JP2010284624A - Apparatus of producing mixture of soil and water using high pressure water - Google Patents

Apparatus of producing mixture of soil and water using high pressure water Download PDF

Info

Publication number
JP2010284624A
JP2010284624A JP2009142775A JP2009142775A JP2010284624A JP 2010284624 A JP2010284624 A JP 2010284624A JP 2009142775 A JP2009142775 A JP 2009142775A JP 2009142775 A JP2009142775 A JP 2009142775A JP 2010284624 A JP2010284624 A JP 2010284624A
Authority
JP
Japan
Prior art keywords
soil
water
nozzle
mixture
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009142775A
Other languages
Japanese (ja)
Other versions
JP4990326B2 (en
Inventor
Tadahiro Fujii
忠広 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DOJO KANKYO PROCESS KENKYUSHO KK
Tokyo Electric Power Services Co Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
DOJO KANKYO PROCESS KENKYUSHO KK
Tokyo Electric Power Co Inc
Tokyo Electric Power Services Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DOJO KANKYO PROCESS KENKYUSHO KK, Tokyo Electric Power Co Inc, Tokyo Electric Power Services Co Ltd filed Critical DOJO KANKYO PROCESS KENKYUSHO KK
Priority to JP2009142775A priority Critical patent/JP4990326B2/en
Publication of JP2010284624A publication Critical patent/JP2010284624A/en
Application granted granted Critical
Publication of JP4990326B2 publication Critical patent/JP4990326B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact mixing apparatus capable of mixing a soil composed of a mainly granular solid and water evenly within a short time. <P>SOLUTION: The apparatus is a production apparatus of a mixture of soil and water and includes an inlet can having a nozzle for jetting pressurized water having 2 to 20 MPa and a throwing inlet for soil, a tube having a first end and a second end, and a scattering prevention can having a baffle plate, a discharge outlet, and a gas discharge port. The nozzle is so installed as to jet pressurized water as a high speed jetted fluid from a side face of the throwing direction of the soil and satisfies the conditions; that is, the first end of the tube is connected to the inlet can along the jetting direction of the tube, the second end of the tube is connected to the scattering prevention can, the inner diameter (Dn) of the discharge outlet of the nozzle is 1 to 20 mm, and the inner diameter (Dp) of the tube is 5 to 50 times as large as the inner diameter (Dn) of the discharge outlet of the nozzle. Consequently, the apparatus is for producing a mixture of soil and water by mixing soil thrown to the throwing inlet with water derived from the pressurized water during the time the soil reaches the second end. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、高圧水を用いた土壌と水の混合物の製造装置、及び該装置を使用した土壌と水の連続混合方法に関する。   The present invention relates to an apparatus for producing a mixture of soil and water using high-pressure water, and a method for continuously mixing soil and water using the apparatus.

被混合物と液体媒体の混合操作は、化学工業分野では固液反応、液液反応又は気液反応の反応促進や製品製造の手段として一般に行なわれており、また、混合手段は多岐に亘り、機械的方法としてパドル式攪拌機やプロペラ式攪拌機などが使用されている。
また、微粉末を液体に混合する装置としてホモジナイザーなどがあるが、その微粉末の粒径の上限が小さく、塊状でないことが使用上の拘束条件である。
The mixing operation of the mixture and the liquid medium is generally performed in the chemical industry as a means for promoting the reaction of solid-liquid reaction, liquid-liquid reaction or gas-liquid reaction and for manufacturing products. As a typical method, a paddle type agitator or a propeller type agitator is used.
A homogenizer or the like is available as a device for mixing fine powder into a liquid. However, the upper limit of the particle size of the fine powder is small, and it is a restriction condition in use that it is not a lump.

土木分野においては、横型回転機械のトロンメルなどを使用して土壌と水を混合している。土壌は粒度分布のある岩石片の粒子の集合体であり、通常、粘土の存在により塊状になっている。したがって、トロンメルなどを使用した機械的な攪拌では土壌を構成している粒子に至るまで水に分散させることはできない。換言すれば、分散能力の観点からは、トロンメルは大型機械であるにもかかわらず、攪拌能力不足であるといえる。   In the civil engineering field, soil and water are mixed using a trommel or the like of a horizontal rotating machine. Soil is an aggregate of particles of rock fragments with a particle size distribution and is usually agglomerated due to the presence of clay. Therefore, mechanical stirring using a trommel or the like cannot be dispersed in water until it reaches the particles constituting the soil. In other words, from the viewpoint of dispersion ability, it can be said that although trommel is a large machine, the stirring ability is insufficient.

他の攪拌装置としては、水エジェクターポンプを使用して被混合物を配管内移送する際に管内で混合を実現している例がある。以下の特許文献1には、ノズルからの高速噴流体を利用した真空形成用ジェットポンプが開示されている。これは、エジェクターの真空発生原理を利用したポンプであり、工業分野においては水ジェットポンプの範疇にある装置である。   As another stirring apparatus, there is an example in which mixing is realized in a pipe when a mixture is transferred into the pipe using a water ejector pump. Patent Literature 1 below discloses a vacuum forming jet pump that uses a high-speed jet fluid from a nozzle. This is a pump using the principle of vacuum generation of an ejector, and is an apparatus in the category of a water jet pump in the industrial field.

以下の特許文献2では、被混合物が穀物と液体であり、インジェクションというノズルに液体媒体の高圧水を通過させて高速流体をつくり、その負圧吸引力を利用して貯槽から穀物と液体を吸引した後に、移送配管中を移送している。特許文献2の段落0034には、移送配管中での穀物同士の接触や移送管内壁への衝突により穀物表面の洗浄が行われることが記載されている。この現象は、被混合物の粒子状固体及び液体と液体媒体との一種の混合操作であり、混合操作が移送配管中で行われているが、積極的な混合操作は存在しない。   In Patent Document 2 below, the mixture is cereal and liquid, high-pressure fluid is made by passing high-pressure water as a liquid medium through a nozzle called injection, and the cereal and liquid are sucked from the storage tank using the negative pressure suction force. After that, it is transferred through the transfer pipe. Paragraph 0034 of Patent Document 2 describes that the grain surface is cleaned by contact between grains in the transfer pipe or collision with the inner wall of the transfer pipe. This phenomenon is a kind of mixing operation of the particulate solid of the mixture and the liquid and the liquid medium, and the mixing operation is performed in the transfer pipe, but there is no active mixing operation.

以下の特許文献3には、噴射ノズルからの噴射流体を用いて土木工事の浚渫操作における土壌スラリーを吸引したあとその噴射流体の速度を減速して揚圧に変えて移送する方法が開示されている。この移送方法は、噴射ノズルからの噴流を使用したポンプ機能の発現である。特許文献3では、被混合物の土壌スラリーと液体媒体との混合であるが、配管移送中での混合であり、積極的な混合操作は存在しない。   Patent Document 3 below discloses a method of sucking the soil slurry in the dredging operation of civil engineering work using the jet fluid from the jet nozzle and then reducing the speed of the jet fluid to change it to lift pressure and transferring it. Yes. This transfer method is manifestation of a pump function using a jet flow from an injection nozzle. In patent document 3, although it is mixing with the soil slurry of a to-be-mixed material, and a liquid medium, it is mixing in piping transfer and there is no active mixing operation.

以下の特許文献4では、水ジェットポンプの原理を利用した汚染土壌の分離方法及び装置が開示されている。特許文献4の段落0006には、流路断面積を縮小した絞り部3が形成されている。その絞り部3の下流側近傍には空気吸引部4が形成されており、絞り部3を通過する高圧水ジェットのエジェクター作用によって発生した負圧によって空気が吸引され、液体流に注入されて高速の気液混合ジェットが形成されることが記載されている。また、特許文献4の段落0009には、高速の気液混合ジェットに混入された被処理物は、搬送管内で気液混合ジェットと混合しながら攪拌され、その強力な物理作用によって被処理物中の洗浄目的物から不純物としての汚染物の離脱が行われるとも、記載されている。しかしながら、このような攪拌や汚染物の離脱は、水ジェットポンプのエジェクター機能の活用とポンプによる配管中の流体移送能力に付随して生じた離脱であって、積極的な混合機能の発現とはいえない。   In the following Patent Document 4, a method and an apparatus for separating contaminated soil using the principle of a water jet pump are disclosed. In the paragraph 0006 of Patent Document 4, a throttle portion 3 having a reduced channel cross-sectional area is formed. An air suction unit 4 is formed in the vicinity of the downstream side of the throttle unit 3, and air is sucked by the negative pressure generated by the ejector action of the high-pressure water jet passing through the throttle unit 3 and injected into the liquid flow. The gas-liquid mixing jet is formed. Further, in paragraph 0009 of Patent Document 4, the object to be processed mixed in the high-speed gas-liquid mixing jet is stirred while being mixed with the gas-liquid mixing jet in the transport pipe, and the strong physical action causes the object to be processed. It is also described that contaminants as impurities are removed from the object to be cleaned. However, such agitation and the removal of contaminants are the separation that occurs in conjunction with the use of the ejector function of the water jet pump and the ability of the pump to transfer the fluid in the piping. I can't say that.

