JPWO2008026523A1 - Near-field light measurement method and near-field light measurement device - Google Patents

Near-field light measurement method and near-field light measurement device Download PDF

Info

Publication number
JPWO2008026523A1
JPWO2008026523A1 JP2008532044A JP2008532044A JPWO2008026523A1 JP WO2008026523 A1 JPWO2008026523 A1 JP WO2008026523A1 JP 2008532044 A JP2008532044 A JP 2008532044A JP 2008532044 A JP2008532044 A JP 2008532044A JP WO2008026523 A1 JPWO2008026523 A1 JP WO2008026523A1
Authority
JP
Japan
Prior art keywords
waveguide
sample
light
field light
field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008532044A
Other languages
Japanese (ja)
Inventor
伸一郎 林
伸一郎 林
小川 雄一
雄一 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Publication of JPWO2008026523A1 publication Critical patent/JPWO2008026523A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor

Abstract

【課題】水分などテラヘルツ波またはミリ波帯に大きな吸収や散乱を持つため測定が困難な試料に対して,高感度測定を行うことができ、さらに、試料の2次元画像を提供することができる近接場光計測法および近接場光計測装置を提供する。【解決手段】光源11で発生したテラヘルツ波またはミリ波の入射光は、光学素子部12により平行光となった後、光チョッパー24等により強度変調を受け、レンズ26によって集光し、導波路13へ入射する。導波路13内を伝播するテラヘルツ波またはミリ波は、特性伝播モードを持ち、導波路13の表面に均一な近接場光を発生させながら伝播する。導波路13から再び自由空間へ放射されたテラヘルツ波またはミリ波の透過光は、焦電素子型検出器27aにより検出され、オシロスコープ28に表示される。試料を、導波路13の表面に発生する近接場光の到達範囲内に配置し、試料の情報を取得することができる。【選択図】図1High sensitivity measurement can be performed on a sample that is difficult to measure due to large absorption or scattering in the terahertz wave or millimeter wave band such as moisture, and a two-dimensional image of the sample can be provided. A near-field light measurement method and a near-field light measurement apparatus are provided. Terahertz wave or millimeter wave incident light generated by a light source 11 is converted into parallel light by an optical element section 12, and then intensity-modulated by an optical chopper 24 or the like, condensed by a lens 26, and guided to a waveguide. 13 is incident. The terahertz wave or millimeter wave propagating in the waveguide 13 has a characteristic propagation mode and propagates while generating uniform near-field light on the surface of the waveguide 13. The transmitted light of the terahertz wave or the millimeter wave radiated again from the waveguide 13 to the free space is detected by the pyroelectric element type detector 27a and displayed on the oscilloscope 28. The sample can be arranged within the reach of the near-field light generated on the surface of the waveguide 13 and the sample information can be acquired. [Selection] Figure 1

Description

本発明は、テラヘルツ波帯やミリ波帯に大きな吸収や散乱を持つなど、通常の透過測定が困難な試料に対して、高感度測定を行うことができる近接場光計測法および近接場光計測装置に関する。   The present invention provides a near-field light measurement method and a near-field light measurement capable of performing high-sensitivity measurement on a sample that is difficult to perform normal transmission measurement, such as having large absorption and scattering in the terahertz wave band and the millimeter wave band. Relates to the device.

フーリエ変換赤外分光光度計(FT-IR)に含まれる方法として、全反射吸収測定法(ATR法)があり、ATR法は試料に化学的、物理的処理を施すことなく測定できる利点がある。一方、近年、光と電波との中間に位置する電磁波であるテラヘルツ波帯の工学的応用が盛んに行われている。   As a method included in the Fourier transform infrared spectrophotometer (FT-IR), there is a total reflection absorption measurement method (ATR method), and the ATR method has the advantage that it can be measured without subjecting the sample to chemical or physical treatment. . On the other hand, in recent years, engineering applications of the terahertz wave band, which is an electromagnetic wave located between light and radio waves, have been actively performed.

テラヘルツ波帯は、従来の赤外光やX線では分析できなかった対象物の分析ができる可能性がある。例えば、封筒や不透明なプラスチック中の化学薬品などは、赤外光やX線を用いても検出困難であるが、テラヘルツ波帯の電磁波を用いることにより分析が可能である(例えば、特許文献1、2参照)。   The terahertz wave band may be able to analyze an object that could not be analyzed by conventional infrared light or X-rays. For example, chemicals in envelopes and opaque plastics are difficult to detect even using infrared light or X-rays, but can be analyzed using terahertz wave electromagnetic waves (for example, Patent Document 1). 2).

ところが、テラヘルツ波およびミリ波は、水に強く吸収されるため水分を多く含む試料の分析に際しては、凍結粉末法などによる試料の固体化が必要であった。この課題に対し、テラヘルツ波の近接場光を用いることにより液体試料の測定を可能にしたテラヘルツ波―ATR法が報告されている(例えば、特許文献3、非特許文献1、2参照)   However, since terahertz waves and millimeter waves are strongly absorbed by water, it is necessary to solidify the sample by a frozen powder method or the like when analyzing a sample containing a large amount of moisture. In response to this problem, a terahertz wave-ATR method that enables measurement of a liquid sample by using near-field light of a terahertz wave has been reported (for example, see Patent Document 3 and Non-Patent Documents 1 and 2).

また、近接場光を効率よく発生させる手法として、可視光〜近赤外光領域の電磁波に対しては導波路における伝播モードに関する事例が報告されている。すなわち、導波路透過後の光の強度分布から導波路内部における伝播モードが決定でき、効率よく近接場光を発生させる伝播モードが知られている。また、このとき、導波路は、入射光の波長に対して、10〜1000倍程度の内径または幅を有していることも報告されている(例えば、非特許文献3、4参照)。   In addition, as a method for efficiently generating near-field light, cases relating to propagation modes in a waveguide have been reported for electromagnetic waves in the visible light to near-infrared light region. That is, a propagation mode in which the propagation mode inside the waveguide can be determined from the intensity distribution of the light after passing through the waveguide and the near-field light is efficiently generated is known. At this time, it has also been reported that the waveguide has an inner diameter or a width of about 10 to 1000 times the wavelength of incident light (see, for example, Non-Patent Documents 3 and 4).

特開2004−286716号公報JP 2004-286716 A 特開2005−114413号公報JP 2005-114413 A 特開2004−354246号公報JP 2004-354246 A 広理英基、他2名、「時間領域テラヘルツATR分光法」、分光研究、社団法人日本分光学会、2004年、第53巻、第6号、p.361-364Hideki Hirori and 2 others, “Time-domain terahertz ATR spectroscopy”, Spectroscopic Research, The Spectroscopical Society of Japan, 2004, Vol. 53, No. 6, p.361-364 広理英基、他3名(H.Hiroi, K.Yamashita, M.Nagai and K.Tanaka)、「アテニュエイテッド トータル リフレクション スペクトロスコピイ イン タイム ドメイン ユージング テラヘルツ コヒーレント パルス(Attenuated Total Reflection Spectroscopy in Time Domain Using Terahertz Coherent Pulses)」、ジャパニーズ ジャーナル オブ アプライド フィジックス(Jpn.J.Appl.Phys.)、社団法人応用物理学会、2004年、第43巻、第10A号、L1287-L1289Hideki Hiromi and three others (H. Hiroi, K. Yamashita, M. Nagai and K. Tanaka), “Attenuated Total Reflection Spectroscopy in Time Domain Using Terahertz Coherent Pulses), Japanese Journal of Applied Physics (Jpn.J.Appl.Phys.), Japan Society of Applied Physics, 2004, Vol. 43, No. 10A, L1287-L1289 デグナム(J.J. Degnan)、「ザ ウェイブガイド レーザー:ア レビュー(The Waveguide Laser: a Review)」、アプライド フィジックス(App. Phys.)、(米国)、1976年、第11巻,p.1-33J.J. Degnan, “The Waveguide Laser: a Review”, App. Phys., (USA), 1976, 11, 11, 1-31 デグナム(J.J. Degnan)、「ウェイブガイド レーザー モード パターン イン ザ ニア アンド ファー フィールド(Waveguide Laser Mode Patterns in the Near and Far Field)」、アプライド オプティックス(App. Opt.)、(米国)、1973年、第12巻、第5号、pp.1026-1033JJ Degnan, “Waveguide Laser Mode Patterns in the Near and Far Field”, Applied Optics (USA), 1973, No. Volume 12, Issue 5, pp.1026-1033

本発明は、水分を多く含む試料など、テラヘルツ波またはミリ波帯に大きな吸収や散乱を持つなど、通常の透過測定が困難な試料に対して、高感度測定を行うことができる近接場光計測法および近接場光計測装置を提供することを目的としている。さらに、試料の2次元画像および3次元画像を提供することを目的としている。   The present invention is a near-field optical measurement capable of performing high-sensitivity measurement on a sample that is difficult to perform normal transmission measurement, such as a sample containing a lot of moisture, such as a large absorption or scattering in a terahertz wave or millimeter wave band. It is an object to provide a method and a near-field light measurement device. Furthermore, it aims at providing the two-dimensional image and three-dimensional image of a sample.

上記目的を達成するために、本発明に係る近接場光計測法は、テラヘルツ波またはミリ波の光源で発生させたテラヘルツ波またはミリ波の入射光を、導波路に伝播させ、前記導波路の外部に発生する近接場光により、前記近接場光の到達範囲内に配置された試料の情報を得ることを特徴とする。   In order to achieve the above object, a near-field optical measurement method according to the present invention propagates terahertz wave or millimeter wave incident light generated by a terahertz wave or millimeter wave light source to a waveguide, and Information on a sample arranged within the reach of the near-field light is obtained by near-field light generated outside.

本発明に係る近接場光計測法は、テラヘルツ波またはミリ波の近接場光を利用して、その近接場光の到達範囲内に配置された試料の情報を得ることができる。テラヘルツ波またはミリ波の近接場光を利用するため、特に、テラヘルツ波帯またはミリ波帯に大きな吸収や散乱を持つなど、通常の透過測定が困難な試料の情報を得ることもできる。また、テラヘルツ波またはミリ波の近接場光により、高感度な試料表面周辺の非破壊・非侵襲測定を行うことができる。テラヘルツ波またはミリ波帯の電磁波は、水に強く吸収される性質を有しているが、本発明に係る近接場光計測法によれば、生体組織や食品、水溶アミノ酸などの水分を多く含む試料であっても、水の吸収の影響を受けることなく高感度に測定することができる。   The near-field light measurement method according to the present invention can obtain information on a sample arranged within the reach of the near-field light using near-field light of terahertz waves or millimeter waves. Since near-field light of terahertz waves or millimeter waves is used, it is possible to obtain information on a sample that is difficult to perform normal transmission measurement, such as having large absorption or scattering particularly in the terahertz wave band or millimeter wave band. Further, non-destructive and non-invasive measurement of the periphery of the sample surface can be performed with terahertz wave or millimeter wave near-field light. Terahertz waves or millimeter wave band electromagnetic waves have the property of being strongly absorbed by water, but according to the near-field light measurement method according to the present invention, they contain a large amount of water such as living tissue, food, and water-soluble amino acids. Even a sample can be measured with high sensitivity without being affected by water absorption.

