JP2007178414A - Method and system for testing sugar content - Google Patents

Method and system for testing sugar content Download PDF

Info

Publication number
JP2007178414A
JP2007178414A JP2005381372A JP2005381372A JP2007178414A JP 2007178414 A JP2007178414 A JP 2007178414A JP 2005381372 A JP2005381372 A JP 2005381372A JP 2005381372 A JP2005381372 A JP 2005381372A JP 2007178414 A JP2007178414 A JP 2007178414A
Authority
JP
Japan
Prior art keywords
sugar content
measured
measurement
terahertz
electromagnetic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005381372A
Other languages
Japanese (ja)
Inventor
Junichi Nishizawa
潤一 西澤
Toru Kurabayashi
徹 倉林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Research Foundation
Original Assignee
Semiconductor Research Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Research Foundation filed Critical Semiconductor Research Foundation
Priority to JP2005381372A priority Critical patent/JP2007178414A/en
Publication of JP2007178414A publication Critical patent/JP2007178414A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To noncontactly or nondestructively discriminate a sugar content in a measured object. <P>SOLUTION: A method and system for testing sugar contents irradiates the measured object with a generated electromagnetic wave to obtain a transmission or reflection intensity thereof, using an electromagnetic wave generation source having 10GHz-10THz of oscillation frequency constituted of a terahertz generator, and using a suitable frequency of oscillation element, and obtains thereby the sugar content in the measured object and a distribution situation thereof. A distribution of the sugar content in the measured object is imaged by sweeping either of the measured object or the test system, by measurement of narrowing thinly a measuring beam. Further, the sugar content is highly sensitively detected nondestructively and noncontactly as to the sample in a liquid cell, even on the measurement of the sugar content in the sampled liquid sample. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、果物、生体、あるいは液体試料を被測定物とし、前記被測定物に電磁波を照射し、その透過強度あるいは反射強度を測定することによって、非破壊・非接触にてこれらに含有される糖度を検知することを特徴としており、農産物管理、医療現場、食品管理などの分野で有効な評価方法となり得る。  The present invention uses fruits, living organisms, or liquid samples as objects to be measured, irradiates the objects to be measured with electromagnetic waves, and measures their transmission intensity or reflection intensity, thereby containing them in a non-destructive and non-contact manner. It can be an effective evaluation method in fields such as agricultural product management, medical practice, and food management.

果物の糖度はこれまで、抽出した果汁を用いた光による屈折率測定などにより決定されてきた。果物に対し非破壊・非接触にて測定する方法のニーズの高まりから、赤外光を用いた糖度検出が試験的に用いられているものの、赤外光では液体に対する侵入深さが浅く、また被測定物の表面状態によって測定結果が大きくばらつくという問題があった。このため、抽出したサンプルの破壊検査による糖度測定を採用していることから、商品と測定サンプルとの違いなどが、問題となっていた。  Until now, the sugar content of fruits has been determined by measuring the refractive index with light using the extracted fruit juice. Due to the growing need for non-destructive and non-contact measurement methods for fruits, sugar content detection using infrared light has been used as a test, but infrared light has a shallow penetration depth into liquids. There was a problem that the measurement results varied greatly depending on the surface condition of the object to be measured. For this reason, since the sugar content measurement by the destructive inspection of the extracted sample is employ | adopted, the difference etc. between a goods and a measurement sample became a problem.

また、人の血液中の血糖値測定に関しては、従来は酵素電極法や酵素比色法が用いられており、抽出した血液の反応を用いた測定が行われるため、糖尿病患者はたびたび指先に針を刺し、血液を必要量サンプリングしなければならず、肉体的あるいは精神的負担になっている部分があった。  In addition, for measuring blood glucose levels in human blood, the enzyme electrode method and the enzyme colorimetric method have been used in the past, and the measurement using the extracted blood reaction is often performed. I had to stab and sample the necessary amount of blood, and there was a physical or mental burden.

本発明は、従来の可視光や赤外線を用いた糖度測定における、液体サンプル抽出に伴う問題点を克服し、10GHz−10THzの範囲の電磁波を用いることにより、非破壊・非接触における被測定物の高精度糖度検出を実現するものである。  The present invention overcomes the problems associated with liquid sample extraction in conventional sugar content measurement using visible light and infrared rays, and uses electromagnetic waves in the range of 10 GHz to 10 THz, so that non-destructive and non-contact measurement objects can be obtained. This realizes high-accuracy sugar content detection.

上記問題を解決するために、本発明では、テラヘルツ発生装置によって構成される10GHzから10THzの発振周波数を持つ電磁波発生源を用い、適した周波数の発振源を用い、被測定物に前記発生電磁波を照射しその透過あるいは反射強度を得ることによって、被測定物中の糖度およびその分布情報を得ることを可能にしている。また、液体試料についてはポリ塩化ビニリデン製ラップ、ポリ塩化ビニル製ラップ、あるいはポリエチレンラップなどのフィルムを介した測定によって、フィルム周辺に凝集した糖水溶液による電磁波の散乱あるいは反射成分を測定することで、糖度の高感度検出を実現している。  In order to solve the above problem, in the present invention, an electromagnetic wave generation source having an oscillation frequency of 10 GHz to 10 THz constituted by a terahertz generator is used, an oscillation source having a suitable frequency is used, and the generated electromagnetic wave is applied to an object to be measured. By irradiating and obtaining the transmission or reflection intensity, it is possible to obtain the sugar content in the object to be measured and its distribution information. In addition, for liquid samples, by measuring the scattering or reflection component of electromagnetic waves by an aqueous sugar solution aggregated around the film by measuring through a film such as polyvinylidene chloride wrap, polyvinyl chloride wrap, or polyethylene wrap, Realizes highly sensitive detection of sugar content.

