimentation separation tank. Therefore, the separation time is shortened and the size can be reduced, and a compact sedimentation tank can be used.

また、この左右一対の噴射パイプに送り込まれなかった固体微粒子は、旋回しながら二段目、三段目のカップ形筒体に到達してそれぞれにおいて最上段と同様の挙動となって凝集・集積を繰り返して肥大化し、清澄流体上昇パイプ内を沈降して下部の沈降分離槽に入り、ここで沈降分離することからさらに捕捉率は高まり高い分離効率を示すことになる。 In addition, the solid fine particles that have not been fed into the pair of left and right injection pipes reach the second and third cup-shaped cylinders while turning, and behave and agglomerate and accumulate in the same manner as in the uppermost stage. Is repeatedly enlarged and settled in the clarified fluid ascending pipe and enters the lower sedimentation tank, where the sedimentation is further separated, so that the capture rate is further increased and high separation efficiency is exhibited.

また、沈降分離槽に噴射され、固体微粒子と分離した清澄な被処理流体は、沈降分離槽の上部の中央部に配設された排出口へ向かって緩やかに移動し、旋回分離槽の下部と連結された清澄流体上昇パイプを通って旋回分離槽内の底部に溢流して、複数個のカップ形筒体を下から順次通り抜けることになるが、このとき沈降してくる凝集・集積した固体微粒子と向流接触することから、清澄液に残留した極微量の固体微粒子は凝集・集積した固体微粒子に捕捉されるためさらに分離効率は高くなる。 In addition, the clear fluid to be treated, which is sprayed into the sedimentation separation tank and separated from the solid particulates, slowly moves toward the discharge port disposed in the upper central part of the sedimentation separation tank, Through the connected clarified fluid ascending pipe, it overflows into the bottom of the swirl separation tank and passes through a plurality of cup-shaped cylinders sequentially from the bottom. Because of the counter-current contact, the trace amount of solid fine particles remaining in the clarified liquid is trapped by the aggregated and accumulated solid fine particles, so that the separation efficiency is further increased.

また、大量の被処理流体中には時間を経て少量ずつ不純物などの固体微粒子は生成しあるいは混入して堆積して行くものであるが、大量の被処理流体から少量の被処理流体を吸取りこれに含まれる少量の固体微粒子を分離除去するという操作を連続して行なうことによって、この堆積速度をやや上回る程度の除去速度で固体微粒子が被処理流体中から常時分離・排出されることになり、小額の経費で被処理流体は常に清澄に維持されることになる。   In addition, solid fine particles such as impurities are generated or mixed little by little over time in a large amount of fluid to be treated, but a small amount of fluid to be treated is absorbed from a large amount of fluid to be treated. By continuously performing the operation of separating and removing a small amount of solid particles contained in the solid particles, the solid particles are always separated and discharged from the fluid to be treated at a removal rate slightly higher than the deposition rate. The fluid to be treated is always kept clear at a small expense.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の実施形態に係わる固体分離装置の正面図を示したもので、1は本発明実施形態の固体分離装置、2は旋回分離槽、21は旋回分離手段、211は旋回分離槽の任意深さまで届く長さの清澄流体の流体排出パイプ、211aは流体排出パイプ211の流体吸込口、212は被処理流体の流入パイプ、22は濃縮集積手段、221、222および223は高さ方向に所定間隔で配設されたカップ形筒体である。3は沈降分離槽、31は円錐形タンク、32はスラッジ排出バルブ、41と42は左右一対の噴射パイプ、5は清澄流体上昇パイプで、濃縮集積手段22の接続口23と沈降分離槽3の排出口35に接続されている。33と34は左右一対の噴射パイプ41、42を沈降分離槽3に接続する導入口である。6は被処理流体、6a、6bは凝集した固体微粒子を多く含む被処理流体、61は清澄流体、62は分離された固体微粒子を含むスラッジである。   FIG. 1 is a front view of a solid separation apparatus according to an embodiment of the present invention. 1 is a solid separation apparatus according to an embodiment of the present invention, 2 is a swirl separation tank, 21 is swirl separation means, and 211 is swirl separation. A fluid discharge pipe for a clarified fluid that reaches a desired depth of the tank, 211a is a fluid suction port of the fluid discharge pipe 211, 212 is an inlet pipe for the fluid to be treated, 22 is a concentration and collection means, 221, 222 and 223 are heights It is a cup-shaped cylinder arranged at predetermined intervals in the direction. 3 is a sedimentation separation tank, 31 is a conical tank, 32 is a sludge discharge valve, 41 and 42 are a pair of left and right injection pipes, 5 is a clarification fluid ascending pipe, and the connection port 23 of the concentration and accumulation means 22 and the sedimentation separation tank 3 Connected to the outlet 35. Reference numerals 33 and 34 denote introduction ports for connecting the pair of left and right injection pipes 41 and 42 to the sedimentation tank 3. 6 is a fluid to be treated, 6a and 6b are fluids to be treated containing a lot of aggregated solid particles, 61 is a clarification fluid, and 62 is a sludge containing separated solid particles.

