JP4372067B2 - Contaminated soil continuous cleaning method - Google Patents
Contaminated soil continuous cleaning method Download PDFInfo
- Publication number
- JP4372067B2 JP4372067B2 JP2005253855A JP2005253855A JP4372067B2 JP 4372067 B2 JP4372067 B2 JP 4372067B2 JP 2005253855 A JP2005253855 A JP 2005253855A JP 2005253855 A JP2005253855 A JP 2005253855A JP 4372067 B2 JP4372067 B2 JP 4372067B2
- Authority
- JP
- Japan
- Prior art keywords
- soil
- water
- slurry
- tank
- contaminated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002689 soil Substances 0.000 title claims description 173
- 238000000034 method Methods 0.000 title claims description 42
- 238000004140 cleaning Methods 0.000 title claims description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 145
- 239000002002 slurry Substances 0.000 claims description 109
- 238000004062 sedimentation Methods 0.000 claims description 80
- 238000000926 separation method Methods 0.000 claims description 62
- 239000002245 particle Substances 0.000 claims description 45
- 238000005406 washing Methods 0.000 claims description 35
- 239000000356 contaminant Substances 0.000 claims description 32
- 238000010790 dilution Methods 0.000 claims description 26
- 239000012895 dilution Substances 0.000 claims description 26
- 239000003344 environmental pollutant Substances 0.000 claims description 22
- 231100000719 pollutant Toxicity 0.000 claims description 22
- 239000013049 sediment Substances 0.000 claims description 21
- 230000005484 gravity Effects 0.000 claims description 7
- 238000007599 discharging Methods 0.000 claims 2
- 239000003921 oil Substances 0.000 description 19
- 239000012530 fluid Substances 0.000 description 10
- 238000007865 diluting Methods 0.000 description 7
- 239000012459 cleaning agent Substances 0.000 description 6
- 239000010419 fine particle Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 238000011109 contamination Methods 0.000 description 5
- 229910001385 heavy metal Inorganic materials 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000003915 air pollution Methods 0.000 description 2
- 238000009412 basement excavation Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000003912 environmental pollution Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000002736 nonionic surfactant Substances 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 238000003911 water pollution Methods 0.000 description 2
- 241000270295 Serpentes Species 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000007970 homogeneous dispersion Substances 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 150000002505 iron Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005067 remediation Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000003900 soil pollution Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
Images
Landscapes
- Processing Of Solid Wastes (AREA)
Description
本発明は、汚染された土壌のスラリーを連続的に沈降分離処理することにより洗浄土を得る汚染土壌連続洗浄方法に関する。 The present invention relates to a contaminated soil continuous washing method for obtaining washed soil by continuously subjecting contaminated soil slurry to settling and separation.
現在、環境汚染としての大気汚染、水質汚染につづいて、土壌汚染が深刻な環境問題として注目されている。土壌汚染の問題点は、汚染された土壌の存在自体が問題であること以外に、その土壌を通過した水の水質汚染、土壌からの有害な揮発物質の拡散による大気汚染等により、生態系に多大の悪影響を及ぼしていることである。 At present, soil pollution is attracting attention as a serious environmental problem following air pollution and water pollution as environmental pollution. The problem of soil contamination is that the existence of the contaminated soil itself is a problem, as well as water pollution of the water that has passed through the soil, air pollution due to the diffusion of harmful volatile substances from the soil, etc. It has a great negative effect.
このような土壌汚染による環境への悪影響を回避する方法としては、汚染土壌の掘削廃棄、汚染土壌の焼却処理、汚染土壌の洗浄処理、汚染物質の化学的抽出処理、あるいはバイオメデレーション等が挙げられる。これらの方法は、汚染物質の特性、汚染土壌の性質、環境及び処理費用・工期等を考慮して選択実施されている。 Examples of methods for avoiding such adverse environmental impacts caused by soil contamination include excavation and disposal of contaminated soil, incineration of contaminated soil, cleaning treatment of contaminated soil, chemical extraction of contaminants, and biomedation. It is done. These methods are selected and implemented in consideration of the characteristics of the pollutant, the nature of the contaminated soil, the environment, treatment costs, construction period, and the like.
しかし、上述した方法は大きな欠点を内在しているのが現実である。例えば、多くの場合に行なわれている汚染土壌の掘削廃棄方法は、汚染物質の移転に過ぎず、環境汚染が却って拡散する。焼却処理方法は、土を焼却するため、エネルギーの莫大な損失が発生すると同時に熱による土壌の変質が生じる。 However, in reality, the above-described method has a major drawback. For example, in many cases, the excavation and disposal method of contaminated soil is merely transfer of pollutants, and environmental pollution spreads instead. Since the incineration method incinerates the soil, enormous loss of energy occurs, and at the same time, the soil changes due to heat.
土壌洗浄処理方法では、水又は洗浄剤が使用される。水洗浄の場合、土と汚染物質との分離に、例えば、特許文献1に記載されているようなサイクロンを利用するために、土組成のうち微細粒子も汚染物質とともに廃棄処理される。このために、土壌の数十%を廃棄する場合も発生している。 In the soil cleaning treatment method, water or a cleaning agent is used. In the case of water washing, in order to use, for example, a cyclone as described in Patent Document 1 to separate soil and contaminants, fine particles in the soil composition are also discarded together with the contaminants. For this reason, some tens of percent of the soil is discarded.
土壌洗浄処理では、洗浄剤による洗浄方法も多く開示されている。
特許文献2に記載の方法では、例えば、油汚染土壌の洗浄のために、土壌重量に相当する水と非イオン性界面活性剤を加えて、10分間洗浄する。次いで、それを脱水した後のすすぎ洗浄のために、前回と同等量の水を加えて10分間攪拌洗浄を行なっている。
In the soil cleaning treatment, many cleaning methods using a cleaning agent are also disclosed.
In the method described in
特許文献3に記載の方法では、例えば、汚染土壌の質量の5倍の土壌洗浄剤を加えて15分間攪拌する。その後、脱水して、更に土の質量の3倍の水で洗浄している。
別の文献に記載の方法では、難水溶性有機物汚染土壌の洗浄方法として、洗浄水に非イオン性界面活性剤を投入して洗浄した後、その汚染水を処理するためにさらに鉄塩と高分子凝集剤を添加している。
In the method described in Patent Document 3, for example, a soil cleaning agent 5 times the mass of the contaminated soil is added and stirred for 15 minutes. After that, it is dehydrated and further washed with water 3 times the mass of the soil.
