JP2007078666A - Method and device for detecting electromagnetic wave shape - Google Patents

Method and device for detecting electromagnetic wave shape Download PDF

Info

Publication number
JP2007078666A
JP2007078666A JP2005271050A JP2005271050A JP2007078666A JP 2007078666 A JP2007078666 A JP 2007078666A JP 2005271050 A JP2005271050 A JP 2005271050A JP 2005271050 A JP2005271050 A JP 2005271050A JP 2007078666 A JP2007078666 A JP 2007078666A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
electrodes
wave shape
electrode
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005271050A
Other languages
Japanese (ja)
Inventor
Atsushi Shoji
篤 東海林
Shingo Saito
伸吾 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Information and Communications Technology
Original Assignee
National Institute of Information and Communications Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Information and Communications Technology filed Critical National Institute of Information and Communications Technology
Priority to JP2005271050A priority Critical patent/JP2007078666A/en
Publication of JP2007078666A publication Critical patent/JP2007078666A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device for detecting an electromagnetic wave shape without depending on the polarization direction with a simple constitution using a photo-conduction aerial. <P>SOLUTION: In this detecting method, the electromagnetic wave shape is detected using the photo-conduction aerial. The detecting device comprises a substrate, three or more electrodes constituted by metal films formed on the surface, a wire connected to each electrode, and a current measuring means for measuring current between the electrodes. Sampling light is radiated between the electrodes by a sampling light radiating means; the electromagnetic wave to be detected is radiated between the electrodes by a detected wave radiating means; a group of the electrodes measured with the current measuring means is selected and controlled by an electrode control means; and the electromagnetic wave shape in the polarization direction corresponding to the arrangement of the electrode group on the substrate is calculated by an electromagnetic wave shape arithmetic means based on the electrode group selected by the electrode control means and the current value measured by the current measuring means. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、光伝導アンテナを用いて電磁波形状を検出する方法と、その方法を実施する装置に関する。   The present invention relates to a method for detecting an electromagnetic wave shape using a photoconductive antenna and an apparatus for carrying out the method.

近年、遠赤外線やサブミリ波の領域において新しい発生及び検出方式の研究が急速に進展しつつあり、テラヘルツ波が注目されている。この領域は、赤外とミリ波の間、換言すれば光波と電波の境界に位置する。光と電波のそれぞれの領域が重要な応用技術とともに発展してきたのとは対照的に、技術面でも応用面でも未だ開拓途上にある領域である。  In recent years, research on new generation and detection methods is rapidly progressing in the far infrared and submillimeter wave regions, and terahertz waves have attracted attention. This region is located between infrared and millimeter waves, in other words, at the boundary between light waves and radio waves. In contrast to the development of light and radio waves along with important applied technologies, they are still in the process of being developed both in terms of technology and application.

テラヘルツ波帯は、古くから適当な光源と検出素子が無かったために、あまり研究が進んでいなかった。20世紀後半になって半導体工学やレーザー工学が発達すると、半導体で作製したアンテナ素子をフェムト秒パルスレーザーで励起することでテラヘルツ波が放射される現象が見い出された。
非特許文献1によると、従来方法に比べて小さな装置で簡単にテラヘルツ波を放射できるだけでなく、放射されたテラヘルツ波を時間領域で測定できるので、その振幅情報と位相情報とが同時に得られるという大きな利点がある。
D.H. Auston, K.P. Cheung, and P.R. Smith, Appl. Phys. Lett. 45, 284 (1984)
The terahertz wave band has not been studied much because there has been no appropriate light source and detector for a long time. In the second half of the 20th century, when semiconductor engineering and laser engineering developed, a phenomenon was found in which terahertz waves were emitted by exciting antenna elements made of semiconductors with femtosecond pulse lasers.
According to Non-Patent Document 1, it is possible not only to radiate terahertz waves easily with a small apparatus compared to the conventional method, but also to measure the radiated terahertz waves in the time domain, so that amplitude information and phase information can be obtained simultaneously. There is a big advantage.
DH Auston, KP Cheung, and PR Smith, Appl.Phys. Lett. 45, 284 (1984)

