JP3384225B2 - Oil-cooled screw compressor and operating method thereof - Google Patents

Oil-cooled screw compressor and operating method thereof

Info

Publication number
JP3384225B2
JP3384225B2 JP03031496A JP3031496A JP3384225B2 JP 3384225 B2 JP3384225 B2 JP 3384225B2 JP 03031496 A JP03031496 A JP 03031496A JP 3031496 A JP3031496 A JP 3031496A JP 3384225 B2 JP3384225 B2 JP 3384225B2
Authority
JP
Japan
Prior art keywords
pressure
temperature
oil
screw compressor
suction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03031496A
Other languages
Japanese (ja)
Other versions
JPH09222087A (en
Inventor
優和 青木
洋幸 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP03031496A priority Critical patent/JP3384225B2/en
Publication of JPH09222087A publication Critical patent/JPH09222087A/en
Application granted granted Critical
Publication of JP3384225B2 publication Critical patent/JP3384225B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、圧縮空気の冷却に
油を用いる給油式スクリュー圧縮機及びその運転方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refueling screw compressor that uses oil for cooling compressed air and a method of operating the same.

【0002】[0002]

【従来の技術】従来の給油式スクリュー圧縮機において
は、特開平5−141383号公報に記載のように、自
動発停機能を備えた圧縮機であってもモータの頻繁な起
動に起因するモータの加熱を防止するために、所定時間
内にの停止回数を制限する方法や、起動後所定時間はモ
ータを停止させない等の方法が用いられていた。
2. Description of the Related Art In a conventional refueling screw compressor, as described in JP-A-5-141383, even a compressor having an automatic start / stop function causes a motor to be frequently started. In order to prevent the heating of the motor, a method of limiting the number of stoppages within a predetermined time, a method of not stopping the motor for a predetermined time after starting, and the like have been used.

【0003】[0003]

【発明が解決しようとする課題】上記従来の技術におい
ては、自動発停機能を備えた圧縮機において、起動時の
温度が安定するまでにオイルセパレータタンク内で発生
するドレンに対して十分には考慮されていなかった。つ
まり、高温多湿の条件下で短時間間隔で起動停止が繰り
返された場合、オイルセパレータタンク内にドレンが発
生することが避けられない。
SUMMARY OF THE INVENTION In the above-mentioned prior art, in a compressor having an automatic start / stop function, a sufficient amount of drainage is prevented from occurring in the oil separator tank before the temperature at start-up stabilizes. Was not considered. That is, when the start and stop are repeated at short time intervals under the high temperature and high humidity condition, it is unavoidable that drainage occurs in the oil separator tank.

【0004】ところで、圧縮機の運転中に吸い込まれる
空気中には水分が含まれており、これが圧縮されると、
ドレンとなってオイルセパレータタンク内に溜る。これ
を放置しておくと油の劣化が促進され、機器内部の発錆
や腐食などの問題を引き起こす他、軸受の寿命にも影響
が及ぶ。このため、オイルセパレータタンク内にドレン
が発生しない運転条件を作り出すことが重要である。ド
レンの発生を防止する一般的な方法は、温調弁により油
温をドレンが発生する温度以上に保持することである。
しかし、自動発停機能を備えた圧縮機では、ドレンが発
生しない温度に油温が上昇する前に低負荷運転となり圧
縮機が停止する場合が有る。このような運転パターンを
繰り返すと、オイルセパレータタンク内にドレンが発生
し蓄積する惧れがある。この状態のまま長時間運転を続
けると、圧縮機本体の軸受が損傷したり、潤滑油が劣化
する等の大きな障害へとつながる可能性が高い。
By the way, the air sucked in during operation of the compressor contains water, and when this is compressed,
It becomes drain and collects in the oil separator tank. If left unattended, the deterioration of oil will be accelerated, causing problems such as rusting and corrosion inside the equipment and also affecting the life of the bearing. For this reason, it is important to create an operating condition in which no drain is generated in the oil separator tank. A general method for preventing the occurrence of drainage is to maintain the oil temperature above the temperature at which drainage occurs by means of a temperature control valve.
However, in a compressor having an automatic start / stop function, a low load operation may be performed and the compressor may stop before the oil temperature rises to a temperature at which drainage does not occur. If such an operation pattern is repeated, drain may be generated and accumulated in the oil separator tank. If the operation is continued for a long time in this state, there is a high possibility that the bearing of the compressor body will be damaged or the lubricating oil will be deteriorated.

【0005】本発明の目的は、自動発停機能を備えた圧
縮機において、オイルセパレータタンク内でのドレンの
発生及び滞留を防止する構造、構成及び運転制御方式を
提供することにある。
An object of the present invention is to provide a structure having a structure having an automatic start / stop function, a structure, and an operation control system for preventing generation and retention of drain in an oil separator tank.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
、本発明の第1の特徴は、駆動手段により駆動され雄
雌両ロータを有するスクリュー圧縮機本体と、このスク
リュー圧縮機本体から吐出されるガス圧力を検出するた
めの吐出圧力検出手段と、前記スクリュー圧縮機の吸込
み側に配設された吸込み流量制御手段と、前記スクリュ
ー圧縮機本体の下流側に配設された油分離手段と、この
油分離手段内の圧力を大気に開放するための連通手段
と、前記駆動手段の起動及び停止を制御する起動停止制
御手段と、前記油分離手段の下流側に設けられた逆止弁
と、この逆止弁下流側の圧力を検出するための圧力検出
器とを備えた油冷式スクリュー圧縮機において、前記圧
縮機本体へ吸入される流体の温度と湿度を検出するため
の手段と、前記圧縮機本体から吐出される流体の吐出温
度を検出する吐出温度検出手段と、前記吸入流体の温度
と湿度を検出する手段からの吸込み温湿度及び前記吐出
圧力検出手段からの吐出圧力に基づきドレン発生限界温
度を算出する手段と、前記吐出圧力検出手段が検出した
吐出圧力に応じて前記吸込み流量制御手段の流量を変化
させる制御(U式運転)、前記逆止弁下流側の圧力が第
1の設定圧力PHに達したときに前記吸込み流量制御手
段を閉塞すると共に前記連通手段を開放して無負荷運転
させ、この無負荷運転後に前記逆止弁下流側の圧力が第
2の設定圧力PLに達すると前記吸込み流量制御手段を
開くと共に前記連通手段を閉塞させる制御(I式運
転)、及び前記無負荷運転が所定時間以上継続するかま
たは負荷率が所定範囲以下のとき前記駆動手段を停止さ
せる制御(P式運転)を備え、これらU式、I式及びP
式運転を組合わせて運転制御する容量制御手段と、を備
え、この容量制御手段は、前記圧縮機の起動時、または
停止状態から起動状態になったとき、少なくとも前記前
記油分離手段内の温度が前記ドレン発生限界温度に達す
るまでは前記I式運転を行わず、強制的に前記U式運転
を行うことにある。
In order to achieve the above object , the first feature of the present invention is to provide a male drive driven by a drive means.
A screw compressor body having both female rotors and this screw
Liu The pressure of the gas discharged from the compressor body is detected.
Discharge pressure detection means and suction of the screw compressor
The suction flow rate control means disposed on the only side, and the screw
-Oil separating means arranged on the downstream side of the compressor body,
Communication means for releasing the pressure in the oil separation means to the atmosphere
And a start-stop control for controlling the start and stop of the drive means.
Control means and a check valve provided on the downstream side of the oil separation means
And pressure detection for detecting the pressure on the downstream side of this check valve
In an oil-cooled screw compressor equipped with
To detect the temperature and humidity of the fluid drawn into the compressor body
And the discharge temperature of the fluid discharged from the compressor body.
Temperature detecting means for detecting the temperature, and the temperature of the suction fluid
And humidity and suction from the means for detecting the humidity and humidity
Drain generation limit temperature based on the discharge pressure from the pressure detection means
Detected by the discharge pressure detecting means and the discharge pressure detecting means.
Change the flow rate of the suction flow rate control means according to the discharge pressure
Control (U type operation), pressure on the downstream side of the check valve is
When the set pressure PH of 1 is reached, the suction flow control hand
No load operation by closing the stage and opening the communication means
After this no-load operation, the pressure on the downstream side of the check valve becomes
When the set pressure PL of 2 is reached, the suction flow rate control means
Control for opening and closing the communication means (I-type operation
And whether the unloaded operation continues for a specified time or longer.
Or when the load factor is within a predetermined range, stop the drive means.
Control (P-type operation), and these U-type, I-type and P-type
Capacity control means for combined operation control
The capacity control means, when the compressor is started, or
At least when the above-mentioned
The temperature inside the oil separation means reaches the drain generation limit temperature.
The above-mentioned type I operation is not performed until
To do.