図2は、本発明の実施形態に係わる固体分離装置1の側面図を示したもので、旋回分離槽2に配設された被処理流体の流入パイプ212、および左右一対の噴射パイプ42の位置関係を説明したものである。また、213は被処理流体の流入パイプ212の噴出口であって、これの配設位置が旋回分離槽2の壁面よりであること、および断面形状が縦方向長方形に縮小されていることを示したものである。 FIG. 2 is a side view of the solid separation device 1 according to the embodiment of the present invention, and the positions of the inflow pipe 212 for the fluid to be processed and the pair of left and right injection pipes 42 disposed in the swirl separation tank 2. It explains the relationship. Reference numeral 213 denotes a jet outlet of the inflow pipe 212 for the fluid to be treated, which indicates that the arrangement position is from the wall surface of the swirl separation tank 2 and that the cross-sectional shape is reduced to a vertical rectangle. It is a thing.

図3は、本発明の実施形態に係わる固体分離装置1の構成要素である濃縮集積手段2の模式図であって、この濃縮集積手段22における被処理流体とこれに含まれる固体微粒子の挙動を示したものである。6は被処理流体、7は被処理流体に含まれる固体微粒子、71は固体微粒子の凝集体、72は固体微粒子の濃縮集積体、221a、221bおよび222a、222bはカップ形筒体221および222それぞれの広口と狭口であり、221cと222cはカップ形筒体221と222の筒体斜面を示したものである。 FIG. 3 is a schematic diagram of the concentration and accumulation means 2 that is a component of the solid separation device 1 according to the embodiment of the present invention, and shows the behavior of the fluid to be treated in the concentration and accumulation means 22 and the solid fine particles contained therein. It is shown. 6 is a fluid to be treated, 7 is a solid particulate contained in the fluid to be treated, 71 is an aggregate of solid particulates, 72 is a concentrated aggregate of solid particulates, 221a, 221b and 222a, 222b are cup-shaped cylinders 221 and 222, respectively. 221c and 222c show the cylindrical slopes of the cup-shaped cylinders 221 and 222.

実施例1
以下、本発明の固体分離装置における分離処理工程と作用効果を図3に基づき説明する。
Example 1
Hereinafter, the separation process steps and effects in the solid separation apparatus of the present invention will be described with reference to FIG.

被処理流体6より比重の大きい固体微粒子7を大量に含む被処理流体6は、ポンプなどの圧送手段によって流入パイプ212を通って旋回分離槽2の上部に配設された旋回分離手段21に送られる。この場合被処理流体6は、流入パイプ212の噴出口213の断面が旋回分離槽2の壁面接線方向に向かって縦方向長方形に縮小されているため、この壁面接線方向に勢いよく高速噴射されて清澄流体の排出パイプ211の周辺を円運動する高速の旋回流となる。そうすると、被処理流体6に含まれる固体微粒子7には強い遠心力が作用し、固体微粒子7はお互いに衝突を繰り返しながら旋回分離槽2の壁面方向に移動して凝集する。この固体微粒子7の凝集体71は次第に大きくなって下降し始め、最上段のカップ形筒体221の広口221aを経てこのカップ形筒体221の筒体斜面221c上に集積して固体微粒子の濃縮集積層72を形成することとなる。この濃縮集積層72も次第に大きくなりその重みで筒体斜面221c上を緩やかにずり落ちてカップ形筒体221の狭口221bより落下して行くことになるが、このとき、濃縮集積層72を構成する凝集体71は、下降する被処理流体6の旋回流に乗って外向き方向に運ばれ、被処理流体6aおよび6bとなって最上段のカップ形筒体221の狭口221bの近傍に配設された左右一対の噴射パイプ41および42に流れ込むこととなる。 The fluid 6 to be treated, which contains a large amount of solid particulates 7 having a specific gravity greater than that of the fluid 6 to be treated, is sent to the swirl separation means 21 disposed on the upper part of the swirl separation tank 2 through the inflow pipe 212 by a pumping means such as a pump. It is done. In this case, since the cross section of the jet outlet 213 of the inflow pipe 212 is reduced to a rectangular shape in the vertical direction toward the wall tangential direction of the swirl separation tank 2, the fluid 6 to be treated is jetted at high speed in the wall tangential direction. It becomes a high-speed swirling flow that moves circularly around the discharge pipe 211 of the clarified fluid. Then, a strong centrifugal force acts on the solid fine particles 7 included in the fluid 6 to be treated, and the solid fine particles 7 move and agglomerate in the direction of the wall surface of the swirl separation tank 2 while repeatedly colliding with each other. The agglomerates 71 of the solid fine particles 7 gradually become larger and begin to descend, and accumulate on the cylindrical slope 221c of the cup-shaped cylindrical body 221 through the wide mouth 221a of the uppermost cup-shaped cylindrical body 221, thereby concentrating the solid fine particles. The integrated layer 72 is formed. This concentrated and accumulated layer 72 also gradually increases and gradually falls down on the cylindrical inclined surface 221c with its weight and falls from the narrow opening 221b of the cup-shaped cylindrical body 221. The constituting aggregate 71 is carried outwardly on the swirling flow of the descending fluid 6 to be treated, and becomes fluids 6a and 6b to be treated in the vicinity of the narrow port 221b of the uppermost cup-shaped cylinder 221. It flows into a pair of left and right injection pipes 41 and 42 arranged.