In a method described in another document, as a method for washing soil with poorly water-soluble organic matter, a nonionic surfactant is added to the washing water and washed, and then further treated with iron salt and high salt to treat the contaminated water. A molecular flocculant is added.
以上のように、洗浄剤の使用や長い処理時間は、経済的に不利である。
また、化学的抽出処理方法では、土壌が洗浄剤や抽出剤で更に汚染される可能性が残り、バイオメデレーションでは、効果が遅効性のために工期が長期化する。
As described above, the use of a cleaning agent and a long processing time are economically disadvantageous.
In addition, in the chemical extraction treatment method, there is a possibility that the soil is further contaminated with a cleaning agent or an extractant, and in biomedation, the work period is prolonged due to the delayed effect.
上述したように、従来公知の土壌洗浄工法には多くの問題があるが、汚染土壌の汚染物質の種類や汚染環境等の土壌処理の前提条件が複雑なこともあって、コスト高な土壌浄化方法が採用されているのが現状であり、コスト削減を実現しうる土壌浄化方法が求められている。
本発明は、上記のような従来の問題を解決するためになされたものであり、汚染土壌と希釈水でスラリーを作った後、該スラリーを連続的に沈降分離することにより、浄化され且つ汚染土壌とほぼ同一組成で変質のない洗浄土を高回収率で回収するとともに、汚染物質の含まれた汚染水を水処理し、回収された水を希釈水として有効に循環利用し、使用する水の量を節減することを目的とする。 The present invention has been made to solve the conventional problems as described above, and after the slurry is made with the contaminated soil and the diluted water, the slurry is purified and contaminated by continuously settling and separating the slurry. Water that is washed with soil that has almost the same composition as the soil and has no change in quality, and that treats contaminated water that contains pollutants and effectively circulates the collected water as dilution water for use. The purpose is to reduce the amount of
本発明者は、上記課題を解決するために鋭意研究した結果、環境への影響を考慮して洗浄媒体として水のみを利用し、汚染された土壌を水で希釈してスラリーを作り、そのスラリーを連続して沈降分離処理して洗浄土を得る方法を見出し、本発明を完成するに至った。 As a result of diligent research to solve the above-mentioned problems, the present inventor uses only water as a cleaning medium in consideration of the influence on the environment, and dilutes contaminated soil with water to form a slurry. As a result, the present inventors have completed the present invention.
即ち、本発明は下記の通りである。
(1)(a)土粒子、汚染物質及び含有水からなる汚染土壌に希釈水を加えて、該汚染物質が該希釈水と該含有水に均質に分散したスラリーを作るスラリー化工程、
(b)該スラリーを、沈降分離槽内で土粒子が主に存在する下降流と、汚染物質を含む希釈水が主に存在する上昇流に分流して、土粒子と汚染物質に連続的に分離し、汚染物質が分散している含有水を同伴する洗浄土を該分離槽の下部から連続的に排出し、汚染物質が分散した汚染水を該分離槽の上部から連続的に排出する沈降分離工程、
を有することを特徴とする汚染土壌連続洗浄方法。
That is, the present invention is as follows.
(1) (a) A slurrying step in which diluted water is added to contaminated soil composed of soil particles, contaminants, and contained water to form a slurry in which the contaminants are uniformly dispersed in the diluted water and the contained water.
(B) The slurry is divided into a downward flow in which soil particles are mainly present in the settling tank and an upward flow in which dilution water containing pollutants is mainly present, so that the soil particles and the contaminants are continuously separated. Sediment that separates and discharges soil containing entrained water in which contaminants are dispersed continuously from the lower part of the separation tank, and continuously discharges contaminated water in which contaminants are dispersed from the upper part of the separation tank Separation process,
Contaminated soil continuous washing method characterized by having.
(2)洗浄土に、再度、希釈水を加えてスラリーを作り、沈降分離操作を繰り返して行なうために、複数の沈降分離工程を有する上記(1)に記載の汚染土壌連続洗浄方法。
(3)複数の沈降分離工程において、各沈降分離槽が、順次、下方に配置されており、重力を利用してスラリーを次の沈降分離槽へ移送することを特徴とする上記(2)に記載の汚染土壌連続洗浄方法。
(2) The contaminated soil continuous washing method according to the above (1) having a plurality of sedimentation separation steps in order to add dilution water to the washing soil again to form a slurry and to repeatedly perform the sedimentation separation operation.
(3) In the plurality of sedimentation separation steps, each sedimentation separation tank is sequentially disposed below, and the slurry is transferred to the next sedimentation separation tank by using gravity. The contaminated soil continuous cleaning method described.
(4)沈降分離槽から排出される汚染水から汚染物質を除去し、スラリーを作るための希釈水として循環使用する上記(1)に記載の汚染土壌連続洗浄方法。
(5)スラリー化工程が、スラリー化装置とスラリー移送装置を有する上記(1)に記載の汚染土壌連続洗浄方法。
(4) The method for continuously washing contaminated soil according to (1) above, wherein contaminants are removed from the contaminated water discharged from the settling tank and used as a dilution water for making a slurry.
(5) The contaminated soil continuous cleaning method according to (1), wherein the slurrying step includes a slurrying device and a slurry transfer device.
(6)スラリー化工程において、汚染土壌の単位体積に含まれる土粒子の総体積をS、含有水体積をG、汚染物質の体積をPとするとき、洗浄土中に残留する汚染物質を体積P1まで減少させるために、汚染土壌に加える水の体積Wが下記の(c)、(d)を満足する条件で運転することを特徴とする上記(1)に記載の汚染土壌連続洗浄方法。
(c) W≧(P/P1−1)×G
(d) (G+W)/S≧1.5
(6) In the slurrying step, when the total volume of soil particles contained in the unit volume of the contaminated soil is S, the volume of water contained is G, and the volume of the pollutant is P, the volume of contaminants remaining in the washed soil is volume. In order to reduce to P1, the continuous washing | cleaning method of the contaminated soil as described in said (1) characterized by operating on the conditions where the volume W of the water added to a contaminated soil satisfies the following (c) and (d).
