JP2007097314A - 熱発電システム - Google Patents

熱発電システム Download PDF

Info

Publication number
JP2007097314A
JP2007097314A JP2005283602A JP2005283602A JP2007097314A JP 2007097314 A JP2007097314 A JP 2007097314A JP 2005283602 A JP2005283602 A JP 2005283602A JP 2005283602 A JP2005283602 A JP 2005283602A JP 2007097314 A JP2007097314 A JP 2007097314A
Authority
JP
Japan
Prior art keywords
bearing
turbine
main shaft
generator
working medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005283602A
Other languages
English (en)
Inventor
Hiroshi Isobe
浩 磯部
Norihiko Sasaki
紀彦 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2005283602A priority Critical patent/JP2007097314A/ja
Publication of JP2007097314A publication Critical patent/JP2007097314A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】 作動媒体の種類に制限を受けることなくタービンの長期回転が可能で、回転起動も円滑に行え、軸受の制御も比較的容易で、発電効率を低下させない熱発電システムを提供する。
【解決手段】 熱エネルギーを吸収するコレクタ1によって、直接または間接的に作動媒体3を加熱し、作動媒体3の蒸気をノズル8aから噴出させ、ノズル8aからの高圧蒸気によってタービン5を回転駆動させる。タービン5の回転によって、発電機6における発電機ロータ6Aを回転させ、発電機ロータ6Aと対向して設けられた発電機ステータ部6Bで発電させる。前記タービン5の翼車5aと前記発電機ロータ6Aとを連結する主軸9を非接触軸受11,12で支持する。この非接触軸受11,12として、動圧軸受およびフォイル軸受13,14,15のいずれかと、磁気軸受31,32,33とを組み合わせて用いる。
【選択図】 図1