テラヘルツ波またはミリ波の光源は、例えば、後進波管やテラヘルツ波パラメトリック光源、ガン発振器、インパット発振器、タンネット発振器、超短パルスレーザーによる光伝導スイッチ励起、量子カスケードレーザー、p-Geレーザー、自由電子レーザー等から成る。導波路は、シリコン単結晶やテフロン(登録商標)、プラスチック系材料、石英ガラス、セラミックス、金属酸化物、半導体など、テラヘルツ波またはミリ波帯で吸収係数が小さく、測定対象の試料よりも屈折率が高いもので構成されるのが好ましい。   Terahertz or millimeter wave light sources include, for example, backward wave tubes, terahertz wave parametric light sources, gun oscillators, impatting oscillators, tannet oscillators, photoconductive switch excitation with ultrashort pulse lasers, quantum cascade lasers, p-Ge lasers, free It consists of an electronic laser. Waveguides, such as silicon single crystals, Teflon (registered trademark), plastic materials, quartz glass, ceramics, metal oxides, and semiconductors, have a small absorption coefficient in the terahertz wave or millimeter wave band, and have a refractive index that is higher than that of the sample to be measured. It is preferable that it is comprised with a high thing.

なお、一般的に、テラヘルツ波は、周波数が0.1〜10THz、波長が30μm〜3mmの電磁波である。ミリ波は、周波数が30〜300GHz、波長が1〜10mmの電磁波である。   In general, terahertz waves are electromagnetic waves having a frequency of 0.1 to 10 THz and a wavelength of 30 μm to 3 mm. The millimeter wave is an electromagnetic wave having a frequency of 30 to 300 GHz and a wavelength of 1 to 10 mm.

本発明に係る近接場光計測法は、前記導波路を通過した透過光を検出することにより、前記試料の情報を得ることが好ましい。この場合、透過光の強度や強度変化等を測定することにより、試料の情報を得ることができる。   In the near-field light measurement method according to the present invention, it is preferable to obtain information on the sample by detecting transmitted light that has passed through the waveguide. In this case, information on the sample can be obtained by measuring the intensity or intensity change of the transmitted light.

本発明に係る近接場光計測法で、前記導波路は管状で、前記入射光の波長の6倍〜1000倍の内径を有し、前記近接場光は前記入射光が有する特性伝播モードにより、前記導波路の表面近傍に発生することが好ましい。この場合、入射光が有する特性伝播モードにより、導波路表面近傍に均一な近接場光を発生させることができ、高感度かつ高精度な測定が可能である。管状の導波路とは、内部が空洞ではなく密な円筒状のことを指し、その断面形状は、円形、楕円形、矩形、多角形等を成していてもよい。   In the near-field light measurement method according to the present invention, the waveguide is tubular, has an inner diameter of 6 to 1000 times the wavelength of the incident light, and the near-field light depends on a characteristic propagation mode of the incident light, Preferably, it occurs near the surface of the waveguide. In this case, uniform near-field light can be generated in the vicinity of the waveguide surface by the characteristic propagation mode of the incident light, and measurement with high sensitivity and high accuracy is possible. The tubular waveguide refers to a dense cylindrical shape inside rather than a cavity, and the cross-sectional shape thereof may be a circle, an ellipse, a rectangle, a polygon, or the like.

本発明に係る近接場光計測法で、前記試料は、液体、粉体、固体、ゲル状物質または気体から成り、前記試料の情報を連続的に測定可能であってもよい。この場合、試料の情報の時間的、空間的変化を得ることができる。   In the near-field light measurement method according to the present invention, the sample may be made of a liquid, powder, solid, gel substance, or gas, and information on the sample may be continuously measured. In this case, temporal and spatial changes in sample information can be obtained.

本発明に係る近接場光計測法は、前記入射光の波長を変えることにより、または、広帯域の前記入射光に対する前記透過光を分光することにより、分光測定可能であってもよい。この場合、試料に含まれる化学物質や、物質の構造等を特定することができる。   The near-field light measurement method according to the present invention may be capable of spectroscopic measurement by changing the wavelength of the incident light or by dispersing the transmitted light with respect to the broadband incident light. In this case, the chemical substance contained in the sample and the structure of the substance can be specified.

本発明に係る近接場光計測法は、前記試料と前記導波路との相対位置を変化させることによる前記透過光の強度の変化から、前記試料の形状を測定可能であってもよい。この場合、測定された試料の形状から、試料の2次元画像を得ることができる。また、試料と導波路との相対位置を変化させる方法として、例えば、試料を導波路に沿って移動させたり、導波路を試料の表面に沿って移動させたりしてスキャンする方法や、試料と導波路とを互いに近づけたり遠ざけたりする方法がある。これらを組み合わせることにより、試料の2次元形状だけでなく、3次元形状も得ることができ、試料の3次元画像を得ることもできる。   The near-field light measurement method according to the present invention may be capable of measuring the shape of the sample from a change in intensity of the transmitted light by changing a relative position between the sample and the waveguide. In this case, a two-dimensional image of the sample can be obtained from the measured shape of the sample. Further, as a method of changing the relative position between the sample and the waveguide, for example, a method of scanning by moving the sample along the waveguide, moving the waveguide along the surface of the sample, There is a method of moving the waveguide close to or away from each other. By combining these, not only the two-dimensional shape of the sample but also a three-dimensional shape can be obtained, and a three-dimensional image of the sample can also be obtained.

本発明に係る近接場光計測法で、前記導波路は前記入射光の伝播方向に沿って曲率を有していてもよい。この場合、導波路の形状を、試料の形状や測定状況に合わせることができ、効率的な測定を行うことができる。また、試料と近接場光との相互作用面積を拡げることができるため、高感度の測定が可能である。導波路の曲率は、入射光が有する特性伝播モードが変化しない範囲であることが好ましい。   In the near-field light measurement method according to the present invention, the waveguide may have a curvature along the propagation direction of the incident light. In this case, the shape of the waveguide can be matched to the shape of the sample and the measurement situation, and efficient measurement can be performed. In addition, since the interaction area between the sample and the near-field light can be expanded, highly sensitive measurement is possible. The curvature of the waveguide is preferably in a range where the characteristic propagation mode of incident light does not change.

本発明に係る近接場光計測装置は、テラヘルツ波またはミリ波の光源と、前記光源からのテラヘルツ波またはミリ波の入射光を伝播可能に設けられた導波路と、前記導波路の外部に発生する近接場光の到達範囲内に配置された試料の情報を取得するよう、前記導波路を通過した透過光を検出する検出部とを、有することを特徴とする。   A near-field light measuring device according to the present invention includes a terahertz wave or millimeter wave light source, a waveguide provided so that the terahertz wave or millimeter wave incident light from the light source can be propagated, and generated outside the waveguide. And a detection unit that detects transmitted light that has passed through the waveguide so as to acquire information on a sample disposed within the reachable range of the near-field light.

本発明に係る近接場光計測装置は、本発明に係る近接場光計測法を実施するために使用される。本発明に係る近接場光計測装置は、テラヘルツ波またはミリ波の近接場光を利用して、その近接場光の到達範囲内に配置された試料の情報を得ることができる。テラヘルツ波またはミリ波の近接場光を利用するため、特に、テラヘルツ波帯またはミリ波帯に大きな吸収や散乱を持つなど、通常の透過測定が困難な試料の情報を得ることもできる。また、テラヘルツ波またはミリ波の近接場光により、高感度な試料表面周辺の非破壊・非侵襲測定を行うことができる。本発明に係る近接場光計測装置で、導波路は管状で、近接場光は導波路の表面近傍に発生することが好ましい。なお、管状の導波路とは、内部が空洞ではなく密な円筒状のことを指し、その断面形状は、円形、楕円形、矩形、多角形等を成していてもよい。   The near-field light measurement apparatus according to the present invention is used to implement the near-field light measurement method according to the present invention. The near-field light measurement apparatus according to the present invention can obtain information on a sample disposed within the reach of the near-field light using terahertz wave or millimeter-wave near-field light. Since near-field light of terahertz waves or millimeter waves is used, it is possible to obtain information on a sample that is difficult to perform normal transmission measurement, such as having large absorption or scattering particularly in the terahertz wave band or millimeter wave band. Further, non-destructive and non-invasive measurement of the periphery of the sample surface can be performed with terahertz wave or millimeter wave near-field light. In the near-field light measuring apparatus according to the present invention, it is preferable that the waveguide is tubular and the near-field light is generated near the surface of the waveguide. In addition, the tubular waveguide means that the inside is not a hollow but a dense cylinder, and the cross-sectional shape thereof may be a circle, an ellipse, a rectangle, a polygon, or the like.

本発明に係る近接場光計測装置は、前記近接場光の到達範囲内で前記試料と前記導波路との相対位置を変化させるよう、前記試料または前記導波路を移動可能に設けられた移動手段と、前記移動手段で前記試料または前記導波路を移動させながら、前記検出部で前記透過光を検出するとき、前記透過光の強度の変化から、前記試料の形状を測定して2次元画像または3次元画像で表示する解析手段とを、有していてもよい。この場合、測定された試料の形状から、試料の2次元画像または3次元画像を得ることができる。また、移動手段は、近接場光の到達範囲内で試料と導波路との相対位置を変化させることができるものであればいかなるものであってもよく、試料を導波路に沿って移動させたり、導波路を試料の表面に沿って移動させたりするものや、試料と導波路とを互いに近づけたり遠ざけたりするものから成っていてもよい。   The near-field light measuring apparatus according to the present invention is a moving means provided to be able to move the sample or the waveguide so as to change the relative position between the sample and the waveguide within the reach of the near-field light. When the transmitted light is detected by the detection unit while moving the sample or the waveguide by the moving means, the shape of the sample is measured from a change in the intensity of the transmitted light, and a two-dimensional image or You may have the analysis means to display with a three-dimensional image. In this case, a two-dimensional image or a three-dimensional image of the sample can be obtained from the measured shape of the sample. The moving means may be any means as long as it can change the relative position between the sample and the waveguide within the reach of the near-field light, and the sample can be moved along the waveguide. Alternatively, the waveguide may be made of a material that moves the waveguide along the surface of the sample, or a material that moves the sample and the waveguide closer to or away from each other.

本発明によれば、水分を多く含む試料など、テラヘルツ波またはミリ波帯に大きな吸収や散乱を持つなど、通常の透過測定が困難な試料に対して、高感度測定を行うことができる近接場光計測法および近接場光計測装置を提供することができる。さらに、試料の2次元画像および3次元画像を提供することもできる。   According to the present invention, a near-field capable of performing high-sensitivity measurement on a sample that is difficult to perform normal transmission measurement, such as a sample containing a large amount of moisture, such as a large absorption or scattering in the terahertz wave or millimeter wave band. An optical measurement method and a near-field light measurement device can be provided. In addition, two-dimensional and three-dimensional images of the sample can be provided.

