JP4720390B2 - Metallized film capacitors - Google Patents

Metallized film capacitors Download PDF

Info

Publication number
JP4720390B2
JP4720390B2 JP2005264960A JP2005264960A JP4720390B2 JP 4720390 B2 JP4720390 B2 JP 4720390B2 JP 2005264960 A JP2005264960 A JP 2005264960A JP 2005264960 A JP2005264960 A JP 2005264960A JP 4720390 B2 JP4720390 B2 JP 4720390B2
Authority
JP
Japan
Prior art keywords
capacitor element
core
capacitor
film
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005264960A
Other languages
Japanese (ja)
Other versions
JP2007081007A (en
Inventor
俊晴 斎藤
宏樹 竹岡
喜也 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2005264960A priority Critical patent/JP4720390B2/en
Priority to EP14186630.1A priority patent/EP2851914B1/en
Priority to PCT/JP2006/307467 priority patent/WO2006109732A1/en
Priority to EP06731414.6A priority patent/EP1868217A4/en
Priority to US11/908,524 priority patent/US7911765B2/en
Publication of JP2007081007A publication Critical patent/JP2007081007A/en
Application granted granted Critical
Publication of JP4720390B2 publication Critical patent/JP4720390B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/32Wound capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/14Organic dielectrics
    • H01G4/145Organic dielectrics vapour deposited
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/14Organic dielectrics
    • H01G4/18Organic dielectrics of synthetic material, e.g. derivatives of cellulose
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

本発明は各種電子機器、電気機器、産業機器、自動車等に使用され、特に、ハイブリッド自動車のモータ駆動用インバータ回路の平滑用、フィルタ用、スナバ用として最適な金属化フィルムコンデンサに関するものである。   The present invention relates to a metallized film capacitor which is used in various electronic devices, electrical devices, industrial devices, automobiles, etc., and is particularly suitable for smoothing, filtering, and snubbing of motor drive inverter circuits of hybrid vehicles.

近年、環境保護の観点から、あらゆる電気機器がインバータ回路で制御され、省エネルギー化、高効率化が進められている。中でも自動車業界においては、電気モータとエンジンで走行するハイブリッド車(以下、HEVという)が市場導入される等、地球環境に優しく、省エネルギー化、高効率化に関する技術の開発が活発化している。   In recent years, from the viewpoint of environmental protection, all electric devices are controlled by inverter circuits, and energy saving and high efficiency are being promoted. In particular, in the automobile industry, hybrid vehicles (hereinafter referred to as HEVs) that run on electric motors and engines have been introduced into the market, and the development of technologies relating to energy saving and high efficiency has been activated.

このようなHEV用の電気モータは使用電圧領域が数百ボルトと高いため、このような電気モータに関連して使用されるコンデンサとして、高耐圧で低損失の電気特性を有する金属化フィルムコンデンサが注目されており、さらに市場におけるメンテナンスフリー化の要望からも極めて寿命が長い金属化フィルムコンデンサを採用する傾向が目立っている。   Since such a HEV electric motor has a high operating voltage range of several hundred volts, a metallized film capacitor having high withstand voltage and low loss electric characteristics is used as a capacitor used in connection with such an electric motor. In addition, due to the demand for maintenance-free in the market, the tendency to adopt metallized film capacitors with a very long life is conspicuous.

そして、この種の金属化フィルムコンデンサは、使用される機器あるいは電源部の小型化やプリント基板上の搭載面積等の制約により、巻回したフィルムからなる円柱形状のコンデンサ素子を潰して小判形にした扁平形状のものが用いられている。   And this kind of metallized film capacitor is squeezed into an oval by crushing a cylindrical capacitor element made of a wound film due to the size of equipment used or the power supply section and restrictions such as mounting area on the printed circuit board. A flat shape is used.

図5(a)、(b)はこのような従来の金属化フィルムコンデンサの構成を示した平面断面図と正面断面図であり、図5において、11はコンデンサ素子の巻芯、12はこの巻芯11に設けられた折り曲げ部、13は樹脂フィルムに金属膜電極を蒸着した金属化フィルム、14はコンデンサ素子を絶縁保護する外装フィルムである。15は金属化フィルム13、巻芯11、外装フィルム14からなるコンデンサ素子、16はこのコンデンサ素子15の端面に設けられた金属層、17は電極を引き出す端子、18はコンデンサ素子15が収納された外装ケース、19は充填樹脂である。なお、上記コンデンサ素子15は円柱状に巻回した後、扁平化したものである。   5 (a) and 5 (b) are a plan sectional view and a front sectional view showing the structure of such a conventional metalized film capacitor. In FIG. 5, 11 is a winding core of the capacitor element, and 12 is this winding. A bent portion provided on the core 11, 13 is a metallized film obtained by depositing a metal film electrode on a resin film, and 14 is an exterior film for insulating and protecting the capacitor element. 15 is a capacitor element comprising the metallized film 13, the core 11 and the exterior film 14, 16 is a metal layer provided on the end face of the capacitor element 15, 17 is a terminal for drawing out an electrode, 18 is a capacitor element 15. An exterior case 19 is a filling resin. The capacitor element 15 is flattened after being wound in a cylindrical shape.

このように構成された従来の金属化フィルムコンデンサは、扁平率の大きいコンデンサ素子の特性のバラツキを抑え、巻芯を丸形状とすることにより巻き取り速度を上げることができ、生産工数を削減することができるというものであった。   The conventional metallized film capacitor configured as described above suppresses the variation in characteristics of the capacitor element having a large aspect ratio, and the winding core can be rounded to increase the winding speed, thereby reducing the number of production steps. It was something that could be done.