Description

この発明は、太陽熱等の熱エネルギーを電気エネルギーに変換する熱発電システムに関する。
この種の熱発電システムの従来例として、太陽熱で作動媒体を加熱し、その作動媒体の高圧蒸気でタービンを回転駆動し、タービンの回転で発電機を発電させるようにした太陽熱発電システムが知られている(例えば特許文献1〜3)。
特開2002−242693号公報 特開2000−110515号公報 特開2003−227315号公報
上記した各太陽熱発電システムでは、いずれも得られる熱エネルギーが小さくエネルギー密度が低いため、作動媒体として、気化し易い有機媒体あるいは沸点の低い有機媒体(例えばアンモニア、代替フロン、アルコール、アセトンなど)が使用される。ところが、このような作動媒体を使用した場合、高熱のためタービンを回転支持する軸受用の潤滑剤保持が難しく、長期回転ができないという問題があった。
この問題を解決する対策の一例として、例えば動圧軸受やフォイル軸受を用いてタービンを回転支持することを考えた。しかし、これらの軸受では、タービンの回転停止状態において軸受部が機械的に接触した状態となるので、回転起動トルクが大きく回転起動ができ難いという問題が生じる。
また、軸受に磁気軸受(電磁石のみ、もしくは電磁石と永久磁石の組み合わせ)を使用した場合、回転状態では常に電力を供給する必要があり、発電効率を低下させるといった問題があった。その他、熱発電システムのタービンの主軸の回転支持については、次の各問題がある。
・回転部を電磁石のみで完全に非接触浮上させる方法もあるが、浮上のために5軸制御を行う必要があり、電磁石の個数が増えると同時に、コントローラの構成も複雑で、コスト高となる。
・作動媒体に使用される溶剤によって、発電機ステータ部のコイルもしくはこのコイルを保護しているモールド樹脂が劣化するといった問題がある。
この発明の目的は、作動媒体の種類に制限を受けることなくタービンの長期回転が可能で、回転起動も円滑に行え、軸受の制御も比較的容易で、発電効率を低下させない熱発電システムを提供することである。
この発明の他の目的は、上記各問題を解消することである。
この発明の熱発電システムは、熱エネルギーを吸収するコレクタによって、直接または間接的に作動媒体を加熱し、前記作動媒体の蒸気をノズルから噴出させ、ノズルからの高圧蒸気によってタービンを回転駆動させ、前記タービンの回転によって、発電機における発電機ロータを回転させることにより、前記発電機ロータと対向して設けられた発電機ステータ部で発電させる熱発電システムにおいて、前記タービンの翼車と発電機ロータとを設けた主軸を非接触軸受で支持し、この非接触軸受として、動圧軸受およびフォイル軸受のいずれかと、磁気軸受とを組み合わせて用いたことを特徴とする。
この熱発電システムは、太陽熱を熱エネルギーとする熱発電システムであっても良い。
この構成によると、主軸を回転自在に支持するのに、動圧軸受およびフォイル軸受のいずれかと、磁気軸受とを組み合わせて用いた非接触軸受によって支持するようにしたため、軸受の潤滑剤が不要となる。そのため、作動媒体としてアンモニアや、代替フロン、アルコール、アセトンなどの気化し易い有機溶媒、あるいは沸点の低い有機溶媒を使用しても、軸受の潤滑に問題を生じることがない。その結果、作動媒体の種類に制限を受けることなく、タービンの長期回転が可能となる。
また、回転始動時のみ磁気軸受を使用するようにすれば、主軸の非回転時でも主軸を浮上可能に支持するため、回転起動トルクが小さく摩耗も生じなくて、回転起動を円滑に行うことができ、動圧軸受やフォイル軸受の回転始動時の短所が解消される。回転中は動圧軸受またはフォイル軸受のみで主軸を支持することができるから、磁気軸受の消費電力も削減でき、発電効率の低下を来たすことがない。
電磁石のみを使用して主軸を非接触状態で支持する場合は、主軸を浮上させるために多軸の制御が必要になり、電磁石の個数が増えると同時に、制御系の構成も複雑になり、コストアップを招く。これに対して、上記のように動圧軸受およびフォイル軸受のいずれかと、磁気軸受とを組み合わせて用いた非接触軸受によって支持することにより、制御が簡単で、コスト低減が可能となる。
この発明において、前記磁気軸受は、永久磁石と電磁石を組み合わせたものでも良い。この構成の場合、永久磁石と電磁石を組み合わせることによって、主軸の非回転時での浮上非接触支持が簡易になされる。
この発明において、前記コレクタと前記ノズルの間の前記作動媒体の圧力、または前記コレクタの温度、または前記コレクタに入力された熱量、または主軸の回転数を測定する測定手段と、この手段の測定値である圧力、温度、または熱量が所定の閾値を下回る間と、回転数が所定の閾値を上回る間は、前記電磁石に電流を流さないように制御する収熱状況対応電磁石制御手段とを設けても良い。
熱発電システムが例えば太陽熱発電システムである場合、コレクタが太陽熱を有効な熱エネルギーとして吸収できる時間帯は限られる。そこで、上記したように作動媒体の圧力、またはコレクタの温度、またはコレクタに入力される熱量を測定し、測定される前記圧力または温度または熱量が所定の閾値を下回る夜間等においては、電磁石へ電流を流さないこととすれば、有効な太陽熱が得られない夜間等において、無駄な電力を消費して電磁石により主軸を支持することを回避できる。また、回転数が所定の閾値を上回った場合、主軸は動圧軸受やフォイル軸受によって支持されるため、磁気軸受の制御を行う必要がなくなる。
この発明において、前記発電機の回転部分と静止部分との間の一部に隔壁を有するものとしても良い。このように発電機の回転部分と静止部分との間の一部に隔壁を設けることにより、発電機ステータ部におけるコイルの表面の絶縁皮膜や、コイルを保護するモールド樹脂が、作動媒体である有機溶媒等により侵されて安定した発電が行えなくなるといった事態を回避できる。