以上のとおり、特許文献1〜4に記載された技術の本質は、高速噴流体のエジェクターでの真空発生と該エジェクターポンプ機能で移送する配管中の乱流流動の結果として汚染物の離脱等の現象であり、工業分野における水ジェットポンプ又は水ジェットエジェクターと呼ばれる装置の応用例であるといえる。このような水ジェットポンプ又は水ジェットエジェクターと呼ばれる装置は、特許文献1に記載されたポンプと同じ基本原理に基づいて機能するものであり、ポンプの吸い込み圧力で配管内に被混合物を流動させるため、被混合物には一定の流動性が要求される。したがって、被混合物が粒状固体のみである場合には、配管中の移送は困難であり、その粒状固体に流動性を付与する液体が必要になる。そして粒状固体と液体は完全スラリー状態でないと吸い込み配管中やエジェクターのスロート部での閉塞が発生するため、これを防止するために、液体中の粒子状固体の含有濃度を小さくせざるをえない。   As described above, the essence of the techniques described in Patent Documents 1 to 4 is that the generation of vacuum in the ejector of the high-speed jet fluid and the detachment of contaminants as a result of the turbulent flow in the pipe transferred by the ejector pump function This phenomenon is an application example of a device called a water jet pump or a water jet ejector in the industrial field. Such an apparatus called a water jet pump or a water jet ejector functions based on the same basic principle as the pump described in Patent Document 1, and allows the mixture to flow into the pipe with the suction pressure of the pump. A certain fluidity is required for the mixture. Therefore, when the mixture is only a granular solid, it is difficult to transfer in the pipe, and a liquid that imparts fluidity to the granular solid is required. If the granular solid and liquid are not in a complete slurry state, blockage occurs in the suction pipe and in the throat portion of the ejector. In order to prevent this, the concentration of the particulate solid in the liquid must be reduced. .

特許文献1〜4では、移送中の被混合物が配管中で混合されると記載されているが、そのような混合は配管中での被混合物の乱流の発生によるものであり、積極的な混合を発現させたものとはいえない。特に、被混合物が土壌である場合には、特許文献1〜4に記載された装置を使用する際に土壌は水に十分懸濁してある必要があるため、水と混合することができない塊状態の土壌は移送することができない。したがって、土壌の水に対する含有率を数%程度まで低く抑えなければ、特許文献1〜4に記載された装置は、土壌に適用することはできない。   In Patent Documents 1 to 4, it is described that the mixture to be transferred is mixed in the pipe. However, such mixing is caused by generation of turbulent flow of the mixture in the pipe, and is positive. It cannot be said that the mixture is expressed. In particular, when the mixture is soil, the soil needs to be sufficiently suspended in water when using the devices described in Patent Documents 1 to 4, so that it cannot be mixed with water. The soil cannot be transported. Therefore, unless the content rate with respect to the water of soil is suppressed to about several% low, the apparatus described in patent documents 1-4 cannot be applied to soil.

また、掘削土壌のような粉粒固体の塊を直接水に分散させることは、従来技術の装置においては、未だ実現されてない。
さらに、油で汚染された土壌を水で洗浄するためには、土壌の岩石片の粒子レベルに至るまで水に分散して粒子間に存在する油成分を水に分散させる必要があるが、従来技術では土壌中の粘土成分の影響で塊状になっている為、水に十分な分散が達成できない。そのため、装置が大型となり、さらに、処理時間が長くなるという欠点がある。
Moreover, it is not yet realized in the prior art apparatus to directly disperse a lump of granular solid such as excavated soil in water.
Furthermore, in order to wash soil contaminated with oil with water, it is necessary to disperse in water until the particle level of the rock fragment of the soil and disperse the oil component present between the particles in water. In technology, it is agglomerated under the influence of clay components in the soil, so sufficient dispersion in water cannot be achieved. For this reason, there is a drawback that the apparatus becomes large and the processing time becomes long.

別の事例として、農業用の畑砂が使用中に砂の微細化がある。砂の微細化により通気性が悪化し、農作物の品質劣化の原因となる。そこで、砂の微細化が進行した畑砂から微細粒子を除去して砂の粒径分布の改善を図る研究が長年行われてきた。具体的にはトロンメルを使用しての砂と水の混合操作では、微細砂を十分に分離・除去できていない。別手段として、風による微細砂の分離等の技術開発が行われているが、経済的に許容しうる技術ではない。
したがって、被混合物が粒子状固体から主に構成される土壌の洗浄等を行う場合に、洗浄等されるべき土壌の質量に対してより少ない量の水を使用して、土壌と水を効率的に混合するための装置や混合方法を提供する必要が未だ在る。
Another example is sand refinement while agricultural field sand is in use. The fineness of sand deteriorates the air permeability and causes the quality of crops to deteriorate. Therefore, researches have been conducted for many years to improve the particle size distribution of sand by removing fine particles from the field sand that has been refined. Specifically, the sand and water mixing operation using the trommel cannot sufficiently separate and remove the fine sand. As another means, technological development such as separation of fine sand by wind has been carried out, but this is not economically acceptable technology.
Therefore, when washing the soil mainly composed of particulate solid, etc., the soil and water are efficiently used by using a smaller amount of water relative to the mass of the soil to be washed. There is still a need to provide an apparatus and method for mixing.

特公昭62−12400号公報Japanese Examined Patent Publication No. 62-12400 特許第3485215号公報Japanese Patent No. 3485215 特許第3408377号公報Japanese Patent No. 3408377 特開2002−336731号公報JP 2002-336731 A

本発明が解決しようとする課題は、粒状固体から主に構成される土壌と水を均質かつ短時間で混合することができる小型の混合装置を提供することである。   The problem to be solved by the present invention is to provide a small-sized mixing device capable of mixing soil and water mainly composed of granular solids with water in a short time.

本発明は、上記課題を解決するために鋭意研究した結果、高圧水を用いて、簡単な構造の小型の装置で、土壌と水を均質かつ短時間で混合することができることを見出し、本発明を完成するに至った。
すなわち、本発明は以下の通りである。
As a result of diligent research to solve the above problems, the present invention has found that high-pressure water can be used to uniformly mix soil and water in a short time with a small apparatus having a simple structure. It came to complete.
That is, the present invention is as follows.

[1]2MPa〜20Mpaの圧力水を噴出するノズルと土壌の投入口を具備する入口缶、第1端と第2端を有する管、並びに衝突板と排出口と排気口を具備する飛散防止缶から構成される土壌と水の混合物の製造装置であって、ここで、該ノズルは、該土壌の投入方向の側面から圧力水を高速噴流体として噴出するように設置され、該管の第1端は、該圧力水の噴出方向に沿って、該入口缶に接続され、該管の第2端は該飛散防止缶に接続され、該ノズルの吐出口内径(Dn)は、1〜20mmであり、該管の内径(Dp)は、該ノズル吐出口内径(Dn)の5〜50倍であり、該管の第1端から第2端までの長さ(Lp)は、該ノズル吐出口内径(Dn)の10〜600倍であり、該該ノズルの吐出口から該管の第1端までの距離(Ls)は、該ノズル吐出口内径(Dn)の5〜100倍であり、これにより、該投入口に投入された土壌は、該管の第2端に到達する間に、該圧力水由来の水と混合されて土壌と水の混合物が製造されることを特徴とする、土壌と水の混合物の製造装置。   [1] An anti-scattering can comprising a nozzle for ejecting pressure water of 2 MPa to 20 MPa and an inlet for soil, a pipe having a first end and a second end, and a collision plate, an outlet and an exhaust port An apparatus for producing a mixture of soil and water, wherein the nozzle is installed so as to eject pressure water as a high-speed jet fluid from a side surface in the direction of introduction of the soil, and the first of the pipe The end is connected to the inlet can along the jet direction of the pressure water, the second end of the pipe is connected to the anti-scattering can, and the discharge port inner diameter (Dn) of the nozzle is 1 to 20 mm. And the inner diameter (Dp) of the tube is 5 to 50 times the inner diameter (Dn) of the nozzle discharge port, and the length (Lp) from the first end to the second end of the tube is the nozzle discharge port 10 to 600 times the inner diameter (Dn), and the distance (Ls) from the discharge port of the nozzle to the first end of the tube Is 5 to 100 times the inner diameter (Dn) of the nozzle outlet, so that the soil introduced into the inlet and the water derived from the pressure water while reaching the second end of the pipe A device for producing a mixture of soil and water, characterized in that a mixture of soil and water is produced by mixing.

[2]前記投入口から投入される土壌に予め水が添加される、前記[1]に記載の製造装置。   [2] The manufacturing apparatus according to [1], wherein water is added in advance to the soil charged from the charging port.

[3]前記ノズル吐出口近傍に空気供給口が設けられている、前記[1]又は[2]に記載の製造装置。   [3] The manufacturing apparatus according to [1] or [2], wherein an air supply port is provided in the vicinity of the nozzle discharge port.

[4]前記投入する土壌に空気を同伴させて投入することにより、前記管内で前記高速噴流体の周囲に、前記投入された土壌と空気の随伴流を発生させる、前記[1]〜[3]のいずれかに記載の製造装置。   [4] The above-described [1] to [3], in which air is entrained and introduced into the introduced soil to generate an accompanying flow of the introduced soil and air around the high-speed jet fluid in the pipe. ] The manufacturing apparatus in any one of.

[5]前記ノズル吐出口から噴出する圧力水の速度(Vn)は10〜200m/秒である、前記[1]〜[4]のいずれかに記載の製造装置。   [5] The manufacturing apparatus according to any one of [1] to [4], wherein the velocity (Vn) of the pressure water ejected from the nozzle discharge port is 10 to 200 m / sec.

[6]前記飛散防止缶の排出口に、得られた土壌と水の混合物から所望の土壌を分離するための分離装置が設置されている、前記[1]〜[5]のいずれかに記載の製造装置。   [6] The separator according to any one of [1] to [5], wherein a separation device for separating desired soil from a mixture of the obtained soil and water is installed at an outlet of the scattering prevention can. Manufacturing equipment.