なお、この出願の発明に関連する先行技術文献情報としては、例えば、特許文献1が知られている。
特開2005−93761号公報
As prior art document information related to the invention of this application, for example, Patent Document 1 is known.
JP 2005-93761 A

しかしながら上記従来の金属化フィルムコンデンサでは、更なる大容量化と小型薄型化の市場要望に対応するために、大容量化を実現し、かつ、限られたスペース内に収容するコンデンサ素子の形状を工夫して体積効率を向上させようとした場合には更なる扁平化が必要であり、これを実現するには多くの問題を有するものであった。   However, in the above conventional metallized film capacitor, in order to meet the market demand for further increase in capacity and reduction in size and thickness, the capacity of the capacitor element is realized and the shape of the capacitor element accommodated in the limited space is changed. In order to improve the volume efficiency by devising, further flattening is necessary, and this has many problems.

すなわち、図6に示すように、同じ容量のコンデンサ素子を高さと奥行きが同じケース内に収納する場合の体積効率を試算してみると、コンデンサ素子の断面形状が丸形のものを複数個、同小判形のものを複数個、同大型小判形(小判形をさらに大型化、扁平化して1個で構成)、積層形(大径に巻回したものを切断し、これを2個)にした場合に、大型小判形が最も効率が良いことが分かる。なお、体積効率のみを考えると、方形のフィルムを積層した積層コンデンサが限りなく100%に近い体積効率を得ることができるが、薄膜フィルムを積層し、これを切断して大型の積層コンデンサを作製するのは困難で、かつ耐圧に課題があると共に高電位傾度が得られないことが分かっている。   That is, as shown in FIG. 6, when calculating the volume efficiency in the case where the capacitor elements having the same capacity are accommodated in the case having the same height and depth, a plurality of capacitor elements having a round cross-sectional shape, Multiple of the same oval, the same large oval (the oval is further enlarged and flattened into a single piece), and the stacked type (the one wound around the large diameter is cut into two) In this case, it can be seen that the large oval is the most efficient. Considering only the volumetric efficiency, a multilayer capacitor with a rectangular film laminated can achieve volume efficiency close to 100%. However, a large-sized multilayer capacitor is produced by laminating a thin film and cutting it. It is difficult to do this, and it has been found that there is a problem with the breakdown voltage and a high potential gradient cannot be obtained.

しかしながら、上記大型小判形のコンデンサ素子を作製するには、大型の円形のコンデンサ素子を作製し、これを扁平に加工して作製する方法が最も量産に適した方法であるが、この場合には巻芯の強度が大きな問題となり、巻芯の材料の厚みが厚くて強度が強過ぎると巻回後に図示しない巻芯保持治具を抜き取る際に抜き難く、さらに、図7に示すように、扁平に加工するのが難しいと共に加工後に巻芯が元に戻ろうとしてコンデンサ素子に膨れが発生するという問題があった。   However, in order to fabricate the large-sized oval capacitor element, a method of fabricating a large circular capacitor element and processing it into a flat shape is the most suitable method for mass production. The strength of the core becomes a big problem, and if the core material is too thick and too strong, it is difficult to remove the core holding jig (not shown) after winding. Further, as shown in FIG. In addition, there is a problem that the capacitor element is swollen as the core is returned to the original state after the processing, and the capacitor element is swollen after the processing.

また逆に、巻芯の材料の厚みが薄くて強度が弱すぎると巻回後に図示しない巻芯保持治具を抜き取る際に巻芯の一部が巻芯保持治具と共に移動して図8に示すようにコンデンサ素子の端面からはみ出したり、さらに加工後にコンデンサ素子が元に戻ろうとするのに伴って図9に示すように巻芯にしわが発生する等、扁平に加工した後のコンデンサ素子の強度が弱くなって希望する形状を維持できないという問題があった。   On the other hand, if the material of the core is too thin and the strength is too weak, a part of the core moves together with the core holding jig when the core holding jig (not shown) is pulled out after winding. As shown in FIG. 9, the strength of the capacitor element after flattening, such as protruding from the end face of the capacitor element, or wrinkles in the core as shown in FIG. 9 as the capacitor element tries to return to the original state after processing. There was a problem that the desired shape could not be maintained due to weakening.

本発明はこのような従来の課題を解決し、大容量で小型薄型化を図って体積効率を向上させ、しかも生産性、信頼性に優れた金属化フィルムコンデンサを提供することを目的とするものである。   An object of the present invention is to solve such a conventional problem and to provide a metallized film capacitor which has a large capacity, is reduced in size and thickness to improve volumetric efficiency, and is excellent in productivity and reliability. It is.