本発明の糖度検査方法および検査システムは、テラヘルツ発生装置によって構成される10GHz〜10THzの範囲の電磁波発生源を用い、媒質や測定対象物に応じて適した波長を選択し、被測定物中の糖度を非接触あるいは非破壊にて識別することが可能となる。また測定ビームを細く絞った測定により、被測定物あるいは検査システム光学部のどちらかを掃引することによって、被測定物中の糖度の分布を画像化できる。  The sugar content inspection method and the inspection system of the present invention use an electromagnetic wave generation source in the range of 10 GHz to 10 THz constituted by a terahertz generator, select a wavelength suitable for the medium and the measurement object, and The sugar content can be identified in a non-contact or non-destructive manner. Further, by measuring either the measurement object or the inspection system optical unit by measuring the measurement beam narrowly, the sugar content distribution in the measurement object can be imaged.

また、サンプリングした液体試料中の糖度測定に関しても、試料に対し非破壊・被接触にて糖度の高感度検出が可能である。このため、本発明による糖度検査方法および検査システムは、農産物管理、医療現場、食品管理などの分野でその有効性が期待される。  In addition, regarding the measurement of sugar content in a sampled liquid sample, it is possible to detect the sugar content with high sensitivity in a non-destructive / contacted manner with respect to the sample. For this reason, the sugar content test method and test system according to the present invention are expected to be effective in fields such as agricultural product management, medical practice, and food management.

本発明による糖度検査方法および検査システムに用いるダイオード発振素子の共振器構造を図1に示した。共振器は金属製の共振器基本構造1にステム2、スライディングショート3、バイアスピン4、方形導波路5、ホーンアンテナ6、石英スタンドオフ7、ダイオード素子8、および金リボン9によって形成される。石英スタンドオフ7、およびダイオード素子8の底面側はステム2上に圧着され、それぞれの上面側は金リボン9によって接続される。バイアスピン4はλ/4のチョーク構造を有し、スタンドオフ7に接するように設置され、ダイオード素子8に必要な直流バイアスを供給する。バイアスピン4と石英スタンドオフ7の接点付近と、スライディングショート3で囲む空間長で共振器を形成し、共振器に蓄えられた電磁波は方形導波路5を通してホーンアンテナ6より外部に出力される。タンネットダイオードの素子構造は図2に示したようにnGaAs基板結晶81に低濃度電子密度のGaAsn層82、さらに高濃度電子密度のGaAsn層83、その上に高濃度正孔密度のGaAsp層84をエピタキシャル成長により形成する。エピタキシャル成長された後は基板81を10〜50μm程度まで薄く加工し、p層84側をステム2に接するようにボンディングされ、共振器構造内に設置される。A resonator structure of a diode oscillation element used in the sugar content inspection method and inspection system according to the present invention is shown in FIG. The resonator is formed in a metallic resonator basic structure 1 by a stem 2, a sliding short 3, a bias pin 4, a rectangular waveguide 5, a horn antenna 6, a quartz standoff 7, a diode element 8, and a gold ribbon 9. The bottom surface side of the quartz standoff 7 and the diode element 8 are pressure-bonded onto the stem 2, and the respective upper surface sides are connected by a gold ribbon 9. The bias pin 4 has a λ / 4 choke structure, is placed in contact with the standoff 7, and supplies a necessary DC bias to the diode element 8. A resonator is formed in the vicinity of the contact point between the bias pin 4 and the quartz standoff 7 and the space length surrounded by the sliding short 3, and the electromagnetic wave stored in the resonator is output from the horn antenna 6 through the rectangular waveguide 5. As shown in FIG. 2, the element structure of the tannet diode is an n + GaAs substrate crystal 81, a low-concentration electron density GaAsn layer 82, a high-concentration electron density GaAsn + layer 83, and a high-concentration hole density. The GaAsp + layer 84 is formed by epitaxial growth. After being epitaxially grown by processing thin substrate 81 to about 10 to 50 [mu] m, the p + layer 84 side are bonded in contact with the stem 2, it is installed in the resonator structure.

タンネットダイオード発振素子により基本波室温連続発振する電磁波発生器を10GHz〜1THzの範囲で作製できる。例えばWR12(3.099mm×1.549mm)を基準にした導波管共振器構造では発振周波数レンジが60〜90GHzである。適した導波管サイズと共振器構造、さらには適したダイオード構造を選ぶことにより、10GHz〜1THzの範囲で発振する任意のタンネットダイオードを作製・実現した。例えば文献(J.Nishizawa,P.Plotka,H.Makabe,T.Kurabayashi,IEEE Microwave and Wireless Components,15,597,2005)  An electromagnetic wave generator that continuously oscillates the fundamental wave at room temperature can be produced in the range of 10 GHz to 1 THz by the tannet diode oscillation element. For example, in a waveguide resonator structure based on WR12 (3.099 mm × 1.549 mm), the oscillation frequency range is 60 to 90 GHz. By selecting a suitable waveguide size and resonator structure, and also a suitable diode structure, an arbitrary tannet diode that oscillates in the range of 10 GHz to 1 THz was fabricated and realized. For example, literature (J. Nishizawa, P. Plotka, H. Makave, T. Kurabayashi, IEEE Microwave and Wireless Components, 15, 597, 2005).

発振器としてガンダイオード、インパットダイオード、タンネットダイオード、量子カスケードレーザ、p型ゲルマニウムレーザ、共鳴トンネルダイオード等の素子、パックワードオシレータ等の電子管、高周波トランジスタを用いた発振器、自由電子レーザ、テラヘルツ時間領域分光によるテラヘルツ発生法、およびテラヘルツパラメトリック発振器、GaP等の半導体結晶を用いたテラヘルツ差周波発生器などを用いることができ、10GHz〜10THzの範囲で任意の電磁波波長を選択できる。  Gunn diode, impatt diode, tannet diode, quantum cascade laser, p-type germanium laser, resonant tunneling diode, etc., electron tube such as packed word oscillator, high-frequency transistor oscillator, free electron laser, terahertz time domain A terahertz generation method by spectroscopy, a terahertz parametric oscillator, a terahertz difference frequency generator using a semiconductor crystal such as GaP, and the like can be used, and an arbitrary electromagnetic wave wavelength can be selected in the range of 10 GHz to 10 THz.