こうすることによって、大部分の固体微粒子の凝集体71は噴射パイプ41および42を通って下部に配設された沈降分離槽3に勢いよく送り込まれて速やかに沈降分離して行くが、噴射パイプ41および42に到達し得なかった一部の固体微粒子の凝集体71は、二段目のカップ形筒体222の広口222aを通って斜面222c上に再び集積して行き、次第に大きくなってずり落ちて狭口222bより落下して同様に三段目のカップ形筒体223に集積し、そしてこれの狭口と清澄流体上昇パイプ5内を沈降して下方の沈降分離槽3内に入り込み重力により沈降して行く。 By doing so, most of the solid fine particle aggregates 71 are vigorously sent through the injection pipes 41 and 42 to the sedimentation / separation tank 3 disposed in the lower part, and quickly settle and separate. Aggregates 71 of some of the solid fine particles that could not reach 41 and 42 accumulated again on the inclined surface 222c through the wide mouth 222a of the second-stage cup-shaped cylindrical body 222, and gradually increased in size. It falls and falls from the narrow port 222b and accumulates in the third cup-shaped cylindrical body 223 in the same manner, and settles in the narrow port and the clarified fluid ascending pipe 5 and enters the lower settling separation tank 3 and gravity. It sinks by.

これらのことから、被処理流体6中の固体微粒子7は確実に捕捉され、そして速やかに沈降分離することになり、高い分離効率が得られると同時に分離槽は小型化できて装置全体はコンパクトとなる。   For these reasons, the solid fine particles 7 in the fluid 6 to be treated are surely captured and quickly settled and separated, and a high separation efficiency can be obtained. At the same time, the separation tank can be miniaturized and the entire apparatus is compact. Become.

上記図3では、上記流体排出パイプ211の吸込口211aは、上記最上段のカップ形筒体221の上方に配設されているが、この吸込口211a位置は上記2段目のカップ形筒体222、もしくは上記3段目のカップ形筒体223の上方、あるいは下方に配設されてもよく、この吸込口221aの位置は、被処理流体に含まれる固体微粒子の性質により、実験的に決められるものである。   In FIG. 3, the suction port 211a of the fluid discharge pipe 211 is disposed above the uppermost cup-shaped cylinder 221. The suction port 211a is positioned at the second-stage cup-shaped cylinder. 222 or may be disposed above or below the third-stage cup-shaped cylinder 223, and the position of the suction port 221a is determined experimentally depending on the properties of the solid fine particles contained in the fluid to be treated. It is what

実施例2
次に、本発明の固体分離装置を用いた固体分離システムにおける処理工程について説明する。
Example 2
Next, processing steps in the solid separation system using the solid separation device of the present invention will be described.

一般に、クーリングタワーを用いた冷却系統には、長年にわたる冷却水の循環使用によって、水中の無機質および配管材の錆などが濃縮されて生成した不溶性の酸化物であるスケールや土砂・塵芥および藻類などが不純物となって濃縮し蓄積されてくる。これらの不純物はクーリングタワーの充填材および設備の熱交換器の伝熱面に堆積して冷却機能の著しい低下、あるいは配管系の内壁に堆積して閉塞の原因となるなどの問題があった。このため、少なくとも毎月1回は充填材の表面や冷却水タンクの洗浄と異物除去および配管系の洗浄が避けられない状況にあったし、状況によっては冷却水の入れ替えの必要もあった。 In general, cooling systems using cooling towers include scales, earth and sand, dust, and algae, which are insoluble oxides that are formed by the concentration of minerals in the water and rust of piping materials, etc., through the long-term use of cooling water. Concentrates and accumulates as impurities. These impurities accumulate on the heat transfer surface of the cooling tower filler and the heat exchanger of the equipment and cause problems such as a significant decrease in cooling function, or accumulation on the inner wall of the piping system, causing clogging. For this reason, at least once a month, cleaning of the surface of the filler and the cooling water tank, removal of foreign matter, and cleaning of the piping system were inevitable, and depending on the situation, it was necessary to replace the cooling water.

図4は、本発明の固体分離装置を用いた固体分離システムの実施形態を示したもので、1は本発明の固体分離装置、6は被処理流体、61は清澄流体、62は固体微粒子を含むスラッジ、8は温水を空気にて冷却するクーリングタワー、81は充填材、82は水補給手段、9は被処理流体の流体貯留手段となるクーリングタワーの冷却水タンク、91は被処理流体である冷却水、92は冷却水中に浮遊および堆積して不純物となっている固体微粒子、10は流体圧送手段である水ポンプ、93は温水、101は冷却水91を冷却用水として工場もしくはビルの施設に供給する供給側輸送パイプ、102は冷却水91の一部を被処理流体6として固体分離装置1に供給する供給パイプ、102aは流量調節用バルブ、103は固体分離装置1を出た清澄流体61を冷却水タンク9に戻す返送パイプ、104は工場もしくはビルの施設で熱交換してきた温水93をクーリングタワー8に戻す戻り側輸送パイプである。   FIG. 4 shows an embodiment of a solid separation system using the solid separation device of the present invention, wherein 1 is a solid separation device of the present invention, 6 is a fluid to be treated, 61 is a clarified fluid, and 62 is solid fine particles. Sludge containing, 8 is a cooling tower that cools hot water with air, 81 is a filler, 82 is a water replenishing means, 9 is a cooling water tank of a cooling tower that serves as a fluid storage means for the treated fluid, and 91 is a cooling that is a treated fluid Water, 92 is a solid particulate suspended and deposited in cooling water, 10 is a water pump that is a fluid pumping means, 93 is hot water, 101 is cooling water 91 is supplied to the factory or building facility as cooling water 102 is a supply pipe for supplying a part of the cooling water 91 to the solid separation device 1 as a fluid 6 to be treated, 102a is a flow rate adjusting valve, 103 is a clarified fluid 61 that has exited the solid separation device 1 Return pipe to return to cooling water tank 9 104 is a back-side transport pipe for returning the hot water 93 that has been heat exchanged in property factory or building in cooling tower 8.