[7]前記[1]〜[6]のいずれかに記載の土壌と水との混合物の製造装置を使用して土壌と水とを混合する方法であって、前記土壌を前記投入口に連続投入し、ここで、単位時間当たりの該土壌中の粒状固体体積をSs、該土壌中の液体の体積をSw(該土壌に予め水が添加される場合には当該水の体積を加算する)、前記ノズルから噴出する圧力水の体積をEnとするとき、以下の式(1)及び式(2):
0≦Sw/En≦50 式(1)
1≦(Sw+En)/Ss≦∞ 式(2)
を満たす条件で該製造装置を連続運転することを特徴とする、前記方法。
[7] A method for mixing soil and water using the apparatus for producing a mixture of soil and water according to any one of [1] to [6], wherein the soil is continuously connected to the inlet. Here, the solid solid volume in the soil per unit time is Ss, and the volume of the liquid in the soil is Sw (if the water is added to the soil in advance, the volume of the water is added) When the volume of the pressure water ejected from the nozzle is defined as En, the following formula (1) and formula (2):
0 ≦ Sw / En ≦ 50 Formula (1)
1 ≦ (Sw + En) / Ss ≦ ∞ Formula (2)
The method is characterized in that the production apparatus is continuously operated under conditions satisfying

本発明により、粒状固体から主に構成される土壌と水を均質かつ短時間で混合することができる小型の混合装置が提供される。本発明に係る土壌と水の混合物の製造装置は、回転機構を使用しないで高圧水による高速噴流体と随伴流による混合のみで、混合性能が高く、かつ、コンパクトな装置であり、さらに混合される土壌として多種多様な土壌に適用できる。   According to the present invention, there is provided a small mixing device capable of mixing soil and water mainly composed of granular solids and water in a short time. The apparatus for producing a mixture of soil and water according to the present invention is a compact apparatus that has high mixing performance and is mixed only by mixing with a high-speed jet fluid using high-pressure water and an accompanying flow without using a rotating mechanism. It can be applied to a wide variety of soils.

本発明に係る装置の概略図である。1 is a schematic view of an apparatus according to the present invention. 土壌と圧力水である高速噴流体の混合を効率よく行うための装置各部の寸法条件を示す図である。It is a figure which shows the dimension conditions of each part of an apparatus for performing mixing of the high speed jet fluid which is soil and pressure water efficiently. 本願発明に係る装置を含む、砂の中の微細砂を分離するプロセスの概略図である。It is the schematic of the process which isolate | separates the fine sand in sand including the apparatus which concerns on this invention. 随伴流の概念図である。It is a conceptual diagram of an accompanying flow. 速度分布図である。It is a velocity distribution diagram. 畑砂の洗浄前の粒径加積曲線図である。It is a particle size accumulation curve figure before washing | cleaning of field sand. 畑砂の洗浄後の粒径加積曲線図である。It is a particle size accumulation curve figure after washing | cleaning of field sand.

以下、本発明を詳細に説明する。
本明細書中、用語「土壌」とは、例えば、粒子径が略1〜20,000ミクロンである岩石破片粒子の集合体であり、通常、粘土、含有水を含んで、塊状になって存在しているものといい、汚染土壌、畑砂、建築廃材のような固形で塊状の物質等を広く包含する。
本願明細書中、用語「高速噴流体」とは、ノズル吐出口から噴出された後の圧力水の状態をいい、一方、ノズル吐出口に至る前の状態は「圧力水」という。したがって、本願明細書中、用語「高速噴流体」は「土壌」と混合される水を意味し、「土壌」を含まない概念である。
Hereinafter, the present invention will be described in detail.
In this specification, the term “soil” is, for example, an aggregate of rock fragment particles having a particle size of approximately 1 to 20,000 microns, and usually presents in a lump containing clay and water. It includes a wide range of solid and massive substances such as contaminated soil, field sand, and construction waste.
In the present specification, the term “high-speed jet fluid” refers to the state of pressure water after being ejected from the nozzle discharge port, while the state before reaching the nozzle discharge port is referred to as “pressure water”. Therefore, in the present specification, the term “high-speed jet fluid” means water mixed with “soil” and is a concept that does not include “soil”.

本発明に係る装置は、土壌と水を混合することを目的とする。
本発明に係る装置を用いて、例えば、油で汚染された土壌を水と混合すれば、土壌は水に混合・分散されるが、土壌の大粒子から微細粒子に至るまで水に混合・分散されるため、土壌の粒子間に存在していた油も水に分散する。すなわち、水に微細粒子や油が分散している分散体が得られる。かかる分散体を、本発明に係る装置の下流に設置された分離装置を用いて土壌から分離すれば、汚染油の大部分は、水に分散・希釈されて土壌から分離されるので、回収された土壌中の汚染油の含有量は低下している。このように、本発明に係る装置を用いて、土壌を洗浄することができる。分離装置としては、一般に振動篩やスクリューコンベアなどが使用される。
The device according to the invention aims to mix soil and water.
For example, if soil contaminated with oil is mixed with water using the apparatus according to the present invention, the soil is mixed and dispersed in water, but mixed and dispersed in water from large particles to fine particles of the soil. Therefore, the oil that existed between the soil particles is also dispersed in the water. That is, a dispersion in which fine particles and oil are dispersed in water is obtained. If such a dispersion is separated from the soil using a separation device installed downstream of the device according to the present invention, most of the contaminated oil is dispersed and diluted in water and separated from the soil, so that it is recovered. The content of contaminated oil in the soil has decreased. Thus, the soil can be washed using the apparatus according to the present invention. In general, a vibration sieve, a screw conveyor or the like is used as the separation device.

また、本発明に係る装置を用いて、例えば、畑砂を水と混合すれば、畑砂が水に分散されて畑砂のシルトや粘土は水に分散して懸濁水になるので、本発明に係る装置の下流に設置された分離装置、例えば振動篩を用いて懸濁水を畑砂から分離して畑砂を回収すれば、シルトの如き微細粒子が削減された畑砂を得ることができる。得られた畑砂は通気性や通水性がよくなり芋などの農産物の品質向上に寄与する。現在、本分野において、経済的な観点から許容しうるシルトや粘土等の微細粒子の除去技術や除去装置が存在しないために、畑砂の通水性や通気性を確保するために、毎年、新しい砂を散布し混合しているが、近年そのような砂の確保が困難になってきている。   Further, for example, when field sand is mixed with water using the apparatus according to the present invention, field sand is dispersed in water, and silt or clay of field sand is dispersed in water to become suspended water. If the suspended water is separated from the field sand by using a separating device installed downstream of the apparatus, for example, a vibrating sieve and the field sand is recovered, the field sand with reduced fine particles such as silt can be obtained. . The resulting field sand improves air permeability and water permeability and contributes to improving the quality of agricultural products such as straw. Currently, in this field, there is no removal technology and removal equipment for fine particles such as silt and clay that are acceptable from an economic point of view. Sand is sprayed and mixed, but in recent years it has become difficult to secure such sand.

さらに、本発明に係る装置を用いれば、建築廃材のような固形で塊状の物質でも水と混合することができるので、建築廃材から砂などの回収も可能である。   Furthermore, if the apparatus which concerns on this invention is used, since a solid and lump-like substance like a building waste material can be mixed with water, collection | recovery of sand etc. is also possible from a building waste material.

以下、本発明を、図に基づいてさらに具体的に説明する。
図1に、本発明に係る装置の概要を示す。
土壌を入口缶(1)に設けられた投入口(2)から連続的に投入する。投入する土壌に、予め水を添加してもよい。土壌と水とのスラリーである必要はない。この操作は大気圧、真空又は高圧下でもよい。圧力水が入口缶(1)に設けられたノズル(3)から高速噴流体として噴出される。この高速噴流体は、ほぼ水平に飛翔して、前記ノズル(3)に対向して入口缶(1)に設置された管(4)の内部に侵入する。管(4)は、高速噴流体の飛翔を妨げない構造となっている。高速噴流体は水平方向の流線をもつのが望ましいが、勾配があっても支障はない。管(4)は、高速噴流体を包むように設置され管の中心部分を高速噴流体が飛翔する。
Hereinafter, the present invention will be described more specifically based on the drawings.
FIG. 1 shows an outline of an apparatus according to the present invention.
Soil is continuously fed from the inlet (2) provided in the inlet can (1). Water may be added in advance to the soil to be added. It need not be a slurry of soil and water. This operation may be under atmospheric pressure, vacuum or high pressure. Pressure water is ejected as a high-speed jet fluid from the nozzle (3) provided in the inlet can (1). This high-speed jet fluid flies almost horizontally and enters the inside of the pipe (4) installed in the inlet can (1) so as to face the nozzle (3). The pipe (4) has a structure that does not hinder the flight of the high-speed jet fluid. The high-speed jet fluid preferably has horizontal streamlines, but there is no problem even if there is a gradient. A pipe | tube (4) is installed so that a high-speed jet fluid may be wrapped, and a high-speed jet fluid will fly through the center part of a pipe | tube.

投入口(2)から連続的に投入された土壌は、入口缶(1)の内部で噴出された高速噴流体を包み込むようになると、高速噴流体は、土壌を貫通する状況になるので、土壌は、その衝突力で跳ね飛ばされると同時に、高速噴流体の表面の速度と土壌の速度との速度差による粘性抵抗力が発生することにより、土壌は、高速噴流体の流線方向に加速される。高速噴流体は、随伴流を発生し、この随伴流により発生した土壌と水との随伴流体は、体積を増加しつつ入口缶体(1)の内部から管(4)の内部に管の第1端から流入する。   When the soil continuously introduced from the inlet (2) wraps up the high-speed jet fluid ejected inside the inlet can (1), the high-speed jet fluid penetrates the soil. The soil is accelerated in the streamline direction of the high-speed jet fluid due to the viscous resistance generated by the velocity difference between the surface velocity of the high-speed jet fluid and the velocity of the soil. The The high-speed jet fluid generates an accompanying flow, and the accompanying fluid of soil and water generated by the accompanying flow increases in volume from the inside of the inlet can body (1) to the inside of the tube (4). Inflow from one end.