以下、本発明の実施の形態について図面を参照しながら説明する。
図1乃至図18は、本発明の実施の形態の近接場光計測法および近接場光計測装置を示している。
図1に示すように、近接場光計測装置10は、光源11と光学素子部12と導波路13と検出部14とを有している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 to 18 show a near-field light measuring method and a near-field light measuring apparatus according to an embodiment of the present invention.
As shown in FIG. 1, the near-field light measurement apparatus 10 includes a light source 11, an optical element unit 12, a waveguide 13, and a detection unit 14.

光源11は、テラヘルツ波およびミリ波を発生可能であり、後進波管から成る。図1に示す一例では、光源11は、周波数約1THzの連続波を、出力約1mWで発生するようになっている。   The light source 11 can generate a terahertz wave and a millimeter wave, and includes a backward wave tube. In the example shown in FIG. 1, the light source 11 generates a continuous wave having a frequency of about 1 THz with an output of about 1 mW.

光学素子部12は、光学調整用光源21とITO膜付きガラス板22と軸外し放物面鏡23と光チョッパー24とワイアーグリッド25とレンズ26とを有している。ITO膜付きガラス板22は、光学調整用光源21からの光を真っ直ぐに透過可能、かつ、光源11からの入射光を約90度反射可能に配置されている。ITO膜付きガラス板22は、光源11からの入射光の伝播方向を、光学調整用光源21からの光の伝播方向に一致させるよう調整可能になっている。軸外し放物面鏡23は、4つから成り、光源11からの入射光を平行光にし、その入射光を導波路13に案内する光路を形成するよう配置されている。光チョッパー24は、光路の中間付近に設けられ、入射光を強度変調するよう構成されている。ワイアーグリッド25は、光路の終端付近に設けられ、入射光の一部を透過し、残りを90度反射するよう構成されている。レンズ26は、ワイアーグリッド25を透過した入射光を集光して、導波路13の内部に案内するよう配置されている。   The optical element section 12 includes an optical light source 21 for optical adjustment, a glass plate 22 with an ITO film, an off-axis parabolic mirror 23, an optical chopper 24, a wire grid 25, and a lens 26. The ITO film-attached glass plate 22 is arranged so that light from the optical adjustment light source 21 can be transmitted straight, and incident light from the light source 11 can be reflected by about 90 degrees. The glass plate 22 with an ITO film can be adjusted so that the propagation direction of incident light from the light source 11 matches the propagation direction of light from the light source 21 for optical adjustment. The off-axis paraboloidal mirrors 23 are arranged so as to form an optical path for making incident light from the light source 11 parallel light and guiding the incident light to the waveguide 13. The optical chopper 24 is provided near the middle of the optical path and is configured to modulate the intensity of incident light. The wire grid 25 is provided near the end of the optical path, and is configured to transmit a part of incident light and reflect the rest by 90 degrees. The lens 26 is disposed so as to collect incident light transmitted through the wire grid 25 and guide the incident light into the waveguide 13.

導波路13は、テラヘルツ波およびミリ波帯で吸収係数が小さく、測定対象試料よりも屈折率が高い、円筒状のシリコン結晶から成る。導波路13は、レンズ26を通過した光源11からの入射光を、一端から内部に伝播可能に設けられている。導波路13は、入射光の波長が0.3mm(周波数:1THz)のとき、内径が2mm(屈折率3.4の導波路)、入射光の波長が3mm(周波数:0.1THz)のとき、内径が20mm(屈折率1.6の導波路)であり、入射光の波長の約7倍の内径を有している。なお、入射光の波長が0.3mm(周波数:1THz)のとき、内径が5mm(入射光の波長の約17倍)の導波路を使用して、近接場光の発生が確認されている。導波路の屈折率や形状にもよるが、原理的には、導波路の内径の限界は入射光の波長の1/2であることから、入射光の波長の0.5倍程度の内径を有する導波路を使用しても、近接場光を発生させることができる。   The waveguide 13 is made of a cylindrical silicon crystal having a small absorption coefficient in the terahertz wave and millimeter wave bands and a higher refractive index than the sample to be measured. The waveguide 13 is provided so that incident light from the light source 11 that has passed through the lens 26 can propagate from one end to the inside. When the wavelength of incident light is 0.3 mm (frequency: 1 THz), the waveguide 13 has an inner diameter of 2 mm (waveguide with a refractive index of 3.4), and the wavelength of incident light is 3 mm (frequency: 0.1 THz). The inner diameter is 20 mm (waveguide with a refractive index of 1.6), and the inner diameter is about 7 times the wavelength of incident light. When the wavelength of incident light is 0.3 mm (frequency: 1 THz), the generation of near-field light has been confirmed using a waveguide having an inner diameter of 5 mm (about 17 times the wavelength of incident light). Although it depends on the refractive index and shape of the waveguide, in principle, the limit of the inner diameter of the waveguide is ½ of the wavelength of the incident light, so the inner diameter is about 0.5 times the wavelength of the incident light. Near-field light can be generated even when a waveguide having the same is used.

検出部14は、2つの焦電素子型検出器27a,27bとオシロスコープ28とコンピュータ29とを有している。一方の焦電素子型検出器27aは、導波路13の他端側に配置され、導波路13を通過した透過光を検出可能になっている。他方の焦電素子型検出器27bは、ワイアーグリッド25により反射された参照光を検出可能に配置されている。オシロスコープ28は、各焦電素子型検出器27a,27bが接続され、各焦電素子型検出器27a,27bで検出された透過光の透過信号および参照光の参照信号を表示可能になっている。コンピュータ29は、オシロスコープ28に接続され、透過信号および参照信号を入力して解析可能になっている。   The detection unit 14 includes two pyroelectric element type detectors 27 a and 27 b, an oscilloscope 28, and a computer 29. One pyroelectric element type detector 27 a is arranged on the other end side of the waveguide 13 and can detect transmitted light that has passed through the waveguide 13. The other pyroelectric element type detector 27b is arranged to detect the reference light reflected by the wire grid 25. The oscilloscope 28 is connected to the pyroelectric element type detectors 27a and 27b, and can display the transmitted signal of the transmitted light and the reference signal of the reference light detected by the pyroelectric element type detectors 27a and 27b. . The computer 29 is connected to the oscilloscope 28 and can be analyzed by inputting a transmission signal and a reference signal.

本発明の実施の形態の近接場光計測法は、近接場光計測装置10により実施することができる。光源11で発生したテラヘルツ波またはミリ波の入射光は、軸外し放物面鏡23等の光学素子部12により平行光となった後、光チョッパー24等により強度変調を受け、レンズ26によって集光し、導波路13へ入射する。導波路13内を伝播するテラヘルツ波またはミリ波は、特性伝播モードを持ち、導波路13の表面である外側面の近傍に均一な近接場光を発生させながら伝播する。導波路13から再び自由空間へ放射されたテラヘルツ波またはミリ波の透過光は、焦電素子型検出器27aにより検出され、オシロスコープ28やコンピュータ29に表示される。試料を、導波路13の表面に発生する近接場光の到達範囲内に配置し、導波路13を通過した透過光の強度や強度変化等を測定することにより、試料の情報を取得することができる。   The near-field light measurement method of the embodiment of the present invention can be implemented by the near-field light measurement apparatus 10. The incident light of the terahertz wave or millimeter wave generated by the light source 11 is converted into parallel light by the optical element unit 12 such as the off-axis paraboloidal mirror 23, and then subjected to intensity modulation by the optical chopper 24 and collected by the lens 26. Light is incident on the waveguide 13. The terahertz wave or millimeter wave propagating in the waveguide 13 has a characteristic propagation mode and propagates while generating uniform near-field light in the vicinity of the outer surface which is the surface of the waveguide 13. The transmitted light of the terahertz wave or the millimeter wave radiated again from the waveguide 13 to the free space is detected by the pyroelectric element type detector 27a and displayed on the oscilloscope 28 or the computer 29. The sample information can be obtained by arranging the sample within the reach of the near-field light generated on the surface of the waveguide 13 and measuring the intensity or intensity change of the transmitted light that has passed through the waveguide 13. it can.

本発明の実施の形態の近接場光計測法および近接場光計測装置10は、テラヘルツ波またはミリ波の近接場光を利用するため、テラヘルツ波帯またはミリ波帯に大きな吸収や散乱を持つなど、通常の透過測定が困難な試料の情報を得ることができる。また、テラヘルツ波またはミリ波の近接場光により、高感度な試料表面周辺の非破壊・非侵襲測定を行うことができる。このため、テラヘルツ波またはミリ波帯の電磁波は、水に強く吸収される性質を有しているが、本発明の実施の形態の近接場光計測法および近接場光計測装置10によれば、生体組織や食品、水溶アミノ酸などの水分を多く含む試料であっても、水の吸収の影響を受けることなく高感度に測定することができる。   Since the near-field light measurement method and the near-field light measurement apparatus 10 according to the embodiment of the present invention use near-field light of terahertz waves or millimeter waves, the terahertz wave band or millimeter wave band has large absorption or scattering. Thus, it is possible to obtain information on a sample that is difficult to perform normal transmission measurement. Further, non-destructive and non-invasive measurement of the periphery of the sample surface can be performed with terahertz wave or millimeter wave near-field light. For this reason, although the terahertz wave or millimeter wave band electromagnetic wave has a property of being strongly absorbed by water, according to the near-field light measurement method and the near-field light measurement device 10 of the embodiment of the present invention, Even a sample containing a large amount of water such as a living tissue, food, or a water-soluble amino acid can be measured with high sensitivity without being affected by water absorption.

本発明の実施の形態の近接場光計測法および近接場光計測装置10は、入射光が有する特性伝播モードにより、導波路13の表面に均一な近接場光を発生させることができ、高感度かつ高精度な測定が可能である。また、液体、粉体、固体、ゲル状物質または気体から成る試料の情報を得ることができる。試料の情報を連続的に測定することにより、試料の情報の時間的、空間的変化を得ることができる。   The near-field light measurement method and the near-field light measurement apparatus 10 according to the embodiment of the present invention can generate uniform near-field light on the surface of the waveguide 13 by the characteristic propagation mode of incident light, and have high sensitivity. In addition, highly accurate measurement is possible. In addition, information on a sample made of a liquid, powder, solid, gel substance or gas can be obtained. By measuring sample information continuously, temporal and spatial changes in sample information can be obtained.

測定対象となる試料としては、有機化合物、無機化合物、金属、セラミックなどが考えられる。例えば、プラスチックなどの有機高分子、パイプ、塩ビ管、電線の被膜などの工学製品、核酸(DNA、RNA)、アミノ酸、ペプチド、タンパク質、レクチン、抗体、糖鎖、ビタミン、ホルモン、環境ホルモン、細胞、ウイルス、アレルギー成分、血液・リンパ液・骨髄液などの生体内成分、生体組織、青果物などの食品、医薬品、化粧品などが考えられる。   As a sample to be measured, an organic compound, an inorganic compound, a metal, a ceramic, or the like can be considered. For example, organic polymers such as plastics, engineering products such as pipes, PVC pipes, electric wire coatings, nucleic acids (DNA, RNA), amino acids, peptides, proteins, lectins, antibodies, sugar chains, vitamins, hormones, environmental hormones, cells Examples include viruses, allergic components, in vivo components such as blood, lymph, and bone marrow fluids, biological tissues, foods such as fruits and vegetables, pharmaceuticals, and cosmetics.