従来では、クーリングタワー8の冷却水タンク9の水中の浮遊物および底部に沈殿・堆積している固体微粒子92は、水ポンプ10、供給側輸送パイプ101によって冷却水91とともに冷却水タンク9より運び出されて工場などの冷却施設に送られて後、温水93中に含まれたまま、戻り側輸送パイプ104を通って、クーリングタワー8の頂部に供給され、そして、充填材81の表面を温水とともに流下して冷却されて、再び冷却水タンク9内に滞留することとなった。しかしながら、供給側輸送パイプ101の途中に分岐した供給パイプ102と流量調節用バルブ102aを設けて、冷却水91の一部の適当量を被処理流体6となして固体分離装置1に供給するようにする。 Conventionally, suspended solids in the cooling water tank 9 of the cooling tower 8 and solid particulates 92 deposited and deposited on the bottom are carried out of the cooling water tank 9 together with the cooling water 91 by the water pump 10 and the supply-side transport pipe 101. After being sent to a cooling facility such as a factory, it is supplied to the top of the cooling tower 8 through the return side transport pipe 104 while being contained in the hot water 93, and then flows down the surface of the filler 81 together with the hot water. Then, it was cooled and stayed in the cooling water tank 9 again. However, a supply pipe 102 branched in the middle of the supply-side transport pipe 101 and a flow rate adjusting valve 102a are provided so that a suitable amount of a part of the cooling water 91 is supplied to the solid separation device 1 as the fluid 6 to be treated. To.

そうすると、不純物である固体微粒子92は、前述した本発明の固体分離装置1の作用によって被処理流体6中より分離されてスラッジ62となり、冷却系外に排出されることになり、一方、固体微粒子92を除去された被処理流体6の清澄流体61は、返送パイプ103を通って冷却水タンク9に戻されて、再び冷却水として循環使用される。 Then, the solid fine particles 92 as impurities are separated from the fluid 6 to be treated by the action of the above-described solid separation device 1 of the present invention to become sludge 62 and discharged out of the cooling system. The clarified fluid 61 of the to-be-processed fluid 6 from which 92 has been removed is returned to the cooling water tank 9 through the return pipe 103 and circulated and used again as cooling water.

水ポンプ10の稼働中は、適当量の被処理流体6が固体分離装置1に供給されるよう、バルブ102aを常時適切な開度にしておくと、供給パイプ102を通って圧送された被処理流体中に含まれる不純物92は少量ずつではあるが除去され、スラッジ62となって系外に排出されることになる。   During operation of the water pump 10, if the valve 102 a is always set to an appropriate opening so that an appropriate amount of the fluid 6 to be processed is supplied to the solid separation device 1, the object to be processed that is pressure-fed through the supply pipe 102. Impurities 92 contained in the fluid are removed in small amounts, becoming sludge 62 and discharged out of the system.

この一連の操作がサイクルとして連続的に行なわれることで冷却水に含まれている固体微粒子や冷却水タンク9に堆積した固体微粒子は次第に除去・排出されていき、適当時間経過後には全ての固体微粒子が除去・排出される。また、新たに発生した固体微粒子92も速やかに固体分離装置1によって分離・除去されることになるため、常時、不純物を含まない清澄な冷却水を得ることができる。 By continuously performing this series of operations as a cycle, the solid fine particles contained in the cooling water and the solid fine particles deposited in the cooling water tank 9 are gradually removed and discharged. Fine particles are removed and discharged. Further, since the newly generated solid fine particles 92 are also promptly separated and removed by the solid separation device 1, it is possible to always obtain clear cooling water that does not contain impurities.

次に、本発明の固体分離装置1を、200冷凍トンの能力を有するクーリングタワー8に設置した場合の効果を、図4に基づき数値をもって具体的に説明する。このクーリングタワー8の冷却水91は工場内の空調設備や水冷式コンプレッサーに24時間常時供給され続けていて、充填材81やタンク9にはスケールや砂などの不純物92が堆積する結果となっており、これまでは月に1回から2回の清掃が行なわれていた。ところが、本発明の固体分離装置1を供給パイプ102、バルブ102aとともに設置して冷却水91の一部を循環通水したところ、設置直後から次第にタンク9内の底部に堆積していた沈殿物の固体微粒子92がなくなり数日後には冷却水は完全に清澄となった。以後、4ヶ月間を経過しているが、充填材81やタンク9内の清掃は全く行なわなくて済み、手間と費用が不要となって大変経済的となった。   Next, the effect when the solid separation apparatus 1 of the present invention is installed in the cooling tower 8 having the capacity of 200 refrigeration tons will be specifically described with reference to FIG. The cooling water 91 of the cooling tower 8 is continuously supplied to air conditioning facilities and water-cooled compressors in the factory for 24 hours, and impurities 92 such as scale and sand are accumulated in the filler 81 and the tank 9. Until now, cleaning has been done once or twice a month. However, when the solid separation device 1 of the present invention is installed together with the supply pipe 102 and the valve 102a and a part of the cooling water 91 is circulated, the sediment deposited on the bottom of the tank 9 gradually from immediately after the installation. Several days later, the cooling water became completely clear after the solid fine particles 92 disappeared. After four months, the filling material 81 and the tank 9 do not have to be cleaned at all.