この発明の熱発電システムは、熱エネルギーを吸収するコレクタによって、直接または間接的に作動媒体を加熱し、前記作動媒体の蒸気をノズルから噴出させ、ノズルからの高圧蒸気によってタービンを回転駆動させ、前記タービンの回転によって、発電機における発電機ロータを回転させることにより、前記発電機ロータと対向して設けられた発電機ステータ部で発電させるシステムにおいて、前記タービンの翼車と発電機ロータとを設けた主軸を非接触軸受で支持し、この非接触軸受として、動圧軸受およびフォイル軸受のいずれかと、磁気軸受とを組み合わせて用いたため、作動媒体の種類に制限を受けることなくタービンの長期回転が可能で、回転起動も円滑に行え、軸受の制御も比較的簡素なものとでき、さらに、発電効率を低下させない発電システムを構成することができる。
この発明の第1の実施形態を図1ないし図6と共に説明する。この熱発電システムは、熱エネルギーである太陽熱を電気エネルギーに変換して出力する太陽熱発電システムであって、図1に示すように、太陽熱を吸収するコレクタ1と、タービン5および発電機6を有するタービンユニット2と、コレクタ1とタービン5との間で作動媒体3を循環させる作動媒体循環路4とを備える。
作動媒体循環路4は、タービンユニット2に給気口4aおよび排気口4bによって接続されて閉環路を構成し、途中に循環供給ポンプ7を備える。この循環供給ポンプ7を作動させることによって、前記コレクタ1で直接的に加熱された作動媒体3の蒸気を高圧蒸気として、タービンユニット2内に設けられたノズル8aから前記タービン5に噴出させ、この噴出力によってタービン5が回転駆動する。
タービンユニット2の発電機6は、回転部分である発電機ロータ6Aと静止部分である発電機ステータ部6Bとでなる。タービン5の翼車5aと発電機ロータ6Aとは主軸9で連結されている。主軸9およびタービン5は、ユニットハウジング2a、ベース盤2bおよび天板2cによって構成されるタービンユニット2内に、後記する2種類の非接触軸受11,12によって鉛直軸心周りに回転自在に支持される。具体的には、発電機6はコアレスタイプのアキシアルギャップ発電機であり、主軸9に設けられた円形のフランジ部である上下一対のスラスト板9a、9bの対向面に発電機ロータ6A,6Aが設けられ、この発電機ロータ6A,6A間に、ユニットハウジング2aに固定された発電機ステータ部6Bが、発電機ロータ6A,6Aと軸方向に所定のギャップを介して配置される。主軸9の下部にはタービン5の翼車5aが連結される。これにより、タービン翼車5aの回転が発電機ロータ6Aの回転となり、発電機ロータ6Aと対向して設けられた発電機ステータ部6Bで発電される。この発電はコントローラ10によって制御される。
図2は図1におけるタービンユニット2の拡大断面図を示し、図3は図2におけるIII −III 矢視断面図を示す。図2において、主軸9の下部に連結されるタービン翼車5aの外周には、ユニットハウジング2aに固定設置された円筒状のノズル部材8が微小隙間を介して配置され、このノズル部材8には、タービン翼車5aのタービン翼5aaに向けて貫通するノズル8aが周方向に複数分配して設けられている。ノズル部材8の外周部(反ノズル8a側部)は、作動媒体循環路4の上流部に繋がりコレクタ1で加熱された作動媒体3を流入させる給気口4aと通じる。タービン翼車5aの中央胴部5bは中空とされ、この中央胴部5b内は各タービン翼5aa内側の空所5cと連通する。ノズル8aから噴射されタービン翼車5aに回転エネルギーを与えた作動媒体3は、この空所5cを経て中央胴部5bに流入し、中央胴部5bの下端に設けられた排気口4bより作動媒体循環路4の下流部に流出される。この排気口4bは、タービンユニット2のベース盤2bを貫通して設けられている。白抜矢印はタービンユニット2に対する作動媒体3の流入および排出方向を示している。
複数のタービン翼車5aは、軸方向に沿って等間隔に維持されるよう長ボルト5abによって相互に結合されている。また、ノズル部材8の各ノズル8aを形成するノズル隔壁8bも、その軸方向間隔を維持するための長ボルト8cによって相互に結合されている。これら長ボルト5abおよび長ボルト8cは、それぞれ複数本が周方向に等間隔で配される。主軸9の上端には、作動円盤9cが雄ねじ部9dとナット9eとの螺合によって締結一体とされている。この締結によって、タービン翼車5aが取付座板9fを介して主軸9に連結一体とされ、主軸9がタービン翼車5aと共にタービンユニット2内に回転自在に保持される。天板2cはユニットハウジング2aの上端開口部に対して開閉自在に取付けられ、このような締結作業やタービンユニット2のメンテナンが可能とされている。
タービン5は作動媒体3に侵されないプラスチック材料で構成される。特に、タービン5のタービン翼車5aが上記プラスチック材料で構成される。この場合のプラスチップ材料としては、例えばPEEK材(ポリエーテルエーテルケトン材)等が好適である。タービン翼車5aをプラスチック材料製とした場合は、軽量化されるため、僅かな噴出力でも回転できるようになる。プラスチック材料を用いても、作動媒体3に侵されない材質のものを使用することで支障が生じない。PEEK材は、耐熱性、難燃性、耐薬品性に優れたエンジニアリングプラスチックであり、タービン5の材質として各種の面で優れたものとなる。
主軸9を支持する第1の種類の非接触軸受11は、主軸9とユニットハウジング2aとの間に主軸9と同心的に介装された上下3つの動圧軸受またはフォイル軸受13,14,15からなる。これら動圧軸受またはフォイル軸受13,14,15は、内径部にラジアル方向を支持する構造、側面にアキシアル方向を支持する構造を持つ。
