JP2007085360A - Method for operating screw compressor - Google Patents

Method for operating screw compressor Download PDF

Info

Publication number
JP2007085360A
JP2007085360A JP2006353688A JP2006353688A JP2007085360A JP 2007085360 A JP2007085360 A JP 2007085360A JP 2006353688 A JP2006353688 A JP 2006353688A JP 2006353688 A JP2006353688 A JP 2006353688A JP 2007085360 A JP2007085360 A JP 2007085360A
Authority
JP
Japan
Prior art keywords
compressor
pressure
load
rotation speed
screw compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006353688A
Other languages
Japanese (ja)
Other versions
JP4792383B2 (en
Inventor
Masakazu Aoki
優和 青木
Hiroyuki Matsuda
洋幸 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2006353688A priority Critical patent/JP4792383B2/en
Publication of JP2007085360A publication Critical patent/JP2007085360A/en
Application granted granted Critical
Publication of JP4792383B2 publication Critical patent/JP4792383B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce generation of a power in the low load region of a screw compressor and to prevent generation of drain in an oil separator due to repetition of frequent starting and stop. <P>SOLUTION: In an operation method of a screw compressor capable of speed change operation driven by a motor using an inverter, rotation speed control operation coping with change of load by changing rotation speed of a compressor and no load operation establishing rotation speed of the compressor to a lower limit rotation sped used in a rotation speed control operation and reducing delivery pressure by discharging compressed air delivered from the screw compressor to atmospheric air are provided. Under a load condition lighter than predetermined load, loaded operation and no load operation establishing rotation speed control operation are repeated. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、インバータを用いて駆動電動機の回転数を変化させ、圧縮機の容量を調整するスクリュー圧縮機の運転方法及びスクリュー圧縮機に関する。   The present invention relates to an operating method of a screw compressor and a screw compressor that adjust the capacity of a compressor by changing the rotational speed of a drive motor using an inverter.

従来のスクリュー圧縮機においては、特開平7−35079号公報に記載の様に、圧縮機はその吸入口に吸込み絞り弁を有しており、この吸込絞り弁をインバータの回転数信号に応じて開閉する電磁弁で開閉していた。
特開平7−35079号公報
In the conventional screw compressor, as described in Japanese Patent Laid-Open No. 7-35079, the compressor has a suction throttle valve at its suction port, and this suction throttle valve is set according to the rotation speed signal of the inverter. It was opened and closed with a solenoid valve that opens and closes.
JP 7-35079 A

上記従来の技術においては、吸込み絞り弁を閉塞して低負荷時の容量制御していたので、次の点について十分には考慮されていなかった。
低負荷時に圧縮機の回転数を低下させた状態で吸込絞り弁を全閉しているが:
1.動力の低減が不十分である。
2.圧縮機の吐出圧力は仕様圧力のまま、吸込圧力が低下するため全負荷時に比較して給油量が増加する。低速回転時に給油量が増加すると運転動力、必要駆動トルクの増大を招き、低速回転域で駆動トルクが低下するインバータ駆動機では、インバータのトリップ等が生じる恐れがある。
3.圧縮機の吐出圧力が仕様圧力かそれより上昇した状態で圧縮機の仕事量が軽減されるため、相対的に上オイルクーラの能力が上昇して圧縮機への給油温度が低下する。これに伴い、圧縮機の吐出温度が低下し、オイルセパレータ内でのドレンの発生の可能性が高くなる。
In the above prior art, the suction throttle valve is closed and the capacity is controlled at the time of low load, so the following points are not fully considered.
The suction throttle valve is fully closed with the compressor speed reduced at low load:
1. Insufficient power reduction.
2. As the discharge pressure of the compressor remains at the specified pressure, the suction pressure decreases, so the amount of oil supply increases compared to the full load. An increase in the amount of oil supply during low-speed rotation causes an increase in driving power and required drive torque, and an inverter drive in which the drive torque decreases in the low-speed rotation range may cause an inverter trip or the like.
3. Since the amount of work of the compressor is reduced in a state where the discharge pressure of the compressor is higher than the specified pressure, the capacity of the upper oil cooler is relatively increased and the oil supply temperature to the compressor is lowered. Along with this, the discharge temperature of the compressor decreases, and the possibility of generation of drain in the oil separator increases.

ところで、低負荷時の動力を改善するために、(a)吸込絞り弁を全閉にしてオイルセパレータ内の圧力を開放する状態と、(b)吸込絞り弁を全開にする状態との、2つの状態(a),(b)を繰り返す方法も提案されている。しかし、この方法においては、(a),(b)の状態に移行するための圧力マージンが必要であり、そのため設定圧力より低下する恐れを生じる。そして、制御圧力が確保されている時でも吸込絞り弁や電磁弁の動作頻度が増加するので、これらの弁の耐久性を低下させる恐れがある。   By the way, in order to improve power at low load, (a) a state in which the suction throttle valve is fully closed to release the pressure in the oil separator, and (b) a state in which the suction throttle valve is fully opened. A method of repeating the two states (a) and (b) has also been proposed. However, in this method, a pressure margin for shifting to the states (a) and (b) is necessary, and therefore, there is a risk of lowering the set pressure. And even when the control pressure is secured, the operation frequency of the suction throttle valve and the electromagnetic valve increases, and there is a risk that the durability of these valves will be reduced.

本発明の目的は、圧縮機の信頼性を維持向上させながら圧縮機の動力を低減するとともに、オイルセパレータ内でのドレンの発生を低減することにある。   An object of the present invention is to reduce the power of the compressor while maintaining and improving the reliability of the compressor, and to reduce the generation of drain in the oil separator.

上記目的を達成するための本発明の第1の特徴は、インバータを用いた電動機により駆動される変速運転が可能なスクリュー圧縮機の運転方法において、圧縮機の回転数を変化させて負荷の変化に対応する回転数制御運転と、この回転数制御運転で用いる下限回転数に圧縮機の回転数を設定するとともに、スクリュー圧縮機から吐出された圧縮空気を大気に放気して吐出圧力を減圧する無負荷運転とを備え、予め定められた所定負荷より低負荷時には、回転数制御運転の下限回転数に設定した負荷運転と無負荷運転とを繰り返すものである。   In order to achieve the above object, the first feature of the present invention is that, in a driving method of a screw compressor capable of a speed change operation driven by an electric motor using an inverter, a change in load by changing the number of revolutions of the compressor. Rotation speed control operation corresponding to, and the rotation speed of the compressor is set to the lower limit rotation speed used in this rotation speed control operation, and the compressed air discharged from the screw compressor is discharged to the atmosphere to reduce the discharge pressure No load operation is performed, and when the load is lower than a predetermined load, the load operation set to the lower limit rotation speed of the rotation speed control operation and the no load operation are repeated.

そしてこの特徴において、少なくとも無負荷運転が所定時間以上継続したとき、および低負荷時の運転における無負荷運転と負荷運転との時間比率が所定割合を越えたときのいずれか一方の運転になったときに、スクリュー圧縮機を停止する;負荷が減少して圧縮機の回転数が下限回転数となって吸込み絞り弁を閉塞し、さらに、圧縮機の吐出圧力を減圧して回転数制御運転から無負荷運転と負荷運転を繰り返す運転モードにに切り替わる際に、制御の上限圧力P1を回転数制御運転の設定圧力P0に対し、P1>P0に設定する;圧縮機の圧力が低下して圧縮機が再起動したときに、負荷が減少しても所定時間(t1)圧縮機の運転を継続し、所定時間(t1)経過後は圧縮機を停止させることが望ましい。   And in this feature, when the no-load operation has continued for at least a predetermined time, or when the time ratio between the no-load operation and the load operation in the low load operation exceeds a predetermined ratio, the operation has become one of Sometimes, the screw compressor is stopped; the load is reduced, the compressor speed becomes the lower limit speed, the suction throttle valve is closed, and the discharge pressure of the compressor is reduced to start the speed control operation. When switching to an operation mode in which no-load operation and load operation are repeated, the control upper limit pressure P1 is set to P1> P0 with respect to the set pressure P0 of the rotational speed control operation; the compressor pressure decreases and the compressor When the engine is restarted, it is desirable to continue the operation of the compressor for a predetermined time (t1) even if the load decreases, and to stop the compressor after the predetermined time (t1) has elapsed.

上記目的を達成するための本発明の第2の特徴は、軸受により回転可能に支持された雄雌一対のロータを有し、このロータを駆動する電動機と、この電動機を制御するインバータとを備えたスクリュー圧縮機において、電動機の回転数をインバータにより変化させてスクリュー圧縮機の容量を制御する回転数制御手段と、この回転数制御手段に設定された最低回転数でスクリュー圧縮機を駆動するとともに、スクリュー圧縮機から吐出された圧縮空気を大気に放気して吐出圧力を減圧する無負荷運転を行わせる容量制御手段とを備えたものである。   In order to achieve the above object, the second feature of the present invention includes a pair of male and female rotors rotatably supported by bearings, and includes an electric motor that drives the rotor and an inverter that controls the electric motor. In the screw compressor, the rotational speed control means for controlling the capacity of the screw compressor by changing the rotational speed of the electric motor by an inverter, and the screw compressor is driven at the minimum rotational speed set in the rotational speed control means. And a capacity control means for performing a no-load operation in which the compressed air discharged from the screw compressor is discharged to the atmosphere to reduce the discharge pressure.

そしてこの特徴において、圧縮機を無負荷運転に切替えるときの吐出圧力の上限値をP1、圧縮機を前記最低回転数での吸込み絞り弁を開く運転である負荷運転に切替えるときの吐出圧力の下限値をP2、回転数制御運転の設定圧力をP0としたときに、前記容量制御手段は、P1>P0、P2>=P0にP1およびP2を設定する;回転数制御手段は、負荷の減少により圧縮機が自動停止する際に、前記設定圧力P0に対しP3>P0となるP3まで圧力を上昇させてから停止させる;回転数制御手段は、圧縮機を再起動させる圧力をP4とするとき、P4>=P0となるよう制御する;圧縮機の吐出圧力を検出する吐出圧力検出手段を圧縮機の吐出側に設けるとともに、回転数制御における設定圧力(P0)と、容量制御の上限圧力(P1)と下限圧力(P2)と、自動停止させる圧力(P3)と、自動停止後の再起動圧力(P4)とを記憶する記憶手段と、吐出圧検出手段により検出された検出圧力に基づいて回転数制御手段と容量制御手段の作動を切替える切替え手段と、記憶手段に記憶されたP0、P1、P2、P3、P4の値を変更可能にする入力手段とを設けた;回転数制御における設定圧力(P0)と、容量制御の上限圧力(P1)と下限圧力(P2)と、自動停止させる圧力(P3)と、自動停止後の再起動圧力(P4)とを記憶する記憶手段と、設定圧力(P0)に基づいて各設定圧力(P1,P2,P3,P4)を演算設定する圧力設定手段とを備える;吐出圧力を検出する吐出圧力検出手段を設け、この吐出圧力検出手段が検出した吐出圧力に基づいて回転数制御手段が回転数制御するとともに、この吐出圧力検出手段が検出した吐出圧力に基づいて、予め定めた負荷より低負荷で容量制御手段を作動させることが望ましい。   In this feature, the upper limit value of the discharge pressure when the compressor is switched to no-load operation is P1, and the lower limit of the discharge pressure when the compressor is switched to the load operation that opens the suction throttle valve at the minimum rotational speed. When the value is P2 and the set pressure for the rotational speed control operation is P0, the capacity control means sets P1 and P2 so that P1> P0, P2> = P0; When the compressor is automatically stopped, the pressure is increased to P3 where P3> P0 with respect to the set pressure P0 and then stopped; when the pressure at which the compressor is restarted is P4, Control is performed so that P4> = P0; a discharge pressure detecting means for detecting the discharge pressure of the compressor is provided on the discharge side of the compressor, the set pressure (P0) in the rotational speed control, and the upper limit pressure (P1) of the capacity control ) And lower limit pressure (P2) , A storage means for storing a pressure (P3) for automatic stop and a restart pressure (P4) after the automatic stop, and a rotation speed control means and a capacity control means based on the detected pressure detected by the discharge pressure detection means. Switching means for switching the operation and input means for changing the values of P0, P1, P2, P3, and P4 stored in the storage means are provided; set pressure (P0) in the rotational speed control, and capacity control Storage means for storing upper limit pressure (P1), lower limit pressure (P2), pressure to automatically stop (P3), restart pressure after automatic stop (P4), and each setting based on set pressure (P0) Pressure setting means for calculating and setting the pressure (P1, P2, P3, P4); a discharge pressure detecting means for detecting the discharge pressure is provided, and a rotation speed control means based on the discharge pressure detected by the discharge pressure detecting means While controlling the rotation speed, this discharge Based on the discharge pressure of the force detected by the detecting means, it is desirable to operate the capacity control means in the low load than a predetermined load.

このように構成した本発明においては、例えば、圧縮機の定格吐出空気量の100%から30%の範囲で電動機をインバータを用いて制御し、圧縮機の回転数を変化させて容量制御する。空気の使用量が30%以下に低下したときには、圧縮機の回転数を30%負荷時の回転数(下限回転数)に固定する負荷運転と、圧縮機の吐出圧力を減圧する無負荷運転を繰り返す制御を行なうので、消費動力が著しく低減される。   In the present invention configured as described above, for example, the electric motor is controlled using an inverter in the range of 100% to 30% of the rated discharge air amount of the compressor, and the capacity is controlled by changing the rotation speed of the compressor. When the amount of air used drops below 30%, load operation that fixes the compressor speed to 30% load (lower limit speed) and no-load operation that reduces the compressor discharge pressure Since repeated control is performed, power consumption is significantly reduced.

また、例えば無負荷運転が10分間続いた場合に圧縮機を自動停止する。または例えば10%以下の負荷領域では圧縮機を自動停止するように設定する。   For example, the compressor is automatically stopped when no-load operation continues for 10 minutes. Alternatively, for example, the compressor is set to automatically stop in a load region of 10% or less.

また、負荷が減少し、例えば空気の使用量が30%以下に低下したときに圧縮機の回転数を設定値(下限回転数)に保持し、さらに空気の使用量が減少したときにも下限周波数での運転を継続する。そして、回転数制御領域での設定圧力をP0としたとき、P1>P0となる圧力P1に圧縮機の吐出圧力が到達すれば、圧縮機の吐出圧力を減圧して無負荷運転に入るようにしている。また、圧縮機に自動停止機能があるときにも、上記方法を実施する。   Also, when the load decreases, for example, when the amount of air used drops below 30%, the compressor speed is maintained at the set value (lower limit number of revolutions), and when the amount of air used decreases further, the lower limit Continue operation at the frequency. When the set pressure in the rotation speed control region is P0, if the discharge pressure of the compressor reaches the pressure P1 where P1> P0, the discharge pressure of the compressor is reduced so that no-load operation is started. ing. The above method is also performed when the compressor has an automatic stop function.

さらに、無負荷運転から負荷運転に復帰させる圧力P2(下限圧力)を、上記設定圧力P0以上の圧力にする。そして、空気使用量が圧縮機の定格吐出空気量の100%から30%の場合には回転数を制御し、設定圧力P0付近で一定圧力となるように運転する。一方、空気使用量が30%以下の場合には、P1>P2>=P0となるP1とP2の圧力間で、空気使用量に応じて無負荷運転と下限回転数での負荷運転を繰り返す。   Further, the pressure P2 (lower limit pressure) for returning from the no-load operation to the load operation is set to a pressure equal to or higher than the set pressure P0. When the amount of air used is 100% to 30% of the rated discharge air amount of the compressor, the number of revolutions is controlled, and operation is performed so that the pressure is constant near the set pressure P0. On the other hand, when the air usage is 30% or less, the no-load operation and the load operation at the lower limit rotational speed are repeated according to the air usage between the pressures P1 and P2 where P1> P2> = P0.

空気使用量がさらに減少して、圧縮機が自動停止する条件が整ったときには、下限回転数における負荷運転の期間を設け、前述した設定圧力P0に対しP3>P0となるP3まで圧力が上昇してから圧縮機を停止させる。空気の消費が始まって圧力がP4>=P0となるP4まで低下すると、圧縮機を再起動させる。   When the amount of air used is further reduced and the conditions for automatic stop of the compressor are established, a period of load operation at the lower limit rotational speed is provided, and the pressure rises to P3 where P3> P0 with respect to the set pressure P0 described above. Then stop the compressor. When the air consumption starts and the pressure drops to P4 where P4> = P0, the compressor is restarted.

なお、圧力センサーを用いて、前記P1、P2、P3、P4等の圧力を検出するとともに、各設定圧力を記憶装置に記憶させてもよい。各設定圧力P1−P4は、圧力P0が設定されると自動的に演算装置により演算され、設定されるものであってもよい。また、設定値を手動で変更する入力手段を備えていてもよい。これにより、各設定圧力を適正に設定できるとともに設定値の変更が容易になる。   Note that pressures such as P1, P2, P3, and P4 may be detected using a pressure sensor, and each set pressure may be stored in a storage device. Each set pressure P1-P4 may be calculated and set automatically by the calculation device when the pressure P0 is set. Moreover, you may provide the input means to change a setting value manually. Thereby, each set pressure can be set appropriately and the set value can be easily changed.

本発明によれば、スクリュー圧縮機の負荷が低負荷で、圧縮機の回転数を低下させて運転する場合、以下の効果がある。
(1)予め定められた所定負荷より低負荷時には、前記回転数制御運転の下限回転数に設定した負荷運転と圧縮機の吐出圧力を減圧する無負荷運転とを繰り返すようにしているから、動力の低減効果が大となる。
(2)無負荷運転時には圧縮機からの吐出空気を放気して吐出圧力を減圧するので、低速回転時に給油量が必要以上に増大して必要駆動トルクの増大を招くのを防止できるから、インバータ駆動圧縮機においてインバータのトリップが生じる危険性を低減できる。
(3)無負荷運転時にはスクリュー圧縮機から吐出された圧縮空気を大気に放気して吐出圧力を減圧し、圧縮機の吐出圧力を低下させるようにしているので、オイルセパレータ内でドレンが発生するのを防止できる。
(4)回転数制御をして圧力を一定に保つことが可能になるから、最低限必要な圧力を回転数制御領域での目標設定圧力(P0)とすることができ、この結果理想近くまで動力を軽減できる。
According to the present invention, when the screw compressor is operated at a low load and the rotation speed of the compressor is reduced, the following effects are obtained.
(1) When the load is lower than a predetermined load, a load operation set to the lower limit rotation speed of the rotation speed control operation and a no-load operation for reducing the discharge pressure of the compressor are repeated. The reduction effect of is increased.
(2) Since the discharge air from the compressor is discharged during no-load operation and the discharge pressure is reduced, it is possible to prevent the amount of oil supply from increasing more than necessary at the time of low-speed rotation and preventing an increase in the required driving torque. Inverter-driven compressors can reduce the risk of inverter trips.
(3) During no-load operation, the compressed air discharged from the screw compressor is discharged into the atmosphere to reduce the discharge pressure and reduce the discharge pressure of the compressor. Can be prevented.
(4) Since it is possible to keep the pressure constant by controlling the rotational speed, the minimum required pressure can be set as the target set pressure (P0) in the rotational speed control region. Power can be reduced.

以下、本発明の実施の形態を、いくつかの実施例について図面を用いて説明する。
図1に、本発明の実施例に係るスクリュー圧縮機装置の模式図を示す。吸込フィルター1から吸込まれた空気は吸込絞り弁2を経た後スクリュー圧縮機のロータ3間で圧縮され、吐出口4から吐出される。圧縮により発生した圧縮熱を冷却するため、および潤滑とシールのために、スクリュー圧縮機12のロータ3部に潤滑油が注入される。吐出口4から潤滑油とともに吐出された圧縮空気は、オイルセパレータタンク5内に流入し、オイルセパレータエレメント6で潤滑油と分離され、吐出配管7から逆止弁8、調圧弁9を順次通って、アフタクーラ10に流入し、このアフタークーラ10において冷却された後、図示しない外部装置へ吐出される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings for some examples.
In FIG. 1, the schematic diagram of the screw compressor apparatus based on the Example of this invention is shown. The air sucked from the suction filter 1 passes through the suction throttle valve 2, is compressed between the rotors 3 of the screw compressor, and is discharged from the discharge port 4. Lubricating oil is injected into the rotor 3 of the screw compressor 12 for cooling the compression heat generated by the compression and for lubrication and sealing. The compressed air discharged together with the lubricating oil from the discharge port 4 flows into the oil separator tank 5 and is separated from the lubricating oil by the oil separator element 6, and sequentially passes from the discharge pipe 7 through the check valve 8 and the pressure regulating valve 9. Then, it flows into the aftercooler 10, is cooled in the aftercooler 10, and then is discharged to an external device (not shown).

一方、潤滑油はオイルセパレータタンク5内で圧縮空気と分離され、オイルセパレータタンク5の底部からオイルクーラ11へと導かれる。オイルクーラ11で冷却された潤滑油と、オイルクーラを経由しない無冷却の潤滑油とが温調弁13内で混合され、スクリュー圧縮機12を潤滑する。オイルクーラ11及びアフタークーラ10は、冷却ファン14の冷却風で冷却される。   On the other hand, the lubricating oil is separated from the compressed air in the oil separator tank 5 and guided from the bottom of the oil separator tank 5 to the oil cooler 11. Lubricating oil cooled by the oil cooler 11 and uncooled lubricating oil not passing through the oil cooler are mixed in the temperature control valve 13 to lubricate the screw compressor 12. The oil cooler 11 and the aftercooler 10 are cooled by the cooling air of the cooling fan 14.

スクリュー圧縮機のロータ3軸と電動機16軸とは回転をベルト15により連結される。電動機16は、インバータ17により可変速運転が可能になっている。逆止弁8の下流側には圧力センサー18が設けられ、スクリュー圧縮機12から吐出される圧力を検出している。この圧力センサー18の出力信号は、入出力部19へ入力される。制御装置部20aは、記憶手段とPID機能を有している。そして、記憶された設定圧力と圧力センサー18が検出した圧力とを比較し、検出圧力が目標圧力P0となるような周波数をインバータ17に与え、電動機16の回転数を変化させる。この記憶手段および制御装置部20aに記憶されている各種の圧力設定値は、目標圧力P0を設定するだけで自動的に適正な値に設定される。また、制御装置部20aに接続された設定入力手段および表示部20bを用いて、設定値を変更することが可能な構成となっている。さらに、設定入力手段および表示部20bには表示手段(LEDや液晶素子等)が併設されており、圧力の設定値や運転周波数を表示する。   The rotor 3 shaft of the screw compressor and the motor 16 shaft are connected by a belt 15 for rotation. The electric motor 16 can be operated at a variable speed by an inverter 17. A pressure sensor 18 is provided on the downstream side of the check valve 8 to detect the pressure discharged from the screw compressor 12. The output signal of the pressure sensor 18 is input to the input / output unit 19. The control device unit 20a has storage means and a PID function. Then, the stored set pressure is compared with the pressure detected by the pressure sensor 18, and a frequency at which the detected pressure becomes the target pressure P 0 is given to the inverter 17 to change the rotation speed of the electric motor 16. The various pressure set values stored in the storage means and the control unit 20a are automatically set to appropriate values only by setting the target pressure P0. In addition, the setting value can be changed using the setting input unit and the display unit 20b connected to the control unit 20a. Further, the setting input unit and the display unit 20b are provided with a display unit (LED, liquid crystal element, etc.), and displays a set value of pressure and an operating frequency.

スクリュー圧縮機12の上流側に設けられる吸込絞り弁2の弁板2aは、ピストン2bが電磁弁21側から圧力を受けると閉方向に動作する。つまり、電磁弁21が開となると、オイルセパレータ5内の高圧力が吸込絞り弁2へと導かれ、このピストン2bへ圧力が付加される。さらに、オイルセパレータ5内の空気の一部は、電磁弁21が開となると同時に放気配管22を経由して吸込絞り弁2の吸込側へと放気される。このとき、オリフィス23で流量が調整される。配管22の代わりに、直接大気へ放気する構成にしても良い。なお、電磁弁21は、記憶手段および制御装置部20aにおいて自動または手動で設定された設定圧力と、この記憶手段および制御装置部20aに入力される入出力部19からの圧力信号とを比較した結果に基づいて開閉される。   The valve plate 2a of the suction throttle valve 2 provided on the upstream side of the screw compressor 12 operates in the closing direction when the piston 2b receives pressure from the electromagnetic valve 21 side. That is, when the electromagnetic valve 21 is opened, the high pressure in the oil separator 5 is guided to the suction throttle valve 2, and pressure is applied to the piston 2b. Further, a part of the air in the oil separator 5 is discharged to the suction side of the suction throttle valve 2 through the discharge pipe 22 at the same time when the electromagnetic valve 21 is opened. At this time, the flow rate is adjusted by the orifice 23. Instead of the pipe 22, it may be configured to directly vent to the atmosphere. The electromagnetic valve 21 compares the set pressure set automatically or manually in the storage means and the control unit 20a with the pressure signal from the input / output unit 19 input to the storage unit and the control unit 20a. Opened and closed based on the result.

このように構成したスクリュー圧縮機装置の作用について、以下に述べる。インバータを用いた電動機により油冷式スクリュー圧縮機を駆動すれば、使用空気量の減少に伴い圧縮機12の回転数を低下させることが可能になり、他の容量制御方式に比べて、大きな動力低減効果が得られる。このことは従来よく知られているが、吐出空気量の全領域で回転数制御を行うと、次のようなデメリットを招来する。   The operation of the screw compressor device configured as described above will be described below. If the oil-cooled screw compressor is driven by an electric motor using an inverter, it is possible to reduce the rotational speed of the compressor 12 with a decrease in the amount of air used. A reduction effect is obtained. This has been well known in the past, but if the rotational speed control is performed in the entire region of the discharge air amount, the following disadvantages are caused.

すなわち、低回転数または小空気量域で、吸込み絞り弁等を使用した容量制御を併用することが必要であり、さらに、
(1)低回転数になると、電動機16と一体的に設けられた冷却ファン16aの回転数も同時に低下し、電動機を冷却できず、電動機コイル温度が所定温度範囲を越える、
(2)圧縮機12への給油をオイルセパレータ5とスクリュー圧縮機12の内部の差圧を利用して行うため、低回転数になってスクリュー圧縮機の吐出し空気量が大幅に減少しても給油量は減少せず、スクリュー圧縮機内部で油の液圧縮が発生し過負荷状態となる、
という不具合を生じる。
That is, it is necessary to use a volume control using a suction throttle valve or the like in a low rotation speed or small air volume region,
(1) When the number of revolutions is low, the number of revolutions of the cooling fan 16a provided integrally with the motor 16 also decreases at the same time, the motor cannot be cooled, and the motor coil temperature exceeds a predetermined temperature range.
(2) Since oil supply to the compressor 12 is performed using the differential pressure inside the oil separator 5 and the screw compressor 12, the amount of air discharged from the screw compressor is greatly reduced due to a low rotational speed. However, the amount of oil supply does not decrease, liquid compression of oil occurs inside the screw compressor, and it becomes overloaded,
This causes a malfunction.

これらの不具合を回避するには、電動機を冷却するために専用モータで駆動されたファンを設ける、低回転数域での給油量を調整するための弁を設ける、等種々の方法が考えられるが、構造が複雑となり現実的でない。   In order to avoid these problems, various methods such as providing a fan driven by a dedicated motor to cool the electric motor, or providing a valve for adjusting the amount of oil supply in the low rotation speed range can be considered. The structure becomes complicated and is not realistic.

そこで、特開平7−35079号公報に記載のものにおいては、小空気量域では、回転数制御による容量制御を行わず、設定された下限回転数になると同時に吸込み絞り弁2を閉じて無負荷運転状態としていた。しかしこの方式は従来方式に比較して省エネ効果は期待できるが、未だ不十分であった。そこで、本発明では、図1に示したように機器を構成してスクリュー圧縮機の容量を制御している。その詳細フローを図4に示す。   Therefore, in the one described in Japanese Patent Application Laid-Open No. 7-35079, in the small air amount region, the capacity control by the rotational speed control is not performed, and the suction throttle valve 2 is closed at the same time when the lower limit rotational speed is reached. It was in the driving state. However, this method can be expected to save energy compared with the conventional method, but it is still insufficient. Accordingly, in the present invention, the apparatus is configured as shown in FIG. 1 to control the capacity of the screw compressor. The detailed flow is shown in FIG.

仕様吐出空気量に対して約30%から100%の空気量の運転範囲では、インバータにより電動機16の駆動周波数を変え、回転数制御する。一方、吐出空気量が仕様吐出空気量の30%以下の運転範囲になると、圧力センサー18で検出した圧縮機の吐出圧力が記憶手段および制御出力部に記憶された設定圧力P1に到達している場合には、回転数制御における設定下限回転数にスクリュー圧縮機の回転数を保持する。そして、電磁弁21を開き、吸込み絞り弁2を閉塞する。また、圧縮機3の吐出圧力を減圧して無負荷運転の容量制御に切り換える。これにより、圧縮機12の吐出口4における圧力が低下し、従来技術に対して、大幅に消費動力を低減することが可能になる。   In the operating range of the air amount of about 30% to 100% with respect to the specified discharge air amount, the drive frequency of the electric motor 16 is changed by the inverter and the rotation speed is controlled. On the other hand, when the discharge air amount falls within an operating range of 30% or less of the specified discharge air amount, the compressor discharge pressure detected by the pressure sensor 18 reaches the set pressure P1 stored in the storage means and the control output unit. In this case, the rotational speed of the screw compressor is maintained at the set lower limit rotational speed in the rotational speed control. Then, the electromagnetic valve 21 is opened and the suction throttle valve 2 is closed. Further, the discharge pressure of the compressor 3 is reduced to switch to capacity control for no-load operation. Thereby, the pressure in the discharge port 4 of the compressor 12 falls, and it becomes possible to reduce power consumption significantly with respect to a prior art.

この場合の吐出空気量比に対する消費動力の比を図2に示す。図2中A線は従来方式による消費動力特性、B線は本発明の一実施例による消費動力特性である。吐出空気量比が0%近傍では、従来に比して消費動力が半分程度にまで低減している。   The ratio of the power consumption to the discharge air amount ratio in this case is shown in FIG. In FIG. 2, line A is the power consumption characteristic according to the conventional method, and line B is the power consumption characteristic according to one embodiment of the present invention. When the discharge air amount ratio is in the vicinity of 0%, the power consumption is reduced to about half compared to the conventional case.

吐出圧力を低減したので、圧縮機ロータ3部への給油量も減少させることができ、潤滑油が液圧縮されたときに発生するトルクの異常な増大を起こす恐れがない。また、スクリュー圧縮機を低負荷で運転すると給油温度が低下してオイルセパレータ5内にドレンが発生しやすくなるが、無負荷運転時にはオイルセパレータ5内の圧力も低下するため、ドレンの発生の可能性が少なくなる。   Since the discharge pressure is reduced, the amount of oil supplied to the compressor rotor 3 can also be reduced, and there is no possibility of causing an abnormal increase in torque generated when the lubricating oil is liquid-compressed. In addition, when the screw compressor is operated at a low load, the oil supply temperature is lowered and drainage is likely to be generated in the oil separator 5, but the pressure in the oil separator 5 is also decreased during no-load operation, so that drainage is possible. The nature becomes less.

さらに、圧縮機の回転数をこの設定下限回転数に保持し、吸込み絞り弁2を閉塞状態にして運転した結果、圧縮機3の吐出圧力が低下する無負荷運転の時間と、設定下限回転数に圧縮機の回転数を保持し、吸込み絞り弁2を開いて運転する負荷運転の時間とを記憶手段および制御出力部に内蔵されたタイマー手段で判定する。前者の割合が例えば10%以下の負荷、あるいは例えば、前者の運転時間が連続して3分間を超えた場合、圧縮機を停止させる。さらに、停止中にも圧力センサー18で圧力を監視し続け、記憶手段および制御装置部に記憶された設定圧力P4まで圧力が低下した時には圧縮機を再起動させる。このように圧縮機の運転を制御すれば、消費動力特性は図2中にC線で示したようになり、さら空気消費量が少ない運転領域での動力の低減が可能になる。   Furthermore, as a result of maintaining the compressor speed at this set lower limit speed and operating the suction throttle valve 2 in the closed state, the time of no-load operation during which the discharge pressure of the compressor 3 decreases, and the set lower limit speed The rotation speed of the compressor is held, and the load operation time during which the suction throttle valve 2 is opened is determined by the storage means and the timer means incorporated in the control output unit. When the former ratio is, for example, a load of 10% or less, or when the former operation time continuously exceeds 3 minutes, the compressor is stopped. Further, the pressure is continuously monitored by the pressure sensor 18 even during stoppage, and the compressor is restarted when the pressure drops to the set pressure P4 stored in the storage means and the control unit. If the operation of the compressor is controlled in this way, the power consumption characteristics are as shown by line C in FIG. 2, and the power can be reduced in the operation region where the amount of air consumption is small.

なお上記実施例では、消費空気量が減少し、圧縮機の回転数が設定下限回転数となったとき、回転数制御領域での目標設定圧力P0と無負荷運転(以降、回転数を一定にして吸込み絞り弁2を閉塞すると同時に、圧縮機3の吐出圧力を減圧する運転状態を無負荷運転と称する。)を開始する上限圧力P1が同じであり、空気使用量が制御方式の切り換え点に一致する場合に電磁弁21において不安定なON−OFF指令が発生し、吸込み絞り弁2のハンチングをおこす可能性がある。   In the above embodiment, when the amount of air consumption decreases and the compressor speed reaches the set lower limit speed, the target set pressure P0 in the speed control area and no-load operation (hereinafter, the speed is kept constant). The operation state of reducing the discharge pressure of the compressor 3 at the same time as closing the suction throttle valve 2 is referred to as no-load operation.) The upper limit pressure P1 for starting the same is the same, and the air consumption is the switching point of the control method. If they coincide with each other, an unstable ON-OFF command is generated in the solenoid valve 21, which may cause hunting of the suction throttle valve 2.

一般的な一定速型の電動機駆動スクリュー圧縮機においては、吸込み絞り弁のみを閉塞する容量制御を行わない場合には、圧縮機の仕様圧力P0*と無負荷運転に入る設定上限圧力P1*とを同じ圧力に設定している。なぜなら仕様圧力における全負荷運転状態のときに、電動機が許容最大出力となるように設計するからである。つまり、無負荷運転の開始の設定上限圧力P1*を仕様圧力P0*より高くすると電動機が過負荷状態になるし、他方、無負荷運転の開始の設定上限圧力P1*を仕様圧力P0*より低くすると、仕様圧力に到達しないうちに無負荷運転に入るという不具合が生じるためである。   In a general constant-speed motor-driven screw compressor, when the capacity control for closing only the suction throttle valve is not performed, the compressor specification pressure P0 * and the set upper limit pressure P1 * for entering no-load operation Are set to the same pressure. This is because the motor is designed so as to have an allowable maximum output in the full load operation state at the specified pressure. In other words, if the set upper limit pressure P1 * for starting no-load operation is higher than the specified pressure P0 *, the motor will be overloaded, while the set upper limit pressure P1 * for starting no-load operation will be lower than the specified pressure P0 *. Then, it is because the malfunction that it enters into a no-load driving | operation before it reaches | attains a specification pressure arises.

一方、本発明においては、インバータによる回転数制御領域の下限回転数で無負荷運転を開始しているので、一定速電動機駆動の圧縮機の制限がなく、回転数制御領域での目標設定圧力P0、(即ち一定速電動機駆動の圧縮機の場合の仕様圧力)に対して無負荷運転の開始圧力P1を高く設定しても、電動機の過負荷等の問題はなんら発生しない。そこで本発明においては、P1>P0となるようにP1を設定する。例えばP0が0.69Mpaの場合には、P1を0.79Mpaとする。このように設定することにより、回転数制御領域と下限回転数での一定速制御との間に時間遅れを持たせることができ、前述したハンチングが発生する恐れがない。   On the other hand, in the present invention, since no-load operation is started at the lower limit rotational speed of the rotational speed control region by the inverter, there is no restriction on the compressor driven by the constant speed motor, and the target set pressure P0 in the rotational speed control region is Even if the start pressure P1 of the no-load operation is set higher than (that is, the specification pressure in the case of a compressor driven by a constant speed motor), no problems such as overload of the motor occur. Therefore, in the present invention, P1 is set so that P1> P0. For example, when P0 is 0.69 Mpa, P1 is set to 0.79 Mpa. By setting in this way, it is possible to give a time delay between the rotation speed control region and the constant speed control at the lower limit rotation speed, and there is no possibility that the above-described hunting occurs.

なお、設定圧力によっては、圧縮機に適合する制御条件を外れ、不都合を生じる恐れがある。そこで、目標設定圧力P0を入力すると自動的に適正値を演算し、P1〜P4を決定する方法を用いる。このP1〜P4の決定方法の一例を以下に示す。今、圧力P0がP0=0.69MPaであったとする。この状態で低負荷になったら、最高圧力を0.098MPa上昇させて、P1=P0+0.098=0.79MPaという演算を行わせる。ここで、安全弁の吹き出し圧力は0.93MPaであるから、制御上限圧力はこの吹き出し圧力以下という条件を満足している。次に、停止可能な圧力P2の条件は、P2>=P1である。つまり、P1=P2まではロード運転し、P1=P2になったらアンロード運転に切り替えるから、このアンロード運転への切り替わり時からP0に圧力が降下するまでの時間を計算し、この時間が所定時間以上であれば停止させ、所定時間以内であればロード運転となるように制御装置を作動させる。ロード運転へ復帰させる圧力P3は、P3=<P0である。また、運転停止後に再起動させるための圧力P4は、P4=P0−0.098MPa=0.59MPaとする。   Depending on the set pressure, control conditions suitable for the compressor may be exceeded, which may cause inconvenience. Therefore, a method of automatically calculating an appropriate value when the target set pressure P0 is input and determining P1 to P4 is used. An example of a method for determining P1 to P4 is shown below. Assume that the pressure P0 is P0 = 0.69 MPa. When the load becomes low in this state, the maximum pressure is increased by 0.098 MPa, and the calculation of P1 = P0 + 0.098 = 0.79 MPa is performed. Here, since the discharge pressure of the safety valve is 0.93 MPa, the control upper limit pressure satisfies the condition that the discharge pressure is equal to or less than this discharge pressure. Next, the condition of the pressure P2 that can be stopped is P2> = P1. In other words, load operation is performed until P1 = P2, and when P1 = P2, the operation is switched to the unload operation. Therefore, the time from when switching to this unload operation until the pressure drops to P0 is calculated, and this time is predetermined. If it is longer than the time, it is stopped, and if it is within the predetermined time, the control device is operated so that the load operation is performed. The pressure P3 for returning to the load operation is P3 = <P0. The pressure P4 for restarting after the operation is stopped is set to P4 = P0−0.098 MPa = 0.59 MPa.

このように各圧力P0〜P4を設定した場合、P0=0.83MPa以上になると、P1=(P0+0.098)>0.93MPaとなり、安全弁の吹き出し圧力を超えてしまう。そこで、P1=P0+(0.07/P0)MPaで表されるような各仕様に適合した経験式を圧縮機の制御装置が有する記憶手段に記憶させておく。つまり、各圧縮機の圧力設定にあわせて、仕様に応じた式を演算式を記憶させることにより、P0の入力のみで、各設定圧力を自動的に決定できる。なお、この実施例では各設定圧力間の関係を演算式で与えたが、離散的な値を補間して用いても良い。また、この関係式を記憶手段に記憶させているが、フロッピー(登録商標)ディスクのような外部記憶手段に記憶させたものを用いてもよい。   When the pressures P0 to P4 are set in this way, when P0 = 0.83 MPa or more, P1 = (P0 + 0.098)> 0.93 MPa, which exceeds the discharge pressure of the safety valve. Therefore, an empirical formula suitable for each specification represented by P1 = P0 + (0.07 / P0) MPa is stored in the storage means of the compressor control device. In other words, each set pressure can be automatically determined only by inputting P0 by storing an arithmetic expression corresponding to the specification in accordance with the pressure setting of each compressor. In this embodiment, the relationship between each set pressure is given by an arithmetic expression, but discrete values may be interpolated and used. Further, although this relational expression is stored in the storage means, an expression stored in an external storage means such as a floppy (registered trademark) disk may be used.

ところで、従来、一定速電動機を用いた場合には、吸込み絞り弁や電磁弁の開閉動作に起因する圧力差の発生が避けられなかった。たとえば最低限必要な圧力が0.59Mpaであっても、0.69Mpaと0.59Mpaの間で負荷運転と、無負荷運転を繰り返していた。一方、インバータを用いた回転数制御方式では、PID制御により圧力を一定にして回転数を変化させることが可能になり、最低限必要な圧力0.59Mpaを回転数制御領域での目標設定圧力P0とすることで無駄に高い圧力まで昇圧する必要がなく、省電力効果が得られる。しかし回転数を制御しない低負荷領域での無負荷運転中に、例えば0.59Mpaと0.49Mpaの間に圧力を制御し、圧力が0.59Mpa以下に低下するとこの効果も半減する。すなわち、圧力が0.59Mpa以下に低下すると支障のある場合には結局P0を低下させることができない。   By the way, conventionally, when a constant speed motor is used, the generation of a pressure difference due to the opening / closing operation of the suction throttle valve or the electromagnetic valve has been unavoidable. For example, even when the minimum required pressure was 0.59 Mpa, the load operation and the no-load operation were repeated between 0.69 Mpa and 0.59 Mpa. On the other hand, in the rotational speed control method using an inverter, it is possible to change the rotational speed while keeping the pressure constant by PID control. The minimum required pressure 0.59 Mpa is set as the target set pressure P0 in the rotational speed control region. Therefore, it is not necessary to increase the pressure to a high pressure unnecessarily, and a power saving effect is obtained. However, during no-load operation in a low load region where the rotational speed is not controlled, for example, when the pressure is controlled between 0.59 Mpa and 0.49 Mpa and the pressure is reduced to 0.59 Mpa or less, this effect is also halved. That is, if the pressure drops below 0.59 Mpa, P0 cannot be lowered after all if there is a problem.

そこで、無負荷運転に入った後に圧縮空気が消費されて吐出圧力が低下するのを、圧力センサー18で検出する。また、負荷運転に復帰するときの圧力(下限圧力)P2を、回転数制御領域での目標設定圧力P0と同じか、それ以上の圧力とする。これにより回転数制御領域から空気使用量がさらに減少したときにも、常に回転数制御領域での目標設定圧力より高い圧力で運転が可能になる。また、制御圧力を上昇させても、低負荷領域であるから運転動力の増加は非常に小さくて済む。   Therefore, the pressure sensor 18 detects that the compressed air is consumed and the discharge pressure is lowered after entering the no-load operation. Further, the pressure (lower limit pressure) P2 when returning to the load operation is set to be equal to or higher than the target set pressure P0 in the rotation speed control region. As a result, even when the amount of air used is further reduced from the rotational speed control region, it is always possible to operate at a pressure higher than the target set pressure in the rotational speed control region. Even if the control pressure is increased, the increase in driving power is very small because it is in the low load region.

次に本発明の変形例を示す。この変形例は、負荷が減少した場合の制御についてである。負荷が減少した場合には、上記したタイマー機能により、自動停止と自動再起動が行われる。このとき、圧縮機の自動停止条件が整ったら一旦強制的に負荷運転を行い、圧縮機の吐出圧力を一旦回転数制御領域での目標設定圧力P0に対しP3>P0となるP3まで圧力を上昇させ、次いで圧縮機を停止させる。また、圧縮機を再起動させる圧力P4を回転数制御領域での目標設定圧力P0に対しP4>=P0に設定する。これにより、一定回転数に保持する低負荷領域においても圧縮機を安定に制御できる。すなわち本変形例によれば、回転数制御領域での目標設定圧力をあらゆる負荷領域において維持できるため、圧縮機を最低限必要な圧力で運転できるという上記したインバータによる回転数制御の省電力効果を最大限に発揮できる。   Next, a modification of the present invention will be shown. This modification is about control when load decreases. When the load decreases, automatic stop and automatic restart are performed by the timer function described above. At this time, once the automatic stop condition of the compressor is satisfied, the load operation is forcibly performed once, and the discharge pressure of the compressor is once increased to P3 where P3> P0 with respect to the target set pressure P0 in the rotational speed control region. And then stop the compressor. Further, the pressure P4 for restarting the compressor is set to P4> = P0 with respect to the target set pressure P0 in the rotation speed control region. As a result, the compressor can be stably controlled even in a low load region where the rotational speed is kept constant. That is, according to this modification, since the target set pressure in the rotation speed control region can be maintained in all load regions, the power saving effect of the rotation speed control by the inverter described above that the compressor can be operated at the minimum required pressure. Can demonstrate to the maximum.

なお上記実施例においては、制御圧力の設定値は記憶手段20aに格納されており、表示及び入力手段20bを用いて必要なときに表示できる。また、これらの設定値は制御圧力P0を入力すると自動的に演算され、決定されるようになっているが、表示及び入力手段20bを用いても容易に行える。例えば、圧力により最高圧力を制限する例では、上述の5個の制御圧力P0、P1、P2、P3、P4を、
P1=P3=P0+(0.07/P0)Mpa
P2=P4=P0
の式を用いて設定し、予め記憶手段に格納し、通常はP0だけを変化させる。この場合、運転圧力を簡単に変更できる。
In the above embodiment, the set value of the control pressure is stored in the storage means 20a and can be displayed when necessary using the display and input means 20b. These set values are automatically calculated and determined when the control pressure P0 is input, but can be easily performed using the display and input means 20b. For example, in the example in which the maximum pressure is limited by the pressure, the above five control pressures P0, P1, P2, P3, P4 are
P1 = P3 = P0 + (0.07 / P0) Mpa
P2 = P4 = P0
And is stored in advance in the storage means, and usually only P0 is changed. In this case, the operating pressure can be easily changed.

なお、手動で各設定圧力を決めることが出来ることは言うまでもない。例えば、P1=P2=P3=P0+X,P4=P0−Yとして、X,Yの値を表示装置に表示される時々刻々の値を見ながら、制御盤面上に設けた入力スイッチ等を用いて入力する。ここで、0.001>XまたはY>0.098である。   Needless to say, each set pressure can be determined manually. For example, P1 = P2 = P3 = P0 + X, P4 = P0−Y, and the values of X and Y are input using an input switch or the like provided on the control panel surface while watching the values displayed on the display device every moment. To do. Here, 0.001> X or Y> 0.098.

また、自動再起動後からカウントを開始するタイマーを記憶手段及び制御装置部20aに設け、負荷が減少しても所定時間t1の間圧縮機を停止させず、この時間t1経過後もなお圧縮機の負荷条件が前記自動停止条件を満足している時に圧縮機を自動停止させる。これにより、圧縮機が頻繁に運転、停止を繰り返すことに起因する、油温が十分に上昇する前に圧縮機が停止してオイルセパレータ5内にドレンが発生することを防止できる。   In addition, a timer for starting counting after the automatic restart is provided in the storage means and the control unit 20a, and the compressor is not stopped for a predetermined time t1 even when the load is reduced, and the compressor is still maintained after this time t1 has elapsed. The compressor is automatically stopped when the load condition satisfies the automatic stop condition. As a result, it is possible to prevent the compressor from stopping before the oil temperature sufficiently rises and draining from occurring in the oil separator 5 due to frequent operation and stop of the compressor.

上述したスクリュー圧縮機の制御法を用いたときの空気使用量と圧力の変化の例を図3に、またスクリュー圧縮機の運転制御のフローの一例を図4に示す。   FIG. 3 shows an example of changes in air consumption and pressure when the above-described screw compressor control method is used, and FIG. 4 shows an example of a flow of operation control of the screw compressor.

本発明では、インバータを使用した回転数制御と、容量制御を組み合わせるスクリュー圧縮機及びその運転方法において、容量制御運転中に吸込み絞り弁のみを閉塞して容量制御する従来方法の運転領域が全くないこれにより、動力の低減とドレンの発生を低減できる。   In the present invention, in the screw compressor combining the rotational speed control using the inverter and the capacity control and the operation method thereof, there is no operation region of the conventional method in which only the suction throttle valve is closed during the capacity control operation and the capacity control is performed. Thereby, reduction of power and generation of drain can be reduced.

以上述べたように、本実施例によれば、制御設定圧力を入力することで、低負荷時の容量制御において、圧力設定が容易になり、圧力条件による機械の不都合がない。また、入力値を変更及び確認できる機能を備えているので、常に圧縮機の運転状態を把握でき、圧縮機運転における信頼性を向上できる。   As described above, according to the present embodiment, by inputting the control set pressure, pressure setting is facilitated in capacity control at low load, and there is no mechanical inconvenience due to pressure conditions. Moreover, since the function which can change and confirm an input value is provided, the driving | running state of a compressor can always be grasped | ascertained and the reliability in compressor operation can be improved.

本発明の一実施例に係るスクリュー圧縮機装置の模式図である。It is a mimetic diagram of a screw compressor device concerning one example of the present invention. 消費動力の特性を示すグラフである。It is a graph which shows the characteristic of consumption power. 空気使用量と圧力の変化の一例を示すグラフである。It is a graph which shows an example of the change of air usage-amount and a pressure. 運転制御の一例のフローチャートである。It is a flowchart of an example of operation control.

符号の説明Explanation of symbols

2……吸込絞り弁、5……オイルセパレータ、6……オイルセパレータエレメント、8……逆止弁、9……調圧弁、16……電動機、17……インバータ、18……圧力センサー、19……入出力部、20a……記憶手段及び制御装置部、20b……表示及び設定入力手段部、21……電磁弁。 2 ... Suction throttle valve, 5 ... Oil separator, 6 ... Oil separator element, 8 ... Check valve, 9 ... Pressure regulating valve, 16 ... Electric motor, 17 ... Inverter, 18 ... Pressure sensor, 19 ... Input / output unit, 20a... Storage unit and control unit, 20b... Display and setting input unit, 21.

Claims (3)

インバータを用いた電動機により駆動される変速運転が可能なスクリュー圧縮機の運転方法において、
前記圧縮機の回転数を変化させて負荷の変化に対応する回転数制御運転と、この回転数制御運転で用いる下限回転数に前記圧縮機の回転数を設定するとともに、前記スクリュー圧縮機から吐出された圧縮空気を大気に放気して吐出圧力を減圧する無負荷運転とを備え、
予め定められた所定負荷より低負荷時には、前記回転数制御運転の下限回転数に設定した負荷運転と前記無負荷運転とを繰り返すことを特徴とするスクリュー圧縮機の運転方法。
In the operating method of the screw compressor capable of variable speed driving driven by an electric motor using an inverter,
A rotation speed control operation corresponding to a load change by changing the rotation speed of the compressor, and setting the rotation speed of the compressor as a lower limit rotation speed used in the rotation speed control operation, and discharging from the screw compressor With no-load operation to discharge the compressed air to the atmosphere and reduce the discharge pressure,
When the load is lower than a predetermined load, a screw compressor operating method, wherein the load operation set to the lower limit rotation speed of the rotation speed control operation and the no-load operation are repeated.
負荷が減少して前記圧縮機の回転数が回転数制御運転の下限回転数に設定された後、圧縮機から吐出された圧縮空気を大気に放気して吐出圧力を減圧する無負荷運転と負荷運転を繰り返す運転モードに切り替わるときは、圧縮機の吐出圧力の上限値P1を前記回転数制御運転の設定圧力P0に対し、P1>P0に設定することを特徴とする請求項1に記載のスクリュー圧縮機の運転方法。   After the load is reduced and the rotational speed of the compressor is set to the lower limit rotational speed of the rotational speed control operation, the compressed air discharged from the compressor is discharged to the atmosphere to reduce the discharge pressure; 2. The upper limit value P <b> 1 of the discharge pressure of the compressor is set to P <b> 1> P <b> 0 with respect to the set pressure P <b> 0 of the rotation speed control operation when the operation mode is switched to repeat the load operation. Operation method of screw compressor. 前記圧縮機の圧力が低下して圧縮機が再起動したときに、負荷が減少しても所定時間(t1)圧縮機の運転を継続し、所定時間(t1)経過後は圧縮機を停止させることを特徴とする請求項2に記載のスクリュー圧縮機の運転方法。   When the compressor pressure is reduced and the compressor is restarted, the compressor operation is continued for a predetermined time (t1) even if the load is reduced, and the compressor is stopped after the predetermined time (t1) has elapsed. The operating method of the screw compressor of Claim 2 characterized by the above-mentioned.
JP2006353688A 1996-02-19 2006-12-28 Operation method of screw compressor Expired - Lifetime JP4792383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006353688A JP4792383B2 (en) 1996-02-19 2006-12-28 Operation method of screw compressor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1996030316 1996-02-19
JP3031696 1996-02-19
JP2006353688A JP4792383B2 (en) 1996-02-19 2006-12-28 Operation method of screw compressor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001064314A Division JP3914713B2 (en) 1996-02-19 2001-03-08 Screw compressor operating method and screw compressor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010123723A Division JP5222900B2 (en) 1996-02-19 2010-05-31 Operation method of screw compressor

Publications (2)

Publication Number Publication Date
JP2007085360A true JP2007085360A (en) 2007-04-05
JP4792383B2 JP4792383B2 (en) 2011-10-12

Family

ID=37972548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006353688A Expired - Lifetime JP4792383B2 (en) 1996-02-19 2006-12-28 Operation method of screw compressor

Country Status (1)

Country Link
JP (1) JP4792383B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009122784A1 (en) * 2008-03-31 2009-10-08 株式会社日立製作所 Motor controller, air compressor, air conditioner, controller of passenger conveyor and controller of conveyor
CN102192574A (en) * 2011-05-25 2011-09-21 宁波奥克斯电气有限公司 Cooling mode start-up control method for screw-compression multi-connected central air conditioner
CN106979640A (en) * 2017-03-16 2017-07-25 中国科学院理化技术研究所 A kind of control method of Helium screw compressor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102261719B (en) * 2011-05-25 2013-06-05 宁波奥克斯电气有限公司 Control method for starting heating mode of screw-type compressed multi-connected central air conditioner
CN102401513B (en) * 2011-09-16 2013-06-05 宁波奥克斯电气有限公司 Ice storage and cold release control method of combined-type screw ice storage air-conditioner

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58204989A (en) * 1982-05-24 1983-11-29 Kobe Steel Ltd Method for operating capacity regulating device upon unloading
JPH0315684A (en) * 1989-06-13 1991-01-24 Hokuetsu Kogyo Co Ltd Automatically starting/stopping operation method of compressor
JPH04159491A (en) * 1990-10-24 1992-06-02 Hitachi Ltd Method and device for controlling volume of screw compressor
JPH05133342A (en) * 1991-11-13 1993-05-28 Tokico Ltd Operation control method for air compressor
JPH0546797B2 (en) * 1984-03-28 1993-07-14 Hokuetsu Kogyo Co
JPH0610876A (en) * 1992-06-23 1994-01-21 Hitachi Ltd Capacity control method for lubricating screw compressor
JPH06123287A (en) * 1992-10-08 1994-05-06 Mitsui Seiki Kogyo Co Ltd No-load operating device for engine compressor and stopping method
JPH06193579A (en) * 1992-12-25 1994-07-12 Hitachi Ltd Variable capacity compressor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58204989A (en) * 1982-05-24 1983-11-29 Kobe Steel Ltd Method for operating capacity regulating device upon unloading
JPH0546797B2 (en) * 1984-03-28 1993-07-14 Hokuetsu Kogyo Co
JPH0315684A (en) * 1989-06-13 1991-01-24 Hokuetsu Kogyo Co Ltd Automatically starting/stopping operation method of compressor
JPH04159491A (en) * 1990-10-24 1992-06-02 Hitachi Ltd Method and device for controlling volume of screw compressor
JPH05133342A (en) * 1991-11-13 1993-05-28 Tokico Ltd Operation control method for air compressor
JPH0610876A (en) * 1992-06-23 1994-01-21 Hitachi Ltd Capacity control method for lubricating screw compressor
JPH06123287A (en) * 1992-10-08 1994-05-06 Mitsui Seiki Kogyo Co Ltd No-load operating device for engine compressor and stopping method
JPH06193579A (en) * 1992-12-25 1994-07-12 Hitachi Ltd Variable capacity compressor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009122784A1 (en) * 2008-03-31 2009-10-08 株式会社日立製作所 Motor controller, air compressor, air conditioner, controller of passenger conveyor and controller of conveyor
JP2009247082A (en) * 2008-03-31 2009-10-22 Hitachi Ltd Motor controller, air compressor, air conditioner, controller for passenger conveyors, and controller for conveyors
US20110056226A1 (en) * 2008-03-31 2011-03-10 Hitachi, Ltd. Motor Controller, Air Compressor, Air Conditioner, Controller of Passenger Conveyor and Controller of Conveyor
US9136788B2 (en) 2008-03-31 2015-09-15 Hitachi, Ltd. Motor controller, air compressor, air conditioner, controller of passenger conveyor and controller of conveyor
CN102192574A (en) * 2011-05-25 2011-09-21 宁波奥克斯电气有限公司 Cooling mode start-up control method for screw-compression multi-connected central air conditioner
CN102192574B (en) * 2011-05-25 2013-03-06 宁波奥克斯电气有限公司 Cooling mode start-up control method for screw-compression multi-connected central air conditioner
CN106979640A (en) * 2017-03-16 2017-07-25 中国科学院理化技术研究所 A kind of control method of Helium screw compressor
CN106979640B (en) * 2017-03-16 2018-10-02 中国科学院理化技术研究所 A kind of control method of Helium screw compressor

Also Published As

Publication number Publication date
JP4792383B2 (en) 2011-10-12

Similar Documents

Publication Publication Date Title
JP3262011B2 (en) Operating method of screw compressor and screw compressor
JP4627492B2 (en) Oil-cooled screw compressor
JP3837278B2 (en) Compressor operation method
US7922457B2 (en) System and method for controlling a variable speed compressor during stopping
JP4248077B2 (en) Compressor device
JP5506830B2 (en) Screw compressor
CN110475973B (en) Gas compressor
JP4792383B2 (en) Operation method of screw compressor
JP4532327B2 (en) Compressor and operation control method thereof
JP7258161B2 (en) How to control a compressor towards a no-load condition
JP3914713B2 (en) Screw compressor operating method and screw compressor
JP3384225B2 (en) Oil-cooled screw compressor and operating method thereof
JP7075305B2 (en) Compressor operation control method and compressor
JP7267407B2 (en) gas compressor
JP4795977B2 (en) Compressor operation method
US20230243352A1 (en) Oiling device and abnormality detection method of the same
JP6249671B2 (en) Inverter-driven compressor operation control method and inverter-driven compressor
JP5674586B2 (en) Oil-cooled screw compressor
JP2002115925A (en) Operation method for oil cooling compression freezer
JP6720802B2 (en) Water addition start method of water addition type compressor
JP4506109B2 (en) Compression device
JP4608289B2 (en) Operation control method of screw compressor
JP2011012583A (en) Screw compressor
JPH0224959Y2 (en)
JPH10220383A (en) Operation method for inverter-driven screw compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100531

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101129

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110725

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term