(C) W ≧ (P / P1-1) × G
(D) (G + W) /S≧1.5
(7)沈降分離槽がスラリー注入口、汚染水排出口及びスラリー沈降物排出口を有し、該沈降分離槽の直径又は相当直径をDとするとき、該沈降分離槽の上部に設けられた汚染水排出口よりも0.2D以上離れた下方にスラリー注入口が設置されていることを特徴とする上記(1)記載の汚染土壌連続洗浄方法。 (7) The sedimentation separation tank has a slurry injection port, a contaminated water discharge port, and a slurry sediment discharge port, and when the diameter or equivalent diameter of the sedimentation separation tank is D, the sedimentation tank is provided at the top of the sedimentation separation tank. The method for continuously washing contaminated soil according to (1) above, wherein the slurry inlet is installed below the contaminated water outlet by 0.2D or more.
(8)沈降分離槽がスラリー注入口、汚染水排出口及びスラリー沈降物排出口を有し、該沈降分離槽の直径又は相当直径をDとするとき、該沈降分離槽の下部に設けられたスラリー沈降物排出口よりも0.2D以上離れた上方にスラリー注入口が設置されていることを特徴とする上記(1)記載の汚染土壌連続洗浄方法。 (8) The sedimentation separation tank has a slurry injection port, a contaminated water discharge port, and a slurry sediment discharge port. When the diameter or equivalent diameter of the sedimentation separation tank is D, the sedimentation tank is provided at the bottom of the sedimentation separation tank. The method for continuously washing contaminated soil according to (1) above, wherein the slurry inlet is installed above the slurry sediment outlet by 0.2D or more.
(9)沈降分離槽が、スラリー沈降物排出口の上部に、土粒子沈降物を滞留させる制御手段を有する上記(7)又は(8)記載の汚染土壌連続洗浄方法。 (9) The contaminated soil continuous washing method according to the above (7) or (8), wherein the sedimentation separation tank has a control means for retaining the soil particle sediment at the upper part of the slurry sediment discharge port.
以下、本発明につき詳細に説明する。
上記(1)に係わる発明は、油、重金属、有機化合物、無機化合物及びそれらの複合した汚染物質による汚染土壌を、希釈水と混合、攪拌してスラリーを作るスラリー化工程、及び、前記スラリーを連続的に沈降分離して、洗浄土としてのスラリー沈降物と、汚染物質を含有する汚染水とに分離する沈降分離工程を有することを特徴とする。
Hereinafter, the present invention will be described in detail.
The invention according to the above (1) includes a slurrying step in which a soil contaminated with oil, heavy metals, organic compounds, inorganic compounds and their combined contaminants is mixed with stirring water and stirred to form a slurry; It is characterized by having a sedimentation separation process in which the sedimentation is continuously separated and separated into slurry sediment as washing soil and contaminated water containing contaminants.
洗浄対象の汚染土壌は、土粒子、その含有水及び汚染物質から構成されている。土粒子の体積と含有水の体積はほぼ同じである場合が多い。この汚染土壌に希釈水を加えてスラリーを作る。用いる希釈水としては、特に限定されないが、後述するように、沈降分離槽から排出される汚染水から汚染物質を除去した水を用いることができる。洗浄前の汚染土壌中の汚染物質は、大部分、土微粒子間に存在しており、土粒子内部に侵入して存在する量は少ない。従って、土粒子内部に侵入して存在する汚染物質は洗浄対象として無視しうる。 The contaminated soil to be cleaned is composed of soil particles, water contained therein, and contaminants. In many cases, the volume of the soil particles and the volume of the contained water are substantially the same. Dilution water is added to this contaminated soil to make a slurry. Although it does not specifically limit as dilution water to be used, As mentioned later, the water which removed the contaminant from the contaminated water discharged | emitted from a sedimentation tank can be used. Most of the contaminants in the contaminated soil before washing are present between the soil particles, and the amount of the contaminants entering the soil particles is small. Therefore, contaminants that enter the soil particles and are present can be ignored as objects to be cleaned.
土粒子径は、大よそ20000ミクロンから1ミクロン以下の微粒子径まで分布している。液体の汚染物質と同様に、重金属は、その生成過程によっても異なるが、数ミクロン径の金属自体の微粒子や金属化合物の形態で、土粒子間に存在している。 The soil particle size is distributed from about 20000 microns to a particle size of 1 micron or less. Similar to liquid contaminants, heavy metals are present between soil particles in the form of fine particles or metal compounds of several micron diameter metals themselves, depending on the production process.
汚染土壌に希釈水を加えてスラリーを作るとき、そのスラリーを水ジェットポンプ、スラリーポンプ、あるいは攪拌装置等を通過させることにより、土粒子、含有水、汚染物質および希釈水の均質なスラリーを得ることが出来る。スラリー中では、汚染物質は、含有水と希釈水の中に均質な分散体を形成しており、この状態では、洗浄前の含有水中の汚染物質濃度に比べて、含有水と希釈水の総量に逆比例して希薄になっている。このような状態にするのがスラリー化工程である。 When making a slurry by adding dilution water to the contaminated soil, the slurry is passed through a water jet pump, slurry pump, or stirring device to obtain a homogeneous slurry of soil particles, contained water, contaminants and dilution water. I can do it. In the slurry, the contaminants form a homogeneous dispersion in the contained water and dilution water. In this state, the total amount of contained water and dilution water compared to the concentration of contaminants in the contained water before washing. It is diluted in inverse proportion to. Such a state is the slurrying step.
次いで、該スラリーを連続して沈降分離槽に移送する。移送されたスラリーは、該沈降分離槽内に注入されて滞留しているスラリー中に流出する。沈降分離槽内に流出したスラリーは、該沈降分離槽の内径に逆比例した流速で下降流と上昇流に分流する。下降流には水より比重が大きい土粒子が主に存在する。この土粒子には随伴流が存在する。一方、上昇流には大部分の希釈水が存在し、その上昇流の流速に対応した土微粒子が同伴する。前工程から移送されたスラリーを連続的に注入することにより、この下降流と上昇流を連続して維持することができる。 Next, the slurry is continuously transferred to a sedimentation tank. The transferred slurry is poured into the sedimentation tank and flows out into the staying slurry. The slurry that has flowed into the settling tank is divided into a downward flow and an upflow at a flow rate that is inversely proportional to the inner diameter of the settling tank. In the downflow, there are mainly soil particles whose specific gravity is greater than that of water. There are accompanying flows in the soil particles. On the other hand, most of the diluting water is present in the upward flow, accompanied by soil fine particles corresponding to the flow velocity of the upward flow. By continuously injecting the slurry transferred from the previous step, the downward flow and the upward flow can be continuously maintained.
