JP2007081006A - Case mold type capacitor - Google Patents

Case mold type capacitor Download PDF

Info

Publication number
JP2007081006A
JP2007081006A JP2005264959A JP2005264959A JP2007081006A JP 2007081006 A JP2007081006 A JP 2007081006A JP 2005264959 A JP2005264959 A JP 2005264959A JP 2005264959 A JP2005264959 A JP 2005264959A JP 2007081006 A JP2007081006 A JP 2007081006A
Authority
JP
Japan
Prior art keywords
capacitor
capacitor element
metallized film
mold type
case mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005264959A
Other languages
Japanese (ja)
Inventor
Toshiharu Saito
俊晴 斎藤
Toshihisa Miura
寿久 三浦
Hiroki Takeoka
宏樹 竹岡
Yoshiya Nagata
喜也 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005264959A priority Critical patent/JP2007081006A/en
Priority to EP06731414.6A priority patent/EP1868217A4/en
Priority to US11/908,524 priority patent/US7911765B2/en
Priority to PCT/JP2006/307467 priority patent/WO2006109732A1/en
Priority to EP14186630.1A priority patent/EP2851914B1/en
Publication of JP2007081006A publication Critical patent/JP2007081006A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/224Housing; Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/14Organic dielectrics
    • H01G4/145Organic dielectrics vapour deposited
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/38Multiple capacitors, i.e. structural combinations of fixed capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To miniaturize and thin a case mold type capacitor used for a hybrid automobile, or the like, and also to increase its capacity. <P>SOLUTION: In the case mold type capacitor in which a metallized film capacitor element 1 connected by bus bars 2, 3 is stored in a case 4 for molding by resin, the metallized film capacitor element 1 and the case mold type capacitor are realized, where a metallized film in which a metal vapor-deposited electrode is formed on a PP film is wound on a winding core; a flattened element whose section is in an oval shape is formed; the winding core in which the PP film where a/b is equal to 3 or higher, a is equal to 60 mm or higher, and the PP film which is three to ten times thicker than a dielectric film thickness when the long and short diameters of the element section are denoted as a and b, respectively, is used for winding five to ten times; the distance from the winding core to the outer-periphery surface of the element is set to 14 mm or smaller to optimize the strength of the winding core, and volumetric efficiency is improved by increasing capacity and by miniaturization and thinning. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は各種電子機器、電気機器、産業機器、自動車等に使用され、特に、ハイブリッド自動車のモータ駆動用インバータ回路の平滑用、フィルタ用、スナバ用に最適な金属化フィルムコンデンサを用いたケースモールド型コンデンサに関するものである。   The present invention is used in various electronic devices, electrical devices, industrial devices, automobiles, and the like, and in particular, a case mold using a metallized film capacitor that is most suitable for smoothing, filtering, and snubbing of an inverter circuit for driving a motor of a hybrid vehicle. Type capacitor.

近年、インバータ機器に用いられる金属化フィルムコンデンサにおいて、小型化、高性能化、低コスト化のための開発が盛んに行われている。また、インバータ機器に用いられる金属化フィルムコンデンサには、使用電圧の高電圧化、大電流化、大容量化等が要求されるため、並列接続した複数のコンデンサ素子をケース内に収納し、このケース内に樹脂を注型したケースモールド型コンデンサが開発され、使用されている。   In recent years, metallized film capacitors used in inverter devices have been actively developed for downsizing, high performance, and low cost. In addition, since metallized film capacitors used in inverter devices are required to have a high operating voltage, large current, large capacity, etc., a plurality of capacitor elements connected in parallel are accommodated in a case. A case mold type capacitor in which a resin is cast in a case has been developed and used.

図7(a)、(b)はこの種の従来のケースモールド型コンデンサの構成を示した正面断面図と側面断面図であり、図7において、11は金属化フィルムを巻回または積層したコンデンサ素子、12はこのコンデンサ素子11を収納したコンデンサケース、13はコンデンサケース12に充填されたエポキシ樹脂、14はこのエポキシ樹脂13上に充填されたウレタン樹脂、15はコンデンサ素子11に接続されると共に外部機器等に接続するための接続端子、16は樹脂注型部に注型するためのコンデンサケース12の開口部、17はコンデンサ素子11の両端に設けた一対の電極である。   FIGS. 7A and 7B are a front sectional view and a side sectional view showing the structure of this type of conventional case mold type capacitor. In FIG. 7, 11 is a capacitor in which a metallized film is wound or laminated. Element 12 is a capacitor case containing the capacitor element 11, 13 is an epoxy resin filled in the capacitor case 12, 14 is a urethane resin filled on the epoxy resin 13, and 15 is connected to the capacitor element 11. A connection terminal for connecting to an external device or the like, 16 is an opening portion of the capacitor case 12 for casting into a resin casting portion, and 17 is a pair of electrodes provided at both ends of the capacitor element 11.

そして、上記コンデンサ素子11は、片面または両面に金属蒸着電極を形成した金属化フィルムを一対の金属蒸着電極が誘電体フィルムを介して対向するように巻回し、断面が楕円形または小判形に形成され、両端面に一対の電極17を設けたものであり、これらを複数個並べている。また、接続端子15は複数個のコンデンサ素子11の各電極17に接続することでコンデンサ素子11を並列に接続し、さらに外部と接続できるようにしている。また、コンデンサケース12は、コンデンサ素子11を収納すると共に接続端子15の一部を内蔵している。そして、接続端子15の一部はコンデンサケース12から突出させ、外部機器等と接続できるようにしている。   The capacitor element 11 is formed by winding a metallized film having a metal vapor-deposited electrode on one or both sides so that the pair of metal vapor-deposited electrodes are opposed to each other with a dielectric film therebetween, and the cross section is formed in an oval or oval shape. A pair of electrodes 17 are provided on both end faces, and a plurality of these are arranged. The connection terminal 15 is connected to each electrode 17 of the plurality of capacitor elements 11 so that the capacitor elements 11 can be connected in parallel and further connected to the outside. The capacitor case 12 houses the capacitor element 11 and incorporates a part of the connection terminal 15. A part of the connection terminal 15 protrudes from the capacitor case 12 so that it can be connected to an external device or the like.