図4は前記非接触軸受11として動圧軸受を用いた場合を示す。図4(A)は内径部となるラジアル軸受部13A(14A,15A)の断面図を、図4(B)は側面部となるアキシアル軸受部13B(14B,15B)の側面図をそれぞれ示す。この場合、ラジアル軸受部13A(14A,15A)と、アキシアル軸受部13B(14B,15B)は、主軸9と同心に配置され内周面が主軸9の外周面に微小隙間を介して対向するリング体16からなり、その内周面に周方向に並ぶ複数の動圧溝16aが形成され、その側面には主軸9の下端面部、スラスト板9aおよび上記作動円盤9cのように水平円板部分(以下、スラスト板9a等と言う)に軸方向で微小隙間を介して対向するように周方向に並ぶ複数の動圧溝16bが形成されている。これら動圧溝16a,16bの形状には種々のものがあるが、ここではヘリングボーン形状とされている。
図5は前記軸受11としてフォイル軸受を用いた場合を示し、図5(A)はそのラジアル軸受部13A(14A,15A)の断面図を、図5(B)はそのアキシアル軸受部13B(14B,15B)の分解斜視図をそれぞれ示す。ラジアル軸受部13A(14A,15A)とアキシアル軸受部13B(14B,15B)は、一体で成形しても構わないし、隣接して配置しても構わない。
この場合、ラジアル軸受部13A(14A,15A)は、軸受ハウジングとなるタービンユニット2の円筒状ユニットハウジング2aの内周面に配置される弾性体18と、この弾性体18の内周面に配置される金属薄板の軸受フォイル19とでなる。弾性体18は、素線を網状に編成したものを円筒状にプレス成形したものである。軸受フォイル19は、金属薄板を丸めて前記弾性体18の内周側に挿入されたものであり、この軸受フォイル19の表面が弾性軸受面Sとなる。
このように構成されたラジアル軸受部13A(14A,15A)では、主軸9の回転により、主軸9と軸受フォイル19の間のくさび形の隙間20に空気が引き込まれて圧力が発生し、負荷能力が発生する。主軸9に荷重が作用した場合、弾性体18および軸受フォイル19が変形することで、軸受隙間20の形状が適正化され、安定作動するようになる。
図5(B)のアキシアル軸受部13B(14B,15B)は、円環状の弾性体21と、この弾性体21を挟み接合具25で互いに接合されて軸受ハウジング22を構成する1対のハウジング部材22a,22bと、主軸9のスラスト板9a等に対面するハウジング部材22aの表面に配置される軸受フォイル23とで構成される。弾性体21は、軸方向に向く面に円周方向に並ぶ複数の凸部21aを有し、これらの凸部21aが上記ハウジング部材22aに設けられた複数の穴24に嵌合される。軸受フォイル23は、ハウジング部材22aの各穴24に対応して溶接等により固定され、主軸9のスラスト板9a等に対向する。軸受フォイル23は、ハウジング部材22aの穴24から突出した弾性体21の凸部21aによって弾性的に支持され、弾性軸受面Sを構成する。
このように構成されたアキシアル軸受部13B(14B,15B)では、主軸9と共にスラスト板9a等が回転すると、ラジアル軸受部13A(14A,15A)と同様の作用により、軸方向の負荷を支持する。
図6は、フォイル軸受を用いたラジアル軸受部13A(14A,15A)の他の各例を示す。図6(A)のラジアル軸受部13A(14A,15A)は、回転可能な支持ローラ26を3箇所設け、エンドレス環状のフォイル27に張力を与えて主軸9が静止しているときは、主軸9の外周3箇所でフォイル27が接触するようにしたものである。図6(B)のラジアル軸受部13A(14A,15A)は、軸受面が多数の薄板28からなり、主軸(図示せず)の外周の多数の位置で動圧効果による圧力が発生する。図6(C)のラジアル軸受部13A(14A,15A)は、トップフォイル29が隙間Aを介して主軸9の周囲をほぼ一周しており、バンプフォイル30がユニットハウジング2aとトップフォイル29との間にあってトップフォイル29を支持する。
主軸9を支持する第2の種類の非接触軸受12は、磁気軸受であって、永久磁石対からなる第1,第2の磁気軸受部31,32と、電磁石からなる第3の磁気軸受部33とにより構成される。第1の磁気軸受部31は、ユニットハウジング2のベース盤2bに主軸9と同心的に埋め込まれた大中小3つのリング状静止側永久磁石31aと、タービン翼車5aの下面(主軸9の下端面)に静止側永久磁石31aのそれぞれに対向するよう埋め込まれた大中小3つのリング状回転側永久磁石31bとの各対でなる。また、第2の磁気軸受部32は、ユニットハウジング2aの水平段部に主軸9と同心的に埋め込まれた大中小3つのリング状静止側永久磁石32aと、下側スラスト板9bの下面に静止側永久磁石32aのそれぞれに対向するよう埋め込まれた大中小3つのリング状回転側永久磁石32bとの各対でなる。
第1の磁気軸受部31の拡大部分(図2参照)で示すように、これら対向関係の永久磁石31a,31bの対、および永久磁石32a,32bの対は、それらの対向面が互いに異なる磁極となるように極性の向きを定めて配置される。また隣り合う各永久磁石の磁極が互いに逆となるよう極性の向きが定められている。したがって、第1,第2の磁気軸受部31,32における各永久磁石31a,31bの対、および永久磁石32a,32bの対の間では相互に吸引力が働く。
第3の磁気軸受部33は、ユニットハウジング2aの天板2c側部分の下向面に主軸9と同心の円周に沿って等間隔で埋め込み設置された3つのヨーク33aと、各ヨーク33aに巻かれたコイル巻線33bとでなる3つの電磁石により構成される。この電磁石33a,33bからなる第3の磁気軸受部33は、上記スラスト板9aの上面に対向し、その磁気作用によって、スラスト板9a(つまり主軸9)を吸引浮上させるよう作用する。第3の磁気軸受部(電磁石33a,33b)33の各間には、図3に示すように、3つのセンサ34が設置され、スラスト板9aの上面との距離が検出される。この場合、スラスト板9aは磁性体からなり、その上面がセンサーターゲットとなる。図1に示すコントローラ10には、前記センサ34の検出値によって第3の磁気軸受部33におけるコイル巻線33bを流れるコイル電流を制御して、主軸9のアキシアル方向と重心回りの回転の2自由度を制御する手段が設けられる。なお、「アキシアル方向」とは重心回りの並進における回転軸方向の自由度を示し、「重心回りの回転の2自由度」とは、ピッチとヨーの2自由度を示す。