含有水及び希釈水に均一に分散された汚染物質は、該下降流と上昇流の水量に比例配分されて、沈降分離槽から排出される。土壌の大部分が下降流として槽外に排出されるが、同時にその随伴流中に希薄になって減少した汚染物質が存在している。その結果として、土壌中の汚染物質は削減され、洗浄土が得られる。 Contaminants uniformly dispersed in the contained water and the dilution water are proportionally distributed to the amount of water in the downward flow and the upward flow and are discharged from the sedimentation separation tank. Most of the soil is discharged out of the tank as a downflow, but at the same time there are dilute and reduced pollutants in the accompanying flow. As a result, pollutants in the soil are reduced and a washed soil is obtained.
汚染物質の比重が、水の比重と大幅に異なる場合には、下降流量と上昇流量に比例配分しなくなるが、希釈水の量を調整することによる流速調整等で対応すればよい。例えば、重金属汚染の場合には、水との比重差が大きいが、汚染状況としては重金属が微小で、土微粒子に付着して水とのコロイドを形成するために、下降流量と上昇流量に比例配分されて、希釈洗浄効果は同じである。以上のような沈降分離が、沈降分離工程で行なわれる。 If the specific gravity of the pollutant is significantly different from the specific gravity of water, it will not be proportionally distributed between the descending flow rate and the ascending flow rate, but it may be dealt with by adjusting the flow rate by adjusting the amount of dilution water. For example, in the case of heavy metal contamination, the specific gravity difference with water is large, but as the contamination situation, the heavy metal is minute and adheres to the soil particles to form a colloid with water, so it is proportional to the descending flow rate and the rising flow rate Allocated, the diluted cleaning effect is the same. The sedimentation separation as described above is performed in the sedimentation separation step.
上記(2)に係わる発明は、(1)で得られた洗浄土には随伴流中に希薄な汚染物質が存在しているので、汚染物質の量をさらに削減するために行なうものである。即ち、(1)で得られた洗浄土に、さらに希釈水を加えて攪拌・混合操作によりスラリーとした後、沈降分離を実施するものであり、(1)の沈降分離工程に連続して行なう工程である。同様の沈降分離工程を複数設置して連続的に沈降分離を行なうことにより、洗浄を高めることが出来、洗浄土中の汚染物質を一層削減することが出来るので好ましい。 The invention according to the above (2) is carried out in order to further reduce the amount of pollutants because the cleaning soil obtained in (1) contains dilute pollutants in the accompanying flow. That is, after further adding dilution water to the washing soil obtained in (1) to form a slurry by stirring and mixing operation, sedimentation separation is performed, which is performed continuously in the sedimentation separation step of (1). It is a process. It is preferable to install a plurality of the same sedimentation separation steps and perform sedimentation separation continuously, so that washing can be enhanced and contaminants in the washing soil can be further reduced.
このように複数の沈降分離工程を設置する場合、沈降分離槽を多段に、順次下方に配置し、重力を利用してスラリーを移送することも好ましい。 When a plurality of sedimentation separation steps are installed in this way, it is also preferable to arrange the sedimentation tanks in multiple stages and sequentially below and transfer the slurry using gravity.
本発明において、沈降分離槽から連続的に排出される汚染水は、混合している汚染物質に対応した水処理が実施される。例えば、油汚染の場合には浮遊分離により、油を水から除去できる。該水には、許容される油や沈降分離槽の上昇流に同伴した土微粒子が存在している。上記(4)に係わる発明は、該水をスラリー化工程の希釈水として循環使用するものであり、スラリー化工程で使用する希釈水量を節減し、経済性を高めることができる。 In the present invention, the contaminated water continuously discharged from the sedimentation tank is subjected to water treatment corresponding to the contaminated contaminants. For example, in the case of oil contamination, the oil can be removed from the water by floating separation. In the water, there are permissible oil and soil fine particles accompanying the upward flow of the settling tank. The invention according to the above (4) circulates and uses the water as the diluting water in the slurrying step, thereby reducing the amount of diluting water used in the slurrying step and improving the economic efficiency.
上記(5)に係わる発明は、スラリー化工程がスラリー化装置とスラリー移送装置を有するものである。スラリー化装置としては、例えば、水ジェットポンプ、スラリーポンプ、ラインミキサーあるいは攪拌装置等が挙げられ、これらを用いて汚染土壌と希釈水からスラリーを作ることが出来る。スラリー移送装置としては、例えば、スラリーポンプやスネークポンプ等が挙げられる。このスラリー化工程において、水ジェットポンプのようにスラリー化とスラリー移送を兼ねることも可能である。 In the invention according to the above (5), the slurrying step includes a slurrying device and a slurry transfer device. Examples of the slurrying device include a water jet pump, a slurry pump, a line mixer, a stirring device, and the like, and a slurry can be made from contaminated soil and diluted water using these. Examples of the slurry transfer device include a slurry pump and a snake pump. In this slurrying step, it is also possible to combine slurrying and slurry transfer like a water jet pump.
上記(6)に係わる発明について説明する。
本発明において、スラリー化工程で作られたスラリーは次の沈降分離工程に移送され、連続的に沈降分離槽で沈降分離されて大部分の土粒子は下降流となり、土粒子から剥離した汚染物質を含む汚染水は上昇流となって槽外に排出される。この現象の概念は下記のとおりである。
The invention relating to the above (6) will be described.
In the present invention, the slurry produced in the slurrying process is transferred to the next sedimentation and separation process, and continuously settled and separated in the sedimentation tank, so that most of the soil particles become a downward flow, and the pollutants are separated from the soil particles. Contaminated water containing water is discharged out of the tank as an upward flow. The concept of this phenomenon is as follows.
沈降分離槽での土壌スラリー流体のマスバランスを図2に示す。
図2において、沈降分離槽に連続的に流入するスラリーの流量(V)、沈降分離槽の上部から連続的に排出される汚染水の流量(V2)、沈降分離槽の下部から連続的に排出される洗浄土の流量(V1)は、下記の通りである。
The mass balance of the soil slurry fluid in the settling tank is shown in FIG.
In FIG. 2, the flow rate (V) of slurry continuously flowing into the settling separation tank, the flow rate of contaminated water discharged continuously from the upper part of the settling separation tank (V2), and continuously discharged from the lower part of the settling separation tank. The flow rate (V1) of the washed soil is as follows.
V=S+G+W+P
V2=S2+W2+P2
V1=S1+G+W1+P1
V=V1+V2
なお、土壌スラリー流体の記号は下記の通りである(単位は、時間当たりの体積)。
V = S + G + W + P
V2 = S2 + W2 + P2
V1 = S1 + G + W1 + P1
V = V1 + V2
In addition, the symbol of a soil slurry fluid is as follows (a unit is a volume per time).