この研究成果を契機としてテラヘルツ波に関する研究は急速に発展しつつあり、無線通信における周波数帯の有効利用や超高速通信への対応、並びにこの周波数帯の電磁波の特徴を活用したイメージングや、環境計測、各種検査、バイオや医学への応用など、テラヘルツ領域の研究は今後ますます重要になることが予想される。
また、これまで光源・検出器が未発達であったために解明されていない物理現象・生命現象・物質構造の解明、更に、宇宙、大気や生体、プラズマなどの計測・診断など幅広い基礎的な応用分野の発展につながる。
As a result of this research result, research on terahertz waves has been rapidly developing. Effective use of frequency bands in wireless communication, support for ultra-high speed communication, imaging utilizing the characteristics of electromagnetic waves in this frequency band, and environmental measurement Terahertz research is expected to become increasingly important in the future, including various tests, biotechnology and medical applications.
In addition, a wide range of basic applications such as the elucidation of physical phenomena, life phenomena, and material structures that have not been elucidated because light sources and detectors have not been developed so far, and the measurement and diagnosis of space, atmosphere, living organisms, plasmas, etc. It leads to field development.

テラヘルツ波帯は発生も検出も困難であり、技術的に未発達な領域であるが、特に、簡便な広帯域波長可変光源はこの領域の応用研究を飛躍的に前進させるために必要不可欠な光源として多くの研究者から待ち望まれている。なかでも0.2〜3テラヘルツ(波長100〜1500μm)付近をカバーする簡便な広帯域波長可変光源の開発が特に求められている。  The terahertz wave band is difficult to generate and detect, and is a technically undeveloped area. In particular, a simple broadband wavelength tunable light source is an indispensable light source for making significant progress in applied research in this area. It is awaited by many researchers. In particular, the development of a simple broadband wavelength tunable light source that covers the vicinity of 0.2 to 3 terahertz (wavelength 100 to 1500 μm) is particularly required.

光技術を用いてテラヘルツ波を発生させる従来の方式には、次のようなものがある。すなわち、非線形光学結晶を用いた差周波光発生(DFG)、非線形光学結晶を用いたパラメトリック発振、光伝導(PC)素子を用いた光混合、PC素子を用いたフェムト秒光パルスによる超短電磁パルス発生が挙げられる。  Conventional methods for generating terahertz waves using optical technology include the following. In other words, differential frequency light generation (DFG) using nonlinear optical crystal, parametric oscillation using nonlinear optical crystal, light mixing using photoconductive (PC) element, ultrashort electromagnetic by femtosecond optical pulse using PC element One example is pulse generation.

非線形光学結晶を用いたDFGと非線形光学結晶を用いたパラメトリック発振は、2次の非線形光学効果を有する結晶に光波を入射し、位相整合条件下でテラヘルツ波を発生させる構成である。DFGでは二つの入射光の波長間隔(〜nm)を変化させることによって、発生させるテラヘルツ波の波長を制御する。一方、パラメトリック発振を用いる方式では、入射光は1波長でよく、またその入射角を変化させるのみで、発生させるテラヘルツ波の波長を制御できる特長がある。  The DFG using the nonlinear optical crystal and the parametric oscillation using the nonlinear optical crystal are configured such that a light wave is incident on a crystal having a second-order nonlinear optical effect and a terahertz wave is generated under phase matching conditions. In DFG, the wavelength of the terahertz wave to be generated is controlled by changing the wavelength interval (˜nm) of two incident lights. On the other hand, the method using parametric oscillation has the advantage that the wavelength of the terahertz wave to be generated can be controlled only by changing the incident angle of incident light.

PC素子を用いた光混合とPC素子を用いたフェムト秒光パルスによる超短電磁パルス発生は、非線形光学効果ではなくピコ秒以下のキャリヤ寿命を有する低温成長 GaAs 薄膜における光伝導効果を用いて光混合を行うものであり、バイアス電界が必要になる点が上記方式と異なる。
微小ダイポールアンテナやスパイラル状のアンテナを一体化した PC 素子を用いて、850 nm 帯の2台の LD 出力の光混合により 0.2〜3 THz の周波数域の CW-テラヘルツ波発生が行われている。また、同様な PC 素子にフェムト秒光パルスを照射することによって、テラヘルツ波を含んだ幅広い周波数成分を有する超短電磁パルスの発生が可能である。
Ultrashort electromagnetic pulse generation by light mixing using a PC element and femtosecond light pulse using a PC element is not a nonlinear optical effect, but light using a photoconductive effect in a low-temperature-grown GaAs thin film with a carrier lifetime of picoseconds or less. It differs from the above method in that mixing is performed and a bias electric field is required.
CW-terahertz waves in the frequency range of 0.2 to 3 THz are generated by optical mixing of two LD outputs in the 850 nm band using a PC element that integrates a micro dipole antenna and a spiral antenna. Moreover, by irradiating a similar PC element with femtosecond light pulses, it is possible to generate ultrashort electromagnetic pulses having a wide range of frequency components including terahertz waves.

一方、テラヘルツ波の検出に当たっては、光伝導アンテナを用いた場合、その構造上、特定の偏波方向のテラヘルツ波しか検出できなかった。
光伝導アンテナを用いて電磁波形状を検出するには、基板上の2個の電極間に、照射タイミングを徐々に変えながらサンプリング光を照射し、電極間に発生する電流を計測することで行なう。
しかし、これによって感度良く検出されるテラヘルツ波は、向き合う2個の電極の組の方向と平行な偏波方向の電磁波に限られてしまう。
On the other hand, when detecting a terahertz wave, when a photoconductive antenna is used, only a terahertz wave having a specific polarization direction can be detected due to its structure.
In order to detect the electromagnetic wave shape using the photoconductive antenna, sampling light is irradiated between two electrodes on the substrate while gradually changing the irradiation timing, and the current generated between the electrodes is measured.
However, the terahertz wave detected with high sensitivity is limited to an electromagnetic wave having a polarization direction parallel to the direction of the set of two electrodes facing each other.

そこで、本発明は、光伝導アンテナを用いた簡易な構成によって、偏波方向に依存することなく電磁波形状を検出できる方法及び装置を提供することを課題とする。   Therefore, an object of the present invention is to provide a method and an apparatus capable of detecting an electromagnetic wave shape without depending on a polarization direction with a simple configuration using a photoconductive antenna.

上記課題を解決するために、本発明の電磁波形状検出方法は、次の構成を備える。
すなわち、光伝導アンテナを用いて電磁波形状を検出する方法において、基板と、その表面に形成された金属膜から成る3個以上の電極と、その各電極に接続された配線と、電極間にかかる電流を測定する電流測定手段とを備えた装置に対して、サンプリング光照射手段によって電極間にサンプリング光を照射すると共に、被検出波照射手段によって検出対象の電磁波を電極間に照射し、電極制御手段によって、電流測定手段で計測する電極の組を選択制御し、電磁波形状演算手段によって、電極制御手段で選択された電極組と電流測定手段で計測された電流値とから、基板上における電極組の配置に対応した偏波方向の電磁波形状を算出することを特徴とする。
In order to solve the above problems, the electromagnetic wave shape detection method of the present invention comprises the following configuration.
That is, in a method for detecting the shape of an electromagnetic wave using a photoconductive antenna, a substrate, three or more electrodes made of a metal film formed on the surface, wiring connected to each electrode, and a gap between the electrodes A device equipped with a current measuring means for measuring current is irradiated with sampling light between the electrodes by the sampling light irradiation means, and an electromagnetic wave to be detected is irradiated between the electrodes by the detected wave irradiation means, thereby controlling the electrodes. The electrode set to be measured by the current measuring means is selected and controlled by the means, and the electrode set on the substrate is selected from the electrode set selected by the electrode control means and the current value measured by the current measuring means by the electromagnetic wave shape calculating means. The electromagnetic wave shape in the polarization direction corresponding to the arrangement of is calculated.