特にGaPテラヘルツ波発生法を用いた場合は0.15〜7THzという他に類を見ない広範囲において波長可変で高出力のテラヘルツ電磁波の発生が実現されているので、(例えば、T.Tanabe,K.Suto,J.Nishizawa,T.Kimura,K.Saito,Journal of Applied Physics 93,4610、2003)一つの光源でありながらテラヘルツ電磁波の任意の周波数を広範囲に選択できる特徴を持っている。GaPテラヘルツ波発生法では、第1のポンプ光に波長1.064μmのYAGレーザを用い、第2のポンプ光源すなわち波長可変光源としてインジェクションシーディング装置を具備したオプティカルパラメトリックオシレータ(OPO)を用いる。また第2の方法として、ポンプ光としてCr:FORSTERITE(Cr添加カンラン石)レーザを用いることもできる。このレーザはCrの準位を用いているためにインジェクションシーディングなしのOPOに比べて線幅が極めて狭い。Cr:FORSTERITEレーザは波長1.064μmのYAGレーザを用い励起される。Cr:FORSTERITEレーザの波長可変範囲は、1.15μmから1.35μmまでの範囲であり、二つのCr:FORSTERITEレーザをポンプ光源として用い、一方を固定波長で、他方を波長可変ポンプ光源として用い、インジェクションシーディングなしで差周波発生させることができる。  In particular, when the GaP terahertz wave generation method is used, generation of a terahertz electromagnetic wave having a variable wavelength and a high output is realized in an unparalleled range of 0.15 to 7 THz (for example, T. Tanabe, K Suto, J. Nishizawa, T. Kimura, K. Saito, Journal of Applied Physics 93, 4610, 2003) Although it is a single light source, it has a feature that an arbitrary frequency of a terahertz electromagnetic wave can be selected in a wide range. In the GaP terahertz wave generation method, a YAG laser having a wavelength of 1.064 μm is used as the first pump light, and an optical parametric oscillator (OPO) equipped with an injection seeding device is used as the second pump light source, that is, the wavelength tunable light source. As a second method, a Cr: FORSTERITE (Cr-added olivine) laser can be used as pump light. Since this laser uses the Cr level, the line width is extremely narrow compared to OPO without injection seeding. The Cr: FORSTERITE laser is excited using a YAG laser with a wavelength of 1.064 μm. The wavelength tunable range of the Cr: FORSTERITE laser is the range from 1.15 μm to 1.35 μm, two Cr: FORSTERITE lasers are used as pump light sources, one is a fixed wavelength, and the other is used as a wavelength tunable pump light source, Difference frequency can be generated without injection seeding.

図3は、タンネットダイオード発振素子を用いた液体セルによる透過強度測定方法およびシステムを説明する図である。発振素子10より発生した所定周波数の電磁波は、発振素子10の出口付近に設置されたレンズ11によって平行ビームとされ、液体セル12の液体充填部13を透過させて、レンズ11による集光の後、検出器19でその強度を検出する。液体セルはテフロン(PTFE)を材料として用い作製された。被測定物14は液体試料であり、液体導入チューブ15、および液体試料導入口16を経て、液体セル12中に充填され、液体放出口17を経て放出される。実際の測定では液体放出口17の後に、真空排気装置を接続し、液体充填部13の液体を放出するとともに、測定する液体試料を順次置換し導入した。18は電磁波の透過方向を可視化したものである。またパルス発生器20は発振素子10をオンオフするために用いられており、1〜4kHz、デューティ0.5を代表的な値として用いている。検出器19で検出した信号はロックイン増幅器21を介して、コンピュータ22に出力された。  FIG. 3 is a diagram for explaining a transmission intensity measuring method and system using a liquid cell using a tannet diode oscillation element. The electromagnetic wave having a predetermined frequency generated from the oscillation element 10 is converted into a parallel beam by the lens 11 installed in the vicinity of the exit of the oscillation element 10, passes through the liquid filling portion 13 of the liquid cell 12, and is collected by the lens 11. The intensity is detected by the detector 19. The liquid cell was produced using Teflon (PTFE) as a material. The object to be measured 14 is a liquid sample, which is filled into the liquid cell 12 through the liquid introduction tube 15 and the liquid sample introduction port 16 and discharged through the liquid discharge port 17. In actual measurement, an evacuation device was connected after the liquid discharge port 17 to discharge the liquid in the liquid filling unit 13 and sequentially replace and introduce the liquid sample to be measured. 18 is a visualization of the transmission direction of electromagnetic waves. The pulse generator 20 is used to turn on and off the oscillation element 10 and uses 1 to 4 kHz and a duty of 0.5 as typical values. The signal detected by the detector 19 was output to the computer 22 via the lock-in amplifier 21.

図4に発振素子として200GHzで発振するタンネットダイオードを用い、グルコース水溶液の各濃度に対する電磁波透過率を測定した例を示した。液体セルに充填される液体の厚みは300μmとした。この結果より、水溶液中のグルコース濃度の増加に対応して、電磁波透過率が線形に上昇する傾向があることがわかった。この電磁波透過率は糖濃度0の場合を1とした時の電磁波透過強度である。またこの測定において人の血液や血清、および点滴用液輸剤を用いた場合についても同様に、含有されるグルコース量を同定することが可能であった。  FIG. 4 shows an example in which a tannet diode that oscillates at 200 GHz is used as the oscillation element, and the electromagnetic wave transmittance for each concentration of the glucose aqueous solution is measured. The thickness of the liquid filled in the liquid cell was 300 μm. From this result, it was found that the electromagnetic wave transmittance tends to increase linearly with the increase in the glucose concentration in the aqueous solution. This electromagnetic wave transmittance is the electromagnetic wave transmission intensity when the sugar concentration is 0. Further, in this measurement, it was also possible to identify the amount of glucose contained in the case of using human blood and serum and infusion liquid transfusion.