図2に、本発明の実施の形態の近接場光計測法および近接場光計測装置10により測定した、導波路13を透過するテラヘルツ波強度の糖水溶液の濃度依存性を示す。なお、入射光の周波数は約1THzであり、糖水溶液はグルコース水溶液である。図2に示すように、グルコース濃度の増加に従い、テラヘルツ波の透過率が単調に増加している結果が観察されている。   FIG. 2 shows the concentration dependence of the aqueous sugar solution of the terahertz wave intensity transmitted through the waveguide 13 measured by the near-field light measurement method and the near-field light measurement apparatus 10 according to the embodiment of the present invention. The frequency of incident light is about 1 THz, and the aqueous sugar solution is an aqueous glucose solution. As shown in FIG. 2, it is observed that the transmittance of the terahertz wave monotonously increases as the glucose concentration increases.

このように、本発明の実施の形態の近接場光計測法および近接場光計測装置10は、導波路13の周辺にある水分量および水溶液濃度を計測可能である。このため、従来、吸収が大きく透過測定が困難であった試料を高感度に測定でき、同様に近接場光を用いるTHz-ATR法よりも試料との相互作用面積を大きく取れることから、高感度化を達成することができる。   As described above, the near-field light measurement method and the near-field light measurement apparatus 10 according to the embodiment of the present invention can measure the amount of water and the concentration of the aqueous solution around the waveguide 13. For this reason, it is possible to measure a sample with high absorption, which has been difficult to measure in the past with high sensitivity, and because the interaction area with the sample can be made larger than the THz-ATR method using near-field light in the same way, it is highly sensitive. Can be achieved.

図3に、導波路13の周囲に試料1として水を浸透させた紙(サンプル)を載せたときの、サンプルの長さと透過光強度の変化との関係を示す。なお、入射光の周波数は、約1THzである。図3に示すように、導波路13に接する部位が長くなるにつれて、透過率が低下している様子が観察されている。   FIG. 3 shows the relationship between the length of the sample and the change in transmitted light intensity when a paper (sample) infiltrated with water as the sample 1 is placed around the waveguide 13. In addition, the frequency of incident light is about 1 THz. As shown in FIG. 3, it has been observed that the transmittance decreases as the portion in contact with the waveguide 13 becomes longer.

図4に、幅6cm程度の紙に、試料1として水または50%濃度の糖水溶液を浸透させ、その紙を導波路13の周囲に巻き付けたときの透過率を示す。なお、導波路13として、内径が1.2cm、長さが30cmのテフロン(登録商標)ロッドを使用し、入射光として、周波数が94GHzのミリ波を使用した。図4に示すように、糖水溶液の方が水よりも透過率が高いことが確認された。図2乃至図4の結果から、近接場光計測装置10は、導波路13の周辺にある水分量や水溶液濃度を計測可能である。   FIG. 4 shows the transmittance when water or a sugar aqueous solution having a concentration of 50% is infiltrated into a paper having a width of about 6 cm as the sample 1 and the paper is wound around the waveguide 13. A Teflon (registered trademark) rod having an inner diameter of 1.2 cm and a length of 30 cm was used as the waveguide 13, and a millimeter wave with a frequency of 94 GHz was used as incident light. As shown in FIG. 4, it was confirmed that the sugar aqueous solution had a higher transmittance than water. From the results of FIGS. 2 to 4, the near-field light measurement device 10 can measure the amount of water and the concentration of the aqueous solution around the waveguide 13.

図5乃至図12に示すように、導波路13は、柱状形態に限定されず、特性伝播モードが変化しない範囲で、入射光の伝播方向に沿って曲率を持ったものから成っていてもよい。この場合、導波路13の形状を、試料1の形状や測定状況に合わせることができ、効率的な測定を行うことができる。また、試料1と近接場光との相互作用面積を拡げることができるため、高感度の測定が可能である。なお、導波路13が有し得る曲率は、導波路13の屈折率に依存する。   As shown in FIGS. 5 to 12, the waveguide 13 is not limited to a columnar shape, and may be made of a material having a curvature along the propagation direction of incident light within a range in which the characteristic propagation mode does not change. . In this case, the shape of the waveguide 13 can be matched with the shape of the sample 1 and the measurement situation, and efficient measurement can be performed. In addition, since the interaction area between the sample 1 and the near-field light can be expanded, highly sensitive measurement is possible. Note that the curvature that the waveguide 13 may have depends on the refractive index of the waveguide 13.

図5に、近接場光計測装置10を用いた生体情報計測システムを示す。図5に示すように、導波路13は、内部で定在波が乱れない程度に曲率を有する機構を有し、これにより試料1である対象物との相互作用面積を広げることが出来るため、わずかな変化量も高感度で測定することが可能となる。なお、図5中ではコイル状の導波路13を示したが、対象物や測定状況に応じて、U字やS字などの構成をとることも可能である。導波路13を伝播したテラヘルツ波およびミリ波は、近接場光で得られる対象物の情報と共に、透過光として焦電素子型検出器27a等の検出器で検出される。   FIG. 5 shows a biological information measurement system using the near-field light measurement device 10. As shown in FIG. 5, the waveguide 13 has a mechanism that has a curvature to such an extent that the standing wave is not disturbed inside, and thereby the area of interaction with the object that is the sample 1 can be expanded. Even slight changes can be measured with high sensitivity. Although the coiled waveguide 13 is shown in FIG. 5, it is possible to adopt a U-shaped or S-shaped configuration according to the object and measurement conditions. The terahertz wave and millimeter wave that have propagated through the waveguide 13 are detected by a detector such as a pyroelectric element type detector 27a as transmitted light together with information on the object obtained by the near-field light.

対象物が生体の際、導波路13に密着した生物や青果物の外皮および近接場光が浸み込んだ深さ方向の情報を得ることが出来るため、生体水や血液、果汁などの変化を得ることができる。そのため、非侵襲で肌の潤いや血液成分の変化、農産物の場合は鮮度や品質の評価、さらには内部障害の非破壊判別が可能となる。   When the object is a living body, it is possible to obtain information on the depth direction in which the outer skin of the living thing or fruit and fruit and the near-field light that are in close contact with the waveguide 13 are soaked, so that changes such as biological water, blood, and fruit juice are obtained. be able to. Therefore, it is possible to non-invasively moisturize the skin, change blood components, and in the case of agricultural products, evaluate the freshness and quality, and further determine non-destructive internal damage.

図6に、図5の実験系で得た実験結果の判定法を示す。例えば、測定者の肌の潤いが高くなると、皮下層の水分量が上昇するため、導波路13を染み出た近接場光が吸収され、焦電素子型検出器27aで得られる透過量は減少する。このような結果を利用することで、医薬品、化粧品の効能評価や、血液成分の変化などを非侵襲で計測することが可能になる。   FIG. 6 shows a method for determining the experimental results obtained in the experimental system of FIG. For example, when the moisture of the measurer's skin increases, the amount of moisture in the subcutaneous layer increases, so that the near-field light that penetrates the waveguide 13 is absorbed, and the amount of transmission obtained by the pyroelectric element type detector 27a decreases. To do. By using such results, it becomes possible to non-invasively measure the efficacy of pharmaceuticals and cosmetics, changes in blood components, and the like.

図7に、近接場光計測装置10を用いた工業製品等の非破壊検査システムについて示す。図7は、テラヘルツ波またはミリ波を透過する材質の管状部材の内部欠損を、非破壊で検査するものである。なお、本方法は、測定対象物の形状に合わせた導波路13の形状を選ぶことで、板材など管状部材以外においても導入可能である。測定対象部との作用面積を広く取るため、導波路13は内部で定在波が乱れない程度に曲率を有する機構を取ることも可能である。図7は、曲げられた導波路13に接するように試料1である対象物が移動する構成となっており、対象物の移動が困難な場合は導波路13が移動できる構成を取る事も可能である。導波路13を伝播したテラヘルツ波またはミリ波の透過光は、焦電素子型検出器27a等の検出器で検出される。   FIG. 7 shows a nondestructive inspection system for industrial products and the like using the near-field light measuring device 10. FIG. 7 is a non-destructive inspection of an internal defect of a tubular member made of a material that transmits terahertz waves or millimeter waves. In addition, this method can be introduce | transduced other than tubular members, such as a board | plate material, by selecting the shape of the waveguide 13 matched with the shape of the measuring object. In order to increase the working area with respect to the measurement target portion, the waveguide 13 can also have a mechanism having a curvature to such an extent that the standing wave is not disturbed inside. FIG. 7 shows a configuration in which the object that is the sample 1 moves so as to be in contact with the bent waveguide 13, and when the movement of the object is difficult, a configuration in which the waveguide 13 can be moved is also possible. It is. The terahertz wave or millimeter wave transmitted light propagated through the waveguide 13 is detected by a detector such as a pyroelectric element type detector 27a.

図8に、図7の非破壊検査システムによる、試料1であるパイプ断面の測定部位を示す。近接場光計測装置10による計測方法では、導波路13の周辺に波長程度の染み出し深さを持つ近接場光13aを形成するため、パイプ内側の欠損やパイプの厚み変化を、導波路13の透過量変化として非破壊モニタリングが可能である。測定は、1本の導波路13をパイプに沿って移動させて行ってもよく、複数本の導波路13をパイプに沿って並べて行ってもよい。また、導波路13をコイル状に構成して測定してもよく、この場合、近接場光の作用面積を広く取ることができるため、対象物のわずかな変化を精度良くモニタリングできる効果がある。このときに得られる結果から、異常部を判定する方法を、図9に示す。対象物に異常が無い場合は任意の透過量を示すが、対象物が移動し、異常な部位があると、透過量が変化する。この変化量と閾値とを比較することで、不透明パイプの検査が可能となる。   FIG. 8 shows a measurement site of a pipe cross section which is the sample 1 by the nondestructive inspection system of FIG. In the measurement method using the near-field light measurement device 10, the near-field light 13 a having a permeation depth of about the wavelength is formed around the waveguide 13. Non-destructive monitoring is possible as permeation change. The measurement may be performed by moving one waveguide 13 along the pipe, or may be performed by arranging a plurality of waveguides 13 along the pipe. In addition, the waveguide 13 may be measured in the form of a coil. In this case, since the active area of the near-field light can be widened, there is an effect that a slight change in the object can be monitored with high accuracy. FIG. 9 shows a method for determining an abnormal part from the result obtained at this time. When there is no abnormality in the object, an arbitrary amount of transmission is shown. However, when the object moves and there is an abnormal part, the amount of transmission changes. By comparing this amount of change with a threshold value, the opaque pipe can be inspected.