上記第1の磁気軸受部31および第2の磁気軸受部32は、静止側であるベース盤2bおよびユニットハウジング2aと、回転側である主軸9の下端部および中間部との間で、それぞれ永久磁石による吸引力が働くようになされているから、両吸引力の大きさが同じであれば互いに相殺されて、主軸9は自重(その他の連結部材等の自重も含む。以下同じ)があるため浮上しない。しかし、主軸9が心ぶれ(ラジアル方向への揺れ)を起こそうとすると、第1の磁気軸受部31および第2の磁気軸受部32の永久磁石31a,31bの対、および永久磁石32a,32bの対は、主軸9の軸心と同心のリング状とされているから、その吸引作用によって主軸9がその本来の軸心に引き戻され、これによって主軸9のラジアル方向の安定支持がなされる。なお、「ラジアル方向」とは重心回りの並進における回転軸方向以外の2自由度を示す。
第3の磁気軸受部33は電磁石33a,33bからなり、上記のように、その磁気作用によって主軸9を吸引浮上させるよう作用するから、主軸9の自重にほぼ見合う吸引力となるようコイル巻線33bを流れるコイル電流を制御すれば、主軸9は浮上する。これによって、主軸9のアキシアル方向および重心回りの回転の2自由度の支持がなされる。そして、第3の磁気軸受部33は、主軸9と同心の円周方向に等間隔で配置された3つの電磁石33a,33bよりなるから、これと各センサ34の検出結果と対応させて3点で浮上位置の制御ができることになり、主軸9がユニットハウジング2a等に片当りせず周方向にバランス良く支持される。
次に、この構成の太陽熱発電システムの動作を説明する。作動媒体循環路4内の作動媒体3は、太陽熱を吸収するコレクタ1によって直接的に加熱され高圧蒸気となり、この高圧蒸気はノズル8aを介してタービン5のタービン翼5aaに噴射される。これにより、タービン5が回転駆動される。タービン5の回転によって発電機ロータ6A,6Aが回転し、発電機ロータ6A,6Aと対向して設けられた発電機ステータ部6Bで発電される。このようにタービン5の回転が電気エネルギーに変換される。
タービン5に回転エネルギーを与えた作動媒体3は、ポンプ7によってコレクタ1まで輸送されるが、タービン5からポンプ7までに冷却され、完全に液体に戻る。このとき、タービン5は作動媒体3の高圧蒸気を断熱膨張に伴う冷却作用によって液化させるようにすることが望ましい。これにより、作動媒体3を冷却させる専用の機器が不要となり、それだけコスト低減が可能となる。また、タービン5とポンプ7の間に作動媒体3を貯蔵もしくは冷却するタンクを設けても構わない。
上記のように、ノズル8aから噴出される作動媒体3の高圧蒸気の作用によってタービン5が回転し、これに伴って主軸9も軸回転するが、回転始動時は、第3の磁気軸受部33のコイル巻線33bに電流を流し、電磁石33a,33bは作動状態とされている。したがって、回転始動時では、主軸9は、第1および第2の磁気軸受部31,32を構成する永久磁石31a,31bの対、および永久磁石32a,32bの対の相互の吸引力によるアキシアル方向の支持と、電磁石33a,33bの吸引力により浮上支持され、円滑な回転が維持される。
主軸回転数は、図1のコントローラ10によって監視され、回転開始後に回転数がある閾値に達すると、コントローラ10の制御により、電磁石33a,33bへの電流供給を停止し、第1および第2の磁気軸受部と、動圧軸受またはフォイル軸受11とにより主軸9は回転支持される。
そのため、回転始動での動圧軸受もしくはフォイル軸受11と主軸9との機械的接触がなく、回転起動トルクが小さく、磨耗等が発生することがない。また、定常回転時では、第3の磁気軸受部33がオフとされるから、消費電力の削減もできる。これら非接触軸受11,12によって、主軸9は円滑な回転が維持され、この主軸9の円滑な回転に伴う発電機ロータ6A,6Aの回転によって、発電機ステータ部6Bで発電され、安定した電気の供給がなされる。そして、センサ34の検出結果による第3の磁気軸受部33の巻線コイル33bへ流す電流の制御によって、回転始動時の主軸9の浮上位置の設定が的確になされ、より安定した発電・供給がなされる。なお、磁気軸受12は、電磁石による第3の磁気軸受部33のみで構成しても良い。また、第3の磁気軸受部33の作動制御はコントーラ10でなされる。
このように、この太陽熱発電システムでは、主軸9を非接触状態で回転自在に支持するので、軸受の潤滑剤が不要となる。そのため、作動媒体3としてアンモニアや、代替フロン、アルコール、アセトンなどの気化し易い有機溶媒、あるいは沸点の低い有機溶媒を使用しても、軸受の潤滑に問題が生じることはない。その結果、作動媒体3の種類に制限を受けることなく、タービン5の長期回転が可能となる。
また、定常回転時での主軸9の支持に、動圧軸受またはフォイル軸受11と、第1および第2の磁気軸受31,32とを用いているので、主軸9が回転するのに伴い軸受静止側と軸受回転側の間の流体圧が高まることで、非接触軸受として受動的に主軸9を支持できる。そのため、回転トルクロスが少なく、エネルギーロスを極力低減したいこのような発電システムでは好適である。しかし、動圧軸受もしくはフォイル軸受11のみの場合、主軸9が回転していない状態では、軸受静止側と軸受回転側が機械的に接触しているため、回転起動時のトルクが大きくなり回転起動が難しくなる。また、その回転起動時に、軸受静止側と軸受回転側との相対滑りによって摩擦が生じるなど、長期耐久性にも問題が有る。
また、電磁石のみを使用して主軸9を非接触状態で支持することも可能であるが、その場合には、主軸9を浮上させるために5軸制御が必要になり、電磁石の個数が増えると同時に、コントローラ10の構成も複雑になり、コストアップを招く。これに対して、上記のように一部に電磁石による第3の磁気軸受部33を用いる構成とすることで、コスト低減が可能となる。