以上述べたように、本願発明による液体セルを用いた透過特性測定では、0.1%程度の濃度の糖度を精度良く測定できることから、果物や野菜の果汁糖度、点滴用液輸剤のグルコース量、さらには血液や血清中の血糖値を精度良く測定できる。  As described above, in the permeation characteristic measurement using the liquid cell according to the present invention, the sugar content at a concentration of about 0.1% can be accurately measured. Furthermore, blood sugar levels in blood and serum can be measured with high accuracy.

図5は糖を含む被測定物14の透過イメージングに関する測定方法および測定システムを説明する図である。被測定物14付近でビーム系を細く絞るとともに、焦点付近に円錐型のアパーチャ24を取り付けることによってビーム径をさらに小さく絞り、イメージング時の高分解能を実現している。他の装置構成は図3に示したものとほぼ同様であるが、この装置は被測定物14用の駆動機構23を具備し、試料の各測定点における電磁波透過強度を測定し、マッピングすることで透過イメージ像を得ることを可能にしている。  FIG. 5 is a diagram for explaining a measurement method and a measurement system related to transmission imaging of a measurement object 14 containing sugar. The beam system is narrowed down near the object to be measured 14, and a conical aperture 24 is attached near the focal point to further reduce the beam diameter, thereby realizing high resolution during imaging. The other apparatus configuration is substantially the same as that shown in FIG. 3, but this apparatus includes a drive mechanism 23 for the object 14 to be measured, and measures and maps the electromagnetic wave transmission intensity at each measurement point of the sample. Makes it possible to obtain a transmission image.

図6(上)は各濃度のグルコース水溶液に浸したろ紙31をラミネート加工したサンプル形状を表している。各々のろ紙にしみ込ませたグルコース水溶液の濃度は、A;0mg/dl、B;500mg/dl、C;1000mg/dl、D;2000mg/dl、E;3000mg/dl、F4500mg/dlである。ラミネート試料30は水分の蒸発を防ぎ、ろ紙中のグルコース水溶液濃度を保つことによって、安定に糖度測定を行い得るサンプル形成方法として有効である。図6(下)は200GHzの電磁波を用いて測定したラミネート試料30の透過イメージング画像を説明するための模式図である。透過イメージング画像32にはろ紙透過画像33が含まれ、グルコース濃度の増加とともに200GHzの電磁波透過強度が強くなり、画像濃淡に明確な違いが見られることが示されている。各濃淡に対応する透過強度データをプロットしたものが図7である。イメージングで得られた透過強度においても液体セルによる測定と同様に水溶液のグルコース濃度の増加に対応して、電磁波透過率が線形に上昇する傾向があることがわかった。この電磁波透過率は糖含有なしの場合の純水における透過率を1としている。  FIG. 6 (upper) shows a sample shape obtained by laminating filter paper 31 soaked in a glucose aqueous solution of each concentration. The concentration of the aqueous glucose solution soaked in each filter paper is A: 0 mg / dl, B: 500 mg / dl, C: 1000 mg / dl, D: 2000 mg / dl, E: 3000 mg / dl, F4500 mg / dl. The laminate sample 30 is effective as a sample forming method capable of stably measuring the sugar content by preventing the evaporation of moisture and maintaining the concentration of the aqueous glucose solution in the filter paper. FIG. 6 (bottom) is a schematic diagram for explaining a transmission imaging image of the laminate sample 30 measured using an electromagnetic wave of 200 GHz. The transmission imaging image 32 includes a filter paper transmission image 33, and it is shown that the electromagnetic wave transmission intensity at 200 GHz increases as the glucose concentration increases, and a clear difference is seen in image density. FIG. 7 is a plot of transmission intensity data corresponding to each shade. In the transmission intensity obtained by imaging, it was found that the electromagnetic wave transmittance tended to increase linearly corresponding to the increase in the glucose concentration of the aqueous solution, as in the measurement using the liquid cell. The electromagnetic wave transmittance is set to 1 in pure water when no sugar is contained.