実施例3
また次に、本発明の固体分離装置を用いた他の固体分離システムの実施形態について説明する。
Example 3
Next, another embodiment of the solid separation system using the solid separation device of the present invention will be described.

図5は、本発明の固体分離装置を用いた他の固体分離システムの実施形態
を示したもので、1は本発明の固体分離装置、6は被処理流体、61は清澄流体、62は分離した固体微粒子を含むスラッジ、9はタンクなどの流体貯留手段、92は貯留手段9の内部に浮遊、もしくは底部に堆積した固体微粒子、10は流体圧送手段であるポンプ、101は貯留された流体を使用設備に供給する供給側輸送パイプ、102は被処理流体6の供給パイプ、103は清澄流体61の返送パイプ、104は使用流体の戻り側輸送パイプである。
FIG. 5 shows an embodiment of another solid separation system using the solid separation device of the present invention. 1 is a solid separation device of the present invention, 6 is a fluid to be treated, 61 is a clarified fluid, and 62 is a separation fluid. 9 is a fluid storage means such as a tank, 92 is a solid particulate floating or deposited on the bottom of the storage means 9, 10 is a pump that is a fluid pumping means, and 101 is a stored fluid. A supply-side transport pipe that supplies the used equipment, 102 is a supply pipe for the fluid 6 to be processed, 103 is a return pipe for the clarified fluid 61, and 104 is a return-side transport pipe for the used fluid.

一般に、工作機械、切削機、精密研磨機、および洗浄ブースなどの機械設備には、冷却水、洗浄水などの流体が繰り返し循環使用されている。図5の流体貯留手段9はこの場合の貯留タンクを示すもので、流体貯留手段9内の被処理流体6を繰り返し循環使用していると、機械設備で発生する切削くず、研磨くず、および洗浄かすなどの固体微粒子が不純物となって流体中に混入し、戻り側輸送パイプ104を通って流体貯留手段9に次第に蓄積されてくる。そうすると、被処理流体6中のこれらの不純物の混入量が多くなるため、供給側輸送パイプ1101を通って前記機械設備に供給されると機械性能および製品の品質などを損なう原因となっていた。   Generally, fluids such as cooling water and cleaning water are repeatedly circulated in machine equipment such as machine tools, cutting machines, precision polishing machines, and cleaning booths. The fluid storage means 9 of FIG. 5 shows a storage tank in this case. When the fluid 6 to be treated in the fluid storage means 9 is repeatedly circulated and used, cutting waste, polishing waste, and cleaning generated in mechanical equipment are shown. Solid fine particles such as debris become impurities and enter the fluid, and gradually accumulate in the fluid storage means 9 through the return-side transport pipe 104. Then, since the amount of these impurities mixed in the fluid 6 to be treated increases, if it is supplied to the mechanical equipment through the supply-side transport pipe 1101, the mechanical performance, product quality, and the like are impaired.

そこで、この不純物である固体微粒子92を含む被処理流体6の少量を、流体圧送手段10、および被処理流体の供給パイプ102によって、適宜、所定時間、本発明の固体分離装置1に供給する。そうすると、供給された固体微粒子92は分離されてスラッジ62となって系外に除去され、清澄流体61のみが返送パイプ103を通って流体貯留手段9に戻されることとなり、常に、流体貯留手段9の被処理流体6を、不純物を含まない清澄な流体に維持できることになる。このため、流体貯留手段9内の定期的な洗浄および流体の入れ替え廃棄などの必要がなくなり大変経済的となるものである。 Therefore, a small amount of the fluid 6 to be treated including the solid fine particles 92 that are impurities is supplied to the solid separation device 1 of the present invention as appropriate for a predetermined time by the fluid pumping means 10 and the supply pipe 102 for the fluid to be treated. Then, the supplied solid fine particles 92 are separated and removed as sludge 62 from the system, and only the clarified fluid 61 is returned to the fluid storage means 9 through the return pipe 103. Thus, the fluid 6 to be treated can be maintained as a clear fluid containing no impurities. This eliminates the need for periodic cleaning in the fluid storage means 9 and replacement and disposal of the fluid, which is very economical.

また、上記流体貯留手段9は、工場の生産設備およびビルに併設されたタンク類に限定されるものではなく、廃水・廃ガス処理設備の沈殿槽・タンク類、および池、湖沼、河川などにも適用できるものであり、いずれにしても上記実施形態と同様の思想考え方となる。また、上記クーリングタワー8も他の設備であってよいし、さらにまた、本発明の固体分離装置は、上記流体貯留手段9および上記クーリングタワー8に固定された装置ではなくて、適宜、必要に応じて移動巡回して処理できるよう車載型の可搬式に構成されていてもよいことは言うまでもない。   Further, the fluid storage means 9 is not limited to the production facilities of the factory and the tanks attached to the building, but to the sedimentation tanks / tanks of wastewater / waste gas treatment facilities, ponds, lakes, rivers, etc. In any case, the idea is the same as that of the above embodiment. Further, the cooling tower 8 may be another facility, and the solid separation device of the present invention is not an apparatus fixed to the fluid storage means 9 and the cooling tower 8, but as required. It goes without saying that the vehicle may be configured to be portable so that it can be moved and processed.