また、この実施形態では、発電機ロータ6Aと発電機ステータ部6Bの対向方向を、第3の磁気軸受部33を構成する電磁石33a,33bと主軸9(具体的には主軸スラスト板9a)の対向方向(スラスト方向)と同じにしているので、発電による電磁吸引外乱は支持剛性の小さいラジアル方向には及ばず支持剛性の大きいスラスト方向に発生することになる。そのため、主軸9への発電外乱の影響を極力抑えることができる。
また、この実施形態において、発電機6の回転部分と静止部分との間の一部に隔壁35を設けている。具体的には、発電機6の静止部分である発電機ステータ部6Bの表面を隔壁35で被覆保護している。このように発電機6の回転部分と静止部分との間に隔壁35を設けることにより、発電機ステータ部6Bの表面の絶縁皮膜が、作動媒体3である有機溶媒等により侵されて安定した発電や主軸支持が行えなくなるのを回避できる。
図7は、上記太陽熱発電システムにおいて、コントローラ10に浮上位置対応磁力制御手段10Aおよび収熱状況対応電磁石制御手段10Bを設けた例を示す。その他の構成は図1の例と同じである。浮上位置対応磁力制御手段10Aは、センサ34による主軸9の浮上位置の検出情報に基づき、第3の磁気軸受部33の各巻線コイル33bに流す電流を制御して吸引力を調整し、回転始動時の主軸9を適正浮上位置に維持するものである。特に、第3の磁気軸受部33は3つの電磁石33a,33bからなり、これらが主軸9と同心の円周方向に沿って等間隔で配置され、その各電磁石33a,33b間に3つのセンサ34を配しているから、3点の検出情報に基づき3箇所の吸引力を個々に制御することができ、周方向における主軸9の軸方向支持がバランス良くなされ、適正浮上位置の維持がより高精度になされる。
また、収熱状況対応電磁石制御手段10Bは、作動媒体循環路4におけるコレクタ1とノズル8aの間の作動媒体3の圧力、またはコレクタ1の温度、またはコレクタ1に入力される熱量、または主軸9の回転数を測定する測定手段36を設けると共に、測定される前記圧力または温度または熱量が所定の閾値を下回る場合と、主軸の回転数が所定の閾値を上回る場合に、前記第3の磁気軸受部33の巻線コイル33bに電流を流さないように制御するものである。なお、図では上記測定手段36をタービンユニット2における作動媒体3の給気口4a付近に設けているが、測定対象に応じて適宜箇所に設けられるものである。
上記実施形態の熱発電システムは太陽熱発電システムであり、コレクタ1が太陽熱を有効な熱エネルギーとして吸収できる時間帯は限られる。そこで、上記したように作動媒体3の圧力、またはコレクタ1の温度、またはコレクタ1に入力される熱量または、主軸9の回転数を測定手段36で測定し、測定される前記圧力または温度または熱量が所定の閾値を下回る夜間等においては、第3の磁気軸受部33の巻線コイル33bに電流を流さないこととすれば、有効な太陽熱が得られない夜間等において、無駄な電力を消費して磁気軸受部33により主軸9を支持することを回避できる。また、主軸9の回転数が所定の閾値を上回った場合、主軸は動圧軸受もしくはフォイル軸受によって支持されるため、磁気軸受部33により主軸9を支持することを回避できる。
図8は、この発明の他の実施形態を示す。この熱発電システムは、図1の実施形態における作動媒体循環路4に代えて、コレクタ1に第1の作動媒体3Aを循環させる第1の作動媒体循環路4Aと、タービン5に第2の作動媒体3Bを循環させる第2の作動媒体循環路4Bを設けると共に、コレクタ1によって加熱された第1の作動媒体3Aの熱量を、熱交換器37を介して第2の作動媒体3Bに与えることにより、第2の作動媒体3Bを間接的に加熱するようにしたものである。ノズル8aおよびポンプ7は第2の作動媒体循環路4Bに設けられる。その他の構成は第1の実施形態の場合と同じである。
このように、コレクタ1から熱エネルギーを獲得するための作動媒体3Aと、タービン5を駆動する作動媒体3Bとを分離することにより、それぞれの役目に適した作動媒体を個別に選択でき、作動媒体の選択自由度を拡大できる。
なお、上記の各実施形態では、主軸9にタービン翼車5aを設置し、その外側にノズル8aを設けて外側から内側へ蒸気を噴射する構造が採用されているが、タービン翼車5aの内側にノズルを設けて内側から外側へ蒸気を噴射する構造としても良い。また、上記各実施形態では太陽熱を熱エネルギーとする太陽熱発電システムの場合を例示して説明したが、他の熱源を熱エネルギーとする熱発電システムについて適用しても、同様の効果を上げることができる。
この発明の第1の実施形態にかかる熱発電システムの概略構成を示す断面図である。 同熱発電システムにおけるタービンユニットの拡大断面図である。 図2におけるIII −III 矢視断面図である。 (A)は同熱発電システムにおけるラジアル軸受部の一例の断面図、(B)は同熱発電システムにおけるアキシアル軸受部の一例の側面図である。 (A)は同熱発電システムにおけるラジアル軸受部の他の例の断面図、(B)は同熱発電システムにおけるアキシアル軸受部の他の例の分解斜視図である。 同熱発電システムにおけるラジアル軸受部のさらに他の各例の断面図である。 熱発電システムの他の例を示す図1と同様図である。 熱発電システムのさらに他の例を示す図1と同様図である。
符号の説明
1…コレクタ
2…タービンユニット
3,3A,3B…作動媒体
5…タービン
5a…タービン翼車
6…発電機
6A…発電機ロータ
6B…発電機ステータ部
8a…ノズル
9…主軸
9a…スラスト板(フランジ部)
9b…スラスト板(フランジ部)
10…コントローラ
10B…収熱状況対応電磁石制御手段
11…非接触軸受
12…非接触軸受
13…動圧軸受またはフォイル軸受(非接触軸受)
14…動圧軸受またはフォイル軸受(非接触軸受)
31…第1の磁気軸受部(非接触軸受)
31a…静止側永久磁石
31b…回転側永久磁石
32…第2の磁気軸受部(非接触軸受)
32a…静止側永久磁石
32b…回転側永久磁石
33…第3の磁気軸受部(非接触軸受)
33a…ヨーク(電磁石)
33b…コイル巻線(電磁石)
34…センサ
35…隔壁
36…測定手段