図8に示したのは、ダイオード発振素子を用いた被測定物の反射強度測定方法およびシステムを説明する図である。発振素子10より発生した所定周波数の電磁波は、発振素子10の出口付近に設置されたレンズ11によって平行ビームとされ、ビームスプリッタ25を通過した後、被測定物14付近に設置されたレンズ11によりビーム径を細く絞るとともに、アパーチャ24によってビーム径をさらに小さく絞り、被測定物14に照射する。被測定物14はフィルム26によって覆われており、被測定物が果物の場合、フィルム26は果物の皮に相当し、人体の場合にはフィルム26は皮膚に相当し、被測定物14は血液に相当する。被測定物14は、ステージ27を介してアパーチャ24の出射口付近に設置される。照射された電磁波はフィルム26を透過し、被測定物14の内部で反射あるいは散乱され、アパーチャ24を被測定物側から通過し、レンズ11で平行ビームにされた後、ビームスプリッタ25で反射され、レンズ11を経由して検出器19に導かれる。このように電磁波照射側に戻ってくる電磁波成分を測定していることから、便宜上反射強度測定と称しているが、被測定物14の内部の構成要素による散乱・吸収などが含まれていることは言うまでもない。また、被測定物として試験管29の中の被測定物14(液体成分)に対して、フィルム28(ポリ塩化ビニリデン製ラップ、ポリ塩化ビニル製ラップ、あるいはポリエチレンラップのいずれか)を介して、液体からの反射強度を測定することにより、高感度化が実現される現象を確認している。純水中および血清中のグルコース濃度測定ではポリエチレンラップを用いた場合が最も高感度であり、これはフィルム付近にグルコースが高濃度で分布する現象を反映しているようである。具体的にはフィルム付近における溶質の吸着現象を反映している可能性があり、ポリ塩化ビニリデン製ラップ、ポリ塩化ビニル製ラップ、およびポリエチレンラップのなかで、ポリエチレンラップが最も吸着特性が強いものと考えている。  FIG. 8 is a diagram for explaining a method and system for measuring the reflection intensity of an object to be measured using a diode oscillation element. The electromagnetic wave having a predetermined frequency generated from the oscillation element 10 is converted into a parallel beam by the lens 11 installed near the exit of the oscillation element 10, passes through the beam splitter 25, and then is transmitted by the lens 11 installed near the object to be measured 14. While narrowing down the beam diameter, the aperture 24 further narrows the beam diameter and irradiates the object 14 to be measured. The object to be measured 14 is covered with a film 26. When the object to be measured is a fruit, the film 26 corresponds to the skin of the fruit, and when the object to be measured is a human body, the film 26 corresponds to the skin, and the object 14 to be measured is blood. It corresponds to. The DUT 14 is installed near the exit of the aperture 24 via the stage 27. The irradiated electromagnetic wave passes through the film 26, is reflected or scattered inside the object to be measured 14, passes through the aperture 24 from the object to be measured side, is converted into a parallel beam by the lens 11, and is reflected by the beam splitter 25. Then, the light is guided to the detector 19 via the lens 11. Since the electromagnetic wave component returning to the electromagnetic wave irradiation side is measured in this way, it is referred to as reflection intensity measurement for the sake of convenience, but includes scattering / absorption due to the internal components of the measurement object 14. Needless to say. In addition, the object to be measured 14 (liquid component) in the test tube 29 as the object to be measured is passed through a film 28 (either a polyvinylidene chloride wrap, a polyvinyl chloride wrap, or a polyethylene wrap). By measuring the reflection intensity from the liquid, a phenomenon in which high sensitivity is realized has been confirmed. The measurement of glucose concentration in pure water and serum is most sensitive when polyethylene wrap is used, which seems to reflect the phenomenon that glucose is distributed at a high concentration near the film. Specifically, it may reflect the solute adsorption phenomenon near the film, and among the polyvinylidene chloride wrap, polyvinyl chloride wrap, and polyethylene wrap, polyethylene wrap has the strongest adsorption characteristics. thinking.

図8のシステムを用いたサクランボの糖度と反射強度の比較測定結果を図9に示した。サクランボA種はナポレオン、B種は佐藤錦、C種は山形美人である。反射強度測定では、図8に示した被測定物14の位置に各種サクランボを設置して反射強度を測定を行った。各種サクランボの糖度(Brix%)は、反射強度測定後のサンプルを一部すりつぶし、果汁抽出して従来の糖度計を用い測定した。従来法はいわゆる破壊検査である。各種サクランボで表皮の色など概観が顕著に異なるものの、200GHz電磁波を用いた反射強度測定では、非接触・非破壊にてサクランボの種類によらず同一の特性曲線を示すことが明らかとなった。このことは、テラヘルツ電磁波を用いた非接触・非破壊の検査が、従来の果汁抽出による破壊試験に変わる有効な手段であることを示している事例である。  FIG. 9 shows a comparative measurement result of the sugar content and the reflection intensity of the cherries using the system of FIG. Cherry A is Napoleon, B is Nishiki Sato, and C is Yamagata Bijin. In the reflection intensity measurement, various cherries were installed at the position of the DUT 14 shown in FIG. 8 to measure the reflection intensity. The sugar content (Brix%) of various cherries was measured using a conventional saccharimeter after partially grinding the sample after measuring the reflection intensity and extracting the juice. The conventional method is a so-called destructive inspection. Although the appearance such as the skin color of the various cherries is remarkably different, the reflection intensity measurement using a 200 GHz electromagnetic wave revealed that the same characteristic curve was exhibited regardless of the type of cherries in a non-contact and non-destructive manner. This is an example showing that non-contact / non-destructive inspection using terahertz electromagnetic waves is an effective means to replace conventional destructive testing by juice extraction.

図10に示したのは、発振源10と検出器19、および光学系を組み合わせた反射強度測定用プローブの説明図である。発振素子10より発生した所定周波数の電磁波は素子に付随したホーンアンテナを通して自由空間に放射され、発振素子10の出口付近に設置されたレンズ11によって平行ビーム化され、ビームスプリッタ25を通過した後、アパーチャ機能を持つプローブ端部35よりプローブ外部に放出される。プローブ外部に被測定物を接触させることによって、被測定物からの反射光を再びプローブ内に導き、レンズ11通過後、ビームスプリッタ25による反射により、光路を切り替え、ミラー34を介して検出器19に導かれ、その反射強度が測定される。このシステムの特徴として、光学系全体を一体化しているので、プローブを移動させ、プローブ先端を被測定物に接触させることで測定が可能となるので、さまざまな形状の被測定物の反射強度測定に適用しやすいという特徴を持つ。また、人体に対しても上腕や下肢など特定部位の反射強度測定に適用できる。  FIG. 10 is an explanatory diagram of a reflection intensity measurement probe in which the oscillation source 10, the detector 19, and the optical system are combined. An electromagnetic wave having a predetermined frequency generated from the oscillation element 10 is radiated to free space through a horn antenna attached to the element, is converted into a parallel beam by the lens 11 installed near the exit of the oscillation element 10, passes through the beam splitter 25, The light is emitted from the probe end portion 35 having an aperture function to the outside of the probe. By bringing the object to be measured into contact with the outside of the probe, the reflected light from the object to be measured is guided again into the probe, and after passing through the lens 11, the optical path is switched by reflection by the beam splitter 25, and the detector 19 is connected via the mirror 34. And the reflection intensity is measured. As a feature of this system, since the entire optical system is integrated, measurement can be performed by moving the probe and bringing the probe tip into contact with the object to be measured. It has the feature that it is easy to apply to. It can also be applied to the measurement of the reflection intensity of a specific part such as the upper arm or the lower limb of the human body.