図10に、近接場光計測装置10を用いた、試料1である溶液物の反応モニタリング方法について示す。発生したテラヘルツ波またはミリ波は、集光レンズ26で導波路13の端面に集光され、ビームウエスト部で導波路13とカップルする構成となっている。図10に示すように、測定対象部との作用面積を広く取るため、導波路13は内部で定在波が乱れない程度に曲率を有する機構を取ることも可能である。導波路13は、溶液よりも屈折率の高い部材で構成され、内部で最低次のモードで伝播される。その結果、近接場光が導波路13の全体から染み出す。テラヘルツ波およびミリ波帯は、可視光と異なり、水の吸収が大きい帯域であるため、染み出た近接場光の変化から、例えばタンパク質溶液中の酵素反応における加水分解による水分子の増減をモニタリングすることが可能となる。図11に、タンパク溶液の酵素反応をモニタリングする方法を示す。酵素Aを使うと、酵素Bに比べて反応性が高いことが判別できる。これらの結果とLC/MS(液体クロマトグラフィー/マススペクトロメトリー)などとの組み合わせにより、任意のペプチドの高効率生産が可能になる。   FIG. 10 shows a reaction monitoring method for the solution, which is the sample 1, using the near-field light measurement apparatus 10. The generated terahertz wave or millimeter wave is condensed on the end face of the waveguide 13 by the condenser lens 26 and is coupled to the waveguide 13 at the beam waist. As shown in FIG. 10, in order to take a large area of action with the measurement target portion, the waveguide 13 can also have a mechanism having a curvature to such an extent that the standing wave is not disturbed inside. The waveguide 13 is composed of a member having a higher refractive index than that of the solution, and propagates in the lowest order mode inside. As a result, near-field light oozes out of the entire waveguide 13. The terahertz wave and millimeter wave bands are bands that absorb large amounts of water, unlike visible light. Therefore, monitoring the increase and decrease of water molecules due to hydrolysis in, for example, enzymatic reactions in protein solutions, from changes in the leaked near-field light. It becomes possible to do. FIG. 11 shows a method for monitoring the enzyme reaction of the protein solution. When enzyme A is used, it can be determined that the reactivity is higher than that of enzyme B. A combination of these results and LC / MS (liquid chromatography / mass spectrometry) enables high-efficiency production of any peptide.

このように、近接場光の利用により、テラヘルツ波およびミリ波帯では困難な水溶液中の反応を計測することができ、さらに導波路13の形状を変化させることで感度良く反応を計測することが可能となる。さらに、図12に示すように、導波路13を試料1である液内に配置しない方法として、容器2の外周に密着させることが可能である。このとき、容器2はテラヘルツ波およびミリ波を透過できるものが望ましい。これにより、反応層(対象物)にセンシング部を直接接しない構成をとることができるため、洗浄やコンタミを防ぐことが可能となる。   In this way, by using near-field light, it is possible to measure a reaction in an aqueous solution that is difficult in the terahertz wave and millimeter wave bands, and further to measure the reaction with high sensitivity by changing the shape of the waveguide 13. It becomes possible. Furthermore, as shown in FIG. 12, as a method in which the waveguide 13 is not disposed in the liquid that is the sample 1, it is possible to closely contact the outer periphery of the container 2. At this time, the container 2 is preferably capable of transmitting terahertz waves and millimeter waves. Thereby, since it can take the structure which does not contact a sensing part directly to a reaction layer (object), it becomes possible to prevent washing and contamination.

図13に、抗原抗体反応に対する透過率の時間変化を、ビオチンとアビジンとの相互作用(結合)により、リアルタイムに計測した結果を示す。シリコンロッドから成る導波路13に、直接ビオチンを結合させることはできないため、まずビオチン標識BSA溶液に導波路13を浸し、その後グルタールアルデヒドにて架橋し、導波路13の表面にビオチン標識BSAを固定化した。この状態で実験系を構築し、測定を開始したのが図13の0秒にあたる。
次に、BSAを溶解させたバッファー(Buffer)を導波路13の周辺に満たす。このとき、バッファー(特に水)による吸収により、透過率が急激に低下する。
次に、溶液中のBSAが導波路13の表面に徐々に付着することにより、水分子と入れ替わる。BSAよりも水の方が吸収が大きいため、図13に示すように、透過率が徐々に増加する。
次に、3500秒の時点でアビジンを滴下する。その結果、導波路13の表面のビオチンとアビジンとが結合し、図13に示すように、導波路13の表層の近接場光の染み出しの領域(相互作用空間)に存在するアビジンの吸収分の透過率の減少が観測される。このように、近接場光計測装置10は、抗原抗体反応に対する透過率の時間変化を、リアルタイムで計測することができる。
FIG. 13 shows the results of measuring the change in transmittance over time with respect to the antigen-antibody reaction in real time by the interaction (binding) between biotin and avidin. Since biotin cannot be directly bonded to the waveguide 13 composed of a silicon rod, the waveguide 13 is first immersed in a biotin-labeled BSA solution and then crosslinked with glutaraldehyde, and biotin-labeled BSA is applied to the surface of the waveguide 13. Immobilized. In this state, the experimental system was constructed and the measurement was started at 0 seconds in FIG.
Next, a buffer in which BSA is dissolved is filled around the waveguide 13. At this time, the transmittance rapidly decreases due to absorption by the buffer (particularly water).
Next, the BSA in the solution gradually adheres to the surface of the waveguide 13 so that it is replaced with water molecules. Since water absorbs more than BSA, the transmittance gradually increases as shown in FIG.
Next, avidin is added dropwise at 3500 seconds. As a result, biotin and avidin on the surface of the waveguide 13 are bonded to each other, and as shown in FIG. 13, the absorption of avidin existing in the near-field light leakage region (interaction space) on the surface layer of the waveguide 13. A decrease in transmittance is observed. As described above, the near-field light measurement apparatus 10 can measure a change in transmittance with time in response to an antigen-antibody reaction in real time.

また、細菌やウイルスに特異的に結合する化合物を、導波路13に固定化することにより、細菌やウイルスを観測することができる。例えば、乳房炎になった乳牛から採取された牛乳には、乳房炎による炎症細胞が含まれているため、近接場光計測装置10により、その細胞数を測定することにより、牛乳の安全性を確保することができる。   In addition, by immobilizing a compound that specifically binds to bacteria and viruses in the waveguide 13, the bacteria and viruses can be observed. For example, since milk collected from dairy cows with mastitis contains inflammatory cells due to mastitis, the number of cells is measured by the near-field light measurement device 10 to improve the safety of milk. Can be secured.

図14に、水および単糖類の水溶液に対して、入射光の波長を変えることにより、分光測定を行った結果を示す。単糖類の水溶液は、マンノース(Mannose)、グルコース(Glucose)、フルクトース(Fructose)の3種類の水溶液とし、入射光の周波数は、0.93THzおよび0.96THzとした。図14(b)に示すように、プラスチック製の容器3の中に、導波路13として円筒状のシリコン結晶を通し、導波路13が浸かるよう容器3の中に水または各水溶液の試料1を満たして、測定を行った。   FIG. 14 shows the result of spectroscopic measurement performed on the aqueous solution of water and monosaccharide by changing the wavelength of incident light. The monosaccharide aqueous solutions were three types of aqueous solutions of mannose, glucose, and fructose, and the frequencies of incident light were 0.93 THz and 0.96 THz. As shown in FIG. 14B, a cylindrical silicon crystal is passed as a waveguide 13 in a plastic container 3, and water or each aqueous solution sample 1 is placed in the container 3 so that the waveguide 13 is immersed. Satisfied and measured.

図14(a)に示すように、0.93THzのとき、マンノースのみ透過率が低く、吸収が大きいことが確認された。なお、マンノースは、粉の場合、0.93THz近傍に吸収があることが知られており、このことと本結果とが一致している。0.96THzのとき、3種類の単糖類の水溶液は、透過率がほぼ一致していることが確認された。これまで、各水溶液の分光スペクトルを測定したものはなく、本発明の実施の形態の近接場光計測法および近接場光計測装置10により、液体試料の分光スペクトルを取得可能であることが確認された。なお、入射光の波長を変えることにより、オリゴ糖などの長い糖鎖や、他の液体試料も分析可能であると考えられる。   As shown in FIG. 14A, it was confirmed that at 0.93 THz, only the transmittance of mannose was low and the absorption was large. In the case of powder, mannose is known to have absorption in the vicinity of 0.93 THz, which agrees with this result. At 0.96 THz, it was confirmed that the transmittance of the three types of monosaccharide aqueous solutions was almost the same. Until now, there has been no measurement of the spectrum of each aqueous solution, and it has been confirmed that the spectrum of a liquid sample can be obtained by the near-field light measurement method and the near-field light measurement apparatus 10 of the embodiment of the present invention. It was. In addition, it is considered that long sugar chains such as oligosaccharides and other liquid samples can be analyzed by changing the wavelength of incident light.

図15に示すように、近接場光計測装置10は、回転ステージから成る移動手段31を有し、試料1を回転ステージの上に載せて回転させることにより、試料1と導波路13との相対位置を変化させるようになっていてもよい。このとき、回転ステージで試料を回転させながら、検出部14の焦電素子型検出器27aで透過光を検出し、その透過光強度の変化から、解析手段のコンピュータ29により試料1の形状を測定して2次元画像または3次元画像を表示することができる。なお、移動手段31は、近接場光の到達範囲内で試料1と導波路13との相対位置を変化させることができるものであればいかなるものであってもよい。   As shown in FIG. 15, the near-field light measurement apparatus 10 has a moving means 31 composed of a rotary stage, and the sample 1 is placed on the rotary stage and rotated to rotate the sample 1 and the waveguide 13 relative to each other. The position may be changed. At this time, the transmitted light is detected by the pyroelectric element type detector 27a of the detection unit 14 while rotating the sample on the rotating stage, and the shape of the sample 1 is measured by the computer 29 of the analyzing means from the change in the transmitted light intensity. Thus, a two-dimensional image or a three-dimensional image can be displayed. The moving means 31 may be anything as long as it can change the relative position between the sample 1 and the waveguide 13 within the reach of near-field light.

これまで、テラヘルツ波およびミリ波による画像再構成は、その屈折率分布や散乱の影響によりテラヘルツ波およびミリ波が直進しないため、測定対象物が限定されていた。これに対し、図15に示すように、導波路13を使用することによって、試料1の屈折率分布や散乱の影響を受けることなく、試料1と導波路13との相対位置の情報とそれぞれの位置における透過光強度から画像再構成が可能になる。画像再構成には、ラドン変換やラドン逆変換などの方法を使用することができる。   Until now, image reconstruction using terahertz waves and millimeter waves has limited measurement objects because the terahertz waves and millimeter waves do not travel straight due to the effects of refractive index distribution and scattering. On the other hand, as shown in FIG. 15, by using the waveguide 13, information on the relative positions of the sample 1 and the waveguide 13 and the respective information can be obtained without being affected by the refractive index distribution or scattering of the sample 1. Image reconstruction is possible from the transmitted light intensity at the position. For image reconstruction, methods such as radon transformation and radon inverse transformation can be used.