V :沈降分離槽に連続的に流入するスラリーの流量(即ち、V1+V2)
V1:沈降分離槽の下部から連続的に排出される洗浄土の流量
V2:沈降分離槽の上部から連続的に排出される汚染水の流量
S :汚染土壌の土粒子の総体積(即ち、S1+S2)
S1:沈降分離槽の下部から連続的に排出される土粒子の総体積
S2:沈降分離槽の上部から連続的に排出される土粒子の総体積
V: Flow rate of slurry continuously flowing into the settling tank (ie, V1 + V2)
V1: Flow rate of washing soil continuously discharged from the lower part of the settling separation tank V2: Flow rate of contaminated water discharged continuously from the upper part of the settling separation tank S: Total volume of soil particles in the contaminated soil (ie, S1 + S2) )
S1: Total volume of soil particles continuously discharged from the lower part of the sedimentation tank S2: Total volume of soil particles continuously discharged from the upper part of the sedimentation tank
P :汚染土壌中の汚染物質の総体積(即ち、P1+P2)
P1:沈降分離槽の下部から連続的に排出される汚染物質の総体積
P2:沈降分離槽上部から連続的に排出される汚染物質の総体積
W :汚染土壌に加えた希釈水の総体積(即ち、W1+W2)
W1:沈降分離槽の下部から連続的に排出される希釈水の総体積
W2:沈降分離槽の上部から連続的に排出される希釈水の総体積
G :洗浄前の汚染土壌に同伴して存在していた土含有水体積
T :沈降分離槽入り口でのスラリー中の単位土壌中の総水量(即ち、含有水G+希釈水W)
P: Total volume of pollutants in the contaminated soil (ie, P1 + P2)
P1: Total volume of contaminants continuously discharged from the lower part of the sedimentation tank P2: Total volume of contaminants continuously discharged from the upper part of the sedimentation tank W: Total volume of diluted water added to the contaminated soil ( That is, W1 + W2)
W1: Total volume of diluting water continuously discharged from the lower part of the settling separation tank W2: Total volume of diluting water continuously discharged from the upper part of the settling separation tank G: Present along with contaminated soil before washing Soil-containing water volume T: Total amount of water in the unit soil in the slurry at the inlet of the settling tank (ie, contained water G + diluted water W)
また、スラリー流体以外の記号は下記の通りである。
u1:流体V1が沈降分離槽を流下するときの平均速度(即ち、V1/A)
u2:流体V2が沈降分離槽を上昇するときの平均速度(即ち、V2/A)
このu2は、土壌の累積微粒子量がS2になる土粒子径の沈降速度Rに等しい。
Further, symbols other than the slurry fluid are as follows.
u1: Average speed when the fluid V1 flows down the sedimentation tank (ie, V1 / A)
u2: Average speed when the fluid V2 moves up the sedimentation tank (ie, V2 / A)
This u2 is equal to the sedimentation speed R of the soil particle diameter at which the amount of accumulated fine particles of the soil becomes S2.
A :沈降分離槽の横断面の面積(U2を実現する断面積である)
D :沈降分離槽の横断面の直径又は相当直径
L1:流体V1が流下する範囲の沈降分離槽の縦断面長さ
L2:流体V2が上昇する範囲の沈降分離槽の縦断面長さ
R :土粒子の沈降速度
A: Area of the cross section of the sedimentation tank (the cross sectional area that realizes U2)
D: Diameter or equivalent diameter of the cross section of the sedimentation tank L1: Vertical section length of the sedimentation tank in the range where the fluid V1 flows down L2: Vertical section length of the sedimentation tank in the range where the fluid V2 rises R: Soil Particle settling velocity
スラリーを移送するための条件は、スラリーの流動性を確保して、配管移送するために、(G+W)/S≧1.5であることが好ましい。
汚染土壌の単位体積当たりの汚染物質含有量Pから洗浄土の汚染物質P1を実現するために、希釈水Wの条件は下記の通りである。
The conditions for transferring the slurry are preferably (G + W) /S≧1.5 in order to secure the fluidity of the slurry and transfer the piping.
In order to realize the pollutant P1 of the cleaning soil from the pollutant content P per unit volume of the contaminated soil, the conditions of the dilution water W are as follows.
P1/P=G/T
T=(P/P1)×G
W=T−G=(P/P1−1)×G
従って、希釈水量は下記条件を満足することが望ましい。
W≧(P/P1−1)×G
P1 / P = G / T
T = (P / P1) × G
W = TG = (P / P1-1) × G
Therefore, it is desirable that the amount of dilution water satisfies the following conditions.
W ≧ (P / P1-1) × G
上記(7)又は(8)に係わる発明は、沈降分離槽におけるスラリー注入口の位置に関する。沈降分離槽は、スラリー注入口、汚染水排出口及びスラリー沈降物排出口を有しており、沈降分離槽に注入されたスラリーは、下降流と上昇流に分流され、上昇流速度は上昇流中の土粒子の沈降速度以下になる。なお、該上昇流速度は、汚染水に含有される土粒子がS2になる速度を実現するような該沈降分離槽の横断面積Aを設定することにより決定されるものであり、具体的には、汚染土壌中の土粒子分布の土微粒子の累積量がS2になるところの土粒子の水中での沈降速度Rと等しくなるV2/AからAを決めることである。ただし、該上昇流速度は、土粒子の形態や汚染物質の性状及び沈降分離槽の形状等によって変動するものであり、運転上の指標とするおおよその数値である。 The invention according to the above (7) or (8) relates to the position of the slurry inlet in the sedimentation tank. The sedimentation tank has a slurry inlet, a polluted water outlet, and a slurry sediment outlet. The slurry injected into the sedimentation tank is divided into a downward flow and an upward flow, and the upward flow velocity is the upward flow. It becomes below the sedimentation rate of the soil particles inside. The upward flow speed is determined by setting the cross-sectional area A of the sedimentation tank so as to realize the speed at which the soil particles contained in the contaminated water become S2. Specifically, In other words, A is determined from V2 / A, which is equal to the sedimentation velocity R of the soil particles in the water where the cumulative amount of soil particles in the soil soil distribution in the contaminated soil is S2. However, the upward flow velocity varies depending on the shape of the soil particles, the property of the pollutant, the shape of the sedimentation separation tank, and the like, and is an approximate numerical value as an operating index.