本発明の実施形態に係わる固体分離装置の正面図を示す説明図である。It is explanatory drawing which shows the front view of the solid-separation apparatus concerning embodiment of this invention. 本発明の実施形態に係わる固体分離装置図1の側面図を示す説明図である。FIG. 2 is an explanatory view showing a side view of FIG. 1 for a solid separator according to an embodiment of the present invention. 本発明の実施形態に係わる固体分離装置図1を構成する濃縮集積手段の模式図である。FIG. 2 is a schematic diagram of a concentration and accumulation unit that constitutes the solid separator FIG. 1 according to the embodiment of the present invention. 本発明の実施形態に係わる固体分離装置を用いた固体分離システムを示す説明図である。It is explanatory drawing which shows the solid separation system using the solid separation apparatus concerning embodiment of this invention. 本発明の実施形態に係わる固体分離装置を用いた他の固体分離システムを示す説明図である。It is explanatory drawing which shows the other solid separation system using the solid separation apparatus concerning embodiment of this invention.

符号の説明Explanation of symbols

1 固体分離装置
2 旋回分離槽
21 旋回分離手段
22 濃縮集積手段
211 流体排出パイプ
211a 流体吸込口
212 流入パイプ
213 流体噴出口
221、222、223 カップ形筒体
3 沈降分離槽
41、42 一対の噴射パイプ
5 流体上昇パイプ
6 被処理流体
6a、6b 凝集した固体微粒子を含む被処理流体
61 清澄流体
62 スラッジ
7 固体微粒子
71 固体微粒子の凝集体
72 固体微粒子の濃縮集積層
8 クーリングタワー
9 流体貯留手段
91 冷却水
92 不純物などの固体微粒子
10 流体圧送手段
101 供給側輸送パイプ
102 供給パイプ
102a 流量調節用バルブ
103 返送パイプ
1 Solid separation device 2 Swirl separation tank
21 Rotation separation means
22 Concentration and accumulation means
211 Fluid discharge pipe
211a Fluid inlet
212 Inflow pipe
213 Fluid outlet
221, 222, 223 Cup-shaped cylinder 3 Settling separation tank
41, 42 A pair of injection pipes 5 Fluid rising pipe 6 Fluid to be treated
6a, 6b Fluid to be treated containing agglomerated solid particles
61 Kiyosumi fluid
62 Sludge 7 Solid fine particles
71 Aggregates of solid particles
72 Concentrated accumulation layer of solid particulates 8 Cooling tower 9 Fluid storage means
91 Cooling water
92 Solid particles such as impurities
10 Fluid pressure feeding means
101 Supply-side transport pipe
102 Supply pipe
102a Flow control valve
103 Return pipe

Claims (7)