また、入射光の波長を変えたり、広帯域の入射光による透過光を分光したりすることにより、分光測定を行うこともできる。図16に、厚さ1mmの試料に対して、分光計測を行った結果を示す。図16に示すように、例えば、入射光の波長が1THzのとき、透過率は約9%となり、所定の厚みを有する試料であっても、テラヘルツ波およびミリ波の近接場光を使用して分光計測可能であることが確認された。このような近接場分光を導入することにより、分光イメージングが可能になる。この結果、封筒内の化学物質や皮膚下の組織診断、青果物検査、工業材料検査など、試料の画像化による物質や物質の構造等の特定が可能になる。   Further, spectroscopic measurement can be performed by changing the wavelength of incident light or by dispersing transmitted light by broadband incident light. FIG. 16 shows the result of spectroscopic measurement performed on a sample having a thickness of 1 mm. As shown in FIG. 16, for example, when the wavelength of incident light is 1 THz, the transmittance is about 9%, and even a sample having a predetermined thickness uses near-field light of terahertz waves and millimeter waves. It was confirmed that spectroscopic measurement was possible. By introducing such near-field spectroscopy, spectral imaging becomes possible. As a result, it becomes possible to specify the substance and the structure of the substance by imaging the sample, such as chemical substances in the envelope, tissue diagnosis under the skin, fruit and vegetable inspection, and industrial material inspection.

図17に、矩形板状の試料1を、導波路13の長さ方向に対して垂直方向に移動させて、透過光の強度変化を測定した結果を示す。なお、入射光の周波数は、約1THzである。図17に示すように、試料1をその長辺方向に沿って移動させたときも、試料1をその短辺方向に沿って移動させたときも、明瞭な透過率の変化が確認された。図17の結果に基づいて、コンピュータ29により試料1の形状を測定して2次元画像として表示した結果を、図18に示す。図18に示すように、試料1の平面形状が精度良く再現されていることが確認された。このように、本発明の実施の形態の近接場光計測法および近接場光計測装置10によれば、試料1の2次元画像または3次元画像を得ることができる。   FIG. 17 shows the result of measuring the intensity change of the transmitted light by moving the rectangular plate-shaped sample 1 in the direction perpendicular to the length direction of the waveguide 13. In addition, the frequency of incident light is about 1 THz. As shown in FIG. 17, a clear change in transmittance was confirmed both when the sample 1 was moved along its long side direction and when the sample 1 was moved along its short side direction. FIG. 18 shows the result of measuring the shape of the sample 1 by the computer 29 based on the result of FIG. 17 and displaying it as a two-dimensional image. As shown in FIG. 18, it was confirmed that the planar shape of the sample 1 was accurately reproduced. As described above, according to the near-field light measurement method and the near-field light measurement apparatus 10 according to the embodiment of the present invention, a two-dimensional image or a three-dimensional image of the sample 1 can be obtained.

図19に、試料1として、途中で厚さが1mmから2mmに変化するポリエチレン板を使用し、その試料1を導波路13の軸方向に対して垂直方向に移動させたときの、透過光の強度変化を測定した結果を示す。なお、入射光の周波数は、約1THzである。図19に示すように、試料1の厚さが変化する位置で、強度も変化していることが確認された。このことから、本発明の実施の形態の近接場光計測法および近接場光計測装置10によれば、試料1の2次元形状を測定可能であり、その形状から試料1の2次元画像を得ることができる。なお、厚さが変化した後の強度の変化は、試料1のエッジ部での散乱などの影響によるものと考えられる。   In FIG. 19, a polyethylene plate whose thickness changes from 1 mm to 2 mm in the middle is used as the sample 1, and transmitted light when the sample 1 is moved in the direction perpendicular to the axial direction of the waveguide 13. The result of measuring the intensity change is shown. In addition, the frequency of incident light is about 1 THz. As shown in FIG. 19, it was confirmed that the intensity also changed at the position where the thickness of the sample 1 changed. Therefore, according to the near-field light measurement method and the near-field light measurement apparatus 10 of the embodiment of the present invention, the two-dimensional shape of the sample 1 can be measured, and a two-dimensional image of the sample 1 is obtained from the shape. be able to. Note that the change in intensity after the change in thickness is considered to be due to the influence of scattering at the edge portion of the sample 1.

本発明の実施の形態の近接場光計測装置を示す全体構成図である。1 is an overall configuration diagram illustrating a near-field light measurement device according to an embodiment of the present invention. 本発明の実施の形態の近接場光計測法および近接場光計測装置の、テラヘルツ波の透過率の水溶液濃度依存性を示すグラフである。It is a graph which shows the aqueous solution density | concentration dependence of the transmittance | permeability of a terahertz wave of the near-field light measuring method and near-field light measuring device of embodiment of this invention. 本発明の実施の形態の近接場光計測法および近接場光計測装置の、テラヘルツ波の透過率のサンプル長さ依存性を示すグラフである。It is a graph which shows the sample length dependence of the transmittance | permeability of a terahertz wave of the near-field light measuring method and near-field light measuring device of embodiment of this invention. 本発明の実施の形態の近接場光計測法および近接場光計測装置の、水および50%濃度の糖水溶液に対するミリ波の透過率を示すグラフである。It is a graph which shows the transmittance | permeability of the millimeter wave with respect to water and a 50% concentration sugar aqueous solution of the near-field light measuring method and near-field light measuring device of embodiment of this invention. 本発明の実施の形態の近接場光計測法および近接場光計測装置の生体情報計測システムへの応用例を示す斜視図である。It is a perspective view which shows the example of application to the biological information measurement system of the near-field light measuring method and near-field light measuring device of embodiment of this invention. 図5に示す生体情報計測システムの実験結果の判定法を示すグラフである。It is a graph which shows the determination method of the experimental result of the biometric information measurement system shown in FIG. 本発明の実施の形態の近接場光計測法および近接場光計測装置の、工業製品等の非破壊検査システムへの応用例を示す斜視図である。It is a perspective view which shows the example of application to the nondestructive inspection systems, such as industrial products, of the near-field light measuring method and the near-field light measuring device of embodiment of this invention. 図7に示す非破壊検査システムの使用状態を示す断面図である。It is sectional drawing which shows the use condition of the nondestructive inspection system shown in FIG. 図7に示す非破壊検査システムの実験結果から、異常部を判定する方法を示すグラフである。It is a graph which shows the method of determining an abnormal part from the experimental result of the nondestructive inspection system shown in FIG. 本発明の実施の形態の近接場光計測法および近接場光計測装置の、溶液物の反応モニタリング方法への応用例を示す斜視図である。It is a perspective view which shows the application example to the reaction monitoring method of the solution thing of the near-field light measuring method and the near-field light measuring device of embodiment of this invention. 図10に示す反応モニタリング方法によるタンパク溶液の酵素反応をモニタリングする方法を示すグラフである。It is a graph which shows the method of monitoring the enzyme reaction of the protein solution by the reaction monitoring method shown in FIG. 本発明の実施の形態の近接場光計測法および近接場光計測装置の、容器内の対象物の計測への応用例を示す側面図である。It is a side view which shows the example of application to the measurement of the target object in a container of the near-field light measuring method and the near-field light measuring device of embodiment of this invention. 本発明の実施の形態の近接場光計測法および近接場光計測装置の、抗原抗体反応に対する透過率の時間変化を示すグラフである。It is a graph which shows the time change of the transmittance | permeability with respect to an antigen antibody reaction of the near-field light measuring method and near-field light measuring device of embodiment of this invention. 本発明の実施の形態の近接場光計測法および近接場光計測装置の、(a)液体試料に対する分光測定結果を示すグラフ、(b)導波路付近の液体試料の分光測定方法を示す斜視図である。(A) A graph showing a result of spectroscopic measurement for a liquid sample, and (b) a perspective view showing a method for spectroscopic measurement of a liquid sample in the vicinity of the waveguide of the near-field light measuring method and the near-field light measuring device according to the embodiment of the present invention. It is. 図1に示す近接場光計測装置の移動手段を有する変形例を示す構成図である。It is a block diagram which shows the modification which has a moving means of the near-field light measuring device shown in FIG. 本発明の実施の形態の近接場光計測法および近接場光計測装置の、分光計測結果を示すグラフである。It is a graph which shows the spectroscopic measurement result of the near-field light measuring method and the near-field light measuring device of embodiment of this invention. 本発明の実施の形態の近接場光計測法および近接場光計測装置の、(a)矩形板状の試料をその長辺方向に沿って、導波路の長さ方向に対して垂直方向に移動させたときの透過率の変化を示すグラフ、(b)矩形板状の試料をその短辺方向に沿って、導波路の長さ方向に対して垂直方向に移動させたときの透過率の変化を示すグラフである。In the near-field light measurement method and near-field light measurement apparatus according to the embodiment of the present invention, (a) a rectangular plate-shaped sample is moved along the long side direction in a direction perpendicular to the length direction of the waveguide. (B) A change in transmittance when a rectangular plate-shaped sample is moved in the direction perpendicular to the length direction of the waveguide along its short side direction. It is a graph which shows. 図17の結果から、試料の形状を測定して2次元画像として表示した結果を示す解析図である。It is an analysis figure which shows the result of having measured the shape of the sample from the result of FIG. 17, and displaying it as a two-dimensional image. 本発明の実施の形態の近接場光計測法および近接場光計測装置の、(a)試料の厚みに対する透過光の強度変化を示すグラフ、(b)試料の斜視図、(c)導波路に対する試料の移動状態を示す側面図である。(A) graph showing intensity change of transmitted light with respect to thickness of sample, (b) perspective view of sample, (c) with respect to waveguide of near-field light measurement method and near-field light measurement device of embodiment of the present invention It is a side view which shows the movement state of a sample.