土壌が、入口缶(1)に投入されると流入乱れによる簡単な混合が起こる。さらに土壌の内部に高速噴流体が貫通するので、衝突による混合も起こる。さらに高速噴流体と土壌との速度差に基づく粘性抵抗力を土壌が受けることにより、土壌を形成している岩石片の粒子間にもその粘性抵抗力が働くことになる。高速噴流体の速度や表面積が大きければその粘性抵抗力も非常に大きなものとなり、土壌の塊であっても岩石片の粒子にまで分離する。土壌中に水が存在すると、水にも粘性抵抗力が発生して高速噴流体の随伴流となり、その際にも土壌と水の混合が起こる。土壌の粒子と水の混合が行われながら、また、随伴流体の体積の増加を伴いながら、高速噴流体は、管(4)の内部に流入する。そして高速噴流体と随伴流体とが管(4)の内部を飛翔する際、高速噴流体の周囲には乱流が発生し、混合がさらに進行する。高速噴流体は、飛翔距離が長くなると分散する挙動を示し、その噴流体の外側の飛散状態部分において混合がさらに促進される。空気が随伴流として存在する場合には乱流の程度がさらに大きくなり、土壌と水がさらに混合された混合物を得ることができる。   When the soil is introduced into the inlet can (1), simple mixing occurs due to inflow turbulence. In addition, high-speed jet fluid penetrates into the soil, so mixing occurs due to collision. Furthermore, when the soil receives a viscous resistance force based on the speed difference between the high-speed jet fluid and the soil, the viscous resistance force acts between the particles of the rock fragments forming the soil. If the velocity and surface area of the high-speed jet fluid are large, the viscous resistance will be very large, and even a soil mass will be separated into particles of rock fragments. When water is present in the soil, viscous resistance is also generated in the water, resulting in an accompanying flow of the high-speed jet fluid, and in that case, mixing of the soil and water occurs. The high-speed jet fluid flows into the pipe (4) while mixing the soil particles and water and increasing the volume of the accompanying fluid. When the high-speed jet fluid and the accompanying fluid fly inside the pipe (4), turbulence is generated around the high-speed jet fluid, and mixing further proceeds. The high-speed jet fluid exhibits a dispersion behavior when the flight distance becomes long, and the mixing is further promoted in the scattered state portion outside the jet fluid. When air is present as an accompanying flow, the degree of turbulence is further increased, and a mixture in which soil and water are further mixed can be obtained.

以上を要約すると、土壌が高速噴流体と接触すると、土壌は瞬間的に加速されて高速流動状態(以下、加速状態ともいう。)になり、その際、せん断力により塊状の土壌は微粒子に分解され、同時に高速噴流体の一部に巻き込まれながら、高速噴流体の周囲に土壌の随伴流が形成され、土壌自体の分散や混合、高速噴流体との衝突、混合が実現する。管(4)内の流動(、以下、移送状態ともいう。)においては、高速噴流体の拡散流動と土壌との混合が更に加味されるが、管が長いと配管抵抗のため、処理能力の低下につながる。   In summary, when the soil comes into contact with the high-speed jet fluid, the soil is instantaneously accelerated to a high-speed flow state (hereinafter also referred to as an accelerated state). At the same time, while being caught in a part of the high-speed jet fluid, an accompanying flow of the soil is formed around the high-speed jet fluid, and dispersion and mixing of the soil itself, collision with the high-speed jet fluid, and mixing are realized. In the flow in the pipe (4) (hereinafter also referred to as the transfer state), the mixing of the diffusion flow of the high-speed jet fluid and the soil is further taken into account. Leading to a decline.

土壌と水との混合物は、管(4)の第2二端から飛散防止缶(5)に噴出する。土壌と高速噴流体の混合物が管(4)から放出された時には、混合は既に十分に行われている。放出の環境は、大気圧でも真空や高圧でもよい。混合物は大気圧の下では、速度水頭のみを有する流体である。換言すれば、圧力水頭を有してないのでポンプのように、混合物を圧送する能力はない。このような混合物を排出口(6)から排出し、貯槽等に貯めることにより、目的の混合物を得ることができる。   The mixture of soil and water is ejected from the second end of the pipe (4) to the anti-scattering can (5). When the mixture of soil and high-velocity fluid is released from the tube (4), the mixing is already well done. The release environment may be atmospheric pressure, vacuum or high pressure. The mixture is a fluid having only velocity heads under atmospheric pressure. In other words, since it does not have a pressure head, it does not have the ability to pump the mixture like a pump. By discharging such a mixture from the discharge port (6) and storing it in a storage tank or the like, a target mixture can be obtained.

前記したように、土壌は、投入口(2)から入口缶(1)に投入される。高圧水(圧力水)は、ノズル(3)を介して高速噴流体になっているので、土壌は、随伴流として高速噴流体とともに管(4)に流入した後、管(4)ら吐出して飛翔する混合物になる。その飛翔する方向は一般的には水平方向に直線性を有しているので、その飛翔を遮るように衝突板(7)を設置する。衝突により混合物の飛散を防止することが望ましいので、飛散防止のために飛散防止缶(5)を設置する。混合物は飛翔速度を減じながら飛散防止缶(5)に至り、排出口(6)から排出される。飛散防止缶(5)に流入する混合物には空気を同伴している場合があるので、その空気を除くために排気口(8)から排気ガスとして流出させてもよい。この衝突板(7)においても、飛翔する混合物の速度が急減速する際に混合が更に加速される効果が得られる。すなわち、放出された混合物は、速度エネルギーを保持しているので、そのエネルギーを混合に更に利用するために、放出された混合物の流線上に衝突板を設置して、混合物の速度を急減速(以下、減速状態ともいう。)することにより混合効率を高めることができる。混合は加速状態と移送状態で十分に実現できるが、必要なら減速状態での混合を付加すればよい。   As described above, the soil is introduced from the inlet (2) into the inlet can (1). Since the high-pressure water (pressure water) becomes a high-speed jet fluid through the nozzle (3), the soil flows into the pipe (4) together with the high-speed jet fluid as an accompanying flow, and then is discharged from the pipe (4). Become a flying mixture. Since the flight direction is generally linear in the horizontal direction, the collision plate (7) is installed so as to block the flight. Since it is desirable to prevent the mixture from scattering due to a collision, a scattering prevention can (5) is installed to prevent scattering. The mixture reaches the anti-scattering can (5) while reducing the flying speed and is discharged from the discharge port (6). Since the mixture flowing into the anti-scattering can (5) may be accompanied by air, it may be discharged as exhaust gas from the exhaust port (8) in order to remove the air. This collision plate (7) also has the effect of further accelerating the mixing when the speed of the flying mixture rapidly decelerates. That is, since the released mixture retains velocity energy, in order to further use that energy for mixing, an impact plate is installed on the streamline of the released mixture, and the velocity of the mixture is rapidly reduced ( Hereinafter, it is also referred to as a deceleration state. Mixing can be sufficiently realized in the acceleration state and the transfer state, but if necessary, mixing in the deceleration state may be added.

土壌と水の混合物は、土壌の岩石片の粒子が水に混合した混合物であるため、混合物を振動篩にかけると、篩上に砂のような大きな粒子が得られ、一方、砂の中の粘土やシルトの微細粒子群は混合により水に懸濁されているので、篩を通過して、懸濁水(懸濁液、スラリー)になる。すなわち、土壌と水が混合した結果として、微細粒子が水に懸濁した懸濁水を土壌から分離することができる。   The mixture of soil and water is a mixture of soil rock particles mixed with water, so when the mixture is passed through a vibrating sieve, large particles like sand are obtained on the sieve, while in the sand Since the fine particles of clay and silt are suspended in water by mixing, they pass through a sieve and become suspended water (suspension, slurry). That is, as a result of mixing the soil and water, the suspended water in which fine particles are suspended in water can be separated from the soil.

図2に、土壌と高速噴流体の混合を効率よく行うための装置各部の寸法条件を示す。
圧力水を高圧噴流体に変換する手段がノズル(3)である。高速噴流体のノズル(3)の出口の吐出口内径(Dn)と吐出速度(Vn)は、投入する土壌の組成や処理速度などに従って、また、目的とする混合物の仕様(混合の程度)から決定されるが、圧力水の仕様は、ノズル(3)の抵抗を考慮して選定すればよく、圧力水の圧力は、一般的な高揚程ポンプで実現することができるが、本発明においては、2MPa〜20Mpaであり、好ましくは3〜6MPaである。本発明においては、該ノズルの吐出口内径(Dn)は、1〜20mmであり、好ましくは2〜6mmである。ノズル吐出口から噴出する圧力水の吐出速度(Vn)は10〜200m/秒であり、好ましくは50〜100m/秒である。
FIG. 2 shows dimensional conditions of each part of the apparatus for efficiently mixing the soil and the high-speed jet fluid.
A means for converting the pressure water into a high-pressure jet fluid is the nozzle (3). The discharge port inner diameter (Dn) and discharge speed (Vn) at the outlet of the nozzle (3) of the high-speed jet fluid are determined according to the composition of the input soil, the processing speed, etc., and from the specifications (degree of mixing) of the target mixture. Although it is determined, the specification of the pressure water may be selected in consideration of the resistance of the nozzle (3), and the pressure water pressure can be realized by a general high head pump. 2 MPa to 20 MPa, preferably 3 to 6 MPa. In the present invention, the discharge port inner diameter (Dn) of the nozzle is 1 to 20 mm, preferably 2 to 6 mm. The discharge speed (Vn) of the pressure water ejected from the nozzle discharge port is 10 to 200 m / second, preferably 50 to 100 m / second.