不純物などの固体微粒子を含む被処理流体を、超高速の旋回流となして、当該固体微粒子を分離するサイクロン型固体の分離方法において、被処理流体中に含まれる固体微粒子に強い遠心力を作用させて当該固体微粒子同士を衝突・凝集させ、さらに複数の逆截頭円錐形筒(以後、カップ形筒体という)内傾斜面を緩やかに旋回下降させながら、当該固体微粒子を凝集・集積させて、当該凝集・集積した固体微粒子を含む前記被処理流体を、静止もしくは緩やかに流動している流体中に噴射して前記固体微粒子を沈降分離して後、前記被処理流体の清澄流体のみを、前記被処理流体と前記複数のカップ形筒体内を向流接触させながら通過させて、溢流排出させることを特徴とする固体の分離方法。 In a cyclone-type solid separation method that separates the solid particulates by treating the fluid to be treated containing solid particulates such as impurities as an ultra-high-speed swirling flow, a strong centrifugal force acts on the solid particulates contained in the fluid to be treated. The solid fine particles collide and agglomerate with each other, and further, the solid fine particles are agglomerated and accumulated while gently swirling and descending the inclined surfaces inside a plurality of inverted frustoconical cylinders (hereinafter referred to as cup-shaped cylinders). The treated fluid containing the aggregated and accumulated solid fine particles is injected into a static or gently flowing fluid to settle and separate the solid fine particles, and then only the clarified fluid of the treated fluid is obtained. A method for separating a solid, wherein the fluid to be treated and the plurality of cup-shaped cylinders are passed in countercurrent contact with each other and discharged. 請求項1記載の固体の分離方法であり、上記被処理流体は、大量の被処理流体から吸取られた少量の被処理流体であって、当該被処理流体から上記固体微粒子のみ分離除去して、上記清澄流体は元の大量の前記被処理流体中に返送するという一連の操作:吸取り圧送−凝集・沈降・分離−返送、をサイクルとして連続的に行なうことを特徴とする固体の分離方法。 The solid separation method according to claim 1, wherein the fluid to be treated is a small amount of fluid to be treated sucked from a large amount of fluid to be treated, and only the solid fine particles are separated and removed from the fluid to be treated. A solid separation method characterized by continuously performing a series of operations in which the clarified fluid is returned to the original large amount of the fluid to be treated: suction pumping-aggregation / sedimentation / separation-returning as a cycle. サイクロン型固体の分離装置であって、当該固体の分離装置は、被処理流体中の固体微粒子を凝集・集積させる円筒形の旋回分離槽と、当該固体微粒子の沈降分離槽とに分離されていて、前記旋回分離槽と前記沈降分離層は、前記旋回分離槽を出た被処理流体が前記沈降分離層に噴射されるよう配設された一対の噴射パイプ、および前記清澄流体が前記沈降分離槽から前記旋回分離槽の中央部を通って外部に排出されるよう単一の上昇パイプで接続されていることを特徴とする固体の分離装置。 A cyclone-type solid separation device, wherein the solid separation device is separated into a cylindrical swirl separation tank for aggregating and accumulating solid fine particles in a fluid to be treated, and a sedimentation separation tank for the solid fine particles. The swirl separation tank and the sedimentation separation layer include a pair of injection pipes disposed so that the fluid to be treated that exits the swirl separation tank is sprayed to the sedimentation separation layer, and the clarified fluid is the sedimentation separation tank. The solid separation device is connected by a single ascending pipe so as to be discharged to the outside through the center of the swirl separation tank. 請求項3記載の固体の分離装置であって、上記旋回分離槽の上部には高速旋回手段が、中央部から下部には上記固体微粒子の濃縮集積手段が、下部には上記沈降分離槽と接続するための接続口が配設されていて、そして前記高速旋回手段の頂部中心部には、上記清澄流体を排出できる流体排出パイプが、上記旋回分離槽と平行で上向きに、且つ上記旋回分離槽と当該流体排出パイプが二重管を形成するよう、適宜長さを有して配設されていること、そして前記高速旋回手段の中央部には、上記被処理流体の流入パイプが、上記旋回分離槽に対して直角で接線方向に配設されており、当該流入パイプの噴出口は上記旋回分離槽の壁面側寄りであって縦方向長方形に断面縮小されていることを特徴とする固体の分離装置。 4. The solid separation apparatus according to claim 3, wherein a high-speed swirl means is connected to the upper part of the swirl separation tank, the solid fine particle concentrating / collecting means is connected to the lower part from the central part, and the sedimentation tank is connected to the lower part. And a fluid discharge pipe capable of discharging the clarified fluid upward in parallel with the swirl separation tank and at the center of the top of the high-speed swirl means. And the fluid discharge pipe is disposed with an appropriate length so as to form a double pipe, and the inflow pipe of the fluid to be treated is swirled at the center of the high speed swivel means. The solid pipe is disposed in a tangential direction at a right angle to the separation tank, and the outlet of the inflow pipe is close to the wall surface side of the swirl separation tank and is reduced in cross section to a vertical rectangle. Separation device. 請求項3記載の固体の分離装置であって、上記濃縮集積手段は、適当寸法の口径を有する広口と適当寸法の口径を有する狭口を備えた上記カップ形筒体の複数個が高さ方向に所定間隔で配設されたものであって、そして上記カップ形筒体の広口口径は上記円筒形の旋回分離槽の内径と同一寸法に構成されていて各広口の外周面を上記旋回分離槽の内周面に溶接固定していることを特徴とする固体の分離装置。 4. The solid separation apparatus according to claim 3, wherein the concentrating and collecting means includes a plurality of cup-shaped cylinders each having a wide mouth having an appropriate size and a narrow mouth having an appropriate size. The cup-shaped cylindrical body has a wide-bore diameter that is the same size as the inner diameter of the cylindrical swirl separator, and the outer peripheral surface of each wide-mouth A solid separation device characterized by being welded and fixed to the inner peripheral surface of the steel. 請求項3記載の固体の分離装置であって、上記一対の噴射パイプは、最上段の上記カップ形筒体もしくは2段目の上記カップ形筒体の狭口の近傍にあって、そして上記旋回分離槽の壁面に垂直で外向きに、且つ、互いに反対方向に向いて、しかもこの噴射パイプの中心を水平方向に適宜ずらして配設されていて、途中湾曲して上記沈降分離槽と接続していること、そして上記沈降分離槽は、上記旋回分離槽より大きい容積の縦長構造のタンクであって、このタンクの上部外周部には上記一対の噴射パイプと接続する2個の導入口が、このタンクの上部中央部には上記旋回分離槽の下部の上記接続口と接続する1個の排出口が、それぞれ配設されていて、そして当該沈降分離槽の下部には円錐形タンクと排出バルブが配設されていることを特徴とする固体の分離装置。 4. The solid separation apparatus according to claim 3, wherein the pair of injection pipes are in the vicinity of a narrow mouth of the uppermost cup-shaped cylinder or the second-stage cup-shaped cylinder, and the swivel is performed. It is perpendicular to the wall of the separation tank, facing outwards and in opposite directions, and the center of the injection pipe is appropriately shifted in the horizontal direction. And the sedimentation separation tank is a vertically long tank having a larger volume than the swirl separation tank, and two inlets connected to the pair of injection pipes are provided on the upper outer peripheral portion of the tank, In the upper central portion of the tank, one discharge port connected to the connection port in the lower part of the swirl separation tank is disposed, and in the lower part of the settling separation tank, a conical tank and a discharge valve are provided. Is arranged Solid separator that. 請求項3記載の固体の分離装置であって、上記固体分離装置と上記被処理流体の流体貯留手段とは、上記流入パイプ側は上記被処理流体の一部を吸取り供給する流体圧送手段と流量調節バルブおよび流体の供給パイプを介して連結され、上記流体排出パイプ側は上記清澄流体の返送パイプを介して連結されていて、上記固体分離装置と当該流体貯留手段の両者が当該パイプ類でループを形成するよう配設されていることを特徴とする固体の分離装置。
4. The solid separation device according to claim 3, wherein the solid separation device and the fluid storage means for the fluid to be treated are fluid pressure feeding means and a flow rate for sucking and supplying a part of the fluid to be treated on the inflow pipe side. The control valve and the fluid supply pipe are connected, the fluid discharge pipe side is connected via the clarified fluid return pipe, and both the solid separation device and the fluid storage means are looped by the pipes. A solids separation device, characterized in that it is arranged to form
JP2005335268A 2005-11-21 2005-11-21 Method and apparatus for separation of solid Pending JP2007136375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005335268A JP2007136375A (en) 2005-11-21 2005-11-21 Method and apparatus for separation of solid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005335268A JP2007136375A (en) 2005-11-21 2005-11-21 Method and apparatus for separation of solid