符号の説明Explanation of symbols

1 試料
10 近接場光計測装置
11 光源
12 光学素子部
13 導波路
14 検出部
21 光学調整用光源
22 ITO膜付きガラス板
23 軸外し放物面鏡
24 光チョッパー
25 ワイアーグリッド
26 レンズ
27a,27b 焦電素子型検出器
28 オシロスコープ
29 コンピュータ
DESCRIPTION OF SYMBOLS 1 Sample 10 Near-field light measuring device 11 Light source 12 Optical element part 13 Waveguide 14 Detection part 21 Optical adjustment light source 22 Glass plate with ITO film 23 Off-axis parabolic mirror 24 Optical chopper 25 Wire grid 26 Lens 27a, 27b Focus Electric element type detector 28 Oscilloscope 29 Computer

【0002】
特許文献2:特開2005−114413号公報
特許文献3:特開2004−354246号公報
非特許文献1:広理英基、他2名、「時間領域テラヘルツATR分光法」、分光研究、社団法人日本分光学会、2004年、第53巻、第6号、p.361−364
非特許文献2:広理英基、他3名(H.Hiroi,K.Yamashita,M.Nagai and K.Tanaka)、「アテニュエイテッド トータル リフレクション スペクトロスコピイ イン タイム ドメイン ユージング テラヘルツ コヒーレント パルス(Attenuated Total Reflection Spectroscopy in Time Domain Using Terahertz Coherent Pulses)」、ジャパニーズ ジャーナル オブ アプライド フィジックス(Jpn.J.Appl.Phys.)、社団法人応用物理学会、2004年、第43巻、第10A号、L1287−L1289
非特許文献3:デグナム(J.J.Degnan)、「ザ ウェイブガイド レーザー:ア レビュー(The Waveguide Laser:a Review)」、アプライド フィジックス(App.Phys.)、(米国)、1976年、第11巻,p.1−33
非特許文献4:デグナム(J.J.Degnan)、「ウェイブガイド レーザー モード パターン イン ザ ニア アンド ファー フィールド(Waveguide Laser Mode Patterns in the Near and Far Field)」、アプライド オプティックス(App.Opt.)、(米国)、1973年、第12巻、第5号、pp.1026−1033
発明の開示
発明が解決しようとする課題
[0007]
本発明は、水分を多く含む試料など、テラヘルツ波またはミリ波帯に大きな吸収や散乱を持つなど、通常の透過測定が困難な試料に対して、高感度測定を行うことができる近接場光計測法および近接場光計測装置を提供することを目的としている。さらに、試料の2次元画像および3次元画像を提供することを目的としている。
課題を解決するための手段
[0008]
上記目的を達成するために、本発明に係る近接場光計測法は、テラヘルツ波またはミリ波の光源で発生させたテラヘルツ波またはミリ波の入射光を、テラヘルツ波またはミリ波帯で吸収係数が小さく、測定対象の試料よりも屈折率が高く、管状で、前記入射光の波長の6倍〜1000倍の内径を有する導波路に伝播させ、前記入射光が有する特性伝播モードにより、前記導波路の表面近傍に発生する近接場光により、前記
[0002]
Patent Document 2: Japanese Patent Application Laid-Open No. 2005-114413 Patent Document 3: Japanese Patent Application Laid-Open No. 2004-354246 Non-Patent Document 1: Eihiro Hirori and two others, “Time Domain Terahertz ATR Spectroscopy”, Spectroscopic Research, Japan Spectroscopic Society, 2004, Vol. 53, No. 6, p. 361-364
Non-Patent Document 2: Eihiro Hirori and three others (H. Hiroi, K. Yamashita, M. Nagai and K. Tanaka), “Attenuated Total Reflection Spectroscopy in Time Domain Using Terahertz Coherent Pulse (Attenuated Total) Reflection Spectroscopy in Time Domain Usage Terahertz Coherent Pulses), Japanese Journal of Applied Physics (Jpn. J. Appl. Phys.), Japan Applied Physics Society, 2004, L, No. 89, L43.
Non-Patent Document 3: J. Jegnan, "The Waveguide Laser: a Review", Applied Phys. (App. Phys.), 1976, 11th. Volume, p. 1-33
Non-Patent Document 4: JJ Degnan, “Waveguide Laser Mode Patterns in the Near and Far Field”, Applied Optics (App. Opt.). (USA), 1973, Vol. 12, No. 5, pp. 1026-1033
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention [0007]
The present invention is a near-field optical measurement capable of performing high-sensitivity measurement on a sample that is difficult to perform normal transmission measurement, such as a sample containing a lot of moisture, such as a large absorption or scattering in a terahertz wave or millimeter wave band. It is an object to provide a method and a near-field light measurement device. Furthermore, it aims at providing the two-dimensional image and three-dimensional image of a sample.
Means for Solving the Problems [0008]
In order to achieve the above object, the near-field optical measurement method according to the present invention uses a terahertz wave or millimeter wave incident light generated by a terahertz wave or millimeter wave light source, and has an absorption coefficient in the terahertz wave or millimeter wave band. The waveguide is small, has a higher refractive index than the sample to be measured, is tubular, and has an inner diameter that is 6 to 1000 times the wavelength of the incident light. The near-field light generated near the surface of the

【0003】
近接場光の到達範囲内に配置された前記試料の情報を得ることを特徴とする。
[0009]
本発明に係る近接場光計測法は、テラヘルツ波またはミリ波の近接場光を利用して、その近接場光の到達範囲内に配置された試料の情報を得ることができる。テラヘルツ波またはミリ波の近接場光を利用するため、特に、テラヘルツ波帯またはミリ波帯に大きな吸収や散乱を持つなど、通常の透過測定が困難な試料の情報を得ることもできる。また、テラヘルツ波またはミリ波の近接場光により、高感度な試料表面周辺の非破壊・非侵襲測定を行うことができる。テラヘルツ波またはミリ波帯の電磁波は、水に強く吸収される性質を有しているが、本発明に係る近接場光計測法によれば、生体組織や食品、水溶アミノ酸などの水分を多く含む試料であっても、水の吸収の影響を受けることなく高感度に測定することができる。また、入射光が有する特性伝播モードにより、導波路表面近傍に均一な近接場光を発生させることができ、高感度かつ高精度な測定が可能である。管状の導波路とは、内部が空洞ではなく密な円筒状のことを指し、その断面形状は、円形、楕円形、矩形、多角形等を成していてもよい。
[0010]
テラヘルツ波またはミリ波の光源は、例えば、後進波管やテラヘルツ波パラメトリック光源、ガン発振器、インパッド発振器、タンネット発振器、超短パルスレーザーによる光伝導スイッチ励起、量子カスケードレーザー、p−Geレーザー、自由電子レーザー等から成る。導波路は、シリコン単結晶やテフロン(登録商標)、プラスチック系材料、石英ガラス、セラミックス、金属酸化物、半導体など、テラヘルツ波またはミリ波帯で吸収係数が小さく、測定対象の試料よりも屈折率が高いもので構成されるのが好ましい。
[0011]
なお、一般的に、テラヘルツ波は、周波数が0.1〜10THz、波長が30μm〜3mmの電磁波である。ミリ波は、周波数が30〜300GHz、波長が1〜10mmの電磁波である。
[0012]
本発明に係る近接場光計測法は、前記導波路を通過した透過光を検出することにより、前記試料の情報を得ることが好ましい。この場合、透過光の強度や強度変化等を測定することにより、試料の情報を得ることができる。
[0013]
[0014]
本発明に係る近接場光計測法で、前記試料は、液体、粉体、固体、ゲル状物質または気体から成り、前記試料の情報を連続的に測定可能であってもよい。この場合、試
[0003]
Information on the sample arranged within the reach of near-field light is obtained.
[0009]
The near-field light measurement method according to the present invention can obtain information on a sample arranged within the reach of the near-field light using near-field light of terahertz waves or millimeter waves. Since near-field light of terahertz waves or millimeter waves is used, it is possible to obtain information on a sample that is difficult to perform normal transmission measurement, such as having large absorption or scattering particularly in the terahertz wave band or millimeter wave band. Further, non-destructive and non-invasive measurement of the periphery of the sample surface can be performed with terahertz wave or millimeter wave near-field light. Terahertz waves or millimeter wave band electromagnetic waves have the property of being strongly absorbed by water, but according to the near-field light measurement method according to the present invention, they contain a large amount of water such as living tissue, food, and water-soluble amino acids. Even a sample can be measured with high sensitivity without being affected by water absorption. In addition, uniform near-field light can be generated in the vicinity of the waveguide surface by the characteristic propagation mode of incident light, and measurement with high sensitivity and high accuracy is possible. The tubular waveguide refers to a dense cylindrical shape inside rather than a cavity, and the cross-sectional shape thereof may be a circle, an ellipse, a rectangle, a polygon, or the like.
[0010]
A terahertz wave or millimeter wave light source includes, for example, a backward wave tube, a terahertz wave parametric light source, a gun oscillator, an in-pad oscillator, a tannet oscillator, a photoconductive switch excitation by an ultrashort pulse laser, a quantum cascade laser, a p-Ge laser, It consists of a free electron laser. Waveguides, such as silicon single crystals, Teflon (registered trademark), plastic materials, quartz glass, ceramics, metal oxides, and semiconductors, have a small absorption coefficient in the terahertz wave or millimeter wave band, and have a refractive index that is higher than that of the sample to be measured. It is preferable that it is comprised with a high thing.
[0011]
In general, terahertz waves are electromagnetic waves having a frequency of 0.1 to 10 THz and a wavelength of 30 μm to 3 mm. The millimeter wave is an electromagnetic wave having a frequency of 30 to 300 GHz and a wavelength of 1 to 10 mm.
[0012]
In the near-field light measurement method according to the present invention, it is preferable to obtain information on the sample by detecting transmitted light that has passed through the waveguide. In this case, information on the sample can be obtained by measuring the intensity or intensity change of the transmitted light.
[0013]
[0014]
In the near-field light measurement method according to the present invention, the sample may be made of a liquid, powder, solid, gel substance, or gas, and information on the sample may be continuously measured. In this case, try

【0004】
料の情報の時間的、空間的変化を得ることができる。
[0015]
本発明に係る近接場光計測法は、前記入射光の波長を変えることにより、または、広帯域の前記入射光に対する前記透過光を分光することにより、分光測定可能であってもよい。この場合、試料に含まれる化学物質や、物質の構造等を特定することができる。
[0016]
本発明に係る近接場光計測法は、前記試料と前記導波路との相対位置を変化させることによる前記透過光の強度の変化から、前記試料の形状を測定可能であってもよい。この場合、測定された試料の形状から、試料の2次元画像を得ることができる。また、試料と導波路との相対位置を変化させる方法として、例えば、試料を導波路に沿って移動させたり、導波路を試料の表面に沿って移動させたりしてスキャンする方法や、試料と導波路とを互いに近づけたり遠ざけたりする方法がある。これらを組み合わせることにより、試料の2次元形状だけでなく、3次元形状も得ることができ、試料の3次元画像を得ることもできる。
[0017]
本発明に係る近接場光計測法で、前記導波路は前記入射光の伝播方向に沿って曲率を有していてもよい。この場合、導波路の形状を、試料の形状や測定状況に合わせることができ、効率的な測定を行うことができる。また、試料と近接場光との相互作用面積を拡げることができるため、高感度の測定が可能である。導波路の曲率は、入射光が有する特性伝播モードが変化しない範囲であることが好ましい。
[0018]
本発明に係る近接場光計測装置は、テラヘルツ波またはミリ波の光源と、テラヘルツ波またはミリ波帯で吸収係数が小さく、測定対象の試料よりも屈折率が高く、管状で、前記光源からのテラヘルツ波またはミリ波の入射光の波長の6倍〜1000倍の内径を有し、前記入射光を伝播可能に設けられた導波路と、前記入射光が有する特性伝播モードにより、前記導波路の表面近傍に発生する近接場光の到達範囲内に配置された前記試料の情報を取得するよう、前記導波路を通過した透過光を検出する検出部とを、有することを特徴とする。
[0019]
本発明に係る近接場光計測装置は、本発明に係る近接場光計測法を実施するために使用される。本発明に係る近接場光計測装置は、テラヘルツ波またはミリ波の近接場光を利用して、その近接場光の到達範囲内に配置された試料の情報を得ること
[0004]
It is possible to obtain temporal and spatial changes in fee information.
[0015]
The near-field light measurement method according to the present invention may be capable of spectroscopic measurement by changing the wavelength of the incident light or by dispersing the transmitted light with respect to the broadband incident light. In this case, the chemical substance contained in the sample and the structure of the substance can be specified.
[0016]
The near-field light measurement method according to the present invention may be capable of measuring the shape of the sample from a change in intensity of the transmitted light by changing a relative position between the sample and the waveguide. In this case, a two-dimensional image of the sample can be obtained from the measured shape of the sample. Further, as a method of changing the relative position between the sample and the waveguide, for example, a method of scanning by moving the sample along the waveguide, moving the waveguide along the surface of the sample, There is a method of moving the waveguide close to or away from each other. By combining these, not only the two-dimensional shape of the sample but also a three-dimensional shape can be obtained, and a three-dimensional image of the sample can also be obtained.
[0017]
In the near-field light measurement method according to the present invention, the waveguide may have a curvature along the propagation direction of the incident light. In this case, the shape of the waveguide can be matched to the shape of the sample and the measurement situation, and efficient measurement can be performed. In addition, since the interaction area between the sample and the near-field light can be expanded, highly sensitive measurement is possible. The curvature of the waveguide is preferably in a range where the characteristic propagation mode of incident light does not change.
[0018]
The near-field light measuring device according to the present invention has a terahertz wave or millimeter wave light source, a terahertz wave or millimeter wave band with a small absorption coefficient, a refractive index higher than that of the sample to be measured, a tubular shape, A waveguide having an inner diameter of 6 to 1000 times the wavelength of the incident light of the terahertz wave or millimeter wave, the waveguide provided so as to be able to propagate the incident light, and the characteristic propagation mode of the incident light, And a detection unit that detects transmitted light that has passed through the waveguide so as to acquire information on the sample disposed within the reach of near-field light generated in the vicinity of the surface.
[0019]
The near-field light measurement apparatus according to the present invention is used to implement the near-field light measurement method according to the present invention. The near-field light measurement apparatus according to the present invention uses the near-field light of terahertz waves or millimeter waves to obtain information on the sample arranged within the reach of the near-field light.