上記課題を解決するために本発明は、ポリプロピレンからなる誘電体フィルム上に金属蒸着電極を形成した金属化フィルムを一対の金属蒸着電極が誘電体フィルムを介して対向するように巻芯上に巻回して扁平化することにより断面小判形に形成されたコンデンサ素子と、このコンデンサ素子の両端面に夫々設けられた一対の取り出し電極からなる金属化フィルムコンデンサにおいて、上記コンデンサ素子の小判形に形成された断面の長径をa、同短径をbとした場合のa/b=3以上でa=60mm以上、かつ、上記金属化フィルムを構成する誘電体フィルム厚の3〜10倍厚のポリプロピレンフィルムを5〜10ターン巻回した巻芯を用い、この巻芯からコンデンサ素子の外周面までの寸法を14mm以下とし、上記巻芯の終端の少なくとも一部をヒートシールにより溶着すると共に、このヒートシール部に複数の凹部を設けた構成のものである。 In order to solve the above problems, the present invention provides a metallized film in which a metal vapor-deposited electrode is formed on a dielectric film made of polypropylene. In a metallized film capacitor consisting of a capacitor element formed in a cross-sectional oblong shape by turning and flattened, and a pair of extraction electrodes provided on both end faces of the capacitor element, the capacitor element is formed in an oblong shape. When the major axis of the cross section is a and the minor axis is b, a / b = 3 or more, a = 60 mm or more, and a polypropylene film having a thickness of 3 to 10 times the thickness of the dielectric film constituting the metallized film using a winding core wound 5-10 turns, and the dimension from the core to the outer peripheral surface of the capacitor element and 14mm below the end of the core less Together also welded part by heat sealing, it is of structure in which a plurality of recesses in the heat-sealed portion.

以上のように本発明による金属化フィルムコンデンサは、断面が小判形に形成されたコンデンサ素子の扁平率を大きくし、かつ大容量化を図っても、巻芯の強度を最適な値に設定することが可能になるため、大容量で小型薄型化を図って体積効率を向上させ、しかも生産性、放熱性、信頼性に優れた金属化フィルムコンデンサを実現することができるという効果が得られるものである。   As described above, the metallized film capacitor according to the present invention sets the strength of the core to an optimum value even when the flatness of the capacitor element having a cross section is increased and the capacity is increased. Therefore, it is possible to achieve a metalized film capacitor that has a large capacity, is small and thin, improves volumetric efficiency, and is excellent in productivity, heat dissipation, and reliability. It is.

(実施の形態1)
以下、実施の形態1を用いて、本発明の特に請求項1〜3、5に記載の発明について説明する。
(Embodiment 1)
Hereinafter, the first and third aspects of the present invention will be described with reference to the first embodiment.

図1(a)、(b)は本発明の実施の形態1による金属化フィルムコンデンサを構成するコンデンサ素子を示した正面図と斜視図であり、図1において、1は巻芯、2はポリプロピレンからなる誘電体フィルム上に金属蒸着電極を形成した金属化フィルムであり、上記巻芯1を図示しない巻芯保持治具で保持した状態で巻芯1の外表面にこの金属化フィルム2を巻回し、巻回後に上記図示しない巻芯保持治具を巻芯1から抜き取ることによりコンデンサ素子3が構成されているものである。   1A and 1B are a front view and a perspective view showing a capacitor element constituting a metallized film capacitor according to Embodiment 1 of the present invention. In FIG. 1, 1 is a core and 2 is polypropylene. A metallized film having a metal vapor-deposited electrode formed on a dielectric film made of a metal film, and the metallized film 2 is wound around the outer surface of the core 1 while the core 1 is held by a core holding jig (not shown). The capacitor element 3 is configured by rotating and winding the winding core holding jig (not shown) from the winding core 1 after winding.

なお、上記金属蒸着電極はオイルマージンにより分割化されており、夫々の分割電極は蒸着電極のヒューズにより並列接続され、自己保安機構を有しているものである。   The metal vapor-deposited electrode is divided by an oil margin, and each divided electrode is connected in parallel by a fuse of the vapor-deposited electrode and has a self-security mechanism.

また、本実施の形態によるコンデンサ素子3は、図1(a)に示すように円柱状に巻回した後、図1(b)に示すように、図中の上下方向から潰し加工を行って扁平化したものであり、図中の符号tは、巻芯1からコンデンサ素子3の外周面までの寸法を示すものである。   In addition, the capacitor element 3 according to the present embodiment is wound in a columnar shape as shown in FIG. 1A, and then crushed from the vertical direction in the drawing as shown in FIG. 1B. It is flattened, and a symbol t in the figure indicates a dimension from the core 1 to the outer peripheral surface of the capacitor element 3.

以下、具体的な実施例について説明する。   Specific examples will be described below.

(実施例1)
厚み3μm、幅80mmのポリプロピレンからなる誘電体フィルムを用いて構成した金属化フィルムを用い、巻芯からコンデンサ素子の外周面までの寸法が7.8mmとなるように巻芯上に巻回して静電容量が150μFのコンデンサ素子を作製した。続いて、これを扁平加工してコンデンサ素子断面の長径aが78.4mm、同短径bが15.6mmとなるようにして、a/bが約5.0、コンデンサ素子の体積効率が95.7%となるようにした。このコンデンサ素子の中心におけるリプル発熱ΔT(K)を測定した結果をコンデンサ素子の仕様と併せて、以下に説明する各実施例と共に(表1)に示す。
Example 1
A metallized film composed of a dielectric film made of polypropylene having a thickness of 3 μm and a width of 80 mm is used and wound on the core so that the dimension from the core to the outer peripheral surface of the capacitor element is 7.8 mm. A capacitor element having a capacitance of 150 μF was produced. Subsequently, this is flattened so that the major axis a of the capacitor element cross section is 78.4 mm, the minor axis b is 15.6 mm, a / b is about 5.0, and the volume efficiency of the capacitor element is 95. It was set to 7%. The result of measuring the ripple heat generation ΔT (K) at the center of the capacitor element is shown in Table 1 together with the specifications of the capacitor element together with each example described below.