Claims (5)

  1. 熱エネルギーを吸収するコレクタによって、直接または間接的に作動媒体を加熱し、前記作動媒体の蒸気をノズルから噴出させ、ノズルからの高圧蒸気によってタービンを回転駆動させ、前記タービンの回転によって、発電機における発電機ロータを回転させることにより、前記発電機ロータと対向して設けられた発電機ステータ部で発電させる熱発電システムにおいて、
    前記タービンの翼車と発電機ロータとを設けた主軸を非接触軸受で支持し、この非接触軸受として、動圧軸受およびフォイル軸受のいずれかと、磁気軸受とを組み合わせて用いたことを特徴とする熱発電システム。
  2. 請求項1において、前記磁気軸受は、永久磁石と電磁石を組み合わせたものである熱発電システム。
  3. 請求項1または請求項2において、前記コレクタと前記ノズルの間の前記作動媒体の圧力、または前記コレクタの温度、または前記コレクタに入力された熱量、または主軸の回転数を測定する測定手段と、この手段の測定値である圧力、温度、または熱量が所定の閾値を下回る間と、回転数が所定の閾値を上回る間は、前記電磁石に電流を流さないように制御する収熱状況対応電磁石制御手段とを設けた熱発電システム。
  4. 請求項1ないし請求項3のいずれか1項において、前記発電機の回転部分と静止部分との間の一部に隔壁を有する熱発電システム。
  5. 請求項1ないし請求項4のいずれか1項において、前記熱エネルギーが太陽熱である熱発電システム。
JP2005283602A 2005-09-29 2005-09-29 熱発電システム Pending JP2007097314A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005283602A JP2007097314A (ja) 2005-09-29 2005-09-29 熱発電システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005283602A JP2007097314A (ja) 2005-09-29 2005-09-29 熱発電システム