Claims (9)

テラヘルツ波またはミリ波の光源で発生させたテラヘルツ波またはミリ波の入射光を、導波路に伝播させ、前記導波路の外部に発生する近接場光により、前記近接場光の到達範囲内に配置された試料の情報を得ることを特徴とする近接場光計測法。   Terahertz wave or millimeter wave incident light generated by a terahertz wave or millimeter wave light source is propagated to the waveguide, and is placed within the reach of the near field light by the near field light generated outside the waveguide. A near-field optical measurement method characterized by obtaining information on a sample obtained. 前記導波路を通過した透過光を検出することにより、前記試料の情報を得ることを、
特徴とする請求項1記載の近接場光計測法。
Obtaining information about the sample by detecting transmitted light that has passed through the waveguide;
The near-field light measurement method according to claim 1, wherein:
前記導波路は管状で、前記入射光の波長の6倍〜1000倍の内径を有し、
前記近接場光は前記入射光が有する特性伝播モードにより、前記導波路の表面近傍に発生することを、
特徴とする請求項1または2記載の近接場光計測法。
The waveguide is tubular and has an inner diameter of 6 to 1000 times the wavelength of the incident light,
The near-field light is generated near the surface of the waveguide due to a characteristic propagation mode of the incident light.
The near-field light measurement method according to claim 1 or 2, characterized in that:
前記試料は、液体、粉体、固体、ゲル状物質または気体から成り、
前記試料の情報を連続的に測定可能であることを、
特徴とする請求項1、2または3記載の近接場光計測法。
The sample consists of a liquid, powder, solid, gel substance or gas,
The information of the sample can be continuously measured,
The near-field light measurement method according to claim 1, 2, or 3.
前記入射光の波長を変えることにより、または、広帯域の前記入射光に対する前記透過光を分光することにより、分光測定可能であることを、特徴とする請求項2、3または4記載の近接場光計測法。   The near-field light according to claim 2, 3 or 4, wherein the near-field light can be spectroscopically measured by changing a wavelength of the incident light or by dispersing the transmitted light with respect to the incident light having a wide band. Measurement method. 前記試料と前記導波路との相対位置を変化させることによる前記透過光の強度の変化から、前記試料の形状を測定可能であることを特徴とする請求項2、3、4または5記載の近接場光計測法。   6. The proximity according to claim 2, wherein the shape of the sample can be measured from a change in intensity of the transmitted light by changing a relative position between the sample and the waveguide. Field light measurement method. 前記導波路は前記入射光の伝播方向に沿って曲率を有することを、特徴とする請求項1、2、3、4、5または6記載の近接場光計測法。   The near-field light measurement method according to claim 1, wherein the waveguide has a curvature along a propagation direction of the incident light. テラヘルツ波またはミリ波の光源と、
前記光源からのテラヘルツ波またはミリ波の入射光を伝播可能に設けられた導波路と、
前記導波路の外部に発生する近接場光の到達範囲内に配置された試料の情報を取得するよう、前記導波路を通過した透過光を検出する検出部とを、
有することを特徴とする近接場光計測装置。
A terahertz or millimeter wave light source,
A waveguide provided to be able to propagate terahertz wave or millimeter wave incident light from the light source;
A detection unit that detects transmitted light that has passed through the waveguide so as to acquire information on a sample disposed within the reach of near-field light generated outside the waveguide;
A near-field light measuring device comprising:
前記近接場光の到達範囲内で前記試料と前記導波路との相対位置を変化させるよう、前記試料または前記導波路を移動可能に設けられた移動手段と、
前記移動手段で前記試料または前記導波路を移動させながら、前記検出部で前記透過光を検出するとき、前記透過光の強度の変化から、前記試料の形状を測定して2次元画像または3次元画像で表示する解析手段とを、
有することを特徴とする請求項8記載の近接場光計測装置。

Moving means provided to be able to move the sample or the waveguide so as to change the relative position between the sample and the waveguide within the reach of the near-field light;
When the transmitted light is detected by the detector while the sample or the waveguide is moved by the moving means, the shape of the sample is measured from the change in the intensity of the transmitted light to obtain a two-dimensional image or a three-dimensional image. Analyzing means to display with images,
9. The near-field light measuring device according to claim 8, further comprising:

JP2008532044A 2006-08-28 2007-08-24 Near-field light measurement method and near-field light measurement device Pending JPWO2008026523A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006231155 2006-08-28
JP2006231155 2006-08-28
PCT/JP2007/066494 WO2008026523A1 (en) 2006-08-28 2007-08-24 Near-field light measuring method and near-field light measuring device

Publications (1)

Publication Number Publication Date
JPWO2008026523A1 true JPWO2008026523A1 (en) 2010-01-21

Family

ID=39135806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008532044A Pending JPWO2008026523A1 (en) 2006-08-28 2007-08-24 Near-field light measurement method and near-field light measurement device

Country Status (2)

Country Link
JP (1) JPWO2008026523A1 (en)
WO (1) WO2008026523A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014006108A (en) * 2012-06-22 2014-01-16 Azbil Corp Optical particle detection device and method for detecting particle
JP2014010072A (en) * 2012-06-29 2014-01-20 Azbil Corp Optical in-liquid particle detection device and in-liquid particle detection method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6075822B2 (en) * 2012-03-13 2017-02-08 キヤノン株式会社 Sensor device
CN104330384B (en) * 2014-11-14 2017-10-20 首都师范大学 Using the method for Terahertz frequency domain spectra technology for detection Amino-Acid in Grain content
CN105092518B (en) * 2015-06-16 2017-08-15 江西农业大学 A kind of navel orange pol fast non-destructive detection method
CN105699701B (en) * 2016-03-26 2019-01-25 吉林大学 For extracting the pseudo- homodyne interference detection system and detection method of near field terahertz signal
CN109696422A (en) * 2018-12-27 2019-04-30 雄安华讯方舟科技有限公司 Terahertz Near-Field Radar Imaging device and method
CN111366555B (en) * 2020-02-27 2021-01-26 浙江大学 Detection method for agricultural film residue in farmland soil
JP7418005B2 (en) * 2020-05-15 2024-01-19 国立研究開発法人理化学研究所 Free water measuring device, free water measuring method, and program
CN112083196B (en) * 2020-09-17 2021-09-28 电子科技大学 Terahertz near field imaging system and method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4183546B2 (en) * 2003-04-11 2008-11-19 独立行政法人理化学研究所 Terahertz optical system
JP4546326B2 (en) * 2004-07-30 2010-09-15 キヤノン株式会社 Sensing device
JP4955966B2 (en) * 2005-09-05 2012-06-20 キヤノン株式会社 Waveguide, device using the same, and detection method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014006108A (en) * 2012-06-22 2014-01-16 Azbil Corp Optical particle detection device and method for detecting particle
JP2014010072A (en) * 2012-06-29 2014-01-20 Azbil Corp Optical in-liquid particle detection device and in-liquid particle detection method

Also Published As

Publication number Publication date
WO2008026523A1 (en) 2008-03-06

Similar Documents

Publication Publication Date Title
JPWO2008026523A1 (en) Near-field light measurement method and near-field light measurement device
Humphreys et al. Medical applications of terahertz imaging: a review of current technology and potential applications in biomedical engineering
US8039801B2 (en) Detection apparatus for detecting electromagnetic wave passed through object
JP4546326B2 (en) Sensing device
Smith et al. Terahertz time-domain spectroscopy of solid samples: principles, applications, and challenges
Ajito et al. THz chemical imaging for biological applications
JP5134177B2 (en) Systems using light-scattering spectroscopy based on electric fields
Koch et al. Terahertz time-domain spectroscopy
US8710440B2 (en) Measuring device and measuring method that use pulsed electromagnetic wave
US11513282B2 (en) Sensor comprising a waveguide with optical resonator and sensing method
US20100148069A1 (en) Information acquisition apparatus and information acquisition method using terahertz wave for acquiring information on object
JP6288717B2 (en) Component concentration analysis method
EP3025153A1 (en) Sensor device and method for thermoacoustic measurement of electromagnetic fields
Johnson et al. Gas-coupled laser acoustic detection as a non-contact line detector for photoacoustic and ultrasound imaging
JP2013190311A (en) Sensor apparatus
WO2016056522A1 (en) Optical response measuring device and optical response measuring method
Huber et al. Optimum sample thickness for trace analyte detection with field-resolved infrared spectroscopy
JP2005172779A (en) Method and apparatus for measuring bacteria, virus and toxic substance by irradiation with electromagnetic wave
Musina et al. Optical properties of hyperosmotic agents for immersion clearing of tissues in terahertz spectroscopy
JP2007178414A (en) Method and system for testing sugar content
Reid Spectroscopic methods for medical diagnosis at terahertz wavelengths
Jiang et al. Nondestructive in-situ permittivity measurement of liquid within a bottle using an open-ended microwave waveguide
CN109490202A (en) A kind of immunoturbidimetry protein analyzer based on light miniflow laser
KR101721976B1 (en) Terahertz sensor
JP2008175794A (en) Reflection measuring apparatus and method