(実施例2)
巻芯からコンデンサ素子の外周面までの寸法を9.4mm、コンデンサ素子断面の長径aを65.9mm、同短径bを18.8mmとすることにより、a/bが約3.5、コンデンサ素子の体積効率が93.3%となるようにした以外は実施例1と同様にして作製した。
(Example 2)
By setting the dimension from the winding core to the outer peripheral surface of the capacitor element to 9.4 mm, the major axis a of the capacitor element cross section to 65.9 mm, and the minor axis b to 18.8 mm, a / b is about 3.5, The device was fabricated in the same manner as in Example 1 except that the volume efficiency of the device was 93.3%.

(実施例3)
巻芯からコンデンサ素子の外周面までの寸法を10.2mm、コンデンサ素子断面の長径aを61.2mm、同短径bを20.4mmとすることにより、a/bが3.0、コンデンサ素子の体積効率が91.8%となるようにした以外は実施例1と同様にして作製した。
(Example 3)
When the dimension from the winding core to the outer peripheral surface of the capacitor element is 10.2 mm, the major axis a of the capacitor element cross section is 61.2 mm, and the minor axis b is 20.4 mm, a / b is 3.0, and the capacitor element This was produced in the same manner as in Example 1 except that the volumetric efficiency of was 91.8%.

(実施例4)
巻芯からコンデンサ素子の外周面までの寸法を11.3mm、コンデンサ素子断面の長径aを55.6mm、同短径bを22.6mmとすることにより、a/bが約2.5、コンデンサ素子の体積効率が90.7%となるようにした以外は実施例1と同様にして作製した。
Example 4
By setting the dimension from the winding core to the outer peripheral surface of the capacitor element to 11.3 mm, the major axis a of the capacitor element cross section to 55.6 mm, and the minor axis b to 22.6 mm, a / b is about 2.5, The device was manufactured in the same manner as in Example 1 except that the volume efficiency of the device was 90.7%.

(実施例5)
巻芯からコンデンサ素子の外周面までの寸法を14.0mm、コンデンサ素子断面の長径aを46.8mm、同短径bを28.0mmとすることにより、a/bが約1.7、コンデンサ素子の体積効率が83.4%となるようにした以外は実施例1と同様にして作製した。
(Example 5)
By setting the dimension from the winding core to the outer peripheral surface of the capacitor element to 14.0 mm, the major axis a of the capacitor element cross section to 46.8 mm, and the minor axis b to 28.0 mm, a / b is about 1.7. The device was manufactured in the same manner as in Example 1 except that the volume efficiency of the device was 83.4%.

(実施例6)
巻芯からコンデンサ素子の外周面までの寸法を15.1mm、コンデンサ素子断面の長径aを44.3mm、同短径bを30.2mmとすることにより、a/bが約1.5、コンデンサ素子の体積効率が80.0%となるようにした以外は実施例1と同様にして作製した。
(Example 6)
By setting the dimension from the winding core to the outer peripheral surface of the capacitor element to 15.1 mm, the major axis a of the capacitor element cross section to 44.3 mm, and the minor axis b to 30.2 mm, a / b is about 1.5, The device was manufactured in the same manner as in Example 1 except that the volume efficiency of the device was 80.0%.

(実施例7)
誘電体フィルムの厚みを3.5μm、巻芯からコンデンサ素子の外周面までの寸法を10.0mm、コンデンサ素子断面の長径aを82.7mm、同短径bを20.0mmとすることにより、a/bが約4.2、コンデンサ素子の体積効率が52.3%となるようにした以外は実施例1と同様にして作製した。
(Example 7)
By setting the thickness of the dielectric film to 3.5 μm, the dimension from the core to the outer peripheral surface of the capacitor element to 10.0 mm, the major axis a of the capacitor element cross section to 82.7 mm, and the minor axis b to 20.0 mm, It was fabricated in the same manner as in Example 1 except that a / b was about 4.2 and the volume efficiency of the capacitor element was 52.3%.

(実施例8)
誘電体フィルムの厚みを4μm、巻芯からコンデンサ素子の外周面までの寸法を13.4mm、コンデンサ素子断面の長径aを80.2mm、同短径bを26.8mmとすることにより、a/bが約3.0、コンデンサ素子の体積効率が31.0%となるようにした以外は実施例1と同様にして作製した。
(Example 8)
By setting the thickness of the dielectric film to 4 μm, the dimension from the core to the outer peripheral surface of the capacitor element to 13.4 mm, the major axis a of the capacitor element cross section to 80.2 mm, and the minor axis b to 26.8 mm, It was fabricated in the same manner as in Example 1 except that b was about 3.0 and the volume efficiency of the capacitor element was 31.0%.

Figure 0004720390
Figure 0004720390

なお、(表1)における体積効率の計算は、以下に示す(数1)により求めたものである。   In addition, the calculation of the volumetric efficiency in (Table 1) is obtained by the following (Equation 1).

Figure 0004720390
Figure 0004720390

また、図2(a)〜(d)は上記実施例1、実施例2、実施例4、実施例6により作製されたコンデンサ素子の断面図、図3は上記各実施例により得られたコンデンサ素子の体積効率とコンデンサ素子中心のリプル発熱の関係を示した特性図である。   FIGS. 2A to 2D are cross-sectional views of capacitor elements fabricated according to Example 1, Example 2, Example 4, and Example 6, and FIG. 3 illustrates capacitors obtained according to the above examples. It is the characteristic figure which showed the relationship between the volume efficiency of an element, and the ripple heat_generation | fever of the capacitor | condenser element center.