上記(7)において、沈降分離槽の横断面の直径又は相当直径をDとしたとき、沈降分離槽へのスラリー注入口は、該上昇流の排出口液面(即ち、沈降分離槽の上部に設けられた汚染水排出口の位置)から0.2D以上離れた下方に設置されることが好ましい。スラリー注入口が上記の位置に設置されていると、該上昇流の流線が極力垂直になるように遷移域が確保され、沈降分離が効率的に行なわれる。 In (7) above, when the diameter or equivalent diameter of the cross section of the settling tank is D, the slurry inlet to the settling tank is at the liquid level at the discharge port of the upward flow (that is, above the settling tank). It is preferable to be installed at a distance of 0.2D or more from the position of the contaminated water discharge port provided. When the slurry inlet is installed at the above position, a transition zone is secured so that the streamline of the upward flow is as vertical as possible, and sedimentation separation is performed efficiently.
なお、本発明において、沈降分離槽の横断面の相当直径とは、該沈降分離槽の横断面積に等しい面積を有する円形を想定するとき、該円形の直径を云う。
本発明に用いられる沈降分離槽の形状は、スラリーを流通させうる形状であれば特に限定されるものではない。横断面形状は、例えば、円形、四角形、三角形など任意の形状でよく、縦断面形状は、例えば、四角形、逆三角形、上部が四角形で下部が三角形の組み合わせ、上部が四角形で下部が半円形または半楕円形の組み合わせ、など任意の形状でよい。また、沈降分離槽のスラリー注入口と汚染水排出口は、複数に分割されていてもよい。
In the present invention, the equivalent diameter of the cross section of the sedimentation separation tank refers to the diameter of the circle when assuming a circle having an area equal to the cross-sectional area of the sedimentation separation tank.
The shape of the sedimentation tank used in the present invention is not particularly limited as long as the slurry can be circulated. The cross-sectional shape may be any shape such as, for example, a circle, a quadrangle, or a triangle, and the vertical cross-sectional shape may be, for example, a quadrangle, an inverted triangle, a combination of a quadrangle at the top and a triangle at the bottom, a square at the top, and a semicircle at the bottom. Any shape such as a combination of semi-elliptical shapes may be used. Moreover, the slurry inlet and the contaminated water outlet of the settling tank may be divided into a plurality.
上記(8)において、沈降分離槽の横断面の直径又は相当直径をDとしたとき、沈降分離槽へのスラリー注入口は、該下降流の排出口液面(即ち、沈降分離槽の下部に設けられたスラリー沈降物排出口の位置)から0.2D以上離れた上方に設置されることが好ましい。スラリー注入口が上記の位置に設置されていると、該下降流の流線が極力垂直になるように遷移域が確保され、沈降分離が効率的に行なわれる。
また、該下降流の流体は土粒子と水のスラリーであり、沈降分離を効率的に行なうと同時に、該スラリーのスムーズな排出が重要なので、沈降物排出口に向けた斜めの流線を確保することも重要である。この沈降物排出口は、複数に分割されていてもよい。
In (8) above, when the diameter or equivalent diameter of the cross section of the sedimentation separation tank is D, the slurry injection port to the sedimentation separation tank is at the liquid level at the discharge port of the downflow (that is, at the bottom of the sedimentation separation tank). It is preferable to be installed above 0.2D or more from the position of the provided slurry sediment outlet. When the slurry inlet is installed at the above position, a transition zone is secured so that the streamline of the downward flow is as vertical as possible, and sedimentation separation is performed efficiently.
Also, the downflow fluid is a slurry of soil particles and water, and sedimentation is efficiently performed, and at the same time smooth discharge of the slurry is important, so an oblique streamline toward the sediment outlet is secured. It is also important to do. This sediment discharge port may be divided into a plurality.
上記(9)に係わる発明は、沈降分離槽が、スラリー沈降物排出口の上部に、土粒子沈降物を滞留させる制御手段を有することを特徴とする。このような流量制御手段を備えることにより、沈降分離槽に注入されたスラリーが直接、沈降分離槽下部の排出口から流出することが防止できるとともに、一定の滞留時間を経過して沈降した洗浄土の土密度を目標値まで高めるために、例えば、貯槽底部の圧力を検出して一定圧力範囲になるように流量を制御することができる。 The invention according to the above (9) is characterized in that the sedimentation separation tank has a control means for retaining the soil particle sediment at the upper part of the slurry sediment discharge port. By providing such a flow rate control means, it is possible to prevent the slurry injected into the sedimentation separation tank from flowing out directly from the discharge port at the bottom of the sedimentation separation tank, and the washing soil that has settled after a certain residence time has passed. In order to increase the soil density to a target value, for example, the pressure at the bottom of the storage tank can be detected and the flow rate can be controlled to be within a certain pressure range.
本発明の汚染土壌連続洗浄方法は、設備的にコンパクトであり、水のみの使用で、希釈水効果により目標とする洗浄した土壌が得られ、界面活性剤や洗浄剤等の添加剤が不要である。さらに、使用する水も、大部分が循環水として再利用することができるため、経済的にも有利で、環境にやさしい洗浄方法であるということが出来る。また、得られる洗浄土の組成は、洗浄前の土壌組成とほぼ同一であり、かつ加熱等の処理をしてないため、変質がない土壌である。したがって、原土に埋め戻しができるという長所がある。 The contaminated soil continuous cleaning method of the present invention is compact in terms of equipment, and by using only water, the target cleaned soil is obtained due to the effect of diluting water, and additives such as surfactants and cleaning agents are unnecessary. is there. Furthermore, since most of the water to be used can be reused as circulating water, it can be said that it is an economically advantageous and environmentally friendly cleaning method. Moreover, the composition of the obtained washing soil is substantially the same as the soil composition before washing, and is not subjected to any treatment such as heating, and therefore has no alteration. Therefore, there is an advantage that it can be backfilled in the original soil.
以下、本発明を、図に基づいてさらに具体的に説明する。
図1は、本発明の汚染土壌連続洗浄方法の一例を示す概略図である。
Hereinafter, the present invention will be described more specifically based on the drawings.
FIG. 1 is a schematic view showing an example of the contaminated soil continuous cleaning method of the present invention.