【0007】そして好ましくは、前記吸入流体の温度と
湿度を検出する手段、前記吐出圧力検出手段及び前記吐
出温度検出手段からの出力に基づき前記油分離手段に発
生する凝縮水量を蒸発させるために必要な運転時間を演
算し、この演算結果に基づき前記油分離手段に凝縮水が
溜まらないように前記容量制御手段により圧縮機を制御
するとよい。
And preferably, the temperature of the inhaled fluid and
Means for detecting humidity, the discharge pressure detection means, and the discharge
Output to the oil separation means based on the output from the output temperature detection means.
The operating time required to evaporate the amount of condensed water produced
And the condensed water is collected in the oil separation means based on the calculation result.
The compressor is controlled by the capacity control means so that it does not accumulate
Good to do.

【0008】上記目的を達成するため、本発明の第2の
特徴は、負荷に応じてスクリュー圧縮機の起動及び停止
を制御する油冷式スクリュー圧縮機の運転方法におい
て、スクリュー圧縮機本体の吐出側に設けた油分離手段
側の圧力に応じて前記スクリュー圧縮機本体の吸込み側
に設けた吸込み流量制御手段を制御するU式運転ステッ
プと、前記油分離手段の下流側に設けられている逆止弁
の更に下流側の圧力が第1の設定圧力PHに達すると前
記吸込み流量制御手段を閉塞すると共に前記油分離手段
側の圧力を大気に開放して無負荷運転し、この無負荷運
転後に前記逆止弁下流側の圧力が第2の設定圧力PLに
達すると前記吸込み流量制御手段を開くと共に前記油分
離手段内を大気に開放するラインを閉塞する制御を行う
I式運転ステップと、このI式運転ステップにおいて無
負荷運転が所定時間以上継続したときまたは負荷率が所
定範囲以下になったときに前記スクリュー圧縮機本体を
駆動する駆動源を停止させるP式運転ステップとを備
え、起動時には前記U式運転ステップにより起動し、少
なくとも前記スクリュー圧縮機本体へ吸込まれる流体の
温度及び湿度に基づいてスクリュー圧縮機本体吐出側に
おけるドレン発生限界温度TLを算出し、油分離手段内
の温度が前記ドレン発生限界温度TLを超えた後前記U
式運転ステップからI式運転ステップに移行させるよう
にしたことにある。
In order to achieve the above object, a second aspect of the present invention is provided.
The feature is the start and stop of the screw compressor according to the load.
The operating method of the oil-cooled screw compressor that controls the
Oil separating means provided on the discharge side of the screw compressor body
The suction side of the screw compressor body depending on the side pressure
U-type operation step for controlling the suction flow rate control means provided in the
And a check valve provided on the downstream side of the oil separating means.
Before the pressure on the further downstream side of reaches the first set pressure PH
The oil separation means is provided while closing the suction flow rate control means.
Side pressure is released to the atmosphere for no load operation,
After turning, the pressure on the downstream side of the check valve becomes the second set pressure PL.
When it reaches, the suction flow rate control means is opened and the oil content is
Control to close the line that opens the inside of the separating means to the atmosphere
I-type operation step and nothing in this I-type operation step
When the load operation continues for more than the specified time or the load factor
When the screw compressor body falls below a certain range,
And a P-type operation step for stopping the driving source to be driven
Well, at the time of start-up, it is started by the U-type operation step,
Of the fluid sucked into the screw compressor body
On the discharge side of the screw compressor body based on temperature and humidity
Calculate the drain generation limit temperature TL in the oil separation means
After the temperature of exceeds the drain generation limit temperature TL
To shift from the formula operation step to the I operation step
There is something I did.

【0009】そして好ましくは、前記I式運転におい
て、第2の設定圧力PLから第1の設定圧力PHに上昇す
る時間t1が設定値tに達したら、前記P式運転に移行
するようにすると良い。
And, preferably, the I-type operation
Increase from the second set pressure PL to the first set pressure PH
When the time t1 reaches the set value t, the P-type operation is started.
It is good to do.

【0010】[0010]

【発明の実施の形態】以下、本発明のいくつかの実施例
を図面を用いて説明する。◆図1は本発明の第1の実施
例を示す図であり、油冷式スクリュー圧縮機の系統図で
ある。吸込みフィルター1から吸込まれた空気は、吸込
み絞り弁2を経由した後スクリュー圧縮機の雄雌両ロー
タ3間で圧縮され、吐出口4から吐出される。空気の圧
縮により発生した圧縮熱を冷却するため、及び潤滑とシ
ールとをかねてスクリュー圧縮機12のロータ3部に潤
滑油が注入される。吐出口4から潤滑油と共に吐出され
た圧縮空気は、オイルセパレータタンク5内に流入し、
オイルセパレータエレメント6において潤滑油と分離さ
れ、吐出配管7から逆止弁8、調圧弁9を順次経て、ア
フタクーラ10に流入し、このアフタクーラ10で冷却
された後図示しない外部装置へ吐出される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Some embodiments of the present invention will be described below with reference to the drawings. 1 is a diagram showing a first embodiment of the present invention and is a system diagram of an oil-cooled screw compressor. The air sucked from the suction filter 1 passes through the suction throttle valve 2, is compressed between the male and female rotors 3 of the screw compressor, and is discharged from the discharge port 4. Lubricating oil is injected into the rotor 3 portion of the screw compressor 12 in order to cool the compression heat generated by the compression of air and also as a lubricant and a seal. The compressed air discharged together with the lubricating oil from the discharge port 4 flows into the oil separator tank 5,
The oil is separated from the lubricating oil in the oil separator element 6, and sequentially flows from the discharge pipe 7 through the check valve 8 and the pressure regulating valve 9 into the aftercooler 10, cooled by the aftercooler 10, and then discharged to an external device (not shown).

【0011】一方、潤滑油はオイルセパレータタンク5
内で圧縮空気と分離され、オイルセパレータタンク5の
底部からオイルクーラ11へと導かれる。オイルクーラ
11で冷却された潤滑油と、オイルクーラを経由しない
無冷却の潤滑油とが温調弁13部で混合され、混合され
た潤滑油がスクリュー圧縮機本体12を潤滑する。温調
弁13は圧縮機本体の出口においてドレンを発生しない
ように、給油温度を調整する。すなわち、オイルクーラ
11で冷却された潤滑油と、オイルクーラ11を経由し
ない無冷却の潤滑油の混合比率を自動的に調整する。
On the other hand, the lubricating oil is the oil separator tank 5
It is separated from the compressed air inside and is guided to the oil cooler 11 from the bottom of the oil separator tank 5. Lubricating oil cooled by the oil cooler 11 and uncooled lubricating oil that does not pass through the oil cooler are mixed in the temperature control valve 13 section, and the mixed lubricating oil lubricates the screw compressor body 12. The temperature control valve 13 adjusts the oil supply temperature so that drainage does not occur at the outlet of the compressor body. That is, the mixing ratio of the lubricating oil cooled by the oil cooler 11 and the uncooled lubricating oil not passing through the oil cooler 11 is automatically adjusted.

【0012】ここで、圧縮機の容量を、以下の3方式を
用いて調整する。◆ (1)圧縮機本体12の吸入口側に取り付けた吸込絞り
弁2の弁板14を、オイルセパレータエレメント6の下
流に設けた圧力センサー30が検出した圧力に応じて軸
方向に移動させる。つまり、オイルセパレータエレメン
ト6の圧力が上昇したら、圧力調整弁15を開いて吸込
み絞り弁2に制御空気を導入して弁板14の開度を調整
し、圧縮機の吸込空気量を調整する(以下U式運転と称
す)。
Here, the capacity of the compressor is adjusted using the following three methods. (1) The valve plate 14 of the suction throttle valve 2 attached to the suction port side of the compressor body 12 is moved in the axial direction according to the pressure detected by the pressure sensor 30 provided downstream of the oil separator element 6. That is, when the pressure of the oil separator element 6 rises, the pressure adjusting valve 15 is opened to introduce control air into the suction throttle valve 2 to adjust the opening degree of the valve plate 14 to adjust the suction air amount of the compressor ( Hereinafter referred to as U-type operation).

【0013】(2)逆止弁8の下流の圧力を圧力検出器
16で検出し、この検出圧力が設定上限圧力に到達した
ら吸込み絞り弁2の弁板14を閉塞する。それととも
に、逆止弁8の上流側でオイルセパレータエレメント6
の下流に設けた電磁弁17、吸込み絞り弁2を経て大気
へ放出する。これにより、オイルセパレータタンク5内
の圧力を減圧し無負荷運転させる。その後、逆止弁8の
下流の圧力が設定下限圧力まで降下したら全負荷運転に
復帰させる(以下I式運転と称す)。
(2) The pressure downstream of the check valve 8 is detected by the pressure detector 16, and when the detected pressure reaches the set upper limit pressure, the valve plate 14 of the suction throttle valve 2 is closed. At the same time, the oil separator element 6 is provided on the upstream side of the check valve 8.
It is released to the atmosphere via a solenoid valve 17 and a suction throttle valve 2 provided downstream of the. As a result, the pressure in the oil separator tank 5 is reduced and the loadless operation is performed. After that, when the pressure downstream of the check valve 8 drops to the set lower limit pressure, full load operation is restored (hereinafter referred to as I-type operation).

【0014】(3)(2)項に記載のI式運転におい
て、無負荷運転が長く続いたとき、または負荷率が所定
範囲より小さい場合等には空気使用量が少ないのでモー
タ18を停止させる。その後、再び空気が消費されて逆
止弁8の下流の圧力が低下したときに、モータ18を再
起動させる(以下P式運転と称す)。ここで、負荷率L
Rとは圧力検出器16が検出した圧力が設定値PHまで上
昇する時間tPRと設定値PLまで下降するまでの時間t
PLの割合である。すなわち、LR=tPR/(tPR
PL) で表される量であり、通常0.1程度に設
定される。
In the I-type operation described in (3) and (2), when no-load operation continues for a long time, or when the load factor is smaller than a predetermined range, the motor 18 is stopped because the amount of air used is small. . After that, when the air is consumed again and the pressure downstream of the check valve 8 decreases, the motor 18 is restarted (hereinafter referred to as P-type operation). Here, the load factor L
R is the time t PR for the pressure detected by the pressure detector 16 to rise to the set value P H and the time t for the pressure to fall to the set value P L.
It is the ratio of PL . That is, L R = t PR / (t PR +
t PL ), which is usually set to about 0.1.

【0015】ここで、本実施例においては、上記P式運
転において圧縮機が自動起動停止運転モードに入った
ら、加圧状態にしておき温度センサー31で検出したオ
イルセパレータタンク5内の空気の温度がドレンが発生
しない温度に到達するまでI式運転を行わず、強制的に
U式運転モードに入るようにする。
Here, in the present embodiment, when the compressor enters the automatic start-stop operation mode in the P-type operation, the temperature of the air in the oil separator tank 5 detected by the temperature sensor 31 is kept in the pressurized state. Do not perform the I-type operation until the temperature reaches a level at which drainage does not occur, and forcefully enter the U-type operation mode.

【0016】この理由を以下に説明する。一般にU式運
転では、圧縮機の吐出側に全負荷時と同様の圧力が付与
されているため、全負荷時の65〜75%までしか動力
を低減できない。一方、I式運転では圧縮機の吐出側の
圧力を大気へ開放するため、全負荷時の30〜35%ま
で動力を低減できる。このため、圧縮機システム中に用
いられる温調弁13が給油温度を一定に保持する機能を
有していても、I式運転モードで無負荷に近い状態が継
続すると圧縮機本体12から吐出される空気温度の上昇
が著しく遅くなる場合がある。実際の圧縮機の使用条件
で起動直後から完全に無負荷で運転されることは希であ
るが、複数台並列運転の場合などには無負荷に近い条件
で起動されることが十分に起こり得る。I式運転で、完
全に無負荷とみなされるときには、吸込まれる空気量は
容量制御機構の制御用空気のみである。この場合、オイ
ルセパレータタンク5内の圧力は減圧されており、ドレ
ンは発生しない。しかし、無負荷に近い運転条件のとき
には、完全に無負荷運転をしている間に極僅かな時間だ
け全負荷運転が挟まって運転される。そのため、最もド
レンを発生しやすい状態になる。この様子を、図2を用
いて更に説明する。
The reason for this will be described below. Generally, in the U-type operation, since the same pressure as that at full load is applied to the discharge side of the compressor, the power can be reduced only to 65 to 75% of that at full load. On the other hand, in the I-type operation, since the pressure on the discharge side of the compressor is released to the atmosphere, the power can be reduced to 30 to 35% of the full load. Therefore, even if the temperature control valve 13 used in the compressor system has a function of keeping the oil supply temperature constant, the compressor main body 12 discharges when the state close to no load continues in the I-type operation mode. The temperature of the air may rise significantly slower. It is rare that the compressor will be completely operated with no load immediately after startup under actual usage conditions of the compressor, but in the case of parallel operation of multiple compressors, it is possible to start it under conditions close to no load. . In the I-type operation, when it is considered that there is no load, the intake amount of air is only the control air of the capacity control mechanism. In this case, the pressure inside the oil separator tank 5 is reduced, and drainage does not occur. However, under operating conditions close to no load, full load operation is performed for a very short period of time during complete no load operation. Therefore, the drain is most likely to be generated. This situation will be further described with reference to FIG.

【0017】図2は、起動直後の負荷状態による圧縮機
本体12の吐出温度の上昇パターンを示す図である。図
中、A線は全負荷運転時、B線はI式運転での0%負荷
時、C線、D線はそれぞれ5%、10%負荷時における
圧縮機本体12の吐出温度の上昇速度を示している。こ
れに対して、U式運転では同じように無負荷で起動した
場合でも消費動力がI式運転のほぼ倍になっており、E
線で示したように全負荷時の温度上昇に近い速度でドレ
ンの発生しない温度TLに到達する。F線、G線は同じ
くU式運転時の5%、10%負荷時の圧縮機本体の吐出
温度の上昇速度を示したものであり、同一負荷条件にお
けるI式運転に比べて、ドレンが発生しない温度に到達
する時間は約1/3で済む。従って起動直後に無負荷、
または軽負荷になった場合でも、オイルセパレータタン
ク内に蓄積される惧れのあるドレン量はI式運転の場合
の1/3以下で済む。つまり、P式運転を用いると手動
でドレンを抜くことが困難であるので、自動運転で圧縮
機を起動するときには、U式運転を用いるのが最適であ
る。
FIG. 2 is a diagram showing a rising pattern of the discharge temperature of the compressor body 12 depending on the load state immediately after starting. In the figure, the line A indicates the rising speed of the discharge temperature of the compressor body 12 at the time of full load operation, the line B at the time of 0% load in the I type operation, and the lines C and D at the time of 5% and 10% load, respectively. Shows. On the other hand, in the U-type operation, the power consumption is almost double that in the I-type operation even when the engine is started with no load.
As indicated by the line, the temperature TL at which drainage does not occur reaches a temperature close to the temperature increase at full load. Similarly, the F and G lines show the rising speed of the discharge temperature of the compressor body at 5% and 10% load in the U-type operation, respectively. Compared to the I-type operation under the same load conditions, drainage occurs. It takes about 1/3 to reach the temperature that does not occur. Therefore, no load immediately after startup,
Alternatively, even if the load is light, the amount of drainage that may be accumulated in the oil separator tank is 1/3 or less of that in the case of the I-type operation. That is, since it is difficult to drain the drain manually when the P-type operation is used, it is optimal to use the U-type operation when starting the compressor by the automatic operation.

【0018】しかしながら、U式運転のままでは無負荷
時や軽負荷時の消費動力が大きく、省エネルギーの効果
が少ない。そこで、オイルセパレータタンク内の空気温
度がドレンが発生しない温度TLに到達したらU式運転
から、I式運転へと移行させる。この温度の検出には温
度センサー31の代わりに、通常油冷式スクリュー圧縮
機の圧縮機本体12の吐出口に設けられる熱電対やサー
ミスタ等の温度比例出力を持つセンサーを吐出温度セン
サー19として用いれば、新たにセンサーを設ける必要
がない。
However, if the U-type operation is left as it is, the power consumption is large under no load or light load, and the effect of energy saving is small. Therefore, when the air temperature in the oil separator tank reaches the temperature TL at which drainage does not occur, the U-type operation is changed to the I-type operation. In order to detect this temperature, instead of the temperature sensor 31, a sensor having a temperature proportional output such as a thermocouple or thermistor provided at the discharge port of the compressor body 12 of the oil-cooled screw compressor is usually used as the discharge temperature sensor 19. Therefore, there is no need to install a new sensor.

【0019】無負荷運転がさらに続いた場合には、P式
運転に移行してモータを停止させ、無駄な動力の消費を
防止する。このように圧縮機の運転を制御したときの本
実施例の運転パターンのフローを図3に示す。
When the no-load operation continues, the motor is stopped by shifting to the P-type operation to prevent wasteful power consumption. FIG. 3 shows the flow of the operation pattern of this embodiment when the operation of the compressor is controlled in this way.

【0020】次に、本発明の第2の実施例について、図
4および図5を用いて説明する。◆この第2の実施例に
おいては、第1の実施例と同様にU式運転により自動で
圧縮機を起動し、圧縮機本体12の吐出温度をドレンが
発生しない温度TLまで上昇させる。その後、I式運転
に切り換える。そして、I式運転中のロード運転時間、
即ち、オイルセパレータエレメント6の下流の圧力が、
設定ロード復帰圧力PLから設定上限圧力PHに到達する
までの時間t1を積算する(図4参照)。このロード積
算時間が、予じめ設定した時間t分に到達した時にP式
運転モードに移行する。予め設定した時間t分に達する
までは、たとえ低負荷であっても圧縮機を停止させな
い。このように圧縮機を制御した本実施例の運転パター
ンのフローを図5に示す。
Next, a second embodiment of the present invention will be described with reference to FIGS. 4 and 5. In the second embodiment, the compressor is automatically started by the U-type operation as in the first embodiment, and the discharge temperature of the compressor body 12 is raised to the temperature TL at which the drain is not generated. After that, the mode I operation is switched to. And, the load operation time during I-type operation,
That is, the pressure downstream of the oil separator element 6 is
The time t 1 from the setting load return pressure P L to the setting upper limit pressure P H is integrated (see FIG. 4). When the accumulated load time reaches the preset time t, the P-type operation mode is entered. The compressor is not stopped even if the load is low until the preset time t is reached. FIG. 5 shows a flow of the operation pattern of this embodiment in which the compressor is controlled in this way.

【0021】吸込空気温度30℃、相対湿度80%、吐
出圧力0.69MPaと想定したときの、ドレンが発生
する吐出温度領域Aと、溜まったドレンが蒸発する吐出
温度領域Bとを図6に示す。そして、図6の状態でオイ
ルセパレータタンク5内のドレン量Qdがどのように変
化するかを、図7に示す。この条件下では、約2分でド
レンの発生が停止し、約4分で起動時に蓄積していたド
レンも蒸発し、すべてのドレンは吐出ラインに持ち去ら
れる。以上は、常に全負荷運転した場合である。ドレン
の蒸発運転温度領域Bに入った後、アンロード運転する
と蒸発量は全負荷時のそれに比べ大幅に減少する。すな
わち、一旦オイルセパレータタンク5内に発生したドレ
ンを再度蒸発させてタンク内から持ち出す最も有効な手
段は、ドレンを発生させない吐出温度以上でロード運転
することであるから、本実施例では第1の実施例をさら
に進め、停止制限時間を設ける。この停止制限時間はロ
ード時間t1のみを積算したものであるから、オイルセ
パレータタンク5内に溜まることが予測されるドレンを
確実に蒸発させることができる。
FIG. 6 shows a discharge temperature region A in which drainage occurs and a discharge temperature region B in which accumulated drainage evaporates, assuming that the intake air temperature is 30 ° C., the relative humidity is 80%, and the discharge pressure is 0.69 MPa. Show. Then, FIG. 7 shows how the drain amount Q d in the oil separator tank 5 changes in the state of FIG. 6. Under this condition, the generation of drain is stopped in about 2 minutes, the drain accumulated at startup is evaporated in about 4 minutes, and all the drain is carried away to the discharge line. The above is the case where full load operation is always performed. When the unloading operation is performed after entering the draining operation temperature range B, the evaporation amount is significantly reduced as compared with that under full load. That is, the most effective means for evaporating the drain once generated in the oil separator tank 5 again and taking it out from the tank is to carry out the load operation at the discharge temperature or higher at which the drain is not generated, and therefore in the present embodiment, The example is further advanced and a stop time limit is set. Since the stop time limit is obtained by integrating only the load time t 1 , it is possible to surely evaporate the drain that is expected to be accumulated in the oil separator tank 5.

【0022】次に、本発明の第3の実施例について説明
する。◆一定の吸込温度および湿度条件下においては、
ドレンが発生する限界温度TLは、吐出圧力が高くなれ
ばなるほど上昇する。従って運転する吐出圧力が異なっ
ていれば、上述した第1及び第2の実施例中のU式運転
をI式運転へ切り換える温度を変更すべきである。なぜ
なら、吸込空気温度30℃、相対湿度80%、吐出圧力
0.69MPaの条件の下では、ドレン発生限界温度は
約70℃であるのに対し、同じ吸込条件でも吐出圧力が
0.84MPaまで上昇すると、ドレン発生限界温度は
約78℃である。したがって、U式運転からI式運転へ
の切り換え温度を70℃のままにすると、ドレンの蒸発
運転時間の積算を早めに開始することになり、溜まった
ドレンを完全に蒸発させられないケースが発生する。逆
に、設定より低い圧力で運転されている場合には、実際
に必要な時間より長い時間を停止制限時間とすることに
なり、省エネルギー効果が損なわれる。
Next, a third embodiment of the present invention will be described. ◆ Under constant suction temperature and humidity conditions,
The limit temperature TL at which drainage occurs increases as the discharge pressure increases. Therefore, if the discharge pressure to be operated is different, the temperature at which the U-type operation in the above-mentioned first and second embodiments is switched to the I-type operation should be changed. Because, under the conditions of suction air temperature of 30 ° C, relative humidity of 80%, and discharge pressure of 0.69 MPa, the drain generation limit temperature is about 70 ° C, while the discharge pressure rises to 0.84 MPa even under the same suction condition. Then, the drain generation limit temperature is about 78 ° C. Therefore, if the switching temperature from the U-type operation to the I-type operation is kept at 70 ° C, the accumulation of the drain evaporation operation time will start earlier, and the accumulated drain may not be completely evaporated. To do. On the contrary, when the engine is operated at a pressure lower than the set value, the time longer than the actually required time is set as the stop time limit, and the energy saving effect is impaired.

【0023】そこで、本実施例においては、I式運転の
制御圧力を圧力センサー16で検出し、上限圧力PH
下限圧力PLとを制御用マイコンにキーイン入力して設
定する。そしてU式運転からI式運転への切り換え温度
を、入力された上限圧力PHの設定値からマイコンを用
いて計算で求め、設定圧力が変更された場合には自動的
に上限圧力PHに応じて切り換え温度を上下させる。こ
れにより運転圧力が変更がされた場合にも、圧縮機の運
転を適切に制御できる。
Therefore, in the present embodiment, the control pressure for the I-type operation is detected by the pressure sensor 16, and the upper limit pressure P H and the lower limit pressure P L are set by key-in input to the control microcomputer. The switching temperature of the I-type operation from U-type operation, calculated from the set value of the input upper limit pressure P H with microcomputer according automatically to the upper limit pressure PH in the case of setting pressure is changed To raise or lower the switching temperature. Thereby, even when the operating pressure is changed, the operation of the compressor can be appropriately controlled.

【0024】更に、本発明の第4の実施例を以下に説明
する。本実施例においては、圧縮機が吸込む空気の温度
及び湿度を検出するセンサーを圧縮機の吸込側に設け、
このセンサーから検出された圧縮機の吸込温湿度と、圧
力センサーから検出された吐出圧力とからドレン発生限
界温度を算出する。そして、この温度に到達するまでの
運転時間から、オイルセパレータタンク内に発生するド
レン量を算出し、このドレン量に基づいて、ドレンを蒸
発させるのに必要なロード運転時間を求める。以後の手
順は第2の実施例と同様である。上述の実施例では、オ
イルセパレータタンクに溜まるドレン量を、吸込温度お
よび吸込湿度の双方について仕様値の最悪条件(例え
ば、30℃相対湿度90%)を想定して求め、そのドレ
ン量から停止制限時間を設定していたが、本実施例によ
ればより実際の運転条件に近い条件に基づいてドレン量
を算出しているので、吸込み条件が仕様値の最悪条件よ
り乾燥している場合には停止制限時間を短くすることが
できる。
Further, a fourth embodiment of the present invention will be described below. In this embodiment, a sensor for detecting the temperature and humidity of the air sucked by the compressor is provided on the suction side of the compressor,
The drain generation limit temperature is calculated from the suction temperature and humidity of the compressor detected by this sensor and the discharge pressure detected by the pressure sensor. Then, the amount of drain generated in the oil separator tank is calculated from the operating time until the temperature is reached, and the load operating time required to evaporate the drain is obtained based on the amount of drain. The subsequent procedure is similar to that of the second embodiment. In the above-described embodiment, the amount of drainage accumulated in the oil separator tank is determined by assuming the worst condition of the specification value (for example, 30 ° C. relative humidity 90%) for both the suction temperature and the suction humidity, and the stop limit is determined from the drainage amount. Although the time was set, according to the present embodiment, the drain amount is calculated based on the condition closer to the actual operating condition, so when the suction condition is dry than the worst condition of the specification value, The stop time limit can be shortened.

【0025】[0025]

【発明の効果】本発明によれば、スクリュー圧縮機への
吸入流体の温度と湿度、並びにスクリュー圧縮機からの
吐出圧力に基づきドレン発生限界温度を算出し、スクリ
ュー圧縮機の起動時、または停止状態から起動状態にな
ったとき、油分離手段内の温度が前記ドレン発生限界温
度に達するまでは強制的にU式運転(吐出圧力に応じて
前記吸込み流量制御手段の流量を変化させる制御)を行
うようにしたので、油分離手段等にドレンが溜まるのを
抑制でき、またドレンが溜まってもそれを蒸発させ、吐
出空気と共に機外に運び出すことができるから、油分離
手段内にドレンが滞留することに起因する機器の発錆、
及びそれによる故障、軸受の潤滑不良によるトラブルを
防止できる。また、ユーザにとって面倒なドレン抜き作
業の手間も省くことができる。また、実際の運転条件に
近い条件に基づいてドレン量を算出することができるか
ら、吸込空気中の水分量に応じて、ドレン発生を防止す
るための運転時間を短くすることができ、負荷変動があ
っても最適なドレン発生防止と省エネルギーを達成でき
る。
According to the present invention, the screw compressor
Intake fluid temperature and humidity, as well as from the screw compressor
Calculate the drain generation limit temperature based on the discharge pressure and
When the compressor is started, or when
Temperature, the temperature inside the oil separation means is
U-type operation is compulsory until the temperature reaches
Control for changing the flow rate of the suction flow rate control means).
Since it has been set so that drain will not collect in the oil separation means etc.
It can be suppressed, and even if drainage accumulates, it can be evaporated and spit out.
Oil can be separated because it can be carried out of the machine together with the discharged air.
Rust of equipment due to the accumulation of drain in the means,
And failure due to it, trouble due to poor lubrication of the bearing
It can be prevented. In addition, draining work that is troublesome for users
The labor of work can be saved. Also, the actual operating conditions
Is it possible to calculate the drain amount based on similar conditions?
The drainage according to the amount of water in the intake air.
The operating time for
Even if you can achieve optimal drain prevention and energy saving
It

【0026】[0026]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る油冷式スクリュー圧縮機の第1の
実施例の系統図である。
FIG. 1 is a system diagram of a first embodiment of an oil-cooled screw compressor according to the present invention.

【図2】運転方式の差による起動時の吐出温度の変化を
説明するグラフである。
FIG. 2 is a graph illustrating a change in discharge temperature at the time of startup due to a difference in operation method.

【図3】本発明の第1の実施例の運転方式のフロー図で
ある。
FIG. 3 is a flow chart of an operation method according to the first embodiment of the present invention.

【図4】本発明の第2の実施例の運転圧力パターンのグ
ラフである。
FIG. 4 is a graph of an operating pressure pattern according to the second embodiment of the present invention.

【図5】本発明の第2の実施例の運転方式のフロー図で
ある。
FIG. 5 is a flow chart of an operation method according to a second embodiment of the present invention.

【図6】起動時の吐出温度の変化を説明するグラフであ
る。
FIG. 6 is a graph illustrating a change in discharge temperature at startup.

【図7】オイルセパレータタンク内のドレン量の変化を
説明するグラフである。
FIG. 7 is a graph illustrating changes in the drain amount in the oil separator tank.

【符号の説明】[Explanation of symbols]

1……吸込みフィルター、2……吸込絞り弁、3……ロ
ータ、4……吐出口、5……オイルセパレータタンク、
6……オイルセパレータエレメント、7……吐出配管、
8……逆止弁、9……調圧縮機弁、10……アフターク
ーラ、11……オイルクーラ、12……圧縮機本体、1
3……温調弁、14……吸込絞り弁弁板、15……圧力
調整弁、16……圧力検出器、17……電磁弁、18…
…モータ、19……吐出温度センサ、20……冷却ファ
ンモータ、21……冷却ファン、22……排出バルブ、
23……ベルト、24……オイルフィルタ、25……オ
リフィス。
1 ... Suction filter, 2 ... Suction throttle valve, 3 ... Rotor, 4 ... Discharge port, 5 ... Oil separator tank,
6 ... Oil separator element, 7 ... Discharge pipe,
8 ... Check valve, 9 ... Adjusting compressor valve, 10 ... After cooler, 11 ... Oil cooler, 12 ... Compressor body, 1
3 ... Temperature control valve, 14 ... Suction throttle valve valve plate, 15 ... Pressure adjustment valve, 16 ... Pressure detector, 17 ... Solenoid valve, 18 ...
... motor, 19 ... discharge temperature sensor, 20 ... cooling fan motor, 21 ... cooling fan, 22 ... exhaust valve,
23 ... Belt, 24 ... Oil filter, 25 ... Orifice.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI F04C 29/02 331 F04C 29/02 331Z 341 341Z 351 351D G05B 19/02 G05B 19/02 D (56)参考文献 特開 平4−136498(JP,A) 特開 平2−223694(JP,A) 特開 平6−249190(JP,A) 特開 平7−332248(JP,A) 特開 平8−319982(JP,A) 特開 昭50−15113(JP,A) 特開 昭52−155405(JP,A) 特開 昭58−220996(JP,A) 特開 昭63−208697(JP,A) 特開 昭56−580(JP,A) 特公 昭64−4078(JP,B1) (58)調査した分野(Int.Cl.7,DB名) F04C 18/16 F04C 29/00 - 29/10 F04B 49/00 - 49/10 G05B 19/02 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI F04C 29/02 331 F04C 29/02 331Z 341 341Z 351 351D G05B 19/02 G05B 19/02 D (56) Reference Japanese Patent Laid-Open No. 4 -136498 (JP, A) JP-A-2-223694 (JP, A) JP-A-6-249190 (JP, A) JP-A-7-332248 (JP, A) JP-A-8-319982 (JP, A) ) JP-A-50-15113 (JP, A) JP-A-52-155405 (JP, A) JP-A-58-220996 (JP, A) JP-A-63-208697 (JP, A) JP-A-56- 580 (JP, A) JP-B 64-4078 (JP, B1) (58) Fields investigated (Int. Cl. 7 , DB name) F04C 18/16 F04C 29/00-29/10 F04B 49/00- 49/10 G05B 19/02

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】駆動手段により駆動され雄雌両ロータを有
するスクリュー圧縮機本体と、このスクリュー圧縮機本
体から吐出されるガス圧力を検出するための吐出圧力検
出手段と、前記スクリュー圧縮機吸込み側に配設され
た吸込み流量制御手段と、前記スクリュー圧縮機本体の
下流側に配設され油分離手段と、この油分離手段内の
圧力を大気に開放するための連通手段と、前記駆動手段
の起動及び停止を制御する起動停止制御手段と、前記油
分離手段の下流側に設けられた逆止弁と、この逆止弁下
流側の圧力を検出するための圧力検出器とを備えた油冷
式スクリュー圧縮機において、前記圧縮機本体へ吸入される流体の温度と湿度を検出す
るための手段と、 前記圧縮機本体から吐出される流体の吐出温度を検出す
る吐出温度検出手段と、 前記吸入流体の温度と湿度を検出する手段からの吸込み
温湿度及び前記吐出圧力検出手段からの吐出圧力に基づ
きドレン発生限界温度を算出する手段と、 前記吐出圧力検出手段が検出した吐出圧力に応じて前記
吸込み流量制御手段の流量を変化させる制御(U式運
転)、前記逆止弁下流側の圧力が第1の設定圧力PHに
達したときに前記吸込み流量制御手段を閉塞すると共に
前記連通手段を開放して無負荷運転させ、この無負荷運
転後に前記逆止弁下流側の圧力が第2の設定圧力PLに
すると前記吸込み流量制御手段を開くと共に前記連通
手段を閉塞させる制御(I式運転)、及び前記無負荷運
転が所定時間以上継続するかまたは負荷率が所定範囲以
とき前記駆動手段を停止させる制御(P式運転)を
備え、これらU式、I式及びP式運転を組合わせて運転
制御する容量制御手段と、を備え、 この容量制御手段は、前記圧縮機の起動時、または停止
状態から起動状態になったとき、少なくとも前記前記油
分離手段内の温度が前記ドレン発生限界温度に達するま
では前記I式運転を行わず、強制的に前記U式運転を行
ことを特徴とする油冷式スクリュー圧縮機。
Claim: What is claimed is: 1. A screw compressor body driven by a driving means and having both male and female rotors, a discharge pressure detecting means for detecting a gas pressure discharged from the screw compressor body, and a suction of the screw compressor. Side, a suction flow rate control means, an oil separating means arranged downstream of the screw compressor body, a communicating means for releasing the pressure in the oil separating means to the atmosphere, and the drive Start-stop control means for controlling the start and stop of the means, and the oil
Check valve provided on the downstream side of the separating means, and
In an oil-cooled screw compressor equipped with a pressure detector for detecting the pressure on the flow side, the temperature and humidity of the fluid sucked into the compressor body are detected.
Means for detecting the discharge temperature of the fluid discharged from the compressor body.
Suction from the discharge temperature detecting means and the means for detecting the temperature and humidity of the suction fluid
Based on the temperature and humidity and the discharge pressure from the discharge pressure detection means.
Means for calculating a drain occurrence threshold temperature can control said discharge pressure detecting means to vary the flow rate of the suction flow amount control means in accordance with the discharge pressure detected (U Shikiun
Rolling), the suction flow rate control means together <br/> said opening the communication means is no-load operation when closing the when the pressure of the check valve downstream reaches a first set pressure PH, the free control the pressure of the check valve downstream after load operation is closed together the communicating <br/> means open the reaches Then the suction flow rate control means to a second set pressure PL (I type operation), and the Mu control load operation or the load factor for predetermined time or longer stops the drive unit when the following predetermined range (P-type operation)
Prepared to operate by combining these U-type, I-type and P-type operations
And a capacity control means for controlling the capacity control means , the capacity control means at the time of starting or stopping the compressor.
When the state is changed to the starting state, at least the oil
Until the temperature in the separation means reaches the drain generation limit temperature.
Then, the U-type operation is forcibly performed without performing the I-type operation.
Cormorant oil-cooled screw compressor, characterized in that.
【請求項2】請求項1において、前記吸入流体の温度と
湿度を検出する手段、前記吐出圧力検出手段及び前記吐
出温度検出手段からの出力に基づき前記油分離手段に発
生する凝縮水量を蒸発させるために必要な運転時間を演
算し、この演算結果に基づき前記油分離手段に凝縮水が
溜まらないように前記容量制御手段により圧縮機を制御
することを特徴とする油冷式スクリュー圧縮機。
2. The temperature of the suction fluid according to claim 1,
Means for detecting humidity, the discharge pressure detection means, and the discharge
Output to the oil separation means based on the output from the output temperature detection means.
The operating time required to evaporate the amount of condensed water produced
And the condensed water is collected in the oil separation means based on the calculation result.
The compressor is controlled by the capacity control means so that it does not accumulate
An oil-cooled screw compressor characterized in that.
【請求項3】負荷に応じてスクリュー圧縮機の起動及び
停止を制御する油冷式スクリュー圧縮機の運転方法にお
いて、 スクリュー圧縮機本体の吐出側に設けた油分離手段側の
圧力に応じて前記スクリュー圧縮機本体の吸込み側に設
けた吸込み流量制御手段を制御するU式運転ステップ
と、 前記油分離手段の下流側に設けられている逆止弁の更に
下流側の圧力が第1の設定圧力PHに達すると前記吸込
み流量制御手段を閉塞すると共に前記油分離手段側の圧
力を大気に開放して無負荷運転し、この無負荷運転後に
前記逆止弁下流側の圧力が第2の設定圧力PLに達する
と前記吸込み流量制御手段を開くと共に前記油分離手段
内を大気に開放するラインを閉塞する制御を行うI式運
転ステップと、 このI式運転ステップにおいて無負荷運転が所定時間以
上継続したときまたは負荷率が所定範囲以下になったと
きに前記スクリュー圧縮機本体を駆動する駆動源を停止
させるP式運転ステップとを備え、 起動時には前記U式運転ステップにより起動し、 少なくとも前記スクリュー圧縮機本体へ吸込まれる流体
の温度及び湿度に基づいてスクリュー圧縮機本体吐出側
におけるドレン発生限界温度TLを算出し、 油分離手段内の温度が前記ドレン発生限界温度TLを超
えた後前記U式運転ステップからI式運転ステップに移
行させることを特徴とする油冷式スクリュー圧縮機の運
転方法。
3. Starting of a screw compressor according to load and
For operating method of oil-cooled screw compressor that controls stop
Of the oil separation means provided on the discharge side of the screw compressor body.
Installed on the suction side of the screw compressor body depending on the pressure.
U-type operation step for controlling the digitized suction flow rate control means
And a check valve provided downstream of the oil separating means.
When the pressure on the downstream side reaches the first set pressure PH, the suction is performed.
The flow rate control means is closed and the pressure on the oil separation means side is reduced.
After releasing the power to the atmosphere and performing no-load operation, after this no-load operation
The pressure on the downstream side of the check valve reaches the second set pressure PL.
And opening said suction flow rate control means and said oil separation means
I-type operation that controls to close the line that opens the inside to the atmosphere
In the I step and the no load operation for a predetermined time
When the above continues or the load factor falls below the specified range
Stop the drive source that drives the screw compressor body
A P-type operating step for causing the fluid to be started by the U-type operating step at the time of startup and at least sucked into the screw compressor body.
The discharge side of the screw compressor body based on the temperature and humidity
The drain generation limit temperature TL is calculated, and the temperature in the oil separation means exceeds the drain generation limit temperature TL.
After that, move from the U-type operation step to the I-type operation step.
The operation of an oil-cooled screw compressor characterized by
How to turn.
【請求項4】請求項3において、前記I式運転におい
て、第2の設定圧力PLから第1の設定圧力PHに上昇す
る時間t1が設定値tに達したら、前記P式運転に移行
するこ とを特徴とする油冷式スクリュー圧縮機の運転方
4. The I-type operation according to claim 3,
Increase from the second set pressure PL to the first set pressure PH
When the time t1 reaches the set value t, the P-type operation is started.
Operation side of the oil-cooled screw compressor which is characterized that you
Law .
JP03031496A 1996-02-19 1996-02-19 Oil-cooled screw compressor and operating method thereof Expired - Lifetime JP3384225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03031496A JP3384225B2 (en) 1996-02-19 1996-02-19 Oil-cooled screw compressor and operating method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03031496A JP3384225B2 (en) 1996-02-19 1996-02-19 Oil-cooled screw compressor and operating method thereof

Publications (2)

Publication Number Publication Date
JPH09222087A JPH09222087A (en) 1997-08-26
JP3384225B2 true JP3384225B2 (en) 2003-03-10

Family

ID=12300341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03031496A Expired - Lifetime JP3384225B2 (en) 1996-02-19 1996-02-19 Oil-cooled screw compressor and operating method thereof

Country Status (1)

Country Link
JP (1) JP3384225B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018113275A1 (en) * 2016-12-22 2018-06-28 无锡五洋赛德压缩机有限公司 Air compressor

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4214013B2 (en) * 2003-07-29 2009-01-28 株式会社日立産機システム Oil-cooled air compressor
JP4770993B1 (en) * 2010-03-19 2011-09-14 東京電力株式会社 Radiation valve control device and steam control system
US8849604B2 (en) 2011-05-24 2014-09-30 Clark Equipment Company Method for calculating the probability of moisture build-up in a compressor
CN103867449B (en) * 2012-12-18 2016-05-11 珠海格力电器股份有限公司 Compressor oil-supplying system and control method
CN103233893B (en) * 2013-04-26 2015-09-02 青岛奥利凯中央空调有限公司 Multi-machine heads screw compressor capacity adjustment control method
BE1021737B1 (en) 2013-09-11 2016-01-14 Atlas Copco Airpower, Naamloze Vennootschap LIQUID-INJECTED SCREW COMPRESSOR, CONTROL FOR THE TRANSITION FROM AN UNLOADED TO A LOAD SITUATION OF SUCH SCREW COMPRESSOR AND METHOD APPLIED THEREOF
CN104776028B (en) * 2014-01-10 2017-08-29 阿特拉斯·科普柯空气动力股份有限公司 The method and the compressor of application this method condensed in the oil of anti-spraying oil formula compressor
CN107269496A (en) * 2017-06-29 2017-10-20 湖北特威特动力科技股份有限公司 A kind of oil gas tank and air compressor machine
TWI635221B (en) * 2017-10-11 2018-09-11 復盛股份有限公司 Oiling method for compressor
CN115435227B (en) * 2022-08-31 2023-08-22 杭州老板电器股份有限公司 Automatic oiling method and device for bearing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018113275A1 (en) * 2016-12-22 2018-06-28 无锡五洋赛德压缩机有限公司 Air compressor

Also Published As

Publication number Publication date
JPH09222087A (en) 1997-08-26

Similar Documents

Publication Publication Date Title
US5333469A (en) Method and apparatus for efficiently controlling refrigeration and air conditioning systems
US8241007B2 (en) Oil-injection screw compressor
JP3384225B2 (en) Oil-cooled screw compressor and operating method thereof
JP3262011B2 (en) Operating method of screw compressor and screw compressor
US8696335B2 (en) Oil free screw compressor
CN110475973B (en) Gas compressor
US5182919A (en) Oil recovery system for closed type centrifugal refrigerating machine
JP5506830B2 (en) Screw compressor
JP4792383B2 (en) Operation method of screw compressor
JPH08319976A (en) Oil-cooled type air compressor
JP4214013B2 (en) Oil-cooled air compressor
JP3914713B2 (en) Screw compressor operating method and screw compressor
JP2002115925A (en) Operation method for oil cooling compression freezer
JP2501345B2 (en) Oil-cooled screw compressor oil supply device
JP6249671B2 (en) Inverter-driven compressor operation control method and inverter-driven compressor
JPH084679A (en) Oil cooling type compressor
JPS58210465A (en) Heat engine driving heat pump device
JP2599728B2 (en) Oil-cooled screw compressor lubrication system
WO2023244998A1 (en) Systems and methods for water removal in compressors
CN217785508U (en) Capacity regulator for non-frequency conversion refrigerating system
JPH08247033A (en) Compression fluid feeding device and feeding method
JP3014984U (en) Engine operation control device for engine-driven rotary compressor
JPH0224959Y2 (en)
JP2563250Y2 (en) Oil-cooled compressor
JP2857780B2 (en) Oil recovery device for hermetic turbo chiller

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071227

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081227

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081227

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091227

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101227

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101227

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111227

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111227

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121227

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131227

Year of fee payment: 11

EXPY Cancellation because of completion of term