(表1)ならびに図3から明らかなように、扁平加工したコンデンサ素子の長径aと同短径bの比率である扁平率a/bが大きくなるにつれてコンデンサ素子中心のリプル発熱も小さくなっていることが分かる。また、巻芯からコンデンサ素子の外周面までの寸法が小さいほどコンデンサ素子中心のリプル発熱が小さいことも分かる。これは、発熱はコンデンサ素子の中心部が一番高いため、巻回した誘電体フィルムの総厚みを薄くすれば発熱を抑えることができることを意味しているものである。   As apparent from Table 1 and FIG. 3, the ripple heat generation at the center of the capacitor element decreases as the flatness ratio a / b, which is the ratio of the major axis a to the minor axis b of the flattened capacitor element, increases. I understand that. It can also be seen that the smaller the dimension from the winding core to the outer peripheral surface of the capacitor element, the smaller the ripple heat generation at the center of the capacitor element. This means that since the heat generation is highest in the center of the capacitor element, the heat generation can be suppressed by reducing the total thickness of the wound dielectric film.

また、実施例7、実施例8は誘電体フィルムの厚みが厚くなったことにより体積効率が低下しており、特に実施例8においては体積効率の低下が著しいことが分かる。   Further, in Examples 7 and 8, the volume efficiency is lowered due to the increase in the thickness of the dielectric film. In particular, in Example 8, the volume efficiency is significantly lowered.

このように本実施の形態による金属化フィルムコンデンサは、誘電体フィルムの厚みを3.5μm以下、扁平率a/bを3.0以上とした場合に、コンデンサ素子中心のリプル発熱を小さく抑えることができるものである。   As described above, the metallized film capacitor according to this embodiment suppresses the ripple heat generation at the center of the capacitor element to be small when the thickness of the dielectric film is 3.5 μm or less and the aspect ratio a / b is 3.0 or more. It is something that can be done.

(実施の形態2)
以下、実施の形態2を用いて、本発明の特に請求項4に記載の発明について説明する。
(Embodiment 2)
Hereinafter, the invention according to the fourth aspect of the present invention will be described with reference to the second embodiment.

上記実施の形態1で作製した実施例1、実施例2、実施例3の金属化フィルムコンデンサにおいて、同コンデンサに用いる巻芯の仕様を変化させて評価を行った。   In the metallized film capacitors of Example 1, Example 2, and Example 3 manufactured in the first embodiment, evaluation was performed by changing the specifications of the core used for the capacitor.

図4(a)、(b)は本発明の実施の形態2による金属化フィルムコンデンサに用いる巻芯の構成を示した斜視図であり、図4(a)はヒートシール無しの巻芯を示し、図4(b)はヒートシール有りの巻芯を示したものである。   4 (a) and 4 (b) are perspective views showing the configuration of the core used in the metallized film capacitor according to the second embodiment of the present invention, and FIG. 4 (a) shows the core without heat sealing. FIG. 4 (b) shows a core with heat seal.

図4において、4と5は巻芯を示し、この巻芯4、5は金属化フィルムを形成する誘電体フィルムと同じ材料であるポリプロピレンフィルムを用いて、その厚みを誘電体フィルムの3〜10倍の厚みとし、これを5〜10ターン巻回して構成したものであり、図4(b)では終端部分を溶着することにより形成したヒートシール部5aを設けたものである。   In FIG. 4, 4 and 5 indicate cores, and the cores 4 and 5 are made of a polypropylene film which is the same material as the dielectric film forming the metallized film, and the thickness thereof is 3 to 10 of the dielectric film. The thickness is doubled and wound by 5 to 10 turns. In FIG. 4B, a heat seal portion 5a formed by welding the terminal portion is provided.

以下、具体的な実施例について説明する。   Specific examples will be described below.

(実施例1−1)
厚み10.5μmのポリプロピレンフィルムを10ターン巻回し、終端部分を溶着してヒートシール部を設けた巻芯を作製し、この巻芯を用いて上記実施例1と同様のコンデンサ素子を作製した。このコンデンサ素子の外観と、90℃、600V、30Arms通電時の寿命試験で容量減少5%に達する時間を測定して評価した結果を巻芯の仕様と併せて、以下に説明する各実施例と共に(表2)に示す。
(Example 1-1)
A polypropylene film having a thickness of 10.5 μm was wound for 10 turns, and a winding core provided with a heat seal portion was prepared by welding the terminal portion, and a capacitor element similar to that of Example 1 was manufactured using this winding core. The external appearance of this capacitor element and the results of measuring and evaluating the time to reach a capacity reduction of 5% in a life test at 90 ° C., 600 V, 30 Arms, together with the specifications of the core, together with each example described below Shown in (Table 2).

(実施例1−2)
厚み12μmのポリプロピレンフィルムを8ターン巻回した以外は実施例1−1と同様にして作製した。
(Example 1-2)
A polypropylene film having a thickness of 12 μm was produced in the same manner as in Example 1-1 except that the film was wound for 8 turns.

(実施例1−3)
厚み18μmのポリプロピレンフィルムを8ターン巻回した以外は実施例1−1と同様にして作製した。
(Example 1-3)
A polypropylene film having a thickness of 18 μm was prepared in the same manner as in Example 1-1 except that the film was wound 8 turns.

(実施例1−4)
厚み35μmのポリプロピレンフィルムを5ターン巻回した以外は実施例1−1と同様にして作製した。
(Example 1-4)
A polypropylene film having a thickness of 35 μm was produced in the same manner as in Example 1-1 except that it was wound for 5 turns.