土受槽3は、汚染土壌1を、スラリー受槽5から管6を通じて内部循環する希釈水と混合してスラリー化する。水ジェットポンプ4は、スラリーをさらに微細化してスラリー受槽5へ移送する。移送ポンプ7は、スラリーをスラリー受槽5から沈降分離槽9へ移送する。沈降分離槽9は、スラリーを沈降分離して、スラリー沈降物である洗浄土11と汚染水12に分離する。スラリーポンプ10は、沈降分離槽9で分離されたスラリー沈降物(洗浄土)11を排出する。沈降分離槽9内を上昇して排出される汚染水12は、分離装置13で汚染物質が分離され、循環して希釈水として再利用される。この希釈水の不足分は、補給水18から供給する。
The soil receiving tank 3 mixes the contaminated soil 1 with the diluting water that circulates internally from the slurry receiving tank 5 through the
上記の土受槽3は、汚染土壌と水を混合して流動性を付加することが目的であるから、槽内部に攪拌機を保持していることが好ましい。スラリー化を促進するために、コンベヤー等で土受槽へ汚染土壌を移送する間に水スプレーで流動化させてもよく、また、土受槽として横型回転ドラムを用い、加水する方法等も可能である。
汚染土壌中の径20ミリメートル以上の大きい礫類は、土受槽3への投入前に除去しておく事が望ましい。
Since the purpose of the soil receiving tank 3 is to add fluidity by mixing contaminated soil and water, it is preferable to hold a stirrer inside the tank. In order to promote slurrying, it may be fluidized with a water spray while the contaminated soil is transferred to a soil receiving tank by a conveyor or the like, and a method of adding water using a horizontal rotating drum as the soil receiving tank is also possible. .
It is desirable to remove large gravels having a diameter of 20 mm or more in the contaminated soil before putting them into the soil receiving tank 3.
水ジェットポンプ4は、土受槽3で作られた汚染土壌と水のスラリーの微細化と移送を兼ねているが、水ジェットポンプの代わりに、ラインミキサーを用いて該スラリーを微細化し、スラリーポンプを用いて移送することを組み合わせたプロセス等でも可能である。上記各方法において、スラリーの微細化の必要性に応じて、多段化することが好ましい。 The water jet pump 4 serves to refine and transfer the slurry of the contaminated soil and water produced in the soil receiving tank 3, but instead of the water jet pump, the slurry is refined using a line mixer. It is also possible to use a process that combines the transfer using In each of the above methods, it is preferable to increase the number of stages according to the necessity of making the slurry fine.
スラリー受槽5は、スラリーを均質な状況で保持する必要があるので、スラリー受槽内部に攪拌機を設置したり、回転ドラム貯槽等とすることも可能である。
沈降分離槽9は、縦型円胴部と円錐部を組み合わせた槽が好ましいが、角胴槽でも可能である。該円錐部には、スクリュウを設置して排出機構を設置してもよい。
Since the slurry receiving tank 5 needs to hold the slurry in a homogeneous state, a stirrer can be installed inside the slurry receiving tank, or a rotating drum storage tank or the like can be used.
The sedimentation /
分離装置13は、横型浮遊分離槽が好ましいが、遠心分離機で水と汚染物質を分離することもできる。
土壌の汚染物質としては、油、重金属、有機物、複合汚染物等があり、いずれの汚染物質に対しても本発明の汚染土壌連続洗浄方法を適用することができる。
The
Examples of soil contaminants include oil, heavy metals, organic matter, and complex contaminants. The contaminated soil continuous cleaning method of the present invention can be applied to any contaminant.
次に、そのうち、油汚染土壌を洗浄する場合を例に挙げて説明する。
油汚染土壌1は、小塊にして土受槽3に投入され、希釈水と混合されてスラリーとなる。該スラリーは、水ジェットポンプ4で吸引移送されてスラリー受槽5に貯蔵される。水ジェットポンプ4には、希釈水が管19から流入して該スラリーと混合される。その際、該スラリー中の土の小塊は、土粒子レベルまで分散されたスラリーとなる。この際、同時に、土粒子間に存在していた油は剥離して水中に分散する。従って、土粒子、水および油の3成分からなる比較的均質なスラリーになる。目標とする洗浄を達成するために必要な量の希釈水20を加水して、該スラリーの油濃度を調整する。
Next, the case where oil contaminated soil is washed will be described as an example.
The oil-contaminated soil 1 is made into a small lump and put into a soil receiving tank 3 and mixed with dilution water to become a slurry. The slurry is sucked and transferred by the water jet pump 4 and stored in the slurry receiving tank 5. Dilution water flows into the water jet pump 4 from the
スラリーは、沈降分離しないように、スラリーポンプ7で常時循環攪拌する。その循環スラリーの一部を流量指示制御バルブのFIC21により沈降分離槽に連続的に定量供給する。このスラリーの供給口は、沈降分離槽9の中段部分にあり、土粒子は沈降して沈降分離槽下部に堆積しつつ下方に移動しスラリー沈降物として排出される。その際、同伴する水中に希薄になった油が存在している。スラリー沈降物11は、沈降分離槽9の底部での槽内圧力が一定になるように圧力指示制御のPIC22で制御するスラリーポンプ10で排出され、洗浄土が得られる。
The slurry is constantly circulated and stirred by the
一方、沈降しないで上昇する希釈水や油および微細な土粒子は、汚染水12として沈降分離槽外へ排出される。排出された汚染水は、水油分離装置13を通して、油は分離装置の上部から廃棄油(汚染物質)14として排出される。分離装置の下部からは、汚染水に同伴していた土微粒子を含む浄水が得られ、循環水15となる。循環水はポンプ16で昇圧して、希釈水20や水ジェットポンプ4の駆動水に使用する。
On the other hand, dilution water, oil, and fine soil particles that rise without settling are discharged out of the settling separation tank as contaminated water 12. The discharged contaminated water is discharged through the water /
本発明の汚染土壌連続洗浄方法を用いて、油汚染土壌の洗浄を行なったところ、次のような結果を得た。 When oil-contaminated soil was washed using the contaminated soil continuous washing method of the present invention, the following results were obtained.
汚染土壌1の処理量1m3/hrの組成は、土粒子0.48m3/hr、含有水0.50m3/hrおよび油0.02m3/hrであった。これを容量500リットルの土受槽3に投入してスラリーとした後、さらに、水ジェットポンプ4の駆動水19を3m3/hrと希釈水20の1.5m3/hrを加水してスラリーとした後、直径500mmで容量100リットルの円筒円錐型の沈降分離槽9において沈降分離した結果、洗浄土11として土粒子0.46m3/hr、同伴水0.55m3/hrおよび油0.002m3/hrを得た。
The composition of the treated amount 1 m 3 / hr of the contaminated soil 1 was soil particles 0.48 m 3 / hr, contained water 0.50 m 3 / hr, and oil 0.02 m 3 / hr. This is put into a 500 liter earth receiving tank 3 to form a slurry, and further, the driving
一方、汚染水12として、水4.45m3/hr、土粒子0.02m3/hrと油0.018m3/hrの混合流体を得た。この汚染水を続いて、水油分離装置13で分離して、廃棄油0.018m3/hrと同伴水0.05m3/hr及び循環水4.40m3/hrと循環水中に土粒子0.02m3/hrを回収した。この結果、洗浄土中の油はほぼ10%まで削減できた。
On the other hand, the contaminated water 12, to obtain an aqueous 4.45m 3 / hr, soil particles 0.02 m 3 / hr and the oil 0.018 m 3 / hr fluid mixture. Following this contaminated water, and separated by the water-
3 土受槽
5 スラリー受槽
9 沈降分離槽
13 分離装置
3 Soil receiving tank 5
Claims (5)
(b)該スラリーを、沈降分離槽内で土粒子が主に存在する下降流と、汚染物質を含む希釈水が主に存在する上昇流に分流して、汚染物質が下降流と上昇流の水量に比例配分され、土粒子と汚染物質に、外力として旋回流を利用せず土粒子の自重による沈降作用を利用して、連続的に分離し、汚染物質が分散している含有水を同伴する洗浄土を該沈降分離槽の下部から連続的に排出し、汚染物質が分散した汚染水を該沈降分離槽の上部から連続的に排出する沈降分離工程、
を有し、さらに、前記沈降分離槽がスラリー注入口、汚染水排出口及びスラリー沈降物排出口を有し、該スラリー沈降物排出口の上部に、土粒子沈降物を該沈降分離槽底部に滞留させて該沈降分離槽底部の圧力を検出して一定圧力範囲になるように、スラリー沈降物排出流量を制御する手段を有することを特徴とする汚染土壌連続洗浄方法。 (A) a slurrying step of adding diluted water to contaminated soil comprising soil particles, contaminants and contained water to form a slurry in which the contaminants are homogeneously dispersed in the diluted water and the contained water;
(B) The slurry is divided into a downward flow in which soil particles mainly exist in the settling separation tank and an upward flow in which dilution water containing pollutants mainly exists, and the pollutants are in the downward flow and upward flow. Proportionally distributed to the amount of water, and the soil particles and pollutants are not separated from the swirl flow as an external force, but use the settling action due to the dead weight of the soil particles, and are accompanied by the contained water in which the pollutants are dispersed. A sedimentation step of continuously discharging the washing soil from the lower part of the sedimentation tank, and continuously discharging the contaminated water in which the pollutants are dispersed from the upper part of the sedimentation tank;
Have a further, said settling tank slurry inlet, a contaminated water outlet and the slurry sediment outlet, the upper part of the slurry sediment outlet, the soil particles sediment the precipitated separation tank bottom A method for continuously washing contaminated soil, comprising means for controlling the slurry sediment discharge flow rate so as to stay and detect the pressure at the bottom of the sedimentation tank to be within a certain pressure range .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005253855A JP4372067B2 (en) | 2005-09-01 | 2005-09-01 | Contaminated soil continuous cleaning method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005253855A JP4372067B2 (en) | 2005-09-01 | 2005-09-01 | Contaminated soil continuous cleaning method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004315421A Division JP3737099B1 (en) | 2004-10-29 | 2004-10-29 | Contaminated soil continuous cleaning method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006122893A JP2006122893A (en) | 2006-05-18 |
JP4372067B2 true JP4372067B2 (en) | 2009-11-25 |
Family
ID=36718124
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005253855A Expired - Fee Related JP4372067B2 (en) | 2005-09-01 | 2005-09-01 | Contaminated soil continuous cleaning method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4372067B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014070997A (en) * | 2012-09-28 | 2014-04-21 | Ihi Corp | Soil continuous processing system |
JP6548874B2 (en) * | 2014-08-26 | 2019-07-24 | 株式会社安藤・間 | Method and system for cleaning contaminated soil |
-
2005
- 2005-09-01 JP JP2005253855A patent/JP4372067B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2006122893A (en) | 2006-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100579917C (en) | Three-phase cyclone separator and cleaning treatment system for oil-containing water | |
Oliveira et al. | A short overview of the formation of aerated flocs and their applications in solid/liquid separation by flotation | |
KR100974911B1 (en) | Movable water cleaning system | |
KR101782615B1 (en) | Contaminated soil remediation system and remediation method having the same | |
RU2523819C2 (en) | Water treatment system with ballast flocculation and sedimentation and simplified sediment circulation and method to this end | |
CN101613164A (en) | Inclined tube floating device for waste water treatment | |
CN105019549B (en) | Eddy flow-the horizontal-flow grit chamber processed for early-stage rainwater | |
CN107445327A (en) | A kind of integrated apparatus and method of waterpower collaboration flotation processing sewage | |
JP3737099B1 (en) | Contaminated soil continuous cleaning method | |
CN2644411Y (en) | Modified oil removing apparatus | |
JP4372067B2 (en) | Contaminated soil continuous cleaning method | |
KR100446141B1 (en) | The waster water treatment system and method | |
CN108455695A (en) | A kind of impact-resistant efficient air-floating system and its sewage water treatment method | |
CN105174558A (en) | Pretreatment method for removing oil by gas-making wastewater | |
CN114314935B (en) | Integrated oily sewage treatment system and treatment method | |
CN205442867U (en) | High -efficient air supporting separator | |
KR102208394B1 (en) | Contaminated soil remediation system and remediation method having the same | |
CN211946549U (en) | Low-suspended matter oil-containing mine water treatment equipment for coal mine | |
CN1124984C (en) | Counter-current air floating water-treating method and apparatus | |
CN209411951U (en) | A kind of pretreatment system of semi-coke wastewater | |
CN100425316C (en) | Intelligent treatment equipment of oil containing sewage | |
JP5227679B2 (en) | Contaminant flotation separation and recovery device | |
JP2010234217A (en) | Powdery particle material treatment system, and powdery particle material treatment method | |
CN105330074B (en) | Airfloat equipment | |
JP2007098301A (en) | Method for continuously cleaning and discharging soil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071101 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071127 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080121 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090324 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090424 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090804 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090901 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120911 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4372067 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120911 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130911 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |