JP2005172775A - Method and device for inspecting food using irradiation with electromagnetic wave - Google Patents

Method and device for inspecting food using irradiation with electromagnetic wave Download PDF

Info

Publication number
JP2005172775A
JP2005172775A JP2003436320A JP2003436320A JP2005172775A JP 2005172775 A JP2005172775 A JP 2005172775A JP 2003436320 A JP2003436320 A JP 2003436320A JP 2003436320 A JP2003436320 A JP 2003436320A JP 2005172775 A JP2005172775 A JP 2005172775A
Authority
JP
Japan
Prior art keywords
food
electromagnetic wave
sample
frequency
thz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003436320A
Other languages
Japanese (ja)
Inventor
Junichi Nishizawa
潤一 西澤
Toru Kurabayashi
徹 倉林
Ken Sudo
建 須藤
Tetsuro Sasaki
哲朗 佐々木
Tadao Tanabe
匡生 田邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Research Foundation
Original Assignee
Semiconductor Research Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Research Foundation filed Critical Semiconductor Research Foundation
Priority to JP2003436320A priority Critical patent/JP2005172775A/en
Publication of JP2005172775A publication Critical patent/JP2005172775A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Toxicology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inspection device for inspecting food by irradiating the food with an electromagnetic wave with a specific wavelength possessed by the DNA structure of food, modified protein, bacteria or a virus, and an inspection method using it. <P>SOLUTION: This food inspection device has a variable wavelength electromagnetic wave generating means capable of irradiating food with the electromagnetic wave with a frequency of 0.1-10 THz inherent to the constituent element of the food and a detection means for the electromagnetic wave with the frequency of 0.1-10 THz. At least a part of a food sample processed into a predetermined shape is irradiated with the electromagnetic wave to measure the intensity of the transmitted or reflected electromagnetic wave. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、食品に電磁波を照射し検査を行う装置および方法に関する。  The present invention relates to an apparatus and a method for performing inspection by irradiating food with electromagnetic waves.

近年、その応用が注目されているテラヘルツ光(1THz=1012Hz)は、光の周波数と電波の周波数の境界に当たる。光の周波数はおよそ30−1000THzであるのに対して、マイクロ波やミリ波などの電波の周波数は0.1THz以下の周波数を持っている。この周波数のギャップを埋めるのがTHz波帯である。テラヘルツ発生においては、その原理的方法に基づきテラヘルツ時間領域分光法(THz Time−Domain Spectroscopy;THz−TDS)、テラヘルツパラメトリック発振器(THz Parametric Oscilator;THz−TPO)、GaP等の半導体結晶を用いたテラヘルツ差周波発生(THz Different FrequencyGeneration;THz−DFG)、あるいはp型ゲルマニウムレーザや量子カスケードレーザなどの半導体デバイスを用いたテラヘルツ光発生方法が実現されている。In recent years, terahertz light (1 THz = 10 12 Hz), whose application has attracted attention, hits the boundary between the frequency of light and the frequency of radio waves. The frequency of light is approximately 30 to 1000 THz, whereas the frequency of radio waves such as microwaves and millimeter waves has a frequency of 0.1 THz or less. The THz waveband fills this frequency gap. In the generation of terahertz, terahertz using a semiconductor crystal such as terahertz time-domain spectroscopy (THz-TDS), terahertz parametric oscillator (THz-TPO), or GaP based on the principle method. A terahertz light generation method using a semiconductor device such as differential frequency generation (THz-difference generation; THz-DFG) or a p-type germanium laser or a quantum cascade laser has been realized.

多くの食品等は自然界に存在するバクテリアやウィルスの存在により腐敗や、変質あるいはある種のバクテリアやウィルスの異常増殖が生じる。また貝毒などに代表される海水中のプランクトンのなかには有害な毒素を作る種類がいて、これらの作る毒が貝に蓄積され、これを摂取する人間が中毒を起こすという事例が多く発生している。  Many foods and the like are spoiled due to the presence of bacteria and viruses that exist in nature, altered, or abnormal growth of certain bacteria and viruses. In addition, there are many cases in which plankton in seawater represented by shellfish poisons, etc., produce harmful toxins, and these poisons are accumulated in shellfish, causing poisoning by people who ingest them. .

また農作物では遺伝子組み替えにより、害虫や寒さ等に強い品種改良が行われているものの、遺伝子組み替え食品を摂取した際の人体への影響が懸念され、現在では遺伝子組み替え食品は明記して差別化することが義務付けられている。一方、その管理は生産者側のに任されていたり、生産地の隣接等のために遺伝子組み替えを用いていない食品に遺伝子組み替え食品が混合してしまう事件が多発している。  In addition, cultivated crops have been improved by gene recombination, which is resistant to pests and cold. It is mandatory. On the other hand, there are many cases in which genetically modified foods are mixed with foods that are left to the producers or that do not use genetic modification due to the proximity of the production area.