(実施例1−5)
厚み18μmのポリプロピレンフィルムを8ターン巻回し、ヒートシール部を設けなかった以外は実施例1−1と同様にして作製した。
(Example 1-5)
A polypropylene film having a thickness of 18 μm was wound for 8 turns and produced in the same manner as in Example 1-1 except that the heat seal part was not provided.

(実施例1−6)
厚み3μmのポリプロピレンフィルムを30ターン巻回した以外は実施例1−1と同様にして作製した。
(Example 1-6)
A polypropylene film having a thickness of 3 μm was produced in the same manner as in Example 1-1 except that 30 turns were wound.

(実施例1−7)
厚み38μmのポリプロピレンフィルムを5ターン巻回した以外は実施例1−1と同様にして作製した。
(Example 1-7)
A polypropylene film having a thickness of 38 μm was produced in the same manner as in Example 1-1 except that it was wound for 5 turns.

(実施例2−1)
厚み18μmのポリプロピレンフィルムを8ターン巻回し、終端部分を溶着してヒートシール部を設けた巻芯を作製し、この巻芯を用いて上記実施例2と同様のコンデンサ素子を作製した。
(Example 2-1)
A polypropylene film having a thickness of 18 μm was wound for 8 turns, and a winding core having a heat seal portion was prepared by welding the terminal portion, and a capacitor element similar to that of Example 2 was manufactured using this winding core.

(実施例2−2)
厚み100μmのポリプロピレンフィルムを1ターン巻回した以外は実施例2−1と同様にして作製した。
(Example 2-2)
A polypropylene film having a thickness of 100 μm was produced in the same manner as in Example 2-1, except that it was wound for one turn.

(実施例3−1)
厚み18μmのポリプロピレンフィルムを8ターン巻回し、終端部分を溶着してヒートシール部を設けた巻芯を作製し、この巻芯を用いて上記実施例3と同様のコンデンサ素子を作製した。
(Example 3-1)
A polypropylene film having a thickness of 18 μm was wound for 8 turns, and a winding core having a heat seal portion was prepared by welding the terminal portion, and a capacitor element similar to that of Example 3 was manufactured using this winding core.

(実施例3−2)
厚み100μmのポリプロピレンフィルムを1ターン巻回した以外は実施例3−1と同様にして作製した。
(Example 3-2)
A polypropylene film having a thickness of 100 μm was produced in the same manner as in Example 3-1, except that it was wound for one turn.

(実施例3−3)
厚み250μmのポリプロピレンフィルムを1ターン巻回し、ヒートシール部を設けなかった以外は実施例3−1と同様にして作製した。
(Example 3-3)
A polypropylene film having a thickness of 250 μm was wound for one turn and produced in the same manner as in Example 3-1, except that the heat seal portion was not provided.

Figure 0004720390
Figure 0004720390

(表2)から明らかなように、巻芯を構成するポリプロピレンフィルムの厚みが3μmと薄いものを用いた実施例1−6の場合には、巻芯の強度が弱すぎるために巻芯保持治具を抜き取る際に巻芯の一部が巻芯保持治具と共に移動してはみ出してしまい、外観不良を引き起こすだけでなく、容量減少率も大きなものとなる。   As apparent from (Table 2), in the case of Example 1-6 in which the polypropylene film constituting the core has a thin thickness of 3 μm, the strength of the core is too weak, so When the tool is removed, a part of the core moves together with the core holding jig and protrudes, causing not only a poor appearance but also a large capacity reduction rate.

また、巻芯を構成するポリプロピレンフィルムの厚みが18μmのものを用いた実施例1−5の場合でも、終端部分を溶着しない(ヒートシール部を設けない)場合には、巻芯の強度が低いために、巻芯にしわが発生して外観不良を引き起こすだけでなく、容量減少率も大きくなる。   Even in Example 1-5 in which the polypropylene film constituting the core has a thickness of 18 μm, the strength of the core is low when the terminal portion is not welded (the heat seal portion is not provided). For this reason, wrinkles are generated in the winding core to cause poor appearance, and the capacity reduction rate is also increased.

また逆に、巻芯を構成するポリプロピレンフィルムの厚みが38μmと厚いものを用いた実施例1−7の場合には、巻芯の強度が強すぎるために、扁平加工後に元に戻ろうとして膨れが発生してしまい、外観不良を引き起こすだけでなく、容量減少率も大きなものとなり、さらに、ポリプロピレンフィルムの厚さを100μm、250μmと厚くした実施例2−2、実施例3−2、実施例3−3のものは、この現象が顕著に現れる。   On the other hand, in Example 1-7 in which the polypropylene film constituting the core has a thickness as thick as 38 μm, the core is too strong, so that it swells to return to its original state after flattening. Example 2-2, Example 3-2, and Example in which the thickness of the polypropylene film was increased to 100 μm and 250 μm. In the case of 3-3, this phenomenon appears remarkably.

以上の結果から、本実施の形態による金属化フィルムコンデンサに用いる巻芯は、金属化フィルムを構成する誘電体フィルム厚の3〜10倍厚のポリプロピレンフィルムを5〜10ターン巻回して構成するのが最も好ましいことが分かる。   From the above results, the core used for the metallized film capacitor according to the present embodiment is configured by winding 5 to 10 turns of a polypropylene film having a thickness of 3 to 10 times the dielectric film thickness constituting the metallized film. Is most preferable.

また、このようにして構成された巻芯の終端部を溶着してヒートシール部を設けることにより、巻芯の強度が向上するために好ましく、さらに、このヒートシール部に複数の凹部を設けることにより、より安定した強度が得られるために、より好ましいものである。   In addition, it is preferable to improve the strength of the core by welding the terminal end of the core configured in this way to provide a heat seal portion, and further to provide a plurality of recesses in the heat seal portion. Is more preferable because a more stable strength can be obtained.