ノズル(3)の吐出口の出口端と管(4)の入口端である第1端との距離(Ls)は、土壌の仕様に従って、決定される。Lsが大き過ぎると、高速噴流体の随伴流形成能力よりも混合処理物堆積量が大きくなり、運転不能になるし、Lsが小さくても随伴流形成能力が低下することにより、混合処理量の低下になるので、その中間の長さのLsを決定する。本発明においては、ノズルの吐出口から管の第1端までの距離(Ls)は、ノズル吐出口内径(Dn)の5〜100倍であり、好ましくは20〜50倍である。   The distance (Ls) between the outlet end of the discharge port of the nozzle (3) and the first end that is the inlet end of the pipe (4) is determined according to the specifications of the soil. If Ls is too large, the amount of the mixed processed material deposited becomes larger than the adjoining flow forming ability of the high-speed jet fluid, and the operation becomes impossible. Since it is lowered, Ls having an intermediate length is determined. In the present invention, the distance (Ls) from the nozzle outlet to the first end of the tube is 5 to 100 times, preferably 20 to 50 times the nozzle outlet inner diameter (Dn).

管(4)の断面形状は、円や角などの任意な形状を選べる。本発明においては、管の内径(Dp)は、ノズル吐出口内径(Dn)の5〜50倍であり、好ましくは10〜30倍である。Dpは、高速噴流体と随伴流体が通過する断面積の基準となるが、Dpが大きすぎると随伴流に発生するせん断速度分布の勾配が小さくなり混合が減少するし、逆に小さすぎると随伴流体の流入量の低下による処理速度の低下につながる。   As the cross-sectional shape of the tube (4), an arbitrary shape such as a circle or a corner can be selected. In the present invention, the inner diameter (Dp) of the tube is 5 to 50 times, preferably 10 to 30 times, the nozzle discharge port inner diameter (Dn). Dp is a standard for the cross-sectional area through which the high-speed jet fluid and the accompanying fluid pass. However, if Dp is too large, the gradient of the shear velocity distribution generated in the accompanying flow is reduced and mixing is reduced. This leads to a decrease in processing speed due to a decrease in the inflow amount of fluid.

管の第1端から第2端までの長さ(Lp)は、土壌が管(4)内に流入した後、安定的な随伴流を形成するための一定の長さであることが必要であるが、Lpを大きくすると、混合は良好になるが配管抵抗の増大のために混合物の飛翔が困難になる。したがって、管の第1端から第2端までの長さ(Lp)は、ノズル吐出口内径(Dn)の10〜600倍であり、好ましくは100〜400倍である。   The length (Lp) from the first end to the second end of the tube needs to be a certain length to form a stable accompanying flow after the soil flows into the tube (4). However, when Lp is increased, mixing is improved, but the flight of the mixture becomes difficult due to an increase in piping resistance. Therefore, the length (Lp) from the first end to the second end of the tube is 10 to 600 times, preferably 100 to 400 times, the nozzle discharge port inner diameter (Dn).

図3に、本願発明に係る装置を含む、砂の中の微細砂を分離するプロセスの概略図を示す。
このプロセスにおいては、砂を水と混合した後に洗浄砂を回収すると同時に微細砂を懸濁水として取り出した後に凝集処理をして微細砂を分離する。
被混合物は、粒状固体(砂)と同伴水の2成分である。被混合物(砂)は、微細砂(特に粘土とシルトの多い砂)であり、本願発明に係る装置を使用して、被混合物(砂)を水と混合し、被混合物(砂)中の微細砂を分離して、洗浄砂を回収する。
被混合物を、本願発明に係る装置の投入口に連続して供給する。同時に投入口から同伴水を供給する。高圧水(圧力水)を、高圧水ポンプを介して供給する。高圧水ポンプの吐出圧力は、汎用の高揚程型ポンプの2Mpa〜20Mpa程度で十分である。この高圧水は、ノズルを介して高速噴流体になる。被混合物(砂)と同伴水は、高速噴流体と衝突し、これと混合されつつ、高速噴流体の随伴流となって飛翔して、管の内部を飛翔し、その間に被混合物(砂)と水の混合物となる。この混合物を、振動篩で篩分処理することにより、大部分の砂は洗浄砂として回収する。
FIG. 3 shows a schematic diagram of a process for separating fine sand in sand including the apparatus according to the present invention.
In this process, the sand is mixed with water, and then the washed sand is recovered. At the same time, the fine sand is taken out as suspended water, and then agglomeration is performed to separate the fine sand.
The mixture is a two component of granular solid (sand) and entrained water. The mixture (sand) is fine sand (especially sand with a lot of clay and silt). Using the apparatus according to the present invention, the mixture (sand) is mixed with water, and the fine mixture in the mixture (sand). Separate the sand and collect the washed sand.
The mixture is continuously supplied to the inlet of the apparatus according to the present invention. At the same time, accompanying water is supplied from the inlet. High pressure water (pressure water) is supplied via a high pressure water pump. The discharge pressure of the high-pressure water pump is about 2 Mpa to 20 Mpa of a general-purpose high-lift pump. This high-pressure water becomes a high-speed jet fluid through the nozzle. The mixture (sand) and the entrained water collide with the high-speed jet fluid, and while mixing with this, fly as an accompanying flow of the high-speed jet fluid and fly inside the pipe, while the mixture (sand) And a mixture of water. By sieving the mixture with a vibrating sieve, most of the sand is recovered as washing sand.

一方、振動篩で分離された懸濁水は、被混合物(砂)の中の微細砂を懸濁状態で含有しているので、凝集処理装置で凝集剤を使用して、凝集処理を行い、フロックとなった微細砂を回収し、一方、凝集装置で分離された清澄水は回収水として回収する。回収水の一部は、ポンプにより移送して同伴水として再利用し、残りの回収水は水槽に移送する。水槽には補給水が補給される。水槽からの水を、高圧ポンプを介して高圧水として利用する。本発明に係る装置を用いれば、砂を水と十分に混合することができ、砂中の微細粒子は水に懸濁した懸濁水として除去して微細砂の少ない洗浄砂を得ることができる。   On the other hand, the suspended water separated by the vibrating screen contains fine sand in the mixture (sand) in a suspended state. The resulting fine sand is recovered, while the clarified water separated by the aggregator is recovered as recovered water. A part of the recovered water is transferred by a pump and reused as entrained water, and the remaining recovered water is transferred to a water tank. The tank is filled with makeup water. Water from the water tank is used as high-pressure water via a high-pressure pump. If the apparatus which concerns on this invention is used, sand can fully be mixed with water and the fine particle in sand can be removed as suspended water suspended in water, and washing sand with few fine sands can be obtained.

図4に、随伴流の概念図を示す。
土壌が入口缶体(1)に流入する。ノズル(3)から高速噴流体が流出している。この高速噴流体に接触する土壌は、粘性抵抗により高速噴流体の流線方向に引っ張られて加速されながら、随伴流体が形成される。随伴流体は、ノズル(3)の吐出口のn断面から離れるほどその体積を増加させていって、管(4)の入り口付近のB断面で定常状態になり、管(4)の出口のC断面から流出する。
図4の下段に、縦軸に噴流の中心を断面中心とした基点としての半径方向の距離、そして横軸に速度分布を示す図を表す。
n断面では、高速噴流体の速度分布のみである。高速噴流の太さはノズル径と略一致し、随伴流は形成されていない。
A断面は、ノズル(3)と管(4)入り口の間に存在する断面であり、そこでは、随伴流体が形成し始めるので、高速噴流体の周囲に随伴流体が存在することになる。
B断面は、管(4)の入り口付近の断面である。A断面に比べて随伴流の体積が増加している。
B断面からC断面までの随伴流の増加はないので、速度分布は、B断面とC断面とで同じである。
図4の下段では、噴流の速度分布は、各断面(n、A、B、C)で同一に図示しているが、実際にはこの噴流もノズル(3)から遠のく程、分散する傾向があるので、速度分布は拡散するが、同時に噴流自体が土壌と混合される。
このように、管(4)の出口からC断面の高速の飛翔体が混合物として流出する。
FIG. 4 shows a conceptual diagram of the accompanying flow.
Soil flows into the inlet can (1). A high-speed jet fluid flows out from the nozzle (3). The soil in contact with the high-speed jet fluid is pulled and accelerated in the streamline direction of the high-speed jet fluid by viscous resistance, and an accompanying fluid is formed. The volume of the accompanying fluid increases as the distance from the n-section of the discharge port of the nozzle (3) increases, and becomes a steady state at the B-section near the inlet of the pipe (4). It flows out of the cross section.
In the lower part of FIG. 4, the vertical axis shows the radial distance as the base point with the center of the jet as the cross-sectional center, and the horizontal axis shows the velocity distribution.
In the n cross section, only the velocity distribution of the high-speed jet fluid is obtained. The thickness of the high-speed jet is substantially the same as the nozzle diameter, and no accompanying flow is formed.
The A cross section is a cross section existing between the nozzle (3) and the inlet of the pipe (4), where the accompanying fluid starts to form, so that the accompanying fluid exists around the high-speed jet fluid.
The B cross section is a cross section in the vicinity of the entrance of the pipe (4). The volume of the accompanying flow is increased as compared with the A cross section.
Since there is no increase in the accompanying flow from the B cross section to the C cross section, the velocity distribution is the same in the B cross section and the C cross section.
In the lower part of FIG. 4, the velocity distribution of the jet is the same in each cross section (n, A, B, C), but in reality, this jet also tends to disperse as it is farther from the nozzle (3). As it is, the velocity distribution is diffused, but at the same time the jet itself is mixed with the soil.
Thus, a high-speed flying object having a cross section C flows out as a mixture from the outlet of the tube (4).

図5は、速度分布図である。速度とは各場所の平均速度のことである。
横軸は、ノズル(3)出口のn断面をゼロとしたときの距離である。縦軸は流体の平均速度である。
高速噴流体の速度は横軸の各場所で一定のVnである。高速噴流体の速度は、厳密には抵抗のために少しは減速するが、事実上、一定である。一方、土壌の速度は、n断面でゼロであるが、徐々に上昇し、管(4)入り口付近のB断面でVzになる。管の内部で速度はVzで一定である。Vzは随伴流体の平均速度であり、高速噴流体の速度Vnとは相違する。すなわち、高速噴流体と随伴流体の2種類の流体が管(4)内を飛翔しているのである。
FIG. 5 is a velocity distribution diagram. Speed is the average speed at each location.
The horizontal axis represents the distance when the n cross section of the nozzle (3) outlet is zero. The vertical axis is the average velocity of the fluid.
The speed of the high-speed jet fluid is constant Vn at each position on the horizontal axis. Strictly speaking, the speed of the high-speed jet fluid is slightly reduced due to resistance, but it is practically constant. On the other hand, the speed of the soil is zero in the n cross section, but gradually increases and becomes Vz in the B cross section near the entrance of the pipe (4). Inside the tube, the velocity is constant at Vz. Vz is the average velocity of the accompanying fluid, and is different from the velocity Vn of the high-speed jet fluid. That is, two types of fluids, a high-speed jet fluid and an accompanying fluid, are flying in the pipe (4).

本発明に係る装置においては、従来技術の水ジェットポンプに見られる真空域は存在しない。換言すれば、本発明に係る装置は、流体を吸引、移送する目的で負圧を利用しない点で従来技術の装置とは異なる。すなわち、本発明に係る装置においては、入口缶の土壌投入口の開口面積は、土壌処理速度の観点から、より大きくすることが望ましく、また該投入口から大気中の空気も流入するので、管内では事実上負圧が生じない。尚、コスト低減の観点から、高圧水の量はより少ないことが望ましい。   In the device according to the present invention, there is no vacuum region found in prior art water jet pumps. In other words, the apparatus according to the present invention differs from the prior art apparatus in that no negative pressure is used for the purpose of sucking and transferring fluid. That is, in the apparatus according to the present invention, it is desirable that the opening area of the soil inlet of the inlet can be larger from the viewpoint of soil treatment speed, and air in the atmosphere also flows from the inlet, so Then, virtually no negative pressure occurs. In addition, from the viewpoint of cost reduction, it is desirable that the amount of high-pressure water is smaller.

前記した本願発明に係る土壌と水との混合物の製造装置を使用して土壌と水とを混合する方法においては、前記土壌を前記投入口に連続投入し、ここで、単位時間当たりの該土壌中の粒状固体体積をSs、該土壌中の液体の体積をSw(該土壌に予め水が添加される場合には当該水の体積を加算する)、前記ノズルから噴出する圧力水の体積をEnとするとき、以下の式(1)及び式(2):
0≦Sw/En≦50 式(1)
1≦(Sw+En)/Ss≦∞ 式(2)
を満たす条件で該製造装置を連続運転することを特徴とする。
SwとEnの比率(Sw/En)において、Enが大きい条件では、随伴流体の形成に支障はないが、逆にEnが小さくなると随伴流体の形成能力は不足して混合操作ができない。また、土壌が粒状固体の場合には、Sw+Enに対してSsが大きすぎると随伴流体を形成する能力が無くなり混合操作が不能になる。逆に粒状固体の体積が小さいことは支障にはならない。
In the method of mixing soil and water using the above-described apparatus for producing a mixture of soil and water according to the present invention, the soil is continuously charged into the inlet, where the soil per unit time. The volume of the granular solid in the liquid is Ss, the volume of the liquid in the soil is Sw (if the water is added to the soil in advance, the volume of the water is added), and the volume of the pressure water ejected from the nozzle is En. When the following formula (1) and formula (2):
0 ≦ Sw / En ≦ 50 Formula (1)
1 ≦ (Sw + En) / Ss ≦ ∞ Formula (2)
The manufacturing apparatus is continuously operated under the conditions satisfying the above conditions.
When the ratio of Sw and En (Sw / En) is large, there is no problem in the formation of the accompanying fluid, but conversely, when En becomes small, the forming ability of the accompanying fluid is insufficient and the mixing operation cannot be performed. In addition, when the soil is a granular solid, if Ss is too large with respect to Sw + En, the ability to form the accompanying fluid is lost and the mixing operation becomes impossible. Conversely, the small volume of the granular solid does not hinder.

本願発明に係る装置として、例えば、土壌処理能力3〜5トン/hrのものである場合には、ノズル径(Dn)は2.5mm、管径(Dp)は10倍、管長(Lp)は120倍、間隔(Ls)は20倍であり、例えば、土壌処理能力10〜25トン/hrのものである場合には、ノズル径(Dn)は4.5mm、管径(Dp)は15倍、管長(Lp)は300倍、間隔(Ls)は50倍であることができる。   As an apparatus according to the present invention, for example, when the soil processing capacity is 3 to 5 ton / hr, the nozzle diameter (Dn) is 2.5 mm, the pipe diameter (Dp) is 10 times, and the pipe length (Lp) is 120 times and the interval (Ls) is 20 times. For example, when the soil treatment capacity is 10 to 25 tons / hr, the nozzle diameter (Dn) is 4.5 mm and the pipe diameter (Dp) is 15 times. The tube length (Lp) can be 300 times and the interval (Ls) can be 50 times.

実施例1:畑砂からの微細砂の分離
本発明に係る装置を用いて、畑砂を水と混合した後に得た混合物を懸濁水と洗浄砂に分離して、洗浄砂を回収し、同時に懸濁水から微細砂を回収した(図3参照)。
畑砂の処理速度は1.5m3/hrの条件で入口缶に投入した。同時に同伴水1.2m3/hrを投入した。この畑砂と同伴水の2成分が被混合物であり、ノズルから吐出する高速噴流体の流量は1.0m3/hrであった。被混合物が高速噴流体の随伴流として飛翔して、管に流入した。管を通過した被混合物と高速噴流体が混合した混合物が管から流出した。この混合物から振動篩で懸濁水を分離して、砂を回収した。この砂が洗浄砂であり、シルト以下の微細砂が畑砂から減少していた。主な仕様は以下のとおりであった。
Example 1: Separation of fine sand from field sand Using the apparatus according to the present invention, a mixture obtained after mixing field sand with water is separated into suspension water and washing sand, and washing sand is recovered simultaneously. Fine sand was recovered from the suspended water (see FIG. 3).
The processing speed of the field sand was put into the inlet can under the condition of 1.5 m 3 / hr. At the same time, 1.2 m 3 / hr of accompanying water was added. The two components of the field sand and entrained water were the mixture, and the flow rate of the high-speed jet fluid discharged from the nozzle was 1.0 m 3 / hr. The mixed material flew as an accompanying flow of the high-speed jet fluid and flowed into the pipe. A mixture in which the mixture to be passed through the tube and the high-speed jet fluid mixed out from the tube. Suspended water was separated from this mixture with a vibrating sieve to collect sand. This sand was washed sand, and fine sand below silt was reduced from field sand. The main specifications were as follows.

畑砂の条件: 畑砂の見かけ体積処理速度: 1.5m3/hr
: 畑砂の見かけ密度: 1.8
: 含有水(畑砂の重量基準): 11%
: 同伴水流入速度: 1.2m/hr
: 高速噴流体流入速度: 1.0m/hr
装置仕様: ノズルに供給する水の圧力: 4Mpa
: ノズル吐出口内径(Dn): 2.5mm
: ノズル出口と管の入口端の距離(Ls): 60mm
: 管の断面は円形でその内径(Dp): 30mm
: 管の長さ(Lp): 300mm
Field sand conditions: Apparent volume treatment speed of field sand: 1.5 m 3 / hr
: Apparent density of field sand: 1.8
: Contained water (based on field sand weight): 11%
: Entrained water inflow rate: 1.2 m 3 / hr
: High-speed jet fluid inflow speed: 1.0 m 3 / hr
Equipment specifications: Water pressure supplied to the nozzle: 4Mpa
: Nozzle outlet inner diameter (Dn): 2.5mm
: Distance between nozzle outlet and pipe inlet end (Ls): 60 mm
: The cross section of the tube is circular and its inner diameter (Dp): 30mm
: Tube length (Lp): 300mm

洗浄前の畑砂の粒径加積曲線を図10に、そして洗浄後の粒径加積曲線を図11に示す。図10に示すように、洗浄前の畑砂の75ミクロン篩通過質量%は7.4%であり、一方、図11に示すように、洗浄後の75ミクロン篩通過質量%は約2%であった。すなわち、この混合操作により、微細粒子である75ミクロン篩通過質量の(7.4−2)/7.4×100%=73%を削減することができた。この削減された微細粒子は、振動篩を通過した懸濁水中に存在しており、凝集処置をして分離回収した。この結果は、畑砂と同伴水と高速噴流体との混合が十分に行われ、すなわち、畑砂の砂粒子が高速噴流体である水と混合した際に75ミクロン篩通過質量と呼称される微細粒子レベルまでの混合が行われた結果、微細粒子が水に分散している懸濁水を得ることができたことを証明するものである。従来技術の混合装置を用いては、このような微細粒子に至るまでの水との混合物を得ることはできなかった。   The particle size accumulation curve of field sand before washing is shown in FIG. 10, and the particle size accumulation curve after washing is shown in FIG. As shown in FIG. 10, the 75% sieve passing mass% of the field sand before washing is 7.4%, while the 75 micron sieve passing mass% after washing is about 2% as shown in FIG. there were. That is, by this mixing operation, (7.4-2) /7.4×100%=73% of the mass passing through the 75 micron sieve, which is a fine particle, could be reduced. The reduced fine particles were present in the suspended water that passed through the vibrating sieve, and were separated and recovered by agglomeration treatment. This result is referred to as 75 micron sieve passing mass when field sand, entrained water and high speed jet fluid are sufficiently mixed, ie, when sand particles of field sand are mixed with water which is high speed jet fluid. As a result of the mixing up to the fine particle level, it is proved that suspended water in which fine particles are dispersed in water can be obtained. Using a mixing device of the prior art, it was not possible to obtain a mixture with water up to such fine particles.