以上により、本願の糖度検査方法および検査システムでは、10GHz〜10THzの範囲の電磁波発生源を用い、媒質に応じて適した周波数の発振源を選択し、被測定物中の糖度を非接触あるいは非破壊にて識別することが可能となり、また被測定物あるいは本発明の検査システムのどちらかを掃引することによって、被測定物中の糖度の分布を画像化できる。さらに、サンプリングした液体試料中の糖度測定に関しても、液体セル中の試料に非破壊・被接触にて糖度の高感度検出が可能である。このため、本発明による糖度検査方法および検査システムは、農産物管理、医療現場、食品管理などの分野で有効な検査方法および検査システムとなり得る。  As described above, in the sugar content inspection method and inspection system of the present application, an electromagnetic wave generation source in the range of 10 GHz to 10 THz is used, an oscillation source having a frequency suitable for the medium is selected, and the sugar content in the object to be measured is determined in a non-contact or non-contact manner. It becomes possible to identify by destruction, and the sugar content distribution in the measurement object can be imaged by sweeping either the measurement object or the inspection system of the present invention. Furthermore, regarding the sugar content measurement in the sampled liquid sample, it is possible to detect the sugar content with high sensitivity by non-destructive and non-contacting the sample in the liquid cell. Therefore, the sugar content test method and test system according to the present invention can be an effective test method and test system in fields such as agricultural product management, medical practice, and food management.

ダイオード発振素子の共振器構造の概略図である。  It is the schematic of the resonator structure of a diode oscillation element. タンネットダイオードの結晶構造概略図である。  It is the crystal structure schematic of a tannet diode. ダイオード発振素子を用いた液体セルによる透過強度測定方法およびシステムを示す説明図である。  It is explanatory drawing which shows the permeation | transmission intensity | strength measuring method and system by a liquid cell using a diode oscillation element. 発振素子として200GHzで発振するタンネットダイオードを用い、グルコース水溶液の各濃度に対する電磁波透過率の測定例である。  This is a measurement example of electromagnetic wave transmittance for each concentration of an aqueous glucose solution using a tannet diode that oscillates at 200 GHz as an oscillation element. 糖を含む被測定物の透過イメージングに関する測定方法および測定システムを示す説明図である。  It is explanatory drawing which shows the measuring method and measuring system regarding the transmission imaging of the to-be-measured object containing sugar. (上)は濃度の異なるグルコース水溶液に浸したろ紙を被測定物とした時の、試料作成手順の説明図である。(下)は200GHzの電磁波を用いて測定した試料(上)の透過イメージング画像を説明するための模式図である。  (Upper) is an explanatory diagram of a sample preparation procedure when filter paper soaked in glucose aqueous solutions having different concentrations is used as an object to be measured. (Lower) is a schematic diagram for explaining a transmission imaging image of a sample (upper) measured using an electromagnetic wave of 200 GHz. 透過イメージング画像より得られる電磁波透過率と糖濃度の関係を示す測定例である。  It is an example of a measurement which shows the relationship between the electromagnetic wave transmittance obtained from a transmission imaging image, and sugar concentration. ダイオード発振素子を用いた被測定物の反射強度測定方法およびシステムを示す説明図である。  It is explanatory drawing which shows the reflection intensity measuring method and system of a to-be-measured object using a diode oscillation element. 図8のシステムを用いたサクランボの糖度と反射強度の比較測定例である。  9 is a comparative measurement example of sugar content and reflection intensity of cherries using the system of FIG. 反射強度測定用プローブの説明図である。  It is explanatory drawing of the probe for a reflection intensity measurement.

符号の説明Explanation of symbols

1…共振器基本構造
2…ステム
3…スライディングショート
4…バイアスピン
5…方形導波路
6…ホーンアンテナ
7…石英スタンドオフ
8…ダイオード素子
9…金リボン
81…nGaAs基板結晶
82…GaAsn
83…GaAsn
84…GaAsp
10…発振素子
11…レンズ
12…液体セル
13…液体充填部
14…被測定物
15…液体導入チューブ
16…液体試料導入口
17…液体放出口
18…電磁波の透過方向
19…検出器
20…パルス発生器
21…ロックイン増幅器
22…コンピュータ
23…駆動機構
24…アパーチャ
25…ビームスプリッタ
26…フィルム
27…ステージ
28…フィルム(ポリ塩化ビニリデン製ラップ、ポリ塩化ビニル製ラップ、あるいはポリエチレンラップ)
29…試験管
30…ラミネート試料
31…ろ紙
32…透過イメージング画像
33…ろ紙透過画像
1 ... resonator base structure 2 ... stem 3 ... Sliding Short 4 ... bias pin 5 ... rectangular waveguide 6 ... horn antenna 7 ... quartz standoff 8 ... diode element 9 ... gold ribbon 81 ... n + GaAs substrate crystal 82 ... GaAs n - Layer 83 ... GaAsn + layer 84 ... GaAsp + layer 10 ... Oscillating element 11 ... Lens 12 ... Liquid cell 13 ... Liquid filling portion 14 ... Measurement object 15 ... Liquid introduction tube 16 ... Liquid sample introduction port 17 ... Liquid discharge port 18 ... Electromagnetic transmission direction 19 ... Detector 20 ... Pulse generator 21 ... Lock-in amplifier 22 ... Computer 23 ... Drive mechanism 24 ... Aperture 25 ... Beam splitter 26 ... Film 27 ... Stage 28 ... Film (polyvinylidene chloride wrap, polychlorinated) Vinyl wrap or polyethylene wrap)
29 ... Test tube 30 ... Laminated sample 31 ... Filter paper 32 ... Transmission imaging image 33 ... Filter paper transmission image