さらに、ケース開口部16からコンデンサケース12内にエポキシ樹脂13を注型し、硬化させた後にウレタン樹脂14を注型しており、このようにすることで図7(b)で示すようにエポキシ樹脂13とウレタン樹脂14の2層構造となるようにしているものであった。   Further, the epoxy resin 13 is cast from the case opening 16 into the capacitor case 12, and after being cured, the urethane resin 14 is cast. As shown in FIG. 7B, the epoxy resin 13 is cast. A two-layer structure of resin 13 and urethane resin 14 was adopted.

このように構成された従来のケースモールド型コンデンサは、コンデンサ素子11を耐熱性、耐湿性、耐絶縁性に優れたエポキシ樹脂13にて外装した後、エポキシ樹脂13層上に弾性があり、割れにくいウレタン樹脂14層を形成することにより、耐熱性、耐湿性、耐絶縁性に優れ、かつ、ヒートショック試験等の耐環境性の向上を図れるケースモールド型コンデンサを得ることができるというものであった。   The conventional case mold type capacitor configured as described above has the capacitor element 11 covered with an epoxy resin 13 excellent in heat resistance, moisture resistance, and insulation resistance, and then has elasticity on the epoxy resin 13 layer and cracks. By forming a difficult urethane resin 14 layer, it is possible to obtain a case mold type capacitor that has excellent heat resistance, moisture resistance, and insulation resistance and can improve environmental resistance such as a heat shock test. It was.

なお、この出願の発明に関連する先行技術文献情報としては、例えば、特許文献1が知られている。
特開2003−338423号公報
As prior art document information related to the invention of this application, for example, Patent Document 1 is known.
JP 2003-338423 A

しかしながら上記従来のケースモールド型コンデンサでは、更なる大容量化と小型薄型化の市場要望に対応するために、大容量化を実現し、かつ、限られたスペース内に収容するコンデンサ素子の形状を工夫して体積効率を向上させようとした場合には、更なる扁平化が必要であり、これを実現するには多くの問題を有するものであった。   However, in the conventional case mold type capacitor, in order to meet the market demand for further increase in capacity and reduction in size and thickness, the capacity of the capacitor element is realized and the shape of the capacitor element accommodated in the limited space is changed. When trying to improve the volumetric efficiency, further flattening is necessary, and this has many problems.

すなわち、上記扁平形のコンデンサ素子を作製するには、大型の円形のコンデンサ素子を作製し、これを扁平に加工して作製する方法が最も量産に適した方法であるが、この場合には巻芯の強度が大きな問題となり、巻芯の強度が強過ぎると巻回後に巻芯を抜き取る際に抜き難く、さらに、扁平に加工するのが難しいと共に加工後に元に戻ろうとして膨れが発生し、また逆に、巻芯の強度が弱過ぎると扁平に加工した後のコンデンサ素子の強度が弱くなって希望する形状を維持できないという課題があった。   That is, in order to fabricate the flat capacitor element, a method of fabricating a large circular capacitor element and processing it into a flat shape is the most suitable method for mass production. The strength of the core becomes a big problem, and if the strength of the core is too strong, it is difficult to pull out the core after winding, and it is difficult to process it flat, and bulges occur to return to the original after processing, Conversely, if the strength of the core is too weak, there is a problem that the strength of the capacitor element after flattening becomes weak and the desired shape cannot be maintained.

本発明はこのような従来の課題を解決し、大容量で小型薄型化を図って体積効率を向上させ、しかも生産性、信頼性に優れたケースモールド型コンデンサを提供することを目的とするものである。   SUMMARY OF THE INVENTION It is an object of the present invention to provide a case-molded capacitor that solves such conventional problems, improves volume efficiency by reducing the size and thickness, and is excellent in productivity and reliability. It is.

上記課題を解決するために本発明は、少なくとも一つの金属化フィルムコンデンサ素子を、外部接続用の端子部を一端に設けたバスバーで接続し、これをケース内に収容して少なくとも上記バスバーの端子部を除いて樹脂モールドしたケースモールド型コンデンサにおいて、上記金属化フィルムコンデンサ素子は、ポリプロピレンからなる誘電体フィルム上に金属蒸着電極を形成した金属化フィルムを一対の金属蒸着電極が誘電体フィルムを介して対向するように巻芯上に巻回して扁平化することにより断面小判形に形成されたコンデンサ素子と、このコンデンサ素子の両端面に夫々設けられた一対の取り出し電極からなり、上記コンデンサ素子の小判形に形成された断面の長径をa、同短径をbとした場合のa/b=3以上でa=60mm以上、かつ、上記金属化フィルムを構成する誘電体フィルム厚の3〜10倍厚のポリプロピレンフィルムを5〜10ターン巻回した巻芯を用い、この巻芯からコンデンサ素子の外周面までの寸法を14mm以下とした構成のものである。   In order to solve the above-mentioned problems, the present invention connects at least one metallized film capacitor element with a bus bar provided with a terminal portion for external connection at one end, and accommodates this in a case so that at least the terminal of the bus bar. In the case mold type capacitor which is resin-molded except for the part, the metallized film capacitor element includes a metallized film in which a metal vapor-deposited electrode is formed on a dielectric film made of polypropylene, and a pair of metal vapor-deposited electrodes through the dielectric film. The capacitor element is formed by flattening by winding on a winding core so as to face each other, and a pair of extraction electrodes respectively provided on both end faces of the capacitor element. A / b = 3 or more, where a = 60 mm when the major axis of the cross section formed in the oval is a and the minor axis is b, a = 60 mm Using a core in which a polypropylene film having a thickness of 3 to 10 times the dielectric film thickness constituting the metallized film is wound for 5 to 10 turns, the dimension from the core to the outer peripheral surface of the capacitor element is The configuration is 14 mm or less.

以上のように本発明によるケースモールド型コンデンサは、断面が小判形に形成されたコンデンサ素子の扁平率を大きくし、かつ大容量化を図っても、巻芯の強度を最適な値に設定することが可能になるため、大容量で小型薄型化を図って体積効率と放熱性を向上させた金属化フィルムコンデンサ素子が実現でき、この金属化フィルムコンデンサ素子を用いて大容量で小型薄型化を図り、信頼性に優れたケースモールド型コンデンサを実現することができるという効果が得られるものである。   As described above, the case mold type capacitor according to the present invention sets the strength of the core to an optimum value even if the flatness of the capacitor element having a cross section is increased and the capacity is increased. Therefore, it is possible to realize a metallized film capacitor element that has a large capacity, a small size and a thin shape, and has improved volumetric efficiency and heat dissipation, and this metallized film capacitor element can be used to reduce the size and thickness. Therefore, an effect that a case mold type capacitor having excellent reliability can be realized.

(実施の形態)
以下、実施の形態を用いて、本発明の特に全請求項に記載の発明について説明する。
(Embodiment)
Hereinafter, the invention described in the entire claims of the present invention will be described using embodiments.

図1は本発明の一実施の形態によるケースモールド型コンデンサの構成を示した斜視図、図2と図3は同モールド前の斜視図であり、図1〜図3において、1は断面小判形に形成された金属化フィルムコンデンサ素子を示し、この金属化フィルムコンデンサ素子1はポリプロピレンからなる誘電体フィルムの片面または両面に金属蒸着電極を形成した金属化フィルムを一対の金属化フィルムが誘電体フィルムを介して対向するように巻回し、両端面に亜鉛を溶射したメタリコン電極を形成することによってP極電極1aとN極電極1bを夫々設けて構成されたものであり、詳細は後述する。   FIG. 1 is a perspective view showing the configuration of a case mold type capacitor according to an embodiment of the present invention. FIGS. 2 and 3 are perspective views before molding. In FIGS. 1 shows a metallized film capacitor element formed in a metallized film capacitor element 1, in which a metallized film having a metal-deposited electrode formed on one or both sides of a dielectric film made of polypropylene is a pair of metallized films. The P-electrode 1a and the N-electrode 1b are respectively provided by forming metallized electrodes with zinc sprayed on both end faces, and details will be described later.

2は上記金属化フィルムコンデンサ素子1のP極電極1a側に接合される錫めっき銅板製のP極バスバー、2aはこのP極バスバー2の一端に設けられた電極となる舌片状の半田付け部、2bはこのP極バスバー2から引き出すように設けられた外部接続用のP極端子であり、このようにP極バスバー2は板状の基材を打ち抜き加工した平板状に構成されているものである。   Reference numeral 2 denotes a P-pole bus bar made of a tin-plated copper plate to be joined to the P-pole electrode 1 a side of the metallized film capacitor element 1, and 2 a denotes a tongue-like solder that serves as an electrode provided at one end of the P-pole bus bar 2 The part 2b is a P pole terminal for external connection provided so as to be drawn out from the P pole bus bar 2, and the P pole bus bar 2 is configured in a flat plate shape obtained by punching a plate-like base material. Is.

3は上記金属化フィルムコンデンサ素子1のN極電極1b側に接合される錫めっき銅板製のN極バスバー、3aはこのN極バスバー3の一端に設けられた電極となる舌片状の半田付け部、3bはこのN極バスバー3から引き出すように設けられた外部接続用のN極端子であり、このようにN極バスバー3は板状の基材を打ち抜き加工した後に、金属化フィルムコンデンサ素子1の周面と接する主要平面部の一端から半田付け部3aを、他端からN極端子3bを、夫々反対方向に折り曲げた階段状に構成されているものである。   3 is an N-pole bus bar made of a tin-plated copper plate to be joined to the N-pole electrode 1 b side of the metallized film capacitor element 1, and 3 a is a tongue-like solder that serves as an electrode provided at one end of the N-pole bus bar 3. And 3b are N pole terminals for external connection provided so as to be drawn out from the N pole bus bar 3, and the N pole bus bar 3 is formed into a metallized film capacitor element after punching a plate-like base material. The soldering portion 3a is bent from one end of the main plane portion that is in contact with the peripheral surface of 1 and the N-pole terminal 3b is bent in the opposite direction from the other end.

4は上記P極バスバー2とN極バスバー3が接合されて連結された金属化フィルムコンデンサ素子1を収納する樹脂製のケースであり、このようにP極バスバー2とN極バスバー3が接合されてケース4内に収納された金属化フィルムコンデンサ素子1は、P極端子2bとN極端子3bがケース4の同一辺から隣接して表出した状態で図示しないモールド樹脂によってモールドされることにより構成されるものである。   Reference numeral 4 denotes a resin case for housing the metallized film capacitor element 1 in which the P-pole bus bar 2 and the N-pole bus bar 3 are joined and connected. In this way, the P-pole bus bar 2 and the N-pole bus bar 3 are joined. The metallized film capacitor element 1 housed in the case 4 is molded by a mold resin (not shown) in a state where the P-pole terminal 2b and the N-pole terminal 3b are adjacently exposed from the same side of the case 4. It is composed.

図4(a)、(b)は上記金属化フィルムコンデンサ素子1を構成するコンデンサ素子を示した正面図と斜視図であり、図4において、5は巻芯、6はポリプロピレンからなる誘電体フィルム上に金属蒸着電極を形成した金属化フィルムであり、上記巻芯5を図示しない巻芯保持治具で保持した状態で巻芯5の外表面に金属化フィルム6を巻回し、巻回後に上記図示しない巻芯保持治具を巻芯5から抜き取ることによりコンデンサ素子が構成されているものである。   4 (a) and 4 (b) are a front view and a perspective view showing the capacitor element constituting the metallized film capacitor element 1. In FIG. 4, 5 is a core, and 6 is a dielectric film made of polypropylene. A metallized film having a metal vapor-deposited electrode formed thereon, and the metallized film 6 is wound around the outer surface of the core 5 in a state where the core 5 is held by a core holding jig (not shown). A capacitor element is formed by extracting a core holding jig (not shown) from the core 5.

なお、本実施の形態によるコンデンサ素子は、図4(a)に示すように円柱状に巻回した後、図4(b)に示すように、図中の上下方向から潰し加工を行って扁平化したものである。また、図中の符号tは、巻芯5からコンデンサ素子の外周面までの寸法を示すものである。   Note that the capacitor element according to the present embodiment is flattened after being wound into a columnar shape as shown in FIG. 4A and then being crushed from the vertical direction in the drawing as shown in FIG. 4B. It has become. Moreover, the symbol t in the figure indicates the dimension from the core 5 to the outer peripheral surface of the capacitor element.

以下、具体的な実施例について説明する。   Specific examples will be described below.

(実施例1)
厚み3μm、幅80mmのポリプロピレンからなる誘電体フィルムを用いて構成した金属化フィルムを用い、巻芯からコンデンサ素子の外周面までの寸法が7.8mmとなるように巻芯上に巻回して静電容量が150μFのコンデンサ素子を作製した。続いて、これを扁平加工してコンデンサ素子断面の長径aが78.4mm、同短径bが15.6mmとなるようにして、a/bが約5.0、コンデンサ素子の体積効率が95.7%となるようにした。このコンデンサ素子の中心におけるリプル発熱ΔT(K)を測定した結果をコンデンサ素子の仕様と併せて、以下に説明する各実施例と共に(表1)に示す。
Example 1
A metallized film composed of a dielectric film made of polypropylene having a thickness of 3 μm and a width of 80 mm is used and wound on the core so that the dimension from the core to the outer peripheral surface of the capacitor element is 7.8 mm. A capacitor element having a capacitance of 150 μF was produced. Subsequently, this is flattened so that the major axis a of the capacitor element cross section is 78.4 mm, the minor axis b is 15.6 mm, a / b is about 5.0, and the volume efficiency of the capacitor element is 95. It was set to 7%. The result of measuring the ripple heat generation ΔT (K) at the center of the capacitor element is shown in Table 1 together with the specifications of the capacitor element together with each example described below.

(実施例2)
巻芯からコンデンサ素子の外周面までの寸法を9.4mm、コンデンサ素子断面の長径aを65.9mm、同短径bを18.8mmとすることにより、a/bが約3.5、コンデンサ素子の体積効率が93.3%となるようにした以外は実施例1と同様にして作製した。
(Example 2)
By setting the dimension from the winding core to the outer peripheral surface of the capacitor element to 9.4 mm, the major axis a of the capacitor element cross section to 65.9 mm, and the minor axis b to 18.8 mm, a / b is about 3.5, The device was fabricated in the same manner as in Example 1 except that the volume efficiency of the device was 93.3%.

(実施例3)
巻芯からコンデンサ素子の外周面までの寸法を10.2mm、コンデンサ素子断面の長径aを61.2mm、同短径bを20.4mmとすることにより、a/bが3.0、コンデンサ素子の体積効率が91.8%となるようにした以外は実施例1と同様にして作製した。
(Example 3)
When the dimension from the winding core to the outer peripheral surface of the capacitor element is 10.2 mm, the major axis a of the capacitor element cross section is 61.2 mm, and the minor axis b is 20.4 mm, a / b is 3.0, and the capacitor element This was produced in the same manner as in Example 1 except that the volumetric efficiency of was 91.8%.

(実施例4)
巻芯からコンデンサ素子の外周面までの寸法を11.3mm、コンデンサ素子断面の長径aを55.6mm、同短径bを22.6mmとすることにより、a/bが約2.5、コンデンサ素子の体積効率が90.7%となるようにした以外は実施例1と同様にして作製した。
Example 4
By setting the dimension from the winding core to the outer peripheral surface of the capacitor element to 11.3 mm, the major axis a of the capacitor element cross section to 55.6 mm, and the minor axis b to 22.6 mm, a / b is about 2.5, The device was manufactured in the same manner as in Example 1 except that the volume efficiency of the device was 90.7%.

(実施例5)
巻芯からコンデンサ素子の外周面までの寸法を14.0mm、コンデンサ素子断面の長径aを46.8mm、同短径bを28.0mmとすることにより、a/bが約1.7、コンデンサ素子の体積効率が83.4%となるようにした以外は実施例1と同様にして作製した。
(Example 5)
By setting the dimension from the winding core to the outer peripheral surface of the capacitor element to 14.0 mm, the major axis a of the capacitor element cross section to 46.8 mm, and the minor axis b to 28.0 mm, a / b is about 1.7. The device was manufactured in the same manner as in Example 1 except that the volume efficiency of the device was 83.4%.

(実施例6)
巻芯からコンデンサ素子の外周面までの寸法を15.1mm、コンデンサ素子断面の長径aを44.3mm、同短径bを30.2mmとすることにより、a/bが約1.5、コンデンサ素子の体積効率が80.0%となるようにした以外は実施例1と同様にして作製した。
(Example 6)
By setting the dimension from the winding core to the outer peripheral surface of the capacitor element to 15.1 mm, the major axis a of the capacitor element cross section to 44.3 mm, and the minor axis b to 30.2 mm, a / b is about 1.5, The device was manufactured in the same manner as in Example 1 except that the volume efficiency of the device was 80.0%.

(実施例7)
誘電体フィルムの厚みを3.5μm、巻芯からコンデンサ素子の外周面までの寸法を10.0mm、コンデンサ素子断面の長径aを82.7mm、同短径bを20.0mmとすることにより、a/bが約4.2、コンデンサ素子の体積効率が52.3%となるようにした以外は実施例1と同様にして作製した。
(Example 7)
By setting the thickness of the dielectric film to 3.5 μm, the dimension from the core to the outer peripheral surface of the capacitor element to 10.0 mm, the major axis a of the capacitor element cross section to 82.7 mm, and the minor axis b to 20.0 mm, It was fabricated in the same manner as in Example 1 except that a / b was about 4.2 and the volume efficiency of the capacitor element was 52.3%.

(実施例8)
誘電体フィルムの厚みを4μm、巻芯からコンデンサ素子の外周面までの寸法を13.4mm、コンデンサ素子断面の長径aを80.2mm、同短径bを26.8mmとすることにより、a/bが約3.0、コンデンサ素子の体積効率が31.0%となるようにした以外は実施例1と同様にして作製した。
(Example 8)
By setting the thickness of the dielectric film to 4 μm, the dimension from the core to the outer peripheral surface of the capacitor element to 13.4 mm, the major axis a of the capacitor element cross section to 80.2 mm, and the minor axis b to 26.8 mm, It was fabricated in the same manner as in Example 1 except that b was about 3.0 and the volume efficiency of the capacitor element was 31.0%.

Figure 2007081006
Figure 2007081006

なお、(表1)における体積効率の計算は、以下に示す(数1)により求めたものである。   In addition, the calculation of the volumetric efficiency in (Table 1) is obtained by the following (Equation 1).

Figure 2007081006
Figure 2007081006

また、図5(a)〜(d)は上記実施例1、実施例2、実施例4、実施例6により作製されたコンデンサ素子の断面図、図6は上記各実施例により得られたコンデンサ素子の体積効率とコンデンサ素子中心のリプル発熱の関係を示した特性図である。   FIGS. 5A to 5D are cross-sectional views of capacitor elements fabricated according to Example 1, Example 2, Example 4, and Example 6, and FIG. 6 illustrates capacitors obtained according to the above examples. It is the characteristic figure which showed the relationship between the volumetric efficiency of an element, and the ripple heat generation | occurrence | production of a capacitor | condenser element center.

(表1)ならびに図6から明らかなように、扁平加工したコンデンサ素子の長径aと同短径bの比率である扁平率a/bが大きくなるにつれてコンデンサ素子中心のリプル発熱も小さくなっていることが分かる。また、巻芯からコンデンサ素子の外周面までの寸法が小さいほどコンデンサ素子中心のリプル発熱が小さいことも分かる。これは、発熱はコンデンサ素子の中心部が一番高いため、巻回した誘電体フィルムの総厚みを薄くすれば発熱を抑えることができることを意味しているものである。   As apparent from Table 1 and FIG. 6, the ripple heat generation at the center of the capacitor element decreases as the flatness ratio a / b, which is the ratio of the major axis a to the minor axis b of the flattened capacitor element, increases. I understand that. It can also be seen that the smaller the dimension from the winding core to the outer peripheral surface of the capacitor element, the smaller the ripple heat generation at the center of the capacitor element. This means that since the heat generation is highest in the center of the capacitor element, the heat generation can be suppressed by reducing the total thickness of the wound dielectric film.

また、実施例7、実施例8は誘電体フィルムの厚みが厚くなったことにより体積効率が低下しており、特に実施例8においては体積効率の低下が著しいことが分かる。   Further, in Examples 7 and 8, the volume efficiency is lowered due to the increase in the thickness of the dielectric film. In particular, in Example 8, the volume efficiency is significantly lowered.

このように本実施の形態による金属化フィルムコンデンサは、誘電体フィルムの厚みを3.5μm以下、扁平率a/bを3.0以上とした場合に、高い体積効率を維持しつつ、コンデンサ素子中心のリプル発熱を小さく抑えることができるものである。   Thus, the metallized film capacitor according to the present embodiment is a capacitor element that maintains high volumetric efficiency when the thickness of the dielectric film is 3.5 μm or less and the flatness ratio a / b is 3.0 or more. Central ripple heat generation can be kept small.

次に、上記実施例1、実施例2、実施例3のコンデンサ素子を用い、このコンデンサ素子に使用する巻芯の仕様を変化させた場合の特性を評価した。   Next, using the capacitor elements of Example 1, Example 2, and Example 3 above, the characteristics when the specifications of the winding core used in the capacitor element were changed were evaluated.

以下、具体的な実施例について説明する。   Specific examples will be described below.

(実施例1−1)
厚み10.5μmのポリプロピレンフィルムを10ターン巻回し、終端部分を溶着してヒートシール部を設けた巻芯を作製し、この巻芯を用いて上記実施例1と同様のコンデンサ素子を作製した。このコンデンサ素子の外観と、90℃、600V、30Arms通電時の寿命試験で容量減少5%に達する時間を測定して評価した結果を巻芯の仕様と併せて、以下に説明する各実施例と共に(表2)に示す。
(Example 1-1)
A polypropylene film having a thickness of 10.5 μm was wound for 10 turns, and a winding core having a heat seal portion was prepared by welding the terminal portion, and a capacitor element similar to that of Example 1 was manufactured using this winding core. Together with each of the examples described below, the appearance of this capacitor element and the results of measuring and evaluating the time to reach a capacity reduction of 5% in a life test at 90 ° C., 600 V, 30 Arms, along with the specifications of the core Shown in (Table 2).

(実施例1−2)
厚み12μmのポリプロピレンフィルムを8ターン巻回した以外は実施例1−1と同様にして作製した。
(Example 1-2)
A polypropylene film having a thickness of 12 μm was produced in the same manner as in Example 1-1 except that the film was wound for 8 turns.

(実施例1−3)
厚み18μmのポリプロピレンフィルムを8ターン巻回した以外は実施例1−1と同様にして作製した。
(Example 1-3)
A polypropylene film having a thickness of 18 μm was prepared in the same manner as in Example 1-1 except that the film was wound 8 turns.

(実施例1−4)
厚み35μmのポリプロピレンフィルムを5ターン巻回した以外は実施例1−1と同様にして作製した。
(Example 1-4)
A polypropylene film having a thickness of 35 μm was produced in the same manner as in Example 1-1 except that it was wound for 5 turns.

(実施例1−5)
厚み3μmのポリプロピレンフィルムを30ターン巻回した以外は実施例1−1と同様にして作製した。
(Example 1-5)
A polypropylene film having a thickness of 3 μm was produced in the same manner as in Example 1-1 except that 30 turns were wound.

(実施例1−6)
厚み38μmのポリプロピレンフィルムを5ターン巻回した以外は実施例1−1と同様にして作製した。
(Example 1-6)
A polypropylene film having a thickness of 38 μm was produced in the same manner as in Example 1-1 except that it was wound for 5 turns.

(実施例2−1)
厚み18μmのポリプロピレンフィルムを8ターン巻回し、終端部分を溶着してヒートシール部を設けた巻芯を作製し、この巻芯を用いて上記実施例2と同様のコンデンサ素子を作製した。
(Example 2-1)
A polypropylene film having a thickness of 18 μm was wound for 8 turns, and a winding core having a heat seal portion was prepared by welding the terminal portion, and a capacitor element similar to that of Example 2 was manufactured using this winding core.

(実施例2−2)
厚み100μmのポリプロピレンフィルムを1ターン巻回した以外は実施例2−1と同様にして作製した。
(Example 2-2)
A polypropylene film having a thickness of 100 μm was produced in the same manner as in Example 2-1, except that it was wound for one turn.

(実施例3−1)
厚み18μmのポリプロピレンフィルムを8ターン巻回し、終端部分を溶着してヒートシール部を設けた巻芯を作製し、この巻芯を用いて上記実施例3と同様のコンデンサ素子を作製した。
(Example 3-1)
A polypropylene film having a thickness of 18 μm was wound for 8 turns, and a winding core having a heat seal portion was prepared by welding the terminal portion, and a capacitor element similar to that of Example 3 was manufactured using this winding core.

(実施例3−2)
厚み100μmのポリプロピレンフィルムを1ターン巻回した以外は実施例3−1と同様にして作製した。
(Example 3-2)
A polypropylene film having a thickness of 100 μm was produced in the same manner as in Example 3-1, except that it was wound for one turn.

Figure 2007081006
Figure 2007081006

(表2)から明らかなように、巻芯を構成するポリプロピレンフィルムの厚みが3μmと薄いものを用いた実施例1−5の場合には、巻芯の強度が弱すぎるために巻芯保持治具を抜き取る際に巻芯の一部が巻芯保持治具と共に移動してはみ出してしまい、外観不良を引き起こすだけでなく、容量減少率も大きなものとなる。   As apparent from (Table 2), in the case of Example 1-5 in which the polypropylene film constituting the core has a thin thickness of 3 μm, the strength of the core is too weak, so When the tool is removed, a part of the core moves together with the core holding jig and protrudes, causing not only a poor appearance but also a large capacity reduction rate.

また逆に、巻芯を構成するポリプロピレンフィルムの厚みが38μmと厚いものを用いた実施例1−6の場合には、巻芯の強度が強すぎるために、扁平加工後に元に戻ろうとして膨れが発生してしまい、外観不良を引き起こすだけでなく、容量減少率も大きなものとなり、さらに、ポリプロピレンフィルムの厚みを100μmと厚くした実施例2−2、実施例3−2のものは、この現象が顕著に現れる。   On the other hand, in Example 1-6 using a thick polypropylene film constituting the core of 38 μm, the strength of the core is too strong, so that it swells to return to its original state after flattening. Not only causes poor appearance, but also has a large capacity reduction rate. Further, in Examples 2-2 and Example 3-2 in which the thickness of the polypropylene film is increased to 100 μm, this phenomenon occurs. Appears prominently.

以上の結果から、本実施の形態による金属化フィルムコンデンサに用いる巻芯は、金属化フィルムを構成する誘電体フィルム厚の3〜10倍厚のポリプロピレンフィルムを5〜10ターン巻回して構成するのが最も好ましいことが分かる。   From the above results, the core used for the metallized film capacitor according to the present embodiment is configured by winding 5 to 10 turns of a polypropylene film having a thickness of 3 to 10 times the dielectric film thickness constituting the metallized film. Is most preferable.

このように本発明によるケースモールド型コンデンサは、大容量で小型薄型化を図って体積効率を向上させた金属化フィルムコンデンサ素子を用いることにより、小型薄型化ならびに大容量化を同時に図ることができるようになるものである。   As described above, the case mold type capacitor according to the present invention can be reduced in size and thickness and increased in capacity at the same time by using a metallized film capacitor element that has a large capacity and is reduced in size and thickness to improve volume efficiency. It will be like that.

また、このように小型薄型化と大容量化を両立できることに伴い、デッドスペースの削減や有効活用が可能になり、これにより従来は不可能であった、種類が異なる金属化フィルムコンデンサ素子を同一ケース内に収容することも可能になるものである。そして、この種類が異なる金属化フィルムコンデンサ素子として最も効果が大きいものの一つが、平滑用コンデンサとノイズ除去用コンデンサの組み合わせであり、さらにこれらの種類が異なる金属化フィルムコンデンサ素子を同一バスバーを用いて接続することにより、さらなる小型化と低コスト化を図ることができるようになるという格別の効果を奏するものである。なお、上記ノイズ除去用コンデンサとは、サージ電圧を吸収するスナバコンデンサ、またはラジオ周波数帯域のノイズを除去するコモンモードコンデンサ(Y型コンデンサ)等を意味するものである。   In addition, the reduction in dead space and the effective use of the device can be achieved with the reduction in size and thickness as well as the increase in capacity, thereby making it possible to use different types of metallized film capacitor elements, which were previously impossible. It can also be accommodated in a case. One of the most effective types of metallized film capacitor elements of different types is a combination of a smoothing capacitor and a noise removing capacitor. Furthermore, these types of metallized film capacitor elements can be combined using the same bus bar. By connecting, there is an extraordinary effect that further downsizing and cost reduction can be achieved. The noise removing capacitor means a snubber capacitor that absorbs a surge voltage, a common mode capacitor (Y-type capacitor) that removes noise in a radio frequency band, or the like.

本発明によるケースモールド型コンデンサは、小型薄型化と大容量化を同時に実現できるという効果を有し、特に、ハイブリッド自動車のモータ駆動用インバータ回路の平滑用等として有用である。   The case mold type capacitor according to the present invention has an effect that it is possible to simultaneously realize a reduction in size and thickness and an increase in capacity, and is particularly useful for smoothing an inverter circuit for driving a motor of a hybrid vehicle.

本発明の一実施の形態によるケースモールド型コンデンサの構成を示した斜視図The perspective view which showed the structure of the case mold type capacitor by one embodiment of this invention 同モールド前の斜視図Perspective view before mold 同モールド前の斜視図Perspective view before mold (a)同金属化フィルムコンデンサ素子を構成するコンデンサ素子の正面図、(b)同斜視図(A) Front view of capacitor element constituting metallized film capacitor element, (b) Perspective view (a)同実施例1により作製されたコンデンサ素子の断面図、(b)同実施例2により作製されたコンデンサ素子の断面図、(c)同実施例4により作製されたコンデンサ素子の断面図、(d)同実施例6により作製されたコンデンサ素子の断面図(A) Cross-sectional view of the capacitor element fabricated according to Example 1, (b) Cross-sectional view of the capacitor element fabricated according to Example 2, (c) Cross-sectional view of the capacitor element fabricated according to Example 4 (D) Sectional drawing of the capacitor | condenser element produced by the Example 6 同実施の形態により得られたコンデンサ素子の体積効率と素子中心のリプル発熱の関係を示した特性図Characteristic diagram showing the relationship between the volumetric efficiency of the capacitor element and ripple heat generation at the element center obtained by the same embodiment (a)従来のケースモールド型コンデンサの構成を示した平面断面図、(b)同側面断面図(A) Plan sectional view showing the configuration of a conventional case mold type capacitor, (b) Side sectional view of the same

符号の説明Explanation of symbols

1 金属化フィルムコンデンサ素子
1a P極電極
1b N極電極
2 P極バスバー
2a、3a 半田付け部
2b P極端子
3 N極バスバー
3b N極端子
4 ケース
5 巻芯
6 金属化フィルム
DESCRIPTION OF SYMBOLS 1 Metallized film capacitor | condenser element 1a P pole electrode 1b N pole electrode 2 P pole bus bar 2a, 3a Soldering part 2b P pole terminal 3 N pole bus bar 3b N pole terminal 4 Case 5 Core 6 Metallized film

Claims (8)

少なくとも一つの金属化フィルムコンデンサ素子を、外部接続用の端子部を一端に設けたバスバーで接続し、これをケース内に収容して少なくとも上記バスバーの端子部を除いて樹脂モールドしたケースモールド型コンデンサにおいて、上記金属化フィルムコンデンサ素子は、ポリプロピレンからなる誘電体フィルム上に金属蒸着電極を形成した金属化フィルムを一対の金属蒸着電極が誘電体フィルムを介して対向するように巻芯上に巻回して扁平化することにより断面小判形に形成されたコンデンサ素子と、このコンデンサ素子の両端面に夫々設けられた一対の取り出し電極からなり、上記コンデンサ素子の小判形に形成された断面の長径をa、同短径をbとした場合のa/b=3以上でa=60mm以上、かつ、上記金属化フィルムを構成する誘電体フィルム厚の3〜10倍厚のポリプロピレンフィルムを5〜10ターン巻回した巻芯を用い、この巻芯からコンデンサ素子の外周面までの寸法を14mm以下としたものであるケースモールド型コンデンサ。 A case mold type capacitor in which at least one metallized film capacitor element is connected by a bus bar provided with a terminal portion for external connection at one end, is accommodated in a case, and at least the terminal portion of the bus bar is removed and resin molded. The metallized film capacitor element is formed by winding a metallized film, in which a metal vapor-deposited electrode is formed on a dielectric film made of polypropylene, on a core so that the pair of metal vapor-deposited electrodes are opposed to each other through the dielectric film. The capacitor element is formed into an oval cross-sectional shape by flattening and a pair of extraction electrodes provided on both end faces of the capacitor element, and the major axis of the cross-section formed in the oval shape of the capacitor element is defined as a When the minor axis is b, a / b = 3 or more, a = 60 mm or more, and the metallized film is formed. A case mold type using a core obtained by winding 5 to 10 turns of a polypropylene film having a thickness of 3 to 10 times the thickness of the dielectric film, and having a dimension from the core to the outer peripheral surface of the capacitor element of 14 mm or less Capacitor. 金属化フィルムコンデンサ素子を構成する誘電体フィルムの厚みを3.5μm以下とした請求項1に記載のケースモールド型コンデンサ。 The case mold type capacitor according to claim 1, wherein the thickness of the dielectric film constituting the metallized film capacitor element is 3.5 μm or less. 金属化フィルムコンデンサ素子の定格容量が150μF以上、定格時の電位傾度が150V/μm以上とした請求項1に記載のケースモールド型コンデンサ。 The case mold type capacitor according to claim 1, wherein the rated capacity of the metallized film capacitor element is 150 μF or more, and the potential gradient at the time of rating is 150 V / μm or more. 複数の金属化フィルムコンデンサ素子に夫々形成された一対の取り出し電極の極性を夫々揃え、この一対の取り出し電極に一対のバスバーを夫々接続した請求項1に記載のケースモールド型コンデンサ。 The case mold type capacitor according to claim 1, wherein the polarity of a pair of extraction electrodes respectively formed on the plurality of metallized film capacitor elements is aligned, and a pair of bus bars are connected to the pair of extraction electrodes. 一対のバスバーに夫々設けられた外部接続用の端子部を同一辺から取り出すようにした請求項1に記載のケースモールド型コンデンサ。 2. The case mold type capacitor according to claim 1, wherein the external connection terminal portions respectively provided on the pair of bus bars are taken out from the same side. 種類が異なる金属化フィルムコンデンサ素子を同一ケース内に収容した請求項1に記載のケースモールド型コンデンサ。 The case mold type capacitor according to claim 1, wherein metallized film capacitor elements of different types are accommodated in the same case. 種類が異なる金属化フィルムコンデンサ素子を同一バスバーを用いて接続した請求項6に記載のケースモールド型コンデンサ。 7. The case mold type capacitor according to claim 6, wherein different types of metallized film capacitor elements are connected using the same bus bar. 種類が異なる金属化フィルムコンデンサ素子として、平滑用コンデンサとノイズ除去用コンデンサを用いた請求項6に記載のケースモールド型コンデンサ。 The case mold type capacitor according to claim 6, wherein a smoothing capacitor and a noise removing capacitor are used as the metallized film capacitor elements of different types.
JP2005264959A 2005-04-08 2005-09-13 Case mold type capacitor Pending JP2007081006A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005264959A JP2007081006A (en) 2005-09-13 2005-09-13 Case mold type capacitor
EP06731414.6A EP1868217A4 (en) 2005-04-08 2006-04-07 Metalized film capacitor, case module type capacitor using the same, inverter circuit, and vehicle drive motor drive circuit
US11/908,524 US7911765B2 (en) 2005-04-08 2006-04-07 Metalized film capacitor, case mold type capacitor using the same, inverter circuit, and vehicle drive motor drive circuit
PCT/JP2006/307467 WO2006109732A1 (en) 2005-04-08 2006-04-07 Metalized film capacitor, case module type capacitor using the same, inverter circuit, and vehicle drive motor drive circuit
EP14186630.1A EP2851914B1 (en) 2005-04-08 2006-04-07 Flattened metalized film wound capacitor, case mold type capacitor using the same, inverter circuit, and vehicle drive motor drive circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005264959A JP2007081006A (en) 2005-09-13 2005-09-13 Case mold type capacitor

Publications (1)

Publication Number Publication Date
JP2007081006A true JP2007081006A (en) 2007-03-29

Family

ID=37941009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005264959A Pending JP2007081006A (en) 2005-04-08 2005-09-13 Case mold type capacitor

Country Status (1)

Country Link
JP (1) JP2007081006A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008277505A (en) * 2007-04-27 2008-11-13 Nichicon Corp Metallized film capacitor
JP2012501513A (en) * 2008-08-06 2012-01-19 オスラム アクチエンゲゼルシャフト High pressure pulse generator and high pressure discharge lamp with high pressure pulse generator
WO2017114905A1 (en) * 2015-12-30 2017-07-06 Epcos Ag Capacitor component
JP2021061318A (en) * 2019-10-07 2021-04-15 パナソニックIpマネジメント株式会社 Capacitor
CN114220657A (en) * 2021-11-25 2022-03-22 东莞市创慧电子有限公司 Capacitor with large capacitance and small volume

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH054446U (en) * 1991-07-04 1993-01-22 マルコン電子株式会社 Capacitor
JPH0511430U (en) * 1991-07-22 1993-02-12 ニチコン株式会社 Metallized film capacitors
JP2004350400A (en) * 2003-05-22 2004-12-09 Hitachi Ltd Power converter
JP2005093516A (en) * 2003-09-12 2005-04-07 Matsushita Electric Ind Co Ltd Metallized film capacitor and inverter power source circuit
JP2005093761A (en) * 2003-09-18 2005-04-07 Matsushita Electric Ind Co Ltd Film capacitor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH054446U (en) * 1991-07-04 1993-01-22 マルコン電子株式会社 Capacitor
JPH0511430U (en) * 1991-07-22 1993-02-12 ニチコン株式会社 Metallized film capacitors
JP2004350400A (en) * 2003-05-22 2004-12-09 Hitachi Ltd Power converter
JP2005093516A (en) * 2003-09-12 2005-04-07 Matsushita Electric Ind Co Ltd Metallized film capacitor and inverter power source circuit
JP2005093761A (en) * 2003-09-18 2005-04-07 Matsushita Electric Ind Co Ltd Film capacitor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008277505A (en) * 2007-04-27 2008-11-13 Nichicon Corp Metallized film capacitor
JP2012501513A (en) * 2008-08-06 2012-01-19 オスラム アクチエンゲゼルシャフト High pressure pulse generator and high pressure discharge lamp with high pressure pulse generator
US8552647B2 (en) 2008-08-06 2013-10-08 Osram Gesellschaft Mit Beschrankter Haftung High-voltage pulse generator and high-pressure discharge lamp having a high-voltage pulse generator
WO2017114905A1 (en) * 2015-12-30 2017-07-06 Epcos Ag Capacitor component
US10763049B2 (en) 2015-12-30 2020-09-01 Epcos Ag Capacitor component
JP2021061318A (en) * 2019-10-07 2021-04-15 パナソニックIpマネジメント株式会社 Capacitor
JP7365679B2 (en) 2019-10-07 2023-10-20 パナソニックIpマネジメント株式会社 capacitor
CN114220657A (en) * 2021-11-25 2022-03-22 东莞市创慧电子有限公司 Capacitor with large capacitance and small volume
CN114220657B (en) * 2021-11-25 2023-11-03 东莞市创慧电子有限公司 Capacitor with large capacitance and small volume

Similar Documents

Publication Publication Date Title
US7911765B2 (en) Metalized film capacitor, case mold type capacitor using the same, inverter circuit, and vehicle drive motor drive circuit
US6912117B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP2001085273A (en) Chip-type solid-state electrolytic capacitor
KR100706454B1 (en) Chip-type solid electrolytic capacitor and method of producing the same
JP2007081006A (en) Case mold type capacitor
JP5167922B2 (en) Case mold type capacitor
JP2008187091A (en) Solid-state electrolytic capacitor
CN103177880A (en) Solid electrolytic capacitor and method for producing the same
JP4967712B2 (en) Case mold type capacitor
JP2006128343A (en) Solid-state electrolytic capacitor
JP4720390B2 (en) Metallized film capacitors
JP2006190929A (en) Solid electrolytic capacitor and its manufacturing method
JP4688676B2 (en) Multilayer solid electrolytic capacitor and capacitor module
JP2005108957A (en) Case-mold film capacitor
JP2006253279A (en) Capacitor unit
JP2008103447A (en) Chip type solid-state electrolytic capacitor
JP2011101042A (en) Case molded capacitor
JP2009200378A (en) Composite metallized-film capacitor
CN210429562U (en) Film capacitor and motor driver
JP2006190925A (en) Solid electrolytic capacitor and its manufacturing method
JP2010021316A (en) Electronic component and manufacturing method thereof
JP2008021774A (en) Chip-type solid electrolytic capacitor, and manufacturing method thereof
JP3932191B2 (en) Solid electrolytic capacitor
JPWO2017150151A1 (en) Film capacitor
JP2013055095A (en) Case-molded capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080710

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110111