Publications (1)

Publication Number Publication Date
JP2007097314A true JP2007097314A (ja) 2007-04-12

Family

ID=37982317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005283602A Pending JP2007097314A (ja) 2005-09-29 2005-09-29 熱発電システム

Country Status (1)

Country Link
JP (1) JP2007097314A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009014084A (ja) * 2007-07-03 2009-01-22 Jtekt Corp 軸受装置およびこれを備えた遠心圧縮機
US7964982B2 (en) * 2007-07-14 2011-06-21 Atlas Copco Energas Gmbh Axial in-line turbomachine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009014084A (ja) * 2007-07-03 2009-01-22 Jtekt Corp 軸受装置およびこれを備えた遠心圧縮機
US7964982B2 (en) * 2007-07-14 2011-06-21 Atlas Copco Energas Gmbh Axial in-line turbomachine

Similar Documents

Publication Publication Date Title
CN101557139B (zh) 发电机和风力涡轮机
EP2800913B1 (en) Turbomachine and method of reducing thrust loads on a radial bearing of a turbomachine
WO2019137026A1 (zh) 一种推力轴承、转子系统及推力轴承的控制方法
JP6638444B2 (ja) 真空ポンプ
US20090301373A1 (en) Cooling Bearings, Motors and Other Rotating Heat Generating Components
US20090046963A1 (en) Magnetic bearing device
US11585235B2 (en) Magnetic shaft mode control
JP2005501500A (ja) 磁気軸受を有する永久磁石タービン発電機
CN108869558B (zh) 一种轴承、转子系统及轴承的控制方法
JPS63277443A (ja) 配管内蔵形発電装置
JP2010060011A (ja) 球面軸受および球面モータ
WO2019137025A1 (zh) 一种径向轴承、转子系统及径向轴承的控制方法
JP2007097314A (ja) 熱発電システム
JP2007071104A (ja) 熱発電システム
WO2019137024A1 (zh) 一种推力轴承、转子系统及推力轴承的控制方法
JP2008151032A (ja) 熱発電用タービンユニットおよび熱発電システム
US20110127774A1 (en) Energy converter for flowing fluids and gases
JP2007071103A (ja) 熱発電システム
JP2008304045A (ja) 超電導フライホイールシステム
JP2007092654A (ja) 熱発電システム
CN112324803B (zh) 气悬浮轴承、电机转轴支撑系统、电机及控制方法
JP2008128126A (ja) 熱発電用タービンユニットおよび熱発電システム
CN110966094B (zh) 一种转子系统及其控制方法和燃气轮机发电机组及其控制方法
CN210799768U (zh) 一种可以自动控制防冻的轴承座
JP2007309190A (ja) 熱発電タービンユニット