また、誘電体フィルムに形成した金属蒸着電極に分割電極を設け、この分割電極をヒューズで並列接続することにより構成される自己保安機能を設けることにより、さらなる高性能化を図った金属化フィルムコンデンサを実現することができるものである。   In addition, a metallized film capacitor that achieves higher performance by providing a split electrode on a metal vapor-deposited electrode formed on a dielectric film and providing a self-safety function that is formed by connecting the split electrode in parallel with a fuse. Can be realized.

このように本発明による金属化フィルムコンデンサは、大容量で小型薄型化を図って体積効率を向上させ、しかも生産性、信頼性に優れるという格別の効果を奏するため、大容量化の際にはコンデンサ素子数を削減してデッドスペースを減少させることが可能になるばかりでなく、半田付け点数を削減することができるために、工数を削減してコストダウンを実現することも可能になるものである。   As described above, the metallized film capacitor according to the present invention has a large capacity, a small size and a thin shape, improves volumetric efficiency, and has an excellent effect of being excellent in productivity and reliability. Not only can the number of capacitor elements be reduced to reduce the dead space, but also the number of soldering points can be reduced, so it is possible to reduce the man-hours and reduce costs. is there.

本発明による金属化フィルムコンデンサは、小型薄型化を図って体積効率を向上させ、かつ大容量化も実現できるという効果を有し、特に、ハイブリッド自動車のモータ駆動用インバータ回路の平滑用等として有用である。   The metallized film capacitor according to the present invention has an effect that the volume efficiency can be improved by reducing the size and thickness, and the capacity can be increased, and is particularly useful for smoothing an inverter circuit for driving a motor of a hybrid vehicle. It is.

(a)本発明の実施の形態1による金属化フィルムコンデンサを構成するコンデンサ素子を示した正面図、(b)同斜視図(A) The front view which showed the capacitor | condenser element which comprises the metallized film capacitor by Embodiment 1 of this invention, (b) The perspective view (a)同実施例1によるコンデンサ素子の断面図、(b)同実施例2によるコンデンサ素子の断面図、(c)同実施例4によるコンデンサ素子の断面図、(d)同実施例6によるコンデンサ素子の断面図(A) Cross-sectional view of capacitor element according to Example 1, (b) Cross-sectional view of capacitor element according to Example 2, (c) Cross-sectional view of capacitor element according to Example 4, (d) According to Example 6 Cross section of capacitor element 同実施の形態により得られたコンデンサ素子の体積効率と素子中心のリプル発熱の関係を示した特性図Characteristic diagram showing the relationship between the volumetric efficiency of the capacitor element and ripple heat generation at the element center obtained by the same embodiment (a)、(b)本発明の実施の形態2による金属化フィルムコンデンサに用いる巻芯の構成を示した斜視図(A), (b) The perspective view which showed the structure of the core used for the metallized film capacitor by Embodiment 2 of this invention (a)従来の金属化フィルムコンデンサの構成を示した平面断面図、(b)同正面断面図(A) Plan sectional view showing the structure of a conventional metallized film capacitor, (b) Front sectional view of the same 同コンデンサ素子の形状による体積効率を試算するための概念図Conceptual diagram for estimating volumetric efficiency due to the shape of the capacitor element 同コンデンサ素子の膨れ現象を示した正面図Front view showing the swelling phenomenon of the capacitor element 同コンデンサ素子の巻芯はみ出し現象を示した平面図Plan view showing the core protrusion phenomenon of the capacitor element 同コンデンサ素子の巻芯に発生したしわを示した正面図Front view showing wrinkles generated on the core of the capacitor element

符号の説明Explanation of symbols

1、4、5 巻芯
2 金属化フィルム
3 コンデンサ素子
5a ヒートシール部
1, 4, 5 Core 2 Metallized film 3 Capacitor element 5a Heat seal part

Claims (2)