さらに、牛海綿状脳症(BSE)に感染した肉牛からのプリオン蛋白質の混入に関しても現在は検査体制が整備されているものの、世界的規模で迅速かつ簡便に検査する方法および測定装置が求められているのが現状である。  Furthermore, although the inspection system is in place for the contamination of prion protein from beef cattle infected with bovine spongiform encephalopathy (BSE), there is a need for a method and a measuring device for rapid and simple inspection on a global scale. The current situation is.

上述したような食品に関する調査は、スクリーニング検査(免疫生化学検査)およびさらに詳細な確認検査(免疫組織化学検査)などが行われるために結果がでるまでに数日かかる。これらの検査は時間を要するため、あるいは専門家・資格者による熟練と種々の試薬を取り扱える環境が常に要求されることから、生産者が生産地で検査を行うことができなかった。以上の問題を鑑み、専門家の手によらず、自動測定により直接食品の遺伝子情報や、蛋白質分析、あるいはバクテリアやウィルスの検出を簡便かつ迅速に行う必要がある。  It takes several days for the food-related surveys described above to take results because of screening tests (immunobiochemical tests) and more detailed confirmation tests (immunohistochemical tests). Since these inspections require time, or because there is a constant demand for skill by experts and qualified personnel and an environment that can handle various reagents, producers could not perform inspections in production areas. In view of the above problems, it is necessary to perform simple and rapid food genetic information, protein analysis, or detection of bacteria and viruses by automatic measurement, regardless of the hands of experts.

本願発明は、上記の従来技術の欠点を除くためになされたものであって、食品のDNA構造、変性蛋白質、あるいはバクテリアやウィルスの持つ特定波長の電磁波を照射し、それらの存在を瞬時に検査できる装置および方法を提供することにある。  The present invention was made to eliminate the above-mentioned disadvantages of the prior art, and irradiates the DNA structure of food, denatured proteins, or electromagnetic waves of specific wavelengths possessed by bacteria and viruses, and instantly checks their presence. It is to provide an apparatus and method that can be used.

上記問題を解決するために、本発明の特徴は、DNA構造、変性蛋白質、あるいはバクテリアやウィルスの構造に対応する固有振動数に等しい周波数の電磁波を照射するため、電磁波照射端と電磁波発生装置を備える電磁波発生装置を持ち、試料に含まれる水の吸収による信号の減衰を抑えるために試料を冷凍し測定するための冷凍装置、また試料を10μm程度に薄くした状態で測定するための試料薄膜化装置を備え持つ。試料表面での反射、または試料透過した信号を検出するための検出器も具備されている。または電磁波を導波管に導き、導波管中に試料を挿入して吸収特性を測定することもできる。  In order to solve the above problem, the present invention is characterized in that an electromagnetic wave irradiation end and an electromagnetic wave generating device are provided to irradiate an electromagnetic wave having a frequency equal to a natural frequency corresponding to a DNA structure, a denatured protein, or a structure of bacteria or virus. A freezing device for freezing and measuring a sample in order to suppress the attenuation of a signal due to absorption of water contained in the sample, and a sample thinning for measuring the sample as thin as about 10 μm Has equipment. A detector for detecting a signal reflected from the sample surface or transmitted through the sample is also provided. Alternatively, electromagnetic waves can be guided to a waveguide, and a sample can be inserted into the waveguide to measure the absorption characteristics.

DNAを構成する塩基であるアデニン、グアニン、シトシン、チミンはそれぞれ異なる固有振動の電磁波吸収特性を示すことがわかっており、これまでの我々の分析によれば0.1〜10THzに特徴的な吸収帯がある。またこれらの塩基のつながりで構成されたDNAでも特徴的な吸収が例えば3THz付近に見られている。このように食品を構成するDNAは遺伝子組み替えした大豆、とうもろこしなどでは、遺伝子組み替え操作をしていないものと吸収特性が異なる。またその周波数帯はほぼ0.1〜10THzにあり、それぞれの構造因子に関連した特徴的ないわゆる指紋スペクトラムである。一方、この帯域はこれまで食品の検査に用いられたことは無かったので、この帯域を利用することにより新たな検出方法および装置を実現でき、簡便かつ迅速な検査が可能となる。  Adenine, guanine, cytosine, and thymine, the bases that make up DNA, are known to exhibit electromagnetic absorption characteristics of different natural vibrations. According to our analysis so far, absorption characteristic of 0.1 to 10 THz is known. There is a belt. In addition, characteristic absorption is also observed, for example, in the vicinity of 3 THz even in DNA constituted by a connection of these bases. As described above, the DNA constituting the food is different in the absorption characteristics of the genetically modified soybean, corn, and the like that are not genetically modified. The frequency band is approximately 0.1 to 10 THz, which is a characteristic so-called fingerprint spectrum related to each structural factor. On the other hand, since this band has never been used for food inspection, a new detection method and apparatus can be realized by using this band, and simple and quick inspection is possible.

本発明の電磁波の照射を利用した食品検査装置および方法は、食品のDNA構造、変性蛋白質、あるいは食品等で増殖するバクテリアやウィルスの構造に対応する固有振動数に等しい周波数の電磁波を照射し、その吸収特性から物質を同定することができるので、品種混合、品種表示のいつわり、遺伝子組み替え食品の検出、異常蛋白質の検出、毒素の検出、さらには食品の腐敗やバクテリアやウィルスの検出が迅速かつ簡便に行うことを可能にする。  The food inspection apparatus and method using electromagnetic wave irradiation of the present invention irradiates an electromagnetic wave having a frequency equal to the natural frequency corresponding to the structure of bacteria or virus that grows in the DNA structure, denatured protein, or food of food, Since the substance can be identified from its absorption characteristics, it is possible to quickly and easily detect varietal mixing, varietal labeling, detection of genetically modified foods, detection of abnormal proteins, detection of toxins, and detection of food spoilage and bacteria and viruses. It can be done easily.

図1に示すように、被測定試料に所定の周波数のテラヘルツ電磁波を照射しその透過特性を測定することにより、食品のDNA構造、変性蛋白質、あるいは付着したバクテリアやウィルス構造を特定できる。図3に示すように被測定試料に所定の周波数のテラヘルツ電磁波を照射しその反射特性を測定することにより、食品のDNA構造、変性蛋白質、あるいは付着したバクテリアやウィルス構造を特定できる。  As shown in FIG. 1, by irradiating a sample to be measured with a terahertz electromagnetic wave having a predetermined frequency and measuring its transmission characteristics, the DNA structure of food, denatured protein, or the attached bacteria or virus structure can be specified. As shown in FIG. 3, by irradiating the sample to be measured with terahertz electromagnetic waves having a predetermined frequency and measuring the reflection characteristics, the DNA structure of the food, the denatured protein, or the attached bacteria or virus structure can be specified.

本発明による食品等に関する検査システムの概略図を図1に示した。可変波長電磁波発生装置1としては、GaP結晶を用いた差周波テラヘルツ波発生装置が用いられ、波長が1.0μmより長波長のレーザ光による2つのポンプ光を用いることで第1および第2のポンプ光の差周波テラヘルツ電磁波を0.15THzから7THzの範囲で発生させることができる。  A schematic diagram of an inspection system relating to food and the like according to the present invention is shown in FIG. As the variable wavelength electromagnetic wave generator 1, a differential frequency terahertz wave generator using a GaP crystal is used, and the first and second pump light beams using two laser beams having a wavelength longer than 1.0 μm are used. The difference frequency terahertz electromagnetic wave of the pump light can be generated in the range of 0.15 THz to 7 THz.

またGaP結晶に代わりLiNbO3結晶を用いると、差周波発生やパラメトリックオシレーションにより0.7THzから2.5THzのテラヘルツ電磁波を得ることができる。さらには、可変波長電磁波発生装置1として、ガンダイオード、タンネットダイオード、あるいはp型ゲルマニウムレーザや量子カスケードレーザなどの電子デバイスを用いることもできる。  When a LiNbO3 crystal is used instead of a GaP crystal, a terahertz electromagnetic wave of 0.7 THz to 2.5 THz can be obtained due to difference frequency generation or parametric oscillation. Furthermore, as the variable wavelength electromagnetic wave generator 1, a Gunn diode, a tannet diode, or an electronic device such as a p-type germanium laser or a quantum cascade laser can be used.

可変波長電磁波発生装置1より発生したテラヘルツ電磁波は、電磁波照射端2より自由空間に放射されるが、この電磁波は光学レンズ3等によって集光される。レンズの材質としては、テラヘルツ電磁波が透過する材料である必要があり、石英、ポリエチレン、あるいは透過性の樹脂材料が用いられる。  The terahertz electromagnetic wave generated from the variable wavelength electromagnetic wave generator 1 is radiated to free space from the electromagnetic wave irradiation end 2, and this electromagnetic wave is collected by the optical lens 3 or the like. The material of the lens needs to be a material that transmits terahertz electromagnetic waves, and quartz, polyethylene, or a transmissive resin material is used.

被測定試料6は通常、パウダー状に粉砕され乾燥後テフロンあるいはポリエチレンのパウダーと混合しペレット状に加工される。ペレットの大きさは、約10mmφであり、厚さは0.1mm〜5mmである。検出器4としては、広い波長感度特性をもつ焦電検知器や、ボロメータなどが用いられる。  The sample 6 to be measured is usually pulverized into a powder, dried, mixed with Teflon or polyethylene powder, and processed into a pellet. The size of the pellet is about 10 mmφ, and the thickness is 0.1 mm to 5 mm. As the detector 4, a pyroelectric detector having a wide wavelength sensitivity characteristic, a bolometer, or the like is used.