Publications (1)

Publication Number Publication Date
JP2007136375A true JP2007136375A (en) 2007-06-07

Family

ID=38199867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005335268A Pending JP2007136375A (en) 2005-11-21 2005-11-21 Method and apparatus for separation of solid

Country Status (1)

Country Link
JP (1) JP2007136375A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010094594A (en) * 2008-10-15 2010-04-30 Toshiba Corp Solid-liquid separator
JP2014097493A (en) * 2011-03-30 2014-05-29 Crystal Lagoons (Curacao) Bv Method and system for sustainable cooling in industrial process
JP2015098024A (en) * 2013-11-18 2015-05-28 ニフコ ユーケー リミテッド Apparatus for coalescing particles of first fluid entrained in flow of second fluid
US9470007B2 (en) 2008-12-24 2016-10-18 Crystal Lagoons (Curacao) B.V. Efficient filtration process of water in a tank for recreational and ornamental uses, where the filtration is performed over a small volume of water and not over the totality of the water from the tank
CN117756351A (en) * 2024-01-26 2024-03-26 重庆大学 But sewage treatment is with separator of categorised impurity

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010094594A (en) * 2008-10-15 2010-04-30 Toshiba Corp Solid-liquid separator
US9470007B2 (en) 2008-12-24 2016-10-18 Crystal Lagoons (Curacao) B.V. Efficient filtration process of water in a tank for recreational and ornamental uses, where the filtration is performed over a small volume of water and not over the totality of the water from the tank
JP2014097493A (en) * 2011-03-30 2014-05-29 Crystal Lagoons (Curacao) Bv Method and system for sustainable cooling in industrial process
JP2015098024A (en) * 2013-11-18 2015-05-28 ニフコ ユーケー リミテッド Apparatus for coalescing particles of first fluid entrained in flow of second fluid
CN117756351A (en) * 2024-01-26 2024-03-26 重庆大学 But sewage treatment is with separator of categorised impurity

Similar Documents

Publication Publication Date Title
WO2006125168A2 (en) Systems for the removal of solids from fluids and methods of using the same
CA2724171A1 (en) Apparatus and method for mechanical deaeration
JP2007136375A (en) Method and apparatus for separation of solid
KR20120125323A (en) Ballast flocculation and sedimentation water treatment system with simplified sludge recirculation, and process therefor
JP4231901B2 (en) Coolant cleaning device
KR100537798B1 (en) Apparatus for removal of nonpoint source pollution using a hydrodynamic filter separator
KR101247585B1 (en) Automatic sludge discharge device for lamella modules in a wastewater treatment system
CN113144698B (en) Efficient pretreatment system and process for removing sand slag together
CN101824358A (en) Grinding and cooling liquid purification method and device thereof
CN206454320U (en) The efficient clarifying reaction device of fine suspension in a kind of processing sewage
CN207347304U (en) A kind of coal-contained wastewater processing system
KR20040052643A (en) Method and Apparatus for refining used detergent
JP3158765U (en) Solid separation device
CN205803170U (en) A kind of Waste Water Treatment in coal
CN107050937A (en) A kind of processing system and processing method in coal chemical industry Heisui River
JP2004113962A (en) Hydraulic classifier
JP4370928B2 (en) Alkaline cleaning liquid recycling apparatus and method of using the same
KR101352690B1 (en) Sewage pre-screened with circular grit chamber
JP2006198571A (en) Precipitator
CN219517986U (en) Barrel type slag water concentration and separation device
CN205892947U (en) Coal water treatment electricity flocculation system
US20130167883A1 (en) Method and device to enable semiconductor processing in solution that generates particles
CN104941311B (en) Flat flow inherent filtration grit water separator
JP3973150B2 (en) Sludge separation device, sludge recovery device, and sludge separation method
JP2006095413A (en) Sand separation/washing device