実施例2:油汚染土壌からの油を除去した土壌の回収
本発明に係る装置を用いて、油を含有した土壌と水を混合してスラリーを作製した後、振動篩を用いて、粒子径の大きい土壌を、洗浄土壌として回収した。振動篩を通過した微細砂を含む懸濁液は別工程で凝集処理して、凝集物を分離した水を、本発明に係る装置のノズルへの高圧水や同伴水として循環使用した(図3参照)。洗浄対象の油種は、絶縁油であった。
油汚染土壌を処理速度1.5m/hrで入口缶に投入した。同時に、3.6m/hrの水を同伴水として投入した。この油汚染土壌と同伴水が被混合物である。この被混合物を混合するための動力源となるノズルから吐出する高速噴流体の流量は、2.7m/hrであった。
被混合物は、高速噴流体の随伴流おして飛翔し、管に流入し、管を通過した被混合物と高速噴流体の混合物が管から流出した。この混合物から振動篩で懸濁水を分離し、洗浄土壌を回収した。この洗浄土壌に含まれる油は大幅に減少しており、洗浄土壌として再利用可能なものであった。主な仕様は以下のとおりであった。
Example 2: Recovery of soil from which oil has been removed from oil-contaminated soil Using the apparatus according to the present invention, a slurry was prepared by mixing oil-containing soil and water, and then using a vibrating sieve, the particle size Large soil was collected as washed soil. The suspension containing fine sand that has passed through the vibrating sieve is agglomerated in a separate step, and the water from which the agglomerates have been separated is circulated and used as high-pressure water or entrained water for the nozzle of the apparatus according to the present invention (FIG. reference). The oil type to be cleaned was insulating oil.
The oil-contaminated soil was put into the inlet can at a treatment speed of 1.5 m 3 / hr. At the same time, 3.6 m 3 / hr of water was added as entrained water. This oil-contaminated soil and accompanying water are the mixture. The flow rate of the high-speed jet fluid discharged from the nozzle serving as the power source for mixing the mixture was 2.7 m 3 / hr.
The mixture flew through the accompanying flow of the high-speed jet fluid and flowed into the pipe, and the mixture of the mixture and the high-speed jet fluid that passed through the pipe flowed out of the pipe. Suspended water was separated from this mixture with a vibrating sieve, and the washed soil was recovered. The oil contained in the washed soil was greatly reduced and could be reused as washed soil. The main specifications were as follows.

土壌の条件: 土壌の見かけ体積の処理速度: 1.5m/hr(3000kg/hr)
: 土壌の見かけ比重: 2
: 含有水(土壌の重量基準): 15%
: 同伴水流入速度: 3.6m/hr
: 高速噴流体流入速度: 2.7m/hr
装置仕様: ノズルに供給する水の圧力: 4Mpa
: ノズル吐出口内径(Dn): 3.5mm
: ノズル出口と管の入口端の距離(Ls): 60mm
: 管の断面は円形でその内径(Dp): 30mm
: 管の長さ(Lp): 300mm
Soil condition: Treatment rate of apparent volume of soil: 1.5 m 3 / hr (3000 kg / hr)
: Apparent specific gravity of soil: 2
: Contained water (based on soil weight): 15%
: Entrained water inflow rate: 3.6 m 3 / hr
: High speed jet fluid inflow speed: 2.7m 3 / hr
Equipment specifications: Water pressure supplied to the nozzle: 4Mpa
: Nozzle outlet inner diameter (Dn): 3.5mm
: Distance between nozzle outlet and pipe inlet end (Ls): 60 mm
: The cross section of the tube is circular and its inner diameter (Dp): 30mm
: Tube length (Lp): 300mm

上記条件で連続土壌洗浄試験を行い、24秒間運転後の試料を採取して分析した。24秒間で使用した同伴水は、0.024m、ノズル高圧水量は、0.018mであった。
洗浄前の土壌20kg(含水)から、洗浄後の洗浄土壌18.3kg(含水)と懸濁液(スラリー)43.7kg(油を除く)を回収した。油含有土壌の油濃度は5700mg/kgであったが、洗浄土壌の油量は、濃度検出下限値50mg/kg未満であった。油含有土壌の油濃度5700mg/kgは、重量114gに相当する。一方、上記したように、洗浄土壌中に油は検出されなかったが、振動篩を通過した懸濁液(スラリー)中の油に合計重量は、112gであった。洗浄前後のマスバランスを以下の表1に示す。
A continuous soil washing test was conducted under the above conditions, and a sample after operation for 24 seconds was taken and analyzed. The entrained water used for 24 seconds was 0.024 m 3 , and the amount of high-pressure nozzle water was 0.018 m 3 .
From 20 kg of soil before washing (containing water), 18.3 kg of washed soil after washing (containing water) and 43.7 kg of suspension (slurry) (excluding oil) were recovered. The oil concentration of the oil-containing soil was 5700 mg / kg, but the oil amount of the washed soil was less than the concentration detection lower limit value of 50 mg / kg. The oil concentration of 5700 mg / kg in the oil-containing soil corresponds to a weight of 114 g. On the other hand, as described above, no oil was detected in the washed soil, but the total weight of the oil in the suspension (slurry) that passed through the vibrating sieve was 112 g. The mass balance before and after cleaning is shown in Table 1 below.

Figure 2010284624
Figure 2010284624

表1から、土壌を汚染していた油のほとんどが、本願発明に係る装置により、油を含有しない洗浄土壌に変換されたことが分かる。   From Table 1, it can be seen that most of the oil that contaminated the soil was converted to washed soil containing no oil by the apparatus according to the present invention.

本願発明により、被混合物が粒子状固体から主に構成される土壌の洗浄等を行う場合に、洗浄等されるべき土壌の質量に対してより少ない量の水を使用して、土壌と水を効率的に混合するための装置や混合方法が提供される。したがって、本願発明に係る装置及び方法は、汚染土壌の洗浄や、農業用の畑砂からの微細粒子の除去等に、好適に利用することができる。   According to the present invention, when washing the soil mainly composed of particulate solid, etc., using a smaller amount of water relative to the mass of the soil to be washed, the soil and water are An apparatus and a mixing method for efficiently mixing are provided. Therefore, the apparatus and method according to the present invention can be suitably used for cleaning contaminated soil, removing fine particles from agricultural field sand, and the like.

Claims (7)