ここで、電極を、互いに120°の角度をなして対称的に放射状に配置された3本の薄膜で構成し、その3電極のうちから2電極の組を、異なる2通りの組み合わせで選択し、その2通りの各組み合わせによって得られる各電流測定値を加算或いは減算することによって、直交する2つの偏波方向の電磁波形状を同時に求めるようにしてもよい。   Here, the electrodes are composed of three thin films symmetrically arranged radially at an angle of 120 ° to each other, and two sets of two electrodes are selected from the three electrodes in two different combinations. The electromagnetic wave shapes in two orthogonal polarization directions may be obtained simultaneously by adding or subtracting each current measurement value obtained by each of the two combinations.

このような方法を実施する電磁波形状検出装置は、光伝導アンテナを用いて電磁波形状を検出する装置において、基板と、その表面に形成された金属膜から成る3個以上の電極と、その各電極に接続された配線と、電極間にかかる電流を測定する電流測定手段と、電極間にサンプリング光を照射するサンプリング光照射手段と、検出対象の電磁波を電極間に照射する被検出波照射手段と、電流測定手段で計測する電極の組を選択制御する電極制御手段と、電極制御手段で選択された電極組と電流測定手段で計測された電流値とから、基板上における電極組の配置に対応した偏波方向の電磁波形状を算出する電磁波形状演算手段とを備えることを特徴とする。   An electromagnetic wave shape detection apparatus for performing such a method is an apparatus for detecting an electromagnetic wave shape using a photoconductive antenna, and includes a substrate, three or more electrodes made of a metal film formed on the surface thereof, and each of the electrodes. Wiring connected to the electrodes, current measuring means for measuring the current applied between the electrodes, sampling light irradiating means for irradiating sampling light between the electrodes, and detected wave irradiating means for irradiating a detection target electromagnetic wave between the electrodes Corresponding to the arrangement of the electrode set on the substrate from the electrode control means for selectively controlling the electrode set to be measured by the current measurement means, the electrode set selected by the electrode control means and the current value measured by the current measurement means And electromagnetic wave shape calculation means for calculating the electromagnetic wave shape in the polarization direction.

ここで、電極を、放射状に配置された3本以上の薄膜で構成してもよい。   Here, you may comprise an electrode with the 3 or more thin film arrange | positioned radially.

本発明によると、電極を3個以上設け、電流測定する電極の組を選択制御するので、電極の組の方向を2次元的に変更でき、任意の偏波方向の電磁波形状が検出可能となる。   According to the present invention, since three or more electrodes are provided and the electrode set for current measurement is selected and controlled, the direction of the electrode set can be changed two-dimensionally, and the electromagnetic wave shape in an arbitrary polarization direction can be detected. .

以下に、図面を基に本発明の実施形態を説明する。
図1は、電磁波形状検出装置の要部を示す斜視説明図である。
光伝導アンテナは、基板(11)と、その表面にパターニング形成された金属膜から成るアンテナパターン(12)とを有する。アンテナパターン(12)には、配線(13)を介して、そのライン間にかかる電流を測定する電流測定手段(14)が接続されている。
基板(11)としては、低温成長GaAsなどが利用できる。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a perspective explanatory view showing a main part of the electromagnetic wave shape detection device.
The photoconductive antenna has a substrate (11) and an antenna pattern (12) made of a metal film patterned on the surface thereof. The antenna pattern (12) is connected to a current measuring means (14) for measuring a current applied between the lines via the wiring (13).
As the substrate (11), low-temperature grown GaAs or the like can be used.

テラヘルツ波検出装置は、約0.01×1012〜100×1012Hzの周波数領域のパルス光を試料に照射して、試料からの透過光または反射光を検出することにより、試料の電気的特性や成分濃度などを測定する装置として利用できる。
試料からのテラヘルツ波(21)は、半球状等のレンズ(15)を介して光伝導アンテナへ入射し、アンテナパターン(12)のライン間に照射される。一方、サンプリング光としてのパルス光(22)もそこに照射する。
なお、パルス光(22)の光源としては、例えば、フェムト秒パルスレーザーが利用できる。集光レンズを介挿してパルス光(22)の光束を絞ってもよい。
The terahertz wave detection apparatus irradiates a sample with pulsed light in a frequency region of about 0.01 × 10 12 to 100 × 10 12 Hz, and detects transmitted light or reflected light from the sample, thereby electrically measuring the sample. It can be used as a device for measuring characteristics and component concentrations.
The terahertz wave (21) from the sample is incident on the photoconductive antenna via a lens (15) such as a hemisphere, and is irradiated between the lines of the antenna pattern (12). On the other hand, pulsed light (22) as sampling light is also irradiated there.
As the light source of the pulsed light (22), for example, a femtosecond pulse laser can be used. The light flux of the pulsed light (22) may be reduced by inserting a condenser lens.

アンテナパターン(12)のライン間では、テラヘルツ波(21)によって電場が生じた状態になり、サンプリング光としてのパルス光(22)によっては電場強度に応じた光電流が生じる。それを電流測定手段(14)で計測することで、テラヘルツ波(21)に依存する電場強度を得ることができる。   Between the lines of the antenna pattern (12), an electric field is generated by the terahertz wave (21), and a photocurrent corresponding to the electric field strength is generated depending on the pulsed light (22) as sampling light. By measuring it with the current measuring means (14), the electric field strength depending on the terahertz wave (21) can be obtained.

図2は、本発明による電磁波形状検出装置の要部を示す正面説明図である。
本発明では、アンテナパターン(12)の電極を3個以上設ける。図示の例では、3個の電極(12a)(12b)(12c)が、互いに120°の角度をなして対称的に放射状に配置されている。
電極が3個以上あると、電流を測定する電極の組を複数通りに選択することが可能になる。例えば、電極が3個の場合、電極(12a)と電極(12c)との組からは電流測定手段(14a)によって電流Aが計測され、電極(12b)と電極(12c)との組からは電流測定手段(14b)によって電流Bが計測される。
FIG. 2 is an explanatory front view showing a main part of the electromagnetic wave shape detection device according to the present invention.
In the present invention, three or more electrodes of the antenna pattern (12) are provided. In the illustrated example, three electrodes (12a) (12b) (12c) are symmetrically arranged radially at an angle of 120 ° with respect to each other.
When there are three or more electrodes, it is possible to select a plurality of electrode sets for measuring current. For example, when there are three electrodes, the current A is measured by the current measuring means (14a) from the set of the electrode (12a) and the electrode (12c), and from the set of the electrode (12b) and the electrode (12c) The current B is measured by the current measuring means (14b).

電極(12a)と電極(12c)との組から得られた電流Aと、電極(12b)と電極(12c)との組から得られた電流Bとを加算すると、図示の縦方向(T)の偏波方向の電磁波形状が求められ、電極(12a)と電極(12c)との組から得られた電流Aと、電極(12b)と電極(12c)との組から得られた電流Bとを減算すると、図示の横方向(Y)の偏波方向の電磁波形状が求められる。
このように、2通りの組み合わせによって得られる各電流測定値を加算或いは減算することによって、直交する2つの偏波方向(T)(Y)の電磁波形状を、1回の測定で同時に求めることができる。
When the current A obtained from the pair of the electrode (12a) and the electrode (12c) and the current B obtained from the pair of the electrode (12b) and the electrode (12c) are added, the longitudinal direction (T) shown in the figure The current A obtained from the pair of the electrode (12a) and the electrode (12c), and the current B obtained from the pair of the electrode (12b) and the electrode (12c) are obtained. Is obtained, the electromagnetic wave shape in the polarization direction in the horizontal direction (Y) shown in the figure is obtained.
In this way, by adding or subtracting the respective current measurement values obtained by the two combinations, the electromagnetic wave shapes in the two orthogonal polarization directions (T) (Y) can be simultaneously obtained by one measurement. it can.

電極の数や配置は、電極数が3以上で線形独立な配置であれば任意である。電極の配置と、選択する電極組の配置に応じ、それらから得られる電流値を線形結合する演算によって、所望の偏波方向の電磁波形状を求めることができる。   The number and arrangement of the electrodes are arbitrary as long as the number of electrodes is 3 or more and linearly independent. Depending on the arrangement of the electrodes and the arrangement of the electrode sets to be selected, the electromagnetic wave shape in the desired polarization direction can be obtained by a calculation that linearly combines the current values obtained from them.

本発明によると、任意の偏波方向の電磁波形状が検出可能となるので、例えばテラヘルツ波帯に活用して、通信用の電磁波受信アンテナや、センシングシステム分野における検出装置や、分光装置のための検出装置などに活用できる。
テラヘルツ波技術は、原子系の量子状態を制御する手段としての原子チップ、原子光学、BEC技術や、物質系の新しい観測手段としても有望であり、本発明はテラヘルツ波の多様な用途に寄与する。
テラヘルツ波の応用分野は、物性、分子分光、生体研究などの基礎研究から、半導体など各種材料の品質評価、高感度ガス検出、超高速通信などの応用分野まで多岐にわたる。
また、半導体、プラスチック、ビニール、紙、ゴム、木材、歯、骨、乾燥食品などを透過する電磁波の中で、テラヘルツ波が最も短波長すなわち高分解能であることから、人体に危険なX線に代わる安全な非破壊検査用光源としての実用化に期待がもたれる。
更に、DNAやタンパク質、酵素など生体高分子の骨格振動周波数が、テラヘルツ波領域に存在することが明らかになりつつあり、医療応用や生体イメージングなどの分野でも有望である。
また、皮膚癌や乳癌の早期診断、火傷深さの診断、虫歯の断層撮影、半導体シリコン基板の検査、粉ミルク等への異物混入防止、乾燥食品の水分含有量検査、材木や紙などの水分含有量検査など多分野にわたるので、産業上利用価値が高い。
According to the present invention, an electromagnetic wave shape in an arbitrary polarization direction can be detected. For example, the electromagnetic wave receiving antenna for communication, a detection device in the field of sensing systems, and a spectroscopic device can be used in a terahertz wave band. It can be used for detection devices.
Terahertz wave technology is also promising as an atomic chip, atomic optics, BEC technology as a means for controlling the quantum state of atomic systems, and a new observation means for material systems, and the present invention contributes to various uses of terahertz waves. .
The application fields of terahertz waves range from basic research such as physical properties, molecular spectroscopy, and biological research to application fields such as quality evaluation of various materials such as semiconductors, high-sensitivity gas detection, and ultrahigh-speed communication.
In addition, terahertz waves have the shortest wavelength, that is, high resolution among electromagnetic waves that pass through semiconductors, plastics, vinyl, paper, rubber, wood, teeth, bones, and dry foods. Expectation for practical use as an alternative safe non-destructive inspection light source.
Furthermore, it is becoming clear that the skeletal vibration frequencies of biopolymers such as DNA, proteins, and enzymes are present in the terahertz wave region, which is also promising in fields such as medical applications and bioimaging.
In addition, early diagnosis of skin cancer and breast cancer, diagnosis of burn depth, tomography of caries, inspection of semiconductor silicon substrate, prevention of foreign matter contamination in powdered milk, moisture content inspection of dried food, moisture content such as timber and paper Since it covers many fields such as quantity inspection, it has high industrial utility value.

電磁波形状検出装置の要部を示す斜視説明図Perspective explanatory view showing the main part of the electromagnetic wave shape detection device 本発明による電磁波形状検出装置の要部を示す正面説明図Front explanatory drawing which shows the principal part of the electromagnetic wave shape detection apparatus by this invention

符号の説明Explanation of symbols

11 基板
12 アンテナパターン
12a〜12c 電極
13 配線
14、14a〜14b 電流測定手段
15 レンズ
21 検出対象の電磁波
22 サンプリング光としてのパルス光

DESCRIPTION OF SYMBOLS 11 Board | substrate 12 Antenna pattern 12a-12c Electrode 13 Wiring 14, 14a-14b Current measuring means 15 Lens 21 Electromagnetic wave 22 of detection object 22 Pulsed light as sampling light

Claims (4)

光伝導アンテナを用いて電磁波形状を検出する装置であって、
基板と、その表面に形成された金属膜から成る3個以上の電極と、その各電極に接続された配線と、電極間にかかる電流を測定する電流測定手段と、電極間にサンプリング光を照射するサンプリング光照射手段と、検出対象の電磁波を電極間に照射する被検出波照射手段と、
電流測定手段で計測する電極の組を選択制御する電極制御手段と、
電極制御手段で選択された電極組と電流測定手段で計測された電流値とから、基板上における電極組の配置に対応した偏波方向の電磁波形状を算出する電磁波形状演算手段とを備える
ことを特徴とする電磁波形状検出装置。
An apparatus for detecting an electromagnetic wave shape using a photoconductive antenna,
A substrate, three or more electrodes made of a metal film formed on the surface thereof, wiring connected to each electrode, current measuring means for measuring a current applied between the electrodes, and sampling light irradiation between the electrodes Sampling light irradiating means for detecting, and detected wave irradiating means for irradiating an electromagnetic wave to be detected between the electrodes,
An electrode control means for selectively controlling a set of electrodes measured by the current measurement means;
An electromagnetic wave shape calculating means for calculating the electromagnetic wave shape in the polarization direction corresponding to the arrangement of the electrode set on the substrate from the electrode set selected by the electrode control means and the current value measured by the current measuring means. An electromagnetic wave shape detection device.
電極が、放射状に配置された3本以上の薄膜で構成された
請求項1に記載の電磁波形状検出装置。
The electromagnetic wave shape detection apparatus according to claim 1, wherein the electrode is composed of three or more thin films arranged radially.
光伝導アンテナを用いて電磁波形状を検出する方法であって、
基板と、その表面に形成された金属膜から成る3個以上の電極と、その各電極に接続された配線と、電極間にかかる電流を測定する電流測定手段とを備えた装置に対して、
サンプリング光照射手段によって電極間にサンプリング光を照射すると共に、被検出波照射手段によって検出対象の電磁波を電極間に照射し、
電極制御手段によって、電流測定手段で計測する電極の組を選択制御し、
電磁波形状演算手段によって、電極制御手段で選択された電極組と電流測定手段で計測された電流値とから、基板上における電極組の配置に対応した偏波方向の電磁波形状を算出する
ことを特徴とする電磁波形状検出方法。
A method of detecting an electromagnetic wave shape using a photoconductive antenna,
For an apparatus comprising a substrate, three or more electrodes made of a metal film formed on the surface thereof, wiring connected to each electrode, and current measuring means for measuring a current applied between the electrodes,
The sampling light irradiation means irradiates the sampling light between the electrodes, and the detected wave irradiation means irradiates the detection target electromagnetic wave between the electrodes,
The electrode control means selectively controls the electrode set to be measured by the current measurement means,
The electromagnetic wave shape calculating means calculates the electromagnetic wave shape in the polarization direction corresponding to the arrangement of the electrode set on the substrate from the electrode set selected by the electrode control means and the current value measured by the current measuring means. An electromagnetic wave shape detection method.
電極を、互いに120°の角度をなして対称的に放射状に配置された3本の薄膜で構成し、
その3電極のうちから2電極の組を、異なる2通りの組み合わせで選択し、その2通りの各組み合わせによって得られる各電流測定値を加算或いは減算することによって、直交する2つの偏波方向の電磁波形状を同時に求める
請求項3に記載の電磁波形状検出方法。

The electrode is composed of three thin films arranged symmetrically radially at an angle of 120 ° to each other,
By selecting a pair of two electrodes from the three electrodes in two different combinations, and adding or subtracting each current measurement value obtained by each of the two combinations, two orthogonal polarization directions can be obtained. The electromagnetic wave shape detection method according to claim 3, wherein the electromagnetic wave shape is obtained simultaneously.

JP2005271050A 2005-09-16 2005-09-16 Method and device for detecting electromagnetic wave shape Pending JP2007078666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005271050A JP2007078666A (en) 2005-09-16 2005-09-16 Method and device for detecting electromagnetic wave shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005271050A JP2007078666A (en) 2005-09-16 2005-09-16 Method and device for detecting electromagnetic wave shape

Publications (1)

Publication Number Publication Date
JP2007078666A true JP2007078666A (en) 2007-03-29

Family

ID=37939138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005271050A Pending JP2007078666A (en) 2005-09-16 2005-09-16 Method and device for detecting electromagnetic wave shape

Country Status (1)

Country Link
JP (1) JP2007078666A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123238A1 (en) 2007-03-26 2008-10-16 Sumitomo Chemical Company, Limited Resin composition
JP2011503583A (en) * 2007-11-16 2011-01-27 ハネウェル・アスカ・インコーポレーテッド Material measurement system and related methods for obtaining simultaneous properties
JP2011153860A (en) * 2010-01-26 2011-08-11 Hitachi Ltd Method, program and device for inquiring electromagnetic wave source
CN106248615A (en) * 2015-06-05 2016-12-21 中国科学院苏州纳米技术与纳米仿生研究所 A kind of THz wave analyzer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123238A1 (en) 2007-03-26 2008-10-16 Sumitomo Chemical Company, Limited Resin composition
JP2011503583A (en) * 2007-11-16 2011-01-27 ハネウェル・アスカ・インコーポレーテッド Material measurement system and related methods for obtaining simultaneous properties
JP2011153860A (en) * 2010-01-26 2011-08-11 Hitachi Ltd Method, program and device for inquiring electromagnetic wave source
CN106248615A (en) * 2015-06-05 2016-12-21 中国科学院苏州纳米技术与纳米仿生研究所 A kind of THz wave analyzer
CN106248615B (en) * 2015-06-05 2019-04-23 中国科学院苏州纳米技术与纳米仿生研究所 A kind of THz wave analyzer

Similar Documents

Publication Publication Date Title
Zhou et al. Multicolor T‐ray imaging using multispectral metamaterials
Aenugu et al. Near infra red spectroscopy—An overview
JP2008185552A (en) Measuring instrument and measuring method
WO2011152285A1 (en) Reflective imaging device and image acquisition method
JP2004108905A (en) Difference imaging method using terahertz wave and device
JP2009058310A5 (en)
JP2007064700A (en) Sensing device
Lu et al. Terahertz microchip for illicit drug detection
JP2007078666A (en) Method and device for detecting electromagnetic wave shape
WO2011129690A2 (en) A generator of terahertz radiation
JP2005172775A (en) Method and device for inspecting food using irradiation with electromagnetic wave
Odularu Worthwhile Relevance of Infrared Spectroscopy in Characterization of Samples and Concept of Infrared Spectroscopy‐Based Synchrotron Radiation
JP4831466B2 (en) Method and apparatus for generating and detecting terahertz waves
JP5413899B2 (en) Electromagnetic wave shape detection method and apparatus
JP2005537489A (en) Terahertz spectroscopy
JP2008277565A (en) Terahertz wave generating device
Kawase Application of terahertz waves to food science
JP4601516B2 (en) Terahertz spectrometer
KR102075671B1 (en) Method and apparatus for demethylation
KR100645800B1 (en) An analysis system of thz pulse for detecting spatio-temporal amplitude distribution
JP4393147B2 (en) Terahertz electromagnetic wave generating element
JP5126705B2 (en) Method and apparatus for detecting and correcting optical path displacement in photoconductive antenna
Anukiruthika et al. TERAHERTZ TECHNOLOGY: Principles and Applications in the Agri-food Industry
JP2008089546A (en) Electromagnetic wave measuring device
JP3922462B2 (en) Infrared light emitting device, time-series conversion pulse spectroscopic measuring device, and infrared light emitting method