図2に穀物のテラヘルツ帯スペクトラムを示した。このようにテラヘルツ帯に特徴的な吸収(νおよびν)が検出されるが、吸収特性のないバックグラウンドに相当するνとの関係等から穀物の品種を特定できる。Fig. 2 shows the terahertz spectrum of grains. In this way, absorption (ν 1 and ν 3 ) characteristic of the terahertz band is detected, but the variety of the grain can be specified from the relationship with ν 2 corresponding to the background having no absorption characteristics.

例えば吸収強度の関係から、Iν/Iνがある一定の範囲でIν/Iνの蚊大きさを判定することにより、品種Aと品種Bの違いの判別、あるいは品種Aと品種Bの混合率を測定できる。穀物の種類などによって特徴的な吸収帯はそれぞれ異なるが、このように複数のピークの強度を検出することで、同類の穀物であっても品種の違いを判別できる特徴がある。For example the relationship between the absorption intensity, by determining the mosquito size of Iν 3 /2 in a certain range Iν 1 /2, the difference between varieties A and varieties B determination, or varieties A and varieties B Mixing ratio can be measured. The characteristic absorption bands differ depending on the type of grain, etc., but by detecting the intensity of a plurality of peaks in this way, there is a feature that the difference in varieties can be discerned even for similar grains.

この方法は、米の品種や、新米と古米の判別、さらには産地の違いまで判別することが可能である。また、大豆、小豆、とうもろこし等の遺伝子組み替え品種の判別にも利用できる。穀物のみならず肉類および魚介類に関しても、蛋白質の構造の違いを検出できるので、品種の違いおよび産地の違いなども判別できる。特に蛋白質の変性の検出に高感度が期待されることから、牛海綿状脳症(BSE)に感染した肉牛からのプリオン蛋白質を精度よく特定できるものと考えられる。  With this method, it is possible to discriminate between rice varieties, new rice and old rice, and even the difference in production area. It can also be used to discriminate genetically modified varieties such as soybeans, red beans, and corn. Differences in protein structure can be detected not only for cereals but also for meat and seafood, so that differences in varieties and production areas can be discriminated. In particular, since high sensitivity is expected for detection of protein denaturation, it is considered that prion protein from beef cattle infected with bovine spongiform encephalopathy (BSE) can be accurately identified.

また貝毒などに代表される海水中のプランクトンのなかには有害な毒素を作る種類がいて、これらの作る毒が貝に蓄積され、これを摂取する人間が中毒を起こすという事例が多く発生しているが、貝毒を含む貝と含まない貝の判別にもこの方法は有効である。さらには食品の腐敗、あるいはバクテリアやウィルスによる汚染にも同方法を適用できる。  In addition, there are many cases in which plankton in seawater represented by shellfish poisons, etc., produce harmful toxins, and these poisons are accumulated in shellfish, causing poisoning by people who ingest them. However, this method is also effective for distinguishing between shellfish containing shellfish poison and shellfish not containing shellfish poison. Furthermore, the same method can be applied to food spoilage or contamination by bacteria or viruses.

図1に示したように被測定試料に上記のような検体を用いれば、各試料を自動測定し、異常物質の混入に関して検知し、信号処理部5により警報を発し異常検体を特定することが可能となる。  As shown in FIG. 1, when the above-described specimen is used for the sample to be measured, each specimen is automatically measured, detected with respect to mixing of abnormal substances, and an alarm is issued by the signal processing unit 5 to identify the abnormal specimen. It becomes possible.

図3に示したのは被測定試料の反射を検出することを特徴とする、テラヘルツ電磁波検査システムである。被測定試料6は通常、乾燥により水分を除去するが、水分を多く含んだ試料をそのまま測定しようとする場合には、テラヘルツ電磁波は水分によって大きく減衰されるため透過特性を測定できない。このため被測定試料6の表面で反射した光を検出器4へ導き、テラヘルツ帯に特徴的な吸収を検出する。  FIG. 3 shows a terahertz electromagnetic wave inspection system characterized by detecting reflection of a sample to be measured. The sample 6 to be measured usually removes moisture by drying. However, when a sample containing a lot of moisture is to be measured as it is, the terahertz electromagnetic wave is greatly attenuated by the moisture, so that transmission characteristics cannot be measured. For this reason, the light reflected from the surface of the sample 6 to be measured is guided to the detector 4 to detect absorption characteristic of the terahertz band.

図4に本測定に用いる被測定試料の形状を示した。基板63および66はテラヘルツ電磁波に対して透明な材料である石英、ポリエチレン、テフロンあるいは、シクロオレフィンポリマー系の特殊樹脂などが用いられる。被測定試料60は所定の大きさに加工され、基板63上に設置され最後に樹脂カバー62でコートされる。試料が飛散しない場合に限り、カバー62を用いない場合もある。被測定試料60は基板66条に例えば10μmの凹部を持ち、凹部の深さにより被測定試料60の厚みが決まるように工夫された構造をもっている。  FIG. 4 shows the shape of the sample to be measured used for this measurement. For the substrates 63 and 66, quartz, polyethylene, Teflon, or a cycloolefin polymer-based special resin, which is a material transparent to terahertz electromagnetic waves, is used. The sample 60 to be measured is processed into a predetermined size, placed on the substrate 63, and finally coated with the resin cover 62. The cover 62 may not be used only when the sample does not scatter. The sample 60 to be measured has a concave portion of, for example, 10 μm on the substrate 66, and has a structure devised so that the thickness of the sample 60 to be measured is determined by the depth of the concave portion.

図5に本構造の作製プロセスを示した。(1)に示すように基板66にエッチング等により凹部を設ける。凹部は予め任意の深さに決定される。次に試料供給装置50よりペースト化した液状試料51を供給するが、凹部を埋める量より過剰に供給する必要がある。(3)に示すように極薄の平板状のへら55にて表面を一定の力で走査することにより一定厚みの被測定試料60を形成でき、必要に応じてカバー62を設置する。これによって所定の膜厚を形成できるので、水分を多く含む試料などでテラヘルツ電磁波の透過率が極端に落ちる場合も、試料の薄膜化によって物質特有の吸収特性を測定できる。また本試料作成法によれば、試料の厚みを常に一定にできるので定量評価に適している。定量評価に関しては、試料の膜厚に応じてテラヘルツ電磁波の吸収量が変化するので、試料厚みを一定にすることが必要である。  FIG. 5 shows a manufacturing process of this structure. As shown in (1), the substrate 66 is provided with a recess by etching or the like. The concave portion is determined in advance to an arbitrary depth. Next, although the paste-like liquid sample 51 is supplied from the sample supply device 50, it is necessary to supply it in excess of the amount for filling the recess. As shown in (3), the sample 60 to be measured having a constant thickness can be formed by scanning the surface with an ultrathin flat spatula 55 with a constant force, and a cover 62 is provided if necessary. Since a predetermined film thickness can be formed by this, even when the transmittance of the terahertz electromagnetic wave is extremely lowered in a sample containing a lot of moisture, the absorption characteristic peculiar to the substance can be measured by making the sample thin. In addition, according to the present sample preparation method, the thickness of the sample can always be made constant, which is suitable for quantitative evaluation. Regarding quantitative evaluation, since the amount of terahertz electromagnetic wave absorption changes according to the film thickness of the sample, it is necessary to make the sample thickness constant.

図4に示したように、導波管69を用いた試料では、例えば石英管内径0.1mm〜1mmφで長さ1cm程度の内面に金をコーティングしたものを用い、内部に被測定試料60を封入し、必要に応じて樹脂のカバー68を両端に置くことで安定した試料セルを作製できる。この試料セルは導波管の効果により、テラヘルツ電磁波は集光してセル内を通過するので、微量の試料の測定を行える特徴がある。  As shown in FIG. 4, in the sample using the waveguide 69, for example, an inner surface of a quartz tube having an inner diameter of 0.1 mm to 1 mmφ and a length of about 1 cm is coated with gold, and the sample 60 to be measured is placed inside. A stable sample cell can be produced by enclosing and placing a resin cover 68 on both ends as necessary. This sample cell is characterized by being able to measure a very small amount of sample because the terahertz electromagnetic wave is condensed and passes through the cell due to the effect of the waveguide.

図6に示したのは、本願発明による自動化測定システムである。試料供給装置73により、所定の形状の被測定試料70が供給される。試料は試料搬送装置71を介して試料回転ステージ72に自動装着され、測定制御装置75により順次測定される。測定後は、試料搬送装置71を介して試料回収装置74で回収される。とくに試料が水分を含む場合、水分を凍らせることでテラヘルツ電磁波の透過量が増加し、物質特有の吸収特性を測定できるようになることがわかっており、低温恒温槽70を設置して測定前に被測定試料70に含まれる水分を凍結させることも可能である。本システムにおいて図3と同様の構成によるテラヘルツ電磁波反射法による測定も可能である。  FIG. 6 shows an automated measurement system according to the present invention. The sample supply device 73 supplies a sample 70 to be measured having a predetermined shape. The sample is automatically mounted on the sample rotation stage 72 via the sample transport device 71 and is sequentially measured by the measurement control device 75. After the measurement, the sample is recovered by the sample recovery device 74 via the sample transport device 71. In particular, when the sample contains moisture, it has been found that freezing the moisture increases the amount of transmission of terahertz electromagnetic waves so that the absorption characteristic peculiar to the substance can be measured. It is also possible to freeze the water contained in the sample 70 to be measured. In this system, measurement by the terahertz electromagnetic wave reflection method having the same configuration as in FIG. 3 is also possible.

以上により、本発明によれば食品のDNA構造、変性蛋白質、あるいは食品等で増殖するバクテリアやウィルスの構造に対応する固有振動数に等しい周波数の電磁波を照射し、その吸収特性から物質を同定することができるので、最近問題となっている品種混合、品種表示のいつわり、遺伝子組み替え食品の検出、BSEプリオン蛋白質の検出、貝毒の検出、さらには食品の腐敗やバクテリアやウィルスの検出などが可能である。  As described above, according to the present invention, an electromagnetic wave having a frequency equal to the natural frequency corresponding to a DNA structure of food, a denatured protein, or a structure of bacteria or viruses that grow in food is irradiated, and the substance is identified from its absorption characteristics. It is possible to detect varieties that have recently become problematic, display varieties, detect genetically modified foods, detect BSE prion protein, detect shellfish toxins, and detect food spoilage, bacteria and viruses. It is.

テラヘルツ帯電磁波透過法による食品等分析装置の概略図である。  It is the schematic of the analysis apparatus for foodstuffs by the terahertz band electromagnetic wave transmission method. 穀物のテラヘルツ電磁波吸収スペクトラム例である。  It is an example of the terahertz electromagnetic wave absorption spectrum of a grain. テラヘルツ帯電磁波反射法による食品等分析装置の概略図である。  It is the schematic of the analysis apparatus for foodstuffs by the terahertz band electromagnetic wave reflection method. テラヘルツ帯電磁波透過法に用いる被測定試料の形状を示す概略図である。  It is the schematic which shows the shape of the to-be-measured sample used for a terahertz band electromagnetic wave transmission method. 一定の厚さを持つ被測定試料の形成方法である。  This is a method for forming a sample to be measured having a certain thickness. 温度制御機能を備えたテラヘルツ帯電磁波透過法または反射法自動測定システムである。  A terahertz electromagnetic wave transmission method or reflection method automatic measurement system having a temperature control function.

符号の説明Explanation of symbols

1…可変波長電磁波発生装置
2…電磁波照射端
3…レンズ
4…検出器
5…信号処理部
6、60、70…被測定試料
7…試料送り装置
9…ミラー
63、66…基板
62、68…カバー
69…導波路
50、73…試料供給装置
51…液状試料
52…成型された液状試料
55…へら
71…試料搬送装置
72…試料回転ステージ
74…試料回収装置
75…測定制御装置
77…低温恒温槽
DESCRIPTION OF SYMBOLS 1 ... Variable wavelength electromagnetic wave generator 2 ... Electromagnetic wave irradiation end 3 ... Lens 4 ... Detector 5 ... Signal processing part 6, 60, 70 ... Sample to be measured 7 ... Sample feeder 9 ... Mirror 63, 66 ... Substrate 62, 68 ... Cover 69 ... Waveguides 50 and 73 ... Sample supply device 51 ... Liquid sample 52 ... Molded liquid sample 55 ... Spatula 71 ... Sample transport device 72 ... Sample rotating stage 74 ... Sample recovery device 75 ... Measurement control device 77 ... Low temperature constant temperature Tank

Claims (5)

食品の構成要素に固有の0.1〜10THzの範囲の周波数の電磁波を照射しうる可変波長電磁波発生手段と、前記周波数の電磁波の検出手段を持ち、前記電磁波を少なくとも所定の形状に加工された食品試料の一部に照射し、透過あるいは反射強度を測定することを特徴とする食品検査装置および検査方法。  A variable wavelength electromagnetic wave generating means capable of irradiating an electromagnetic wave having a frequency in a range of 0.1 to 10 THz inherent to a food component, and an electromagnetic wave detecting means having the frequency are processed into at least a predetermined shape. A food inspection apparatus and method for irradiating a part of a food sample and measuring transmission or reflection intensity. 前記電磁波として少なくとも2つの波長成分を用いることを特徴とする食品検査装置および検査方法。  A food inspection apparatus and an inspection method, wherein at least two wavelength components are used as the electromagnetic wave. 前記食品試料が測定前および測定中に温度制御され、該資料中の水分が凍結されていることを特徴とする食品検査装置および検査方法。  A food inspection apparatus and method, wherein the food sample is temperature-controlled before and during measurement, and moisture in the material is frozen. 前記食品試料が、基板の凹部を利用し所定膜厚に制御されたことを特徴とする食品検査装置および検査方法。  A food inspection apparatus and an inspection method, wherein the food sample is controlled to have a predetermined film thickness by using a concave portion of a substrate. 前記食品試料が、内面が金属で覆われたチューブ状になっていることを特徴とする食品検査装置および検査方法。  A food inspection apparatus and inspection method, wherein the food sample is in a tube shape whose inner surface is covered with metal.
JP2003436320A 2003-12-05 2003-12-05 Method and device for inspecting food using irradiation with electromagnetic wave Pending JP2005172775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003436320A JP2005172775A (en) 2003-12-05 2003-12-05 Method and device for inspecting food using irradiation with electromagnetic wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003436320A JP2005172775A (en) 2003-12-05 2003-12-05 Method and device for inspecting food using irradiation with electromagnetic wave

Publications (1)

Publication Number Publication Date
JP2005172775A true JP2005172775A (en) 2005-06-30

Family

ID=34736917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003436320A Pending JP2005172775A (en) 2003-12-05 2003-12-05 Method and device for inspecting food using irradiation with electromagnetic wave

Country Status (1)

Country Link
JP (1) JP2005172775A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007071610A (en) * 2005-09-06 2007-03-22 Canon Inc Sensing device and sensing method
JP2007178414A (en) * 2005-12-28 2007-07-12 Semiconductor Res Found Method and system for testing sugar content
WO2007107956A2 (en) * 2006-03-22 2007-09-27 Istituto Sperimentale Italiano 'lazzaro Spallanzani' Method and apparatus for detecting chromosome contents in spermatozoa of domestic animals, in particular for sorting such spermatozoa
WO2008030425A1 (en) * 2006-09-06 2008-03-13 Intellectual Ventures Holding 35 Llc Active biometric spectroscopy
EP1930714A2 (en) 2006-12-05 2008-06-11 Canon Kabushiki Kaisha Detection method using electromagnetic wave and detection apparatus
WO2008085398A2 (en) * 2006-12-29 2008-07-17 Intellectual Ventures Holding 35 Llc Active in vivo spectroscopy
JP2008215914A (en) * 2007-03-01 2008-09-18 National Institute Of Information & Communication Technology Inspection method of cultural properties by terahertz spectral diffraction
JP2009042207A (en) * 2007-07-19 2009-02-26 Iwate Prefectural Univ Method and apparatus for seed test
JP2009281864A (en) * 2008-05-22 2009-12-03 Nippon Telegr & Teleph Corp <Ntt> Organic matter analysis method and organic matter analyzer
JP2010145391A (en) * 2008-12-18 2010-07-01 Ncr Corp Automatic product identification system
WO2010092726A1 (en) * 2009-02-12 2010-08-19 コニカミノルタオプト株式会社 Method for analyzing sample and microanalysis chip to be used therefor
US7786903B2 (en) 2008-10-06 2010-08-31 Donald Martin Monro Combinatorial coding/decoding with specified occurrences for electrical computers and digital data processing systems
US7786907B2 (en) 2008-10-06 2010-08-31 Donald Martin Monro Combinatorial coding/decoding with specified occurrences for electrical computers and digital data processing systems
US7791513B2 (en) 2008-10-06 2010-09-07 Donald Martin Monro Adaptive combinatorial coding/decoding with specified occurrences for electrical computers and digital data processing systems
JP2010236868A (en) * 2009-03-30 2010-10-21 Sumitomo Electric Ind Ltd Fixing sheet for sample of biological origin and method of manufacturing the same
US7864086B2 (en) 2008-10-06 2011-01-04 Donald Martin Monro Mode switched adaptive combinatorial coding/decoding for electrical computers and digital data processing systems
KR101834798B1 (en) * 2016-12-01 2018-03-09 서울시립대학교 산학협력단 Method and apparatus for analyzing cancer cell dna using terahertz wave

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007071610A (en) * 2005-09-06 2007-03-22 Canon Inc Sensing device and sensing method
JP2007178414A (en) * 2005-12-28 2007-07-12 Semiconductor Res Found Method and system for testing sugar content
WO2007107956A2 (en) * 2006-03-22 2007-09-27 Istituto Sperimentale Italiano 'lazzaro Spallanzani' Method and apparatus for detecting chromosome contents in spermatozoa of domestic animals, in particular for sorting such spermatozoa
WO2007107956A3 (en) * 2006-03-22 2007-12-13 Amc Italy S R L Method and apparatus for detecting chromosome contents in spermatozoa of domestic animals, in particular for sorting such spermatozoa
US7750299B2 (en) 2006-09-06 2010-07-06 Donald Martin Monro Active biometric spectroscopy
WO2008030425A1 (en) * 2006-09-06 2008-03-13 Intellectual Ventures Holding 35 Llc Active biometric spectroscopy
JP2008164594A (en) * 2006-12-05 2008-07-17 Institute Of Physical & Chemical Research Detecting method using electromagnetic wave, and detection device
US7542140B2 (en) 2006-12-05 2009-06-02 Canon Kabushiki Kaisha Detection method using electromagnetic wave and detection apparatus
EP1930714A2 (en) 2006-12-05 2008-06-11 Canon Kabushiki Kaisha Detection method using electromagnetic wave and detection apparatus
WO2008085398A2 (en) * 2006-12-29 2008-07-17 Intellectual Ventures Holding 35 Llc Active in vivo spectroscopy
WO2008085398A3 (en) * 2006-12-29 2008-09-04 Intellectual Ventures Holding Active in vivo spectroscopy
JP2008215914A (en) * 2007-03-01 2008-09-18 National Institute Of Information & Communication Technology Inspection method of cultural properties by terahertz spectral diffraction
JP2009042207A (en) * 2007-07-19 2009-02-26 Iwate Prefectural Univ Method and apparatus for seed test
JP2009281864A (en) * 2008-05-22 2009-12-03 Nippon Telegr & Teleph Corp <Ntt> Organic matter analysis method and organic matter analyzer
US7786903B2 (en) 2008-10-06 2010-08-31 Donald Martin Monro Combinatorial coding/decoding with specified occurrences for electrical computers and digital data processing systems
US7786907B2 (en) 2008-10-06 2010-08-31 Donald Martin Monro Combinatorial coding/decoding with specified occurrences for electrical computers and digital data processing systems
US7791513B2 (en) 2008-10-06 2010-09-07 Donald Martin Monro Adaptive combinatorial coding/decoding with specified occurrences for electrical computers and digital data processing systems
US7864086B2 (en) 2008-10-06 2011-01-04 Donald Martin Monro Mode switched adaptive combinatorial coding/decoding for electrical computers and digital data processing systems
JP2010145391A (en) * 2008-12-18 2010-07-01 Ncr Corp Automatic product identification system
WO2010092726A1 (en) * 2009-02-12 2010-08-19 コニカミノルタオプト株式会社 Method for analyzing sample and microanalysis chip to be used therefor
JP2010236868A (en) * 2009-03-30 2010-10-21 Sumitomo Electric Ind Ltd Fixing sheet for sample of biological origin and method of manufacturing the same
KR101834798B1 (en) * 2016-12-01 2018-03-09 서울시립대학교 산학협력단 Method and apparatus for analyzing cancer cell dna using terahertz wave
WO2018101657A1 (en) * 2016-12-01 2018-06-07 서울시립대학교 산학협력단 Dna analysis method and dna analysis apparatus using terahertz wave
GB2572091A (en) * 2016-12-01 2019-09-18 Univ Seoul Ind Coop Found DNA analysis method and DNA analysis apparatus using terahertz wave
US11519854B2 (en) 2016-12-01 2022-12-06 University Of Seoul Industry Cooperation Foundation DNA analysis method and DNA analysis apparatus using terahertz wave

Similar Documents

Publication Publication Date Title
JP2005172775A (en) Method and device for inspecting food using irradiation with electromagnetic wave
Wang et al. Emerging non-destructive terahertz spectroscopic imaging technique: Principle and applications in the agri-food industry
Graves et al. Approaches to foreign body detection in foods
Redo-Sanchez et al. Review of terahertz technology readiness assessment and applications
Gowen et al. Terahertz time domain spectroscopy and imaging: Emerging techniques for food process monitoring and quality control
Ajito et al. THz chemical imaging for biological applications
Lee et al. Ultrasensitive detection of residual pesticides using THz near-field enhancement
Xiaobo et al. Non-invasive sensing for food reassurance
JP5429657B2 (en) Seed inspection method
Wang et al. Terahertz imaging applications in agriculture and food engineering: A review
US20170336260A1 (en) Terahertz wave spectrometry system
Shchepetilnikov et al. Quantitative analysis of water content and distribution in plants using terahertz imaging
JP2005172779A (en) Method and apparatus for measuring bacteria, virus and toxic substance by irradiation with electromagnetic wave
Newnham et al. Pulsed terahertz attenuated total reflection spectroscopy
JP2009122007A (en) Apparatus and method for measuring moisture content of sample slice
JP2007178414A (en) Method and system for testing sugar content
Wei et al. Quantitative analysis of soybean protein content by terahertz spectroscopy and chemometrics
JP3878782B2 (en) Food condition evaluation method and food condition evaluation apparatus
Kawase Application of terahertz waves to food science
JP2007198854A (en) Method of inspecting fruit and vegetable, and device therefor
Chua et al. Terahertz time-domain spectroscopy of crushed wheat grain
JP2019113565A (en) Terahertz wave spectroscopic measurement system
JPS5826250A (en) Method and device for determining state of aging of plastic product
JP6868302B2 (en) Non-destructive detection method, non-destructive detection device and non-destructive detection program
Tsuchikawa et al. Application of time-of-flight near-infrared spectroscopy for detecting water core in apples

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080708