2MPa〜20Mpaの圧力水を噴出するノズルと土壌の投入口を具備する入口缶、第1端と第2端を有する管、並びに衝突板と排出口と排気口を具備する飛散防止缶から構成される土壌と水の混合物の製造装置であって、ここで、該ノズルは、該土壌の投入方向の側面から圧力水を高速噴流体として噴出するように設置され、該管の第1端は、該圧力水の噴出方向に沿って、該入口缶に接続され、該管の第2端は該飛散防止缶に接続され、該ノズルの吐出口内径(Dn)は、1〜20mmであり、該管の内径(Dp)は、該ノズル吐出口内径(Dn)の5〜50倍であり、該管の第1端から第2端までの長さ(Lp)は、該ノズル吐出口内径(Dn)の10〜600倍であり、該該ノズルの吐出口から該管の第1端までの距離(Ls)は、該ノズル吐出口内径(Dn)の5〜100倍であり、これにより、該投入口に投入された土壌は、該管の第2端に到達する間に、該圧力水由来の水と混合されて土壌と水の混合物が製造されることを特徴とする、土壌と水の混合物の製造装置。   It consists of a nozzle that ejects 2 MPa to 20 Mpa of pressure water and an inlet can having a soil inlet, a pipe having a first end and a second end, and an anti-scattering can having a collision plate, a discharge port and an exhaust port. An apparatus for producing a mixture of soil and water, wherein the nozzle is installed so as to eject pressure water as a high-speed jet fluid from a side surface in the direction of introduction of the soil, and the first end of the pipe is Along the ejection direction of the pressure water, connected to the inlet can, the second end of the pipe is connected to the anti-scattering can, the discharge port inner diameter (Dn) of the nozzle is 1 to 20 mm, The inner diameter (Dp) of the pipe is 5 to 50 times the inner diameter (Dn) of the nozzle outlet, and the length (Lp) from the first end to the second end of the pipe is the inner diameter (Dn) of the nozzle. ), And the distance (Ls) from the discharge port of the nozzle to the first end of the tube is It is 5 to 100 times the nozzle discharge port inner diameter (Dn), so that the soil introduced into the inlet is mixed with the water derived from the pressure water while reaching the second end of the pipe. A device for producing a mixture of soil and water, characterized in that a mixture of soil and water is produced. 前記投入口から投入される土壌に予め水が添加される、請求項1に記載の製造装置。   The manufacturing apparatus according to claim 1, wherein water is added in advance to the soil introduced from the inlet. 前記ノズル吐出口近傍に空気供給口が設けられている、請求項1又は2に記載の製造装置。   The manufacturing apparatus according to claim 1, wherein an air supply port is provided in the vicinity of the nozzle discharge port. 前記投入する土壌に空気を同伴させて投入することにより、前記管内で前記高速噴流体の周囲に、前記投入された土壌と空気の随伴流を発生させる、請求項1〜3のいずれか1項に記載の製造装置。   The accompanying flow of the introduced soil and air is generated around the high-speed jet fluid in the pipe by introducing the accompanying soil with air. The manufacturing apparatus described in 1. 前記ノズル吐出口から噴出する圧力水の速度(Vn)は10〜200m/秒である、請求項1〜4のいずれか1項に記載の製造装置。   The manufacturing apparatus of any one of Claims 1-4 whose speed | rate (Vn) of the pressure water ejected from the said nozzle discharge port is 10-200 m / sec. 前記飛散防止缶の排出口に、得られた土壌と水の混合物から所望の土壌を分離するための分離装置が設置されている、請求項1〜5のいずれか1項に記載の製造装置。   The manufacturing apparatus of any one of Claims 1-5 by which the separation apparatus for isolate | separating desired soil from the obtained soil and water mixture is installed in the discharge port of the said scattering prevention can. 請求項1〜6のいずれか1項に記載の土壌と水との混合物の製造装置を使用して土壌と水とを混合する方法であって、前記土壌を前記投入口に連続投入し、ここで、単位時間当たりの該土壌中の粒状固体体積をSs、該土壌中の液体の体積をSw(該土壌に予め水が添加される場合には当該水の体積を加算する)、前記ノズルから噴出する圧力水の体積をEnとするとき、以下の式(1)及び式(2):
0≦Sw/En≦50 式(1)
1≦(Sw+En)/Ss≦∞ 式(2)
を満たす条件で該製造装置を連続運転することを特徴とする、前記方法。
A method for mixing soil and water using the apparatus for producing a mixture of soil and water according to any one of claims 1 to 6, wherein the soil is continuously charged into the inlet, The volume of the solid solid in the soil per unit time is Ss, and the volume of the liquid in the soil is Sw (when the water is added to the soil in advance, the volume of the water is added), from the nozzle When the volume of the pressure water to be ejected is En, the following formula (1) and formula (2):
0 ≦ Sw / En ≦ 50 Formula (1)
1 ≦ (Sw + En) / Ss ≦ ∞ Formula (2)
The method is characterized in that the production apparatus is continuously operated under conditions satisfying
JP2009142775A 2009-06-15 2009-06-15 Equipment for producing a mixture of soil and water using high-pressure water Active JP4990326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009142775A JP4990326B2 (en) 2009-06-15 2009-06-15 Equipment for producing a mixture of soil and water using high-pressure water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009142775A JP4990326B2 (en) 2009-06-15 2009-06-15 Equipment for producing a mixture of soil and water using high-pressure water

Publications (2)

Publication Number Publication Date
JP2010284624A true JP2010284624A (en) 2010-12-24
JP4990326B2 JP4990326B2 (en) 2012-08-01

Family

ID=43540754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009142775A Active JP4990326B2 (en) 2009-06-15 2009-06-15 Equipment for producing a mixture of soil and water using high-pressure water

Country Status (1)

Country Link
JP (1) JP4990326B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012086108A1 (en) 2010-12-21 2012-06-28 日本電気株式会社 Adjacency list optimization device, adjacency list generation device, base station device, optimization method of adjacency list, and non-transitory computer-readable medium
JP2013031814A (en) * 2011-08-02 2013-02-14 Dojo Kankyo Process Kenkyusho:Kk Novel continuous wastewater treatment apparatus and method for adding flocculant to wastewater
US10407848B2 (en) 2016-08-02 2019-09-10 Caterpillar Paving Products Inc. System and method for controlling proportion of liquid in substrate material worked by machine
CN111054135A (en) * 2020-01-16 2020-04-24 福州大学 Solid-liquid-gas three-phase filter based on metal rubber and working method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6257702B2 (en) * 2016-06-24 2018-01-10 株式会社土壌環境プロセス研究所 Rapid continuous insolubilization and cleaning method for pollutants

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05245355A (en) * 1991-03-13 1993-09-24 Takuo Mochizuki Multiple nozzle type jet pump and method for shortening total length of jet pump
JPH07304026A (en) * 1994-05-10 1995-11-21 Takuo Mochizuki Kneader for powder/granulate
JP2002355663A (en) * 2001-05-29 2002-12-10 Ichinomiya Kimitake Soil cleaning system with high pressure jet and method for the same
JP3408377B2 (en) * 1996-06-26 2003-05-19 望月 ▲たく▼夫 Pressure fluid energy conversion apparatus and method
JP2003334533A (en) * 2002-05-15 2003-11-25 Etl:Kk Method and apparatus for soil washing, and water suction-air supply apparatus
JP2004016980A (en) * 2002-06-18 2004-01-22 Shibuya Machinery Co Ltd Separation method, separation apparatus, cleaning method using them and cleaning apparatus therefor
JP2007098301A (en) * 2005-10-05 2007-04-19 Tadahiro Fujii Method for continuously cleaning and discharging soil
JP2009057876A (en) * 2007-08-30 2009-03-19 Taichi Inada Jet pump such as dredging apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05245355A (en) * 1991-03-13 1993-09-24 Takuo Mochizuki Multiple nozzle type jet pump and method for shortening total length of jet pump
JPH07304026A (en) * 1994-05-10 1995-11-21 Takuo Mochizuki Kneader for powder/granulate
JP3408377B2 (en) * 1996-06-26 2003-05-19 望月 ▲たく▼夫 Pressure fluid energy conversion apparatus and method
JP2002355663A (en) * 2001-05-29 2002-12-10 Ichinomiya Kimitake Soil cleaning system with high pressure jet and method for the same
JP2003334533A (en) * 2002-05-15 2003-11-25 Etl:Kk Method and apparatus for soil washing, and water suction-air supply apparatus
JP2004016980A (en) * 2002-06-18 2004-01-22 Shibuya Machinery Co Ltd Separation method, separation apparatus, cleaning method using them and cleaning apparatus therefor
JP2007098301A (en) * 2005-10-05 2007-04-19 Tadahiro Fujii Method for continuously cleaning and discharging soil
JP2009057876A (en) * 2007-08-30 2009-03-19 Taichi Inada Jet pump such as dredging apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012086108A1 (en) 2010-12-21 2012-06-28 日本電気株式会社 Adjacency list optimization device, adjacency list generation device, base station device, optimization method of adjacency list, and non-transitory computer-readable medium
JP2013031814A (en) * 2011-08-02 2013-02-14 Dojo Kankyo Process Kenkyusho:Kk Novel continuous wastewater treatment apparatus and method for adding flocculant to wastewater
US10407848B2 (en) 2016-08-02 2019-09-10 Caterpillar Paving Products Inc. System and method for controlling proportion of liquid in substrate material worked by machine
CN111054135A (en) * 2020-01-16 2020-04-24 福州大学 Solid-liquid-gas three-phase filter based on metal rubber and working method thereof
CN111054135B (en) * 2020-01-16 2023-07-28 福州大学 Solid-liquid-gas three-phase filter based on metal rubber and working method thereof

Also Published As

Publication number Publication date
JP4990326B2 (en) 2012-08-01

Similar Documents

Publication Publication Date Title
JP4990326B2 (en) Equipment for producing a mixture of soil and water using high-pressure water
EP0104099B1 (en) Method for froth flotation
US9375732B2 (en) Three-phase separation system for drilling fluids and drill cuttings
CN101306398A (en) Microbubble swirl separation method and divice
JP5915650B2 (en) Classification device and classification method, and blasting device and blasting method provided with the classification device
JP5738115B2 (en) New continuous pollutant wastewater treatment apparatus and method for adding flocculant to polluted wastewater
JP2018048077A (en) Molybdenum disulfide powder and method and device for manufacturing the same
US7618182B1 (en) Dust-free low pressure mixing system with jet ring adapter
CA3127837C (en) Systems and methods for reducing the particulate content of a liquid-particulate mixture
CN201921653U (en) Device for dust-free aluminum powder feeding and pulp preparation
JP2014151312A (en) Grinder, and system for and method of removing contaminant using the same
CN209934914U (en) Rice hull crushing and processing system
CN208104190U (en) Sludge treating system applied to workover treatment
CN212731482U (en) Dust collector in ceramic tile batching process
JP4290896B2 (en) Sand making equipment
CN221524910U (en) Equipment for long-distance vertical shaft vertical conveying of concrete dry powder
JP2007098301A (en) Method for continuously cleaning and discharging soil
JP2003012150A (en) Powdery solid body conveyance apparatus
CN108126808B (en) High pressure liquid flow powder making method
CN215235049U (en) Flotation equipment
JP2004202496A (en) Sand manufacturing unit
JP2008086912A (en) Continuous soil screening method
RU2532484C1 (en) Method of processing gold-containing concentrates prior to enrichment
CN112934482A (en) Flotation method and flotation device
JP2002045631A (en) Separation device and separation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110823

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110823

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120501

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4990326

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250