Claims (6)

テラヘルツ発生装置によって構成される10GHz−10THzの範囲の電磁波発生源を用い、少なくとも前記電磁波の発生手段、集光手段、および検出手段によって構成される検査システムであって、電磁波を被測定物に照射したときの透過強度あるいは反射強度を測定し、被測定物中に含まれる糖度や血糖値を検知することを可能にした、糖度検査方法および検査システム。  An inspection system comprising an electromagnetic wave generation source in the range of 10 GHz to 10 THz constituted by a terahertz generator and comprising at least the electromagnetic wave generation means, the light collection means, and the detection means, and irradiates the object to be measured with the electromagnetic waves A sugar content test method and a test system capable of detecting the sugar content and blood glucose level contained in the object to be measured by measuring the transmission intensity or reflection intensity at the time of measurement. 前記検査システムにおいて、発生手段、集光手段、および検出手段を一体化したプローブ構造とし、このプローブを被測定物に接近あるいは接触させることにより被測定物中に含まれる糖度や血糖値を検知することを可能にした、請求項1に記載の糖度検査方法および検査システム。  In the inspection system, a probe structure in which the generating means, the light collecting means, and the detecting means are integrated, and the sugar content and blood sugar level contained in the measurement object are detected by bringing the probe close to or in contact with the measurement object. The sugar content test method and test system according to claim 1, which makes it possible. 前記検査システムにおいて、被測定物の表面をフィルムで覆い、フィルム表面付近からの透過あるいは反射強度を測定することにより、被測定物中に含まれる糖度や血糖値およびその分布状況を高感度に測定することを可能にした、請求項1に記載の糖度検査方法および検査システム。  In the inspection system, the surface of the object to be measured is covered with a film, and the transmission or reflection intensity from the vicinity of the film surface is measured, so that the sugar content, blood glucose level and distribution state thereof are measured with high sensitivity. The sugar content test method and test system according to claim 1, wherein the sugar content test method and test system can be performed. 前記フィルムとして、ポリ塩化ビニリデン製フィルム、ポリ塩化ビニル製フィルム、あるいはポリエチレンフィルムのいずれかを用いることを特徴とする、請求項3に記載の糖度検査方法および検査システム。  The sugar content test method and test system according to claim 3, wherein any one of a polyvinylidene chloride film, a polyvinyl chloride film, and a polyethylene film is used as the film. 前記検査システムにおいて、被測定物となる液体成分をろ紙、あるいはニトロセルロース紙にしみ込ませ、そのまま乾燥、または湿潤した状態でラミネート加工を施した試料を被測定物として用いることを特徴とする請求項1に記載の糖度検査方法および検査システム。  2. The inspection system according to claim 1, wherein a liquid component to be measured is impregnated into filter paper or nitrocellulose paper, and a sample subjected to lamination processing in a dry or wet state is used as the measurement object. 2. The sugar content test method and test system according to 1. 前記テラヘルツ発生装置が、タンネットダイオード、ガンダイオード、インパットダイオード、量子カスケードレーザ、p型ゲルマニウムレーザ、共鳴トンネルダイオード等の素子、バックワードオシレータ等の電子管、高周波トランジスタを用いた発振器、自由電子レーザ、テラヘルツ時間領域分光によるテラヘルツ発生法、およびテラヘルツパラメトリック発振器、GaP等の半導体結晶を用いたテラヘルツ差周波発生器のいずれかであることを特徴とする請求項1乃至請求項5に記載の糖度検査方法および検査システム。  The terahertz generator includes an element such as a tannet diode, a Gunn diode, an input diode, a quantum cascade laser, a p-type germanium laser, a resonant tunneling diode, an electron tube such as a backward oscillator, an oscillator using a high-frequency transistor, and a free electron laser 6. The sugar content test according to claim 1, wherein the terahertz generation method is based on terahertz time-domain spectroscopy, a terahertz parametric oscillator, or a terahertz difference frequency generator using a semiconductor crystal such as GaP. Method and inspection system.
JP2005381372A 2005-12-28 2005-12-28 Method and system for testing sugar content Pending JP2007178414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005381372A JP2007178414A (en) 2005-12-28 2005-12-28 Method and system for testing sugar content

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005381372A JP2007178414A (en) 2005-12-28 2005-12-28 Method and system for testing sugar content

Publications (1)

Publication Number Publication Date
JP2007178414A true JP2007178414A (en) 2007-07-12

Family

ID=38303725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005381372A Pending JP2007178414A (en) 2005-12-28 2005-12-28 Method and system for testing sugar content

Country Status (1)

Country Link
JP (1) JP2007178414A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198854A (en) * 2006-01-25 2007-08-09 Si Seiko Co Ltd Method of inspecting fruit and vegetable, and device therefor
JP2009042207A (en) * 2007-07-19 2009-02-26 Iwate Prefectural Univ Method and apparatus for seed test
JP2011053122A (en) * 2009-09-03 2011-03-17 Panasonic Corp Heating device
WO2013046249A1 (en) * 2011-09-26 2013-04-04 パイオニア株式会社 Electromagnetic wave emitting device, electromagnetic wave detecting device, and imaging device comprising same
JP2016114523A (en) * 2014-12-16 2016-06-23 アークレイ株式会社 Terahertz wave measuring apparatus, measuring method, and measuring tool
JP2020531860A (en) * 2017-07-24 2020-11-05 テラカリス An imaging device equipped with a multi-pixel sensor for constructing an image using a terahertz wave.
US10918319B2 (en) 2016-07-25 2021-02-16 Samsung Electronics Co.. Ltd. Apparatus and method for estimating biological substance, apparatus for acquiring unit spectrum, and wearable device
KR20220130304A (en) * 2021-03-17 2022-09-27 한국식품연구원 Biosensing Apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61125741A (en) * 1984-11-22 1986-06-13 Honda Motor Co Ltd Delivery mechanism for flanged parts
JPH0772054A (en) * 1993-06-15 1995-03-17 Kazuo Watanabe Inspection sample and manufacture thereof
JP2003529760A (en) * 2000-03-31 2003-10-07 テラビュー リミテッド Apparatus and method for investigating a sample
JP2005172775A (en) * 2003-12-05 2005-06-30 Semiconductor Res Found Method and device for inspecting food using irradiation with electromagnetic wave
JP2005172779A (en) * 2003-12-10 2005-06-30 Semiconductor Res Found Method and apparatus for measuring bacteria, virus and toxic substance by irradiation with electromagnetic wave
JP2005195382A (en) * 2003-12-26 2005-07-21 Semiconductor Res Found Method and apparatus for generating and irradiating terahertz electromagnetic wave

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61125741A (en) * 1984-11-22 1986-06-13 Honda Motor Co Ltd Delivery mechanism for flanged parts
JPH0772054A (en) * 1993-06-15 1995-03-17 Kazuo Watanabe Inspection sample and manufacture thereof
JP2003529760A (en) * 2000-03-31 2003-10-07 テラビュー リミテッド Apparatus and method for investigating a sample
JP2005172775A (en) * 2003-12-05 2005-06-30 Semiconductor Res Found Method and device for inspecting food using irradiation with electromagnetic wave
JP2005172779A (en) * 2003-12-10 2005-06-30 Semiconductor Res Found Method and apparatus for measuring bacteria, virus and toxic substance by irradiation with electromagnetic wave
JP2005195382A (en) * 2003-12-26 2005-07-21 Semiconductor Res Found Method and apparatus for generating and irradiating terahertz electromagnetic wave

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198854A (en) * 2006-01-25 2007-08-09 Si Seiko Co Ltd Method of inspecting fruit and vegetable, and device therefor
JP2009042207A (en) * 2007-07-19 2009-02-26 Iwate Prefectural Univ Method and apparatus for seed test
JP2011053122A (en) * 2009-09-03 2011-03-17 Panasonic Corp Heating device
WO2013046249A1 (en) * 2011-09-26 2013-04-04 パイオニア株式会社 Electromagnetic wave emitting device, electromagnetic wave detecting device, and imaging device comprising same
JP2016114523A (en) * 2014-12-16 2016-06-23 アークレイ株式会社 Terahertz wave measuring apparatus, measuring method, and measuring tool
US10918319B2 (en) 2016-07-25 2021-02-16 Samsung Electronics Co.. Ltd. Apparatus and method for estimating biological substance, apparatus for acquiring unit spectrum, and wearable device
US11826144B2 (en) 2016-07-25 2023-11-28 Samsung Electronics Co., Ltd. Apparatus and method for estimating biological substance, apparatus for acquiring unit spectrum, and wearable device
JP2020531860A (en) * 2017-07-24 2020-11-05 テラカリス An imaging device equipped with a multi-pixel sensor for constructing an image using a terahertz wave.
JP7453909B2 (en) 2017-07-24 2024-03-21 テラカリス Imaging device equipped with a multi-pixel sensor for constructing images using terahertz waves
KR20220130304A (en) * 2021-03-17 2022-09-27 한국식품연구원 Biosensing Apparatus
KR102504864B1 (en) * 2021-03-17 2023-03-02 한국식품연구원 Biosensing Apparatus

Similar Documents

Publication Publication Date Title
JP2007178414A (en) Method and system for testing sugar content
US5692504A (en) Method and apparatus for the analysis of glucose in a biological matrix
Dobroiu et al. Terahertz imaging system based on a backward-wave oscillator
Pawar et al. Terahertz technology and its applications
JP6692822B2 (en) Method and apparatus for measuring sample spectral response
US6605808B2 (en) Diagnostic apparatus using terahertz radiation
US10076261B2 (en) Imaging apparatus and method
US8207501B2 (en) Apparatus and method for measuring terahertz wave
Lee et al. Ultrasensitive detection of residual pesticides using THz near-field enhancement
US20090134329A1 (en) Detection apparatus for detecting electromagnetic wave passed through object
US8981303B2 (en) Sensor device
JP6389135B2 (en) Component concentration analyzer and component concentration analysis method
Ciesla et al. Biomedical applications of terahertz pulse imaging
JP2006064691A (en) Sensing apparatus
JP2007064700A (en) Sensing device
US20140127707A1 (en) Subject information acquiring apparatus and method
US20030155512A1 (en) Apparatus and method for investigating a sample
US20070073115A1 (en) Apparatus and method for measuring concentration of blood component using terahertz
JP2014174082A (en) Sample inspection device
Li et al. Time-domain terahertz optoacoustics: manipulable water sensing and dampening
JPWO2008026523A1 (en) Near-field light measurement method and near-field light measurement device
JP6169546B2 (en) Dielectric spectroscopic sensor, measurement system using dielectric spectroscopic sensor, and measurement method using dielectric spectroscopic sensor
JP2005172779A (en) Method and apparatus for measuring bacteria, virus and toxic substance by irradiation with electromagnetic wave
JP2005172775A (en) Method and device for inspecting food using irradiation with electromagnetic wave
JP4901432B2 (en) Component concentration measuring device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080408

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110524