ポリプロピレンからなる誘電体フィルム上に金属蒸着電極を形成した金属化フィルムを一対の金属蒸着電極が誘電体フィルムを介して対向するように巻芯上に巻回して扁平化することにより断面が小判形に形成されたコンデンサ素子と、このコンデンサ素子の両端面に夫々設けられた一対の取り出し電極からなる金属化フィルムコンデンサにおいて、上記コンデンサ素子の小判形に形成された断面の長径をa、同短径をbとした場合のa/b=3以上でa=60mm以上、かつ、上記金属化フィルムを構成する誘電体フィルム厚の3〜10倍厚のポリプロピレンフィルムを5〜10ターン巻回した巻芯を用い、この巻芯からコンデンサ素子の外周面までの寸法を14mm以下とし、上記巻芯の終端の少なくとも一部をヒートシールにより溶着すると共に、このヒートシール部に複数の凹部を設けた金属化フィルムコンデンサ。 A metallized film in which a metal-deposited electrode is formed on a dielectric film made of polypropylene is wound on a winding core so that the pair of metal-deposited electrodes are opposed to each other with the dielectric film interposed therebetween, and is flattened. In the metallized film capacitor composed of the capacitor element formed in the above and a pair of extraction electrodes provided on both end faces of the capacitor element, the major axis of the cross section formed in the oval shape of the capacitor element is a, A core obtained by winding 5 to 10 turns of a polypropylene film having a thickness of 3 to 10 times the thickness of the dielectric film constituting the metallized film. the use, the dimension from the core to the outer peripheral surface of the capacitor element and 14mm below the welding by heat sealing at least a portion of the end of the winding core Rutotomoni, metalized film capacitor having a plurality of recesses in the heat-sealed portion. コンデンサ素子を構成する誘電体フィルムの厚みを3.5μm以下とした請求項1に記載の金属化フィルムコンデンサ。 The metallized film capacitor according to claim 1, wherein the dielectric film constituting the capacitor element has a thickness of 3.5 μm or less.
JP2005264960A 2005-04-08 2005-09-13 Metallized film capacitors Expired - Fee Related JP4720390B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005264960A JP4720390B2 (en) 2005-09-13 2005-09-13 Metallized film capacitors
EP14186630.1A EP2851914B1 (en) 2005-04-08 2006-04-07 Flattened metalized film wound capacitor, case mold type capacitor using the same, inverter circuit, and vehicle drive motor drive circuit
PCT/JP2006/307467 WO2006109732A1 (en) 2005-04-08 2006-04-07 Metalized film capacitor, case module type capacitor using the same, inverter circuit, and vehicle drive motor drive circuit
EP06731414.6A EP1868217A4 (en) 2005-04-08 2006-04-07 Metalized film capacitor, case module type capacitor using the same, inverter circuit, and vehicle drive motor drive circuit
US11/908,524 US7911765B2 (en) 2005-04-08 2006-04-07 Metalized film capacitor, case mold type capacitor using the same, inverter circuit, and vehicle drive motor drive circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005264960A JP4720390B2 (en) 2005-09-13 2005-09-13 Metallized film capacitors

Publications (2)

Publication Number Publication Date
JP2007081007A JP2007081007A (en) 2007-03-29
JP4720390B2 true JP4720390B2 (en) 2011-07-13

Family

ID=37941010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005264960A Expired - Fee Related JP4720390B2 (en) 2005-04-08 2005-09-13 Metallized film capacitors

Country Status (1)

Country Link
JP (1) JP4720390B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2688474C (en) * 2007-06-05 2013-09-03 The Procter & Gamble Company Absorbent articles comprising low basis weight films exhibiting low glue burn through
JP5452620B2 (en) * 2010-01-05 2014-03-26 三菱電機株式会社 Cable connector
WO2013088866A1 (en) * 2011-12-13 2013-06-20 株式会社村田製作所 Stacked actuator
JP6096091B2 (en) * 2013-09-30 2017-03-15 ニチコン株式会社 Capacitor element
CN110998767B (en) * 2017-08-02 2022-01-04 松下知识产权经营株式会社 Capacitor with a capacitor element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH054446U (en) * 1991-07-04 1993-01-22 マルコン電子株式会社 Capacitor
JPH0511430U (en) * 1991-07-22 1993-02-12 ニチコン株式会社 Metallized film capacitors
JP2004350400A (en) * 2003-05-22 2004-12-09 Hitachi Ltd Power converter
JP2005093761A (en) * 2003-09-18 2005-04-07 Matsushita Electric Ind Co Ltd Film capacitor
JP2005093516A (en) * 2003-09-12 2005-04-07 Matsushita Electric Ind Co Ltd Metallized film capacitor and inverter power source circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH054446U (en) * 1991-07-04 1993-01-22 マルコン電子株式会社 Capacitor
JPH0511430U (en) * 1991-07-22 1993-02-12 ニチコン株式会社 Metallized film capacitors
JP2004350400A (en) * 2003-05-22 2004-12-09 Hitachi Ltd Power converter
JP2005093516A (en) * 2003-09-12 2005-04-07 Matsushita Electric Ind Co Ltd Metallized film capacitor and inverter power source circuit
JP2005093761A (en) * 2003-09-18 2005-04-07 Matsushita Electric Ind Co Ltd Film capacitor

Also Published As

Publication number Publication date
JP2007081007A (en) 2007-03-29

Similar Documents

Publication Publication Date Title
EP2851914B1 (en) Flattened metalized film wound capacitor, case mold type capacitor using the same, inverter circuit, and vehicle drive motor drive circuit
CN101305432B (en) Electric double layer capacitor
JP4720390B2 (en) Metallized film capacitors
US9558893B2 (en) Power storage device
JP5012524B2 (en) Metallized film capacitors
JPWO2008026526A1 (en) Metallized film capacitors
JP4967711B2 (en) Metallized film capacitors
CN103177880A (en) Solid electrolytic capacitor and method for producing the same
JP5012140B2 (en) Case mold type capacitor and inspection method thereof
JP4923589B2 (en) Case mold type capacitor
JP2007081006A (en) Case mold type capacitor
JP5125582B2 (en) Case mold type capacitor
JP5012515B2 (en) Metallized film capacitors
JP2757573B2 (en) Electric double layer capacitor
JP4671347B2 (en) Solid electrolytic capacitor
JP2009200378A (en) Composite metallized-film capacitor
CN212209243U (en) Filtering film capacitor of low-thermal-resistance automobile battery pack management system
JP2019003990A (en) Electrode element
CN210429562U (en) Film capacitor and motor driver
JP6913856B2 (en) Film capacitor
JP2008103451A (en) Metallized film capacitor
JP2005093516A (en) Metallized film capacitor and inverter power source circuit
JP2008258470A (en) Metallized film capacitor and manufacturing method thereof
JP2007180391A (en) Electrolytic capacitor
CN220963054U (en) Capacitor, filter assembly and motor controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